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ABSTRACT. Let k be a perfect field with char(k) ̸= 2, 3, set K = k(t), and let Wmin
n

be the moduli stack of minimal elliptic curves over K of Faltings height n from
the height–moduli framework of [BPS22] applied to M1,1 ≃ P(4,6). For [E] ∈
Wmin

n , let S→ P1
k be the associated elliptic surface with section. Motivated by the

Shioda–Tate formula, we consider the trivariate motivic height zeta function

Z(u, v; t) :=
∑

n≥0

� ∑

[E]∈Wmin
n

uT (S) vrk(E/K)
�

tn ∈ K0(Stckk)[u, v]⟦t⟧,

which refines the height series by weighting each height stratum with the trivial
lattice rank T (S) and the Mordell–Weil rank rk(E/K). We prove rationality for the
trivial lattice specialization ZTriv(u; t) = Z(u, 1; t) by giving an explicit finite Euler
product. We conjecture irrationality for the Néron–Severi ZNS(w; t) = Z(w, w; t)
and the Mordell–Weil ZMW(v; t) = Z(1, v; t) specializations.

1. INTRODUCTION

Let k be a perfect field with char(k) ̸= 2, 3, and set K := k(t). An elliptic curve
E/K determines a relatively minimal elliptic surface with section

f : S −→ P1
k

unique up to isomorphism (see [Mir89, SS10] for background on elliptic surfaces).

The arithmetic of E/K is reflected in the geometry of S, and a basic organizing
principle is the Shioda–Tate formula [Shi90]

(1) ρ(S) = T (S) + rk(E/K),

where ρ(S) = rkNS(Sk̄) is the geometric Picard rank, T (S) is the rank of the geomet-
ric trivial lattice generated by the zero section, a fiber class, and the components of
reducible fibers not meeting the zero section, and rk(E/K) is the Mordell–Weil rank.
For the relatively minimal elliptic surfaces f : S → P1

k with section considered in
this paper, we have q(S) = 0 and pg(S) = n− 1, hence the standard bounds

2≤ ρ(S)≤ 10n, 2≤ T (S)≤ 10n, 0≤ rk(E/K)≤ 10n− 2,(2)

where ρ(S) ≤ 10n = h1,1(S) is the Lefschetz bound over k = C (or in general the
Igusa’s inequality ρ(S)≤ b2(S) = 12n− 2).

In [BPS22], Bejleri–Park–Satriano construct height-moduli stacks of rational points
on proper polarized cyclotomic stacks. In the fundamental modular curve example

M1,1 ≃ P(4, 6), λ≃OP(4,6)(1),

a minimal elliptic curve over K can be viewed as a rational point of λ–height n on
M1,1 over K . This yields a separated Deligne–Mumford stack of finite type

Wmin
n := Wmin

n,P1
k

�

P(4, 6),O(1)
�
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parametrizing minimal elliptic curves over K of discriminant degree 12n. Here
a K-rational point of M1,1 of λ-height n means the stacky height n with respect
to the Hodge line bundle λ, in the sense of [ESZB23]. Under the identification
M1,1

∼= P(4, 6) one has λ ≃ OP(4,6)(1), and this height agrees with the Faltings
height of the corresponding elliptic curve by [BPS22, Cor. 7.6].

Guided by (1), we introduce the following motivic generating series (see [Eke25]
for background on the Grothendieck ring of stacks) refining the height generating
series in [BPS22, §8] by weighting each height stratum with the lattice ranks of the
associated relatively minimal elliptic surface.

Definition 1.1. Let k be a perfect field of characteristic ̸= 2,3, and consider the
height–moduli stack

Wmin
n =Wmin

n,P1
k

�

P(4, 6),O(1)
�

parametrizing minimal elliptic curves over K = k(t) of discriminant height 12n.
The trivariate height zeta function is

Z(u, v; t) :=
∑

n≥0

 

∑

[E]∈Wmin
n

u T (S) v rk(E/K)

!

tn ∈ K0(Stckk)[u, v]⟦t⟧,

where for each [E] ∈Wmin
n we write S → P1

k for the associated relatively minimal
elliptic surfaces f : S→ P1

k with section, and:

• T (S) is the rank of the trivial lattice of S;
• rk(E/K) is the Mordell–Weil rank.

The following specializations are the associated bivariate height zeta functions:

ZTriv(u; t) := Z(u, 1; t),(3)

ZMW(v; t) := Z(1, v; t),(4)

ZNS(w; t) := Z(w, w; t).(5)

Remark 1.2. Setting u = v = 1 forgets the lattice rank grading and specializes to
the univariate motivic height zeta function Zλ⃗(t) = Z(1,1; t) ∈ K0(Stckk)⟦t⟧ and
likewise to its inertial refinement IZλ⃗(t) which encodes the totality of rational
points on M1,1 over K = k(t). [BPS22, Thm. 8.9] shows that both series are in
fact rational in t, i.e. lie in K0(Stckk)(t), and gives explicit formulas.

In this paper we focus on ZTriv(u; t). The key point is that the trivial lattice is
governed by local bad reduction: its rank is determined by the geometric Kodaira
fiber configuration of πk̄ : Sk̄ → P1

k̄
. Writing Triv(S) ⊂ NS(Sk̄) for the geometric

trivial lattice and T (S) := rk(Triv(S)), we have the following explicit formula.

Lemma 1.3. Let π: S→ P1
k be a relatively minimal elliptic surface with section, and

let f be the multiset of singular fibers of πk̄ : Sk̄ → P1
k̄
. If mv denotes the number of

irreducible components of the fiber at v, then

T (S) = 2+
∑

v∈f

(mv − 1).
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Definition 1.4. Fix n≥ 1. For a geometric fiber configuration f, let Wmin,(f)
n ⊂Wmin

n
denote the locus parametrizing those [E] ∈Wmin

n whose associated surface Sk̄→ P1
k̄

has singular fiber configuration f (cf. [BPS22, Thm. 7.16]).

Definition 1.5. Fix n ≥ 0. By Proposition 2.1, Wmin
n admits a finite constructible

stratification by Kodaira data, and T (S) is constant on each stratum. For n≥ 1 and
each T with 2≤ T ≤ 10n, let

Wmin
n (T ) ⊂W

min
n

be the finite union of those Kodaira strata on which T (S) = T (hence a finite union
of locally closed substacks). For n= 0, set Wmin

0 :=Wmin
0 (2).

The trivial–lattice–rank–weighted motivic height zeta function is

ZTriv(u; t) :=
∑

n≥0

∑

T≥2

uT {Wmin
n (T )} t

n ∈ K0(Stckk)[u]⟦t⟧.

We prove that ZTriv(u; t) is rational after inverting L (see Remark 2.6), and we
give an explicit finite Euler product (Theorem 2.9).

Theorem 1.6. Let k be a perfect field with char(k) ̸= 2, 3 and put s = t1/12. Then

ZTriv(u; t) ∈ K0(Stckk)[L−1][u](s).

Moreover, ZTriv(u; t) admits an explicit finite Euler product in s.

The proof is a motivic local-to-global factorization argument [Kap00, CLL16],
implemented on the twisted-map stratification of the height–moduli Wmin

n via the
evaluation morphisms [GP06]. Throughout we use the Bejleri–Park–Satriano cor-
respondence [BPS22, Thm. 3.3] between rational points, minimal weighted linear
series, and twisted morphisms; in particular, local reduction conditions are en-
coded by representable twisted morphisms to M1,1 ≃ P(4,6), yielding a moduli-
theoretic Tate’s algorithm [Tat75] compatible with the minimal model program [BPS22,
Thm. 7.12]. Unordered collections of local factors supported at distinct points of
P1 are governed by symmetric powers SymN (P1). We reorganize these symmetric-
power contributions using the power structure on K0(Stckk)[L−1], and we record
the resulting identity explicitly in Lemma 2.7. Since only finitely many local fac-
tor types occur, this yields a finite Euler product after inverting L [GZLMH13].
The only unbounded discrete parameter is the cusp contact order in the two fam-
ilies Ik and I∗k, which is collapsed by geometric resummation. Finally, specializing
xα = um(α)−1 for α ∈ Anc together with the cusp substitutions produces the Euler
product expression for ZTriv(u; t) in K0(Stckk)[L−1][u](s) with t = s12.

Remark 1.7. Replacing Wmin
n (T ) by its inertia stack (see [HP23, §2] for back-

ground on the inertia stack I(X ) of an algebraic stack X ) gives

IZTriv(u; t) :=
∑

n≥0

∑

T≥2

uT
�

IWmin
n (T )

	

tn ∈ K0(Stckk)[u]⟦t⟧.

After inverting L, the same argument yields a finite Euler product for IZTriv(u; t).
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2. RATIONALITY OF THE TRIVIAL LATTICE RANK WEIGHTED CASE

Throughout, let k be a perfect field with char(k) ̸= 2,3, set K = k(t), and let
π: S→ P1

k be the relatively minimal elliptic surface with section associated to E/K .
Write Triv(S) ⊂ NS(Sk̄) for the geometric trivial lattice and T (S) = rkTriv(S).

Proposition 2.1. Fix n ≥ 1. The discriminant degree constraint
∑

v e(Fv) = 12n
implies that only finitely many geometric fiber configurations f occur among surfaces
parametrized by Wmin

n . Consequently,

Wmin
n =

⊔

f

Wmin,(f)
n

is a finite constructible stratification. Moreover, the trivial lattice rank T (S) is con-
stant on each stratum Wmin,(f)

n .

Proof. Fix n ≥ 1 and let S → P1
k be a surface parametrized by Wmin

n . For any rel-
atively minimal elliptic surface with section one has

∑

v∈P1
k̄
e(Fv) = e(Sk̄) and in

our height-n locus this total Euler number equals 12n (equivalently, the discrimi-
nant has degree 12n). For each singular fiber Fv, the Kodaira–Néron classification
[Kod63, N6́4] gives the types Ik, I∗k (k ≥ 1) and II, III, IV, I∗0, IV∗, III∗, II∗. Their Eu-
ler numbers satisfy e(Ik) = k, e(I∗k) = k + 6 while the remaining types have Euler
number e(Fv) ∈ {2,3, 4,6, 8,9, 10} (see [Her91, Table 1]). Since

∑

v e(Fv) = 12n,
the integers k occurring in fibers of type Ik and I∗k are bounded in terms of n.
Hence there are only finitely many multisets of Kodaira symbols (equivalently, fiber
configurations f) whose Euler numbers sum to 12n. Therefore only finitely many
configurations occur, and Wmin

n =
⊔

fWmin,(f)
n is a finite stratification by locally

closed substacks as in [BPS22, Thm. 7.16]. Finally, on a fixed stratum Wmin,(f)
n

the multiset f (hence the integers mv) is constant, so Lemma 1.3 implies that
T (S) = 2+

∑

v∈f(mv − 1) is constant on that stratum. ■

A multivariate height series. We briefly recall the local indexing used in the
twisted-maps description of height–moduli. By [BPS22, Thm. 5.1] the height-n
moduli stack Mn,C(X ,L) on a proper polarized cyclotomic stack X with polariz-
ing line bundle L admits a finite stratification by locally closed substacks indexed
by admissible local conditions and degrees: there is a finite disjoint union of mor-
phisms

⊔

Γ ,d

HΓd,C(X ,L)/SΓ −→Mn,C(X ,L),

where HΓd,C(X ,L) is the moduli stack of representable twisted morphisms of stable
height d to (X ,L) with and local twisting conditions

Γ =
�

{r1, a1}, . . . , {rs, as}
�

,

recording the stabilizer orders ri and the corresponding characters ai at the stacky
marked points of the source root stack. The indices (Γ , d) range over those satis-
fying the height decomposition formula

n = d +
s
∑

i=1

ai

ri
.
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Here SΓ ⊂ Ss is the subgroup permuting stacky marked points of the same local
type.

Definition 2.2. For the Euler-product argument it is useful to distinguish local
factor types from elementary local patterns. Let IP(4,6) be the cyclotomic inertia
stack.

(1) local factor types. Let J denote the finite set of local factor types occurring
in the Tate-algorithm stratification via twisted maps (see [BPS22, §7]); concretely
one may take

J =
¦

II, III, IV, II∗, III∗, IV∗, I∗0( j ̸= 0,1728), I∗0( j ∈ {0, 1728}), I•, I∗•
©

,

where I• and I∗• are the two cusp shapes over j =∞.

(2) Elementary local patterns. Let A denote the set of elementary local patterns
used to index evaluation conditions, i.e. the inertia components in which the eval-
uation maps land. Away from the cusp j =∞, the inertia label determines the
Kodaira symbol, so the non-cusp patterns form a finite set

Anc =
¦

II, III, IV, II∗, III∗, IV∗, I∗0( j ̸= 0,1728), I∗0( j ∈ {0, 1728})
©

.

At the cusp j =∞, the inertia label records only the cusp shape (I• or I∗•); the
additional integer k ≥ 1 (contact order with the boundary, equivalently the pole
order of j) is part of the admissible local data on a twisted-maps chart and is treated
as a multiplicity parameter within the cusp shape. Accordingly we set

A := Anc ⊔ {I•, I∗•}.

For α ∈ Anc, let m(α) ∈ Z≥1 be the number of irreducible components of the
corresponding Kodaira fiber, so that m(α)−1 is its contribution to the trivial lattice.
For the cusp shapes I• and I∗•, the component number depends on the contact order
k ≥ 1 (of the corresponding Ik or I∗k fiber); this k–dependence will be incorporated
later by geometric resummation (Lemma 2.8). In summary, J indexes the local
factor types (basic chart types) that become Euler factors under the power structure
on K0(Stckk), whereas A indexes the evaluation labels, i.e. exactly what inertia can
see; in particular, over j =∞ inertia distinguishes only the two cusp shapes and
not the contact order k.

Remark 2.3. When an evaluation condition lands over the cusp j =∞, the corre-
sponding component of the cyclotomic inertia stack IP(4, 6) records only the cusp
shape (multiplicative I• or additive I∗•); it does not record the multiplicity k ≥ 1.
Equivalently, inertia detects that j has a pole, but not its pole order. The missing
discrete datum is the contact order with the boundary. Geometrically, it is visible
on the log canonical model obtained by contracting, in each reducible fiber, the
components not meeting the zero section.

(1) The multiplicative family Ik. If the fiber at t ∈ P1 is of type Ik (k ≥ 1), then
the contraction produces an Ak−1 surface singularity. Étale locally one has

x y = uk,
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where u is a local parameter at t. Since an étale neighbourhood of the universal
nodal fiber over the cusp [∞] ∈ M1,1 ≃ P(4, 6) is given by x y = s (with s a
parameter at the cusp), the classifying map ϕg : P1 →M1,1 satisfies s = uk. Thus
ϕg meets the boundary with contact order k, and v(∆) = k for type Ik.

(2) The additive family I∗k. If the fiber at t is of type I∗k (k ≥ 1), then the contraction
produces a Dk+4 surface singularity. The classifying map still lands at j =∞ with
boundary contact order k (so locally s = uk), while the discriminant valuation is
shifted by the starred contribution: v(∆) = k+ 6 for type I∗k.

For ZTriv one has

m(Ik)− 1= k− 1, m(I∗k)− 1= k+ 4,

so the trivial lattice exponent depends linearly on k in each cusp family.

Definition 2.4. Fix an auxiliary variable s with s12 = t. Introduce variables {xα}α∈A
and define

(6) H(s;x) :=
∑

n≥0

∑

f

�

∏

v∈f

xαv

�

�

Wmin,(f)
n

	

s12n ∈ K0(Stckk)[x]⟦s⟧,

where for fixed n the inner sum ranges over the finitely many geometric fiber con-
figurations f occurring in height n (Proposition 2.1).

For each singular fiber Fv in f, letαv ∈A denote the corresponding inertia/evaluation
label (Definition 2.2). Away from the cusp j =∞ this label is the Kodaira symbol,
while over j =∞ it records only the cusp shape I• or I∗•. The additional contact
order k ≥ 1 at the cusp is part of the twisted-maps chart data and is not recorded
by the variables xα.

Remark 2.5. The local conditions defining the strata are imposed via evaluation
maps evi to IP(4,6), hence are naturally indexed by connected components of the
inertia stack. In particular, the same Kodaira symbol may correspond to distinct in-
ertia components. For example, I∗0 splits into distinct inertia components according
to whether j ∈ {0, 1728} or j /∈ {0, 1728}. Accordingly we index local conditions
by inertia labels, not by Kodaira symbols alone.

Remark 2.6. We work in the localized ring K0(Stckk)[L−1]. Localization is used
to place the argument in a ring where quotient stack identities for linear algebraic
groups (e.g. GLn, PGL2) and the power–structure identities for symmetric powers
hold uniformly as equalities of rational functions, thereby justifying the reorgani-
zation of unordered local factors into Euler factors.

Lemma 2.7. Let A be the finite set of elementary local patterns from Definition 2.2,
and let H(s;x) be the multivariate height series defined in (6). After inverting L, the
series H(s;x) is a rational function of s with coefficients in K0(Stckk)[L−1][x].

More precisely, there exist:
• a finite index set J of local factor types,
• motivic classes A j ∈ K0(Stckk)[L−1],
• integers c j ≥ 1, recording the discriminant degree increment contributed by

one local factor of type j,
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• and exponents β j,α ∈ Z≥0 for α ∈A, recording how many markings of inertia
type α occur in a local factor of type j,

such that

(7) H(s;x) =
∏

j∈J

�

1− A j

�∏

α∈A
x
β j,α
α

�

sc j

�−{P1}

∈ K0(Stckk)[L−1][x](s).

Equivalently, writing

Yj(s;x) := A j

�∏

α∈A
x
β j,α
α

�

sc j ,

one has the explicit specialization

(8) (1− Yj)
−{P1} =

∑

N≥0

{SymN (P1)}Y N
j =

1
(1− Yj)(1−LYj)

.

Moreover, for α ∈ {I•, I∗•} the exponent β j,α counts only the number of cusp markings
of the given cusp shape in factor type j; it does not record the contact order k ≥ 1.

Proof. By [BPS22, Thm. 7.16], for each n the stack Wmin
n admits a finite locally

closed stratification by charts of the form

HΓ
d,P1

k

�

P(4, 6),O(1)
��

SΓ ,

where HΓ
d,P1

k
(P(4,6),O(1)) parametrizes representable twisted morphisms with an

ordered list of stacky markings and admissible local data. We write the admissible
local condition as

Γ =
�

Γnc, (kI,kI∗)
�

, kI = (kI
1, . . . , kI

mI
), kI∗ = (kI∗

1 , . . . , kI∗

mI∗
),

where Γnc records the ordered list of non-cusp inertia labels, and kI,kI∗ record the
contact orders at cusp markings of shape I• and I∗•.

For each marking there is an evaluation morphism

evi : HΓ
d,P1

k

�

P(4, 6),O(1)
�

→ IP(4, 6), (ϕ,Σ1, . . . ,Σs) 7−→ ϕ(Σi),

and prescribing an inertia label α ∈ A is equivalent to requiring evi to land in
the corresponding connected component of IP(4,6). Over the cusp j =∞, the
inertia label records only the cusp shape α ∈ {I•, I∗•}; the contact orders k j are
extra admissible boundary contact data on the chart (Remark 2.3). The variables
x= {xα}α∈A therefore record only inertia labels, i.e. only what can be read off from
the evaluations evi, and H(s;x) is obtained from the stratification by forgetting the
extra contact-order data.

Passing to the quotient by SΓ forgets the ordering among markings of the same
inertia type. Fix a local factor type j. Repeating this local factor N times is governed
by unordered configurations of N support points on the coarse curve P1, hence by
the symmetric power SymN (P1). Set

Yj(s;x) := A j

�∏

α∈A
x
β j,α
α

�

sc j .
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Accordingly, the contribution of all unordered collections of local factors of type j
sums to

∑

N≥0

{SymN (P1)} · Yj(s;x)N .

By the power-structure/Kapranov zeta-function identity on K0(Stckk)[L−1] as in
[GZLMH13, §1],

∑

N≥0

{SymN (X )} · yN = (1− y)−{X },

this equals (1− Yj)−{P
1}. Since {P1}= 1+L, we obtain the explicit rational form

(9) (1− Yj)
−{P1} =

1
(1− Yj)(1−L · Yj)

.

Since only finitely many local factor types occur (Definition 2.2), multiplying over
j ∈ J yields (7) and hence rationality of H(s;x) in s after inverting L.

Finally, for α ∈ {I•, I∗•} the exponent β j,α counts only the number of cusp mark-
ings of the given cusp shape in factor type j; the individual contact orders k j are
handled separately by geometric resummation. ■

Lemma 2.8. Let R be a commutative ring.

(1) Geometric resummation Fix A∈ R. For integers a, c ≥ 1 and b, d ≥ 0, one has
in R⟦u, t⟧

(10)
∑

k≥1

Auak+b t ck+d = Aua+b t c+d ·
1

1− ua t c
.

Moreover, if k1, . . . , kM ≥ 1 are independent and contribute multiplicatively with the
same step (a, c), then

(11)
∑

k1,...,kM≥1

A
M
∏

i=1

uaki+b t cki+d = A
�

ua+b t c+d
�M
·

1
(1− ua t c)M

.

Equivalently, each marking contributes one factor (1− ua t c)−1, so M such markings
contribute the power (1− ua t c)−M , up to the monomial shift

�

ua+b t c+d
�M

.

(2) Cusp shapes for ZTriv Assume char(k) ̸= 2, 3 and work in R = K0(Stckk)[L−1].
Introduce an auxiliary variable s with t = s12, so that tn corresponds to deg(∆) =
12n, while s records the integral discriminant degree deg(∆).

After specializing xβ = um(β)−1 for β ∈ Anc, a cusp marking of shape I• (resp. I∗•)
with contact order k ≥ 1 contributes weight uk−1sk (resp. uk+4sk+6), since

m(Ik)− 1= k− 1, v(∆) = k, m(I∗k)− 1= k+ 4, v(∆) = k+ 6.

Hence summing over k ≥ 1 at a single cusp marking gives, in R⟦u, s⟧,

(12) xI• =
∑

k≥1

uk−1sk =
s

1− us
, xI∗•

=
∑

k≥1

uk+4sk+6 =
u5s7

1− us
.
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In particular, each cusp marking of either shape contributes one factor (1−us)−1 after
resummation. Thus a factor type j with β j,I• markings of shape I• and β j,I∗•

markings
of shape I∗• contributes the cusp factor

(1− us)−(β j,I•+β j,I∗•
),

together with the monomial shift

u5β j,I∗• sβ j,I•+7β j,I∗•

coming from (12).

Proof. For (10), factor out the k = 1 term and apply the geometric-series identity:
∑

k≥1

Auak+b t ck+d = Aua+b t c+d
∑

k≥0

(ua t c)k = Aua+b t c+d ·
1

1− ua t c
.

Equation (11) follows because the sum over (k1, . . . , kM) factorizes as a product of
M copies of (10). Part (2) is (10) with (a, c) = (1,1) applied in R⟦u, s⟧ to the two
monomial weights uk−1sk and uk+4sk+6, yielding (12) and the stated denominator
power. ■

Note that although the resummations sum over all k ≥ 1, for any fixed height n
only finitely many contact orders can occur: since

∑

v v(∆)v = 12n and v(∆) = k
for Ik and v(∆) = k+6 for I∗k, one has k ≤ 12n (resp. k ≤ 12n−6) on the height-n
stratum. Thus the “infinite” cusp sum is merely a generating function device, and
each coefficient [tn] (equiv. [s12n]) receives contributions from finitely many k.

We now prove the Main Theorem.

Theorem 2.9 (Rationality and finite Euler product for ZTriv). Let k be a perfect field
of characteristic ̸= 2,3, and set s = t1/12 (so t = s12). Then

ZTriv(u; t) ∈ K0(Stckk)[L−1][u](s).

More precisely, let J, A j, c j, and β j,α be as in Lemma 2.7. Put

∆(s) := 1− us, b j :=
∑

β∈Anc

β j,β

�

m(β)− 1
�

, m j := β j,I• + β j,I∗•
,

and define

B j := b j + 5β j,I∗•
, C j := c j + β j,I• + 7β j,I∗•

, Y j(u; s) := A j uB j sC j∆(s)−m j .

Then one has the finite Euler product

(13) ZTriv(u; t) = u2 ·L ·
∏

j∈J

1
�

1−Y j(u; s)
��

1−L · Y j(u; s)
� , (t = s12).

Moreover, all dependence on k ≥ 1 in the cusp families Ik and I∗k (over j =∞) is
absorbed by the single geometric-series denominator ∆(s)−1 = (1− us)−1.

Proof. Work in the localized ring K0(Stckk)[L−1]. By Lemma 2.7 we have

(14) H(s;x) =
∏

j∈J

�

1− A j

�∏

α∈A
x
β j,α
α

�

sc j

�−{P1}

∈ K0(Stckk)[L−1][x](s).
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Trivial lattice baseline. By Lemma 1.3, for an elliptic surface S with singular fiber
configuration f one has

T (S) = 2+
∑

v∈f

(mv − 1).

Under the specializations below, the monomial attached to f is u
∑

v∈f(mv−1), i.e. it
records only the fiber contributions. Thus passing from H to ZTriv introduces the
global factor u2.

Height-zero term. By Definition 1.5 one has Wmin
0 =Wmin

0 (2), so

[t0] ZTriv(u; t) = u2{Wmin
0 }.

For n= 0 the discriminant degree is 0, hence the corresponding elliptic curve over
K = k(t) has everywhere good reduction and is therefore constant. Equivalently,
Wmin

0 identifies with the moduli stack of smooth elliptic curves,

Wmin
0
∼= M1,1.

Therefore {Wmin
0 }= L as in [Eke25], and the required constant term is u2 ·L.

Non-cusp specialization. For β ∈Anc specialize xβ = um(β)−1. Then for each j ∈ J
the product of the non-cusp variables contributes the monomial ub j , where

b j :=
∑

β∈Anc

β j,β

�

m(β)− 1
�

.

Cusp resummation. Over the cusp j = ∞, the contact order k ≥ 1 varies.
In the discriminant-degree grading (with t = s12), a cusp marking of shape I•
(resp. I∗•) with contact order k contributes weight uk−1sk (resp. uk+4sk+6). Hence
(Lemma 2.8) we have the substitutions

xI• =
∑

k≥1

uk−1sk =
s

1− us
= s∆(s)−1, xI∗•

=
∑

k≥1

uk+4sk+6 =
u5s7

1− us
= u5s7∆(s)−1,

with ∆(s) = 1− us. Therefore, for each j ∈ J the cusp contribution becomes

x
β j,I•
I•

x
β j,I∗•
I∗•
= u5β j,I∗• sβ j,I•+7β j,I∗• ∆(s)−m j , m j := β j,I• + β j,I∗•

.

Combining with the non-cusp specialization yields, inside the jth factor of (14),

A j

�∏

α∈A
x
β j,α
α

�

sc j 7−→ A j uB j sC j∆(s)−m j = Y j(u; s),

where
B j = b j + 5β j,I∗•

, C j = c j + β j,I• + 7β j,I∗•
.

Thus

ZTriv(u; t) = u2 · {M1,1} ·
∏

j∈J

�

1−Y j(u; s)
�−{P1}

, (t = s12).

Finally, since {P1}= 1+L in K0(Stckk), we may expand
�

1−Y j(u; s)
�−{P1}

=
1

�

1−Y j(u; s)
��

1−L ·Y j(u; s)
� ,
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which gives (13). The dependence on k ≥ 1 in the cusp families is absorbed by
the single geometric-series denominator ∆(s)−1 = (1 − us)−1 through the above
resummations. ■

Remark 2.10. Assume char(k) ̸= 2, 3. For each Kodaira type Θ and n≥ 1, let

WΘ
n,P1

be the moduli stack of minimal elliptic fibrations over P1
k of discriminant degree

12n having exactly one singular fiber of type Θ over a varying degree–one place
and semistable everywhere else.

The one-fiber motivic classes {WΘ
n,P1} carry a universal dependence on the height

n coming from the 10n–dimensional space of Weierstrass coefficients (equivalently,
from the spaces of sections of degrees 4n and 6n in the weighted presentation
M1,1 ≃ P(4,6)). In particular, after dividing by the Aut(P1) = PGL2–factor,1 the
remaining motivic class grows as L10n+O(1), uniformly in Θ. Accordingly we nor-
malize local factor coefficients by

A(C)Θ :=
{WΘ

n,P1}

{PGL2}L10n+C
,

for some fixed integer C (e.g. C = −18 as in Table 1). The choice of C is immaterial
for the Euler product: changing C rescales every local factor coefficient by the same
global power of L and does not change its type (i.e. does not change the exponents
B j, C j, m j nor the finite set of factor types).

Then [BPS22, Thm. 1.6] and [HP19, Cor. 2] determine the following normalized
one-fiber motivic classes.

Convention. For each reduction type Θ in Table 1, let yΘ(u; s) denote the local
monomial appearing in the displayed denominator in the last column (e.g. yIk

=
L16s∆(s)−1, yIII = L14u s3, etc.). The full P1-contribution of Θ in the Euler product
is the power-structure/Kapranov factor

(1− yΘ(u; s))−{P
1} =

∑

N≥0

{SymN (P1)} yΘ(u; s)N =
1

�

1− yΘ(u; s)
��

1−L yΘ(u; s)
� .

In Table 1 we record only the reduced factor
�

1− yΘ(u; s)
�−1

; the second factor
�

1−
L yΘ(u; s)

�−1
is inserted uniformly in the global Euler product (cf. Theorem 2.9).

These one-fiber motivic classes should be viewed as local building blocks for the
factor–type Euler product in Theorem 2.9. For each non-cusp type II, III, IV, IV∗, III∗, II∗

and the two distinct cases I∗0( j ̸= 0,1728) and I∗0( j ∈ {0, 1728}), the corresponding
local factor types contribute k–independent reduced local factors in the s–grading
(so t = s12), namely

�

1 − yΘ(u; s)
�−1

after the specialization xα = um(α)−1 for
α ∈Anc. In this way, the s–exponent in yΘ(u; s) records the discriminant s–degree

1The unparameterized P1
k corresponds to taking the Aut(P1) = PGL2 stack quotient; motivically

this factors out {PGL2}= L(L2 − 1), thereby treating the base as a smooth conic. See [PS25] for a
comprehensive treatment.
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Reduction type Θ (r, a) mv − 1 AΘ :=
{WΘ

n,P1}

{PGL2}L10n−18
P1-Euler factor in ZTriv(u; t)

Ik≥1 ( j =∞) (0, 0) k− 1 L16 1
1−L16 s∆(s)−1

II ( j = 0) (6, 1) 0 L15 1
1−L15 s2

III ( j = 1728) (4, 1) 1 L14 1
1−L14 u s3

IV ( j = 0) (3, 1) 2 L13 1
1−L13 u2 s4

I∗k≥1 ( j =∞) (2, 1) k+ 4 L12 −L11 1
1− (L12 −L11)u5 s7∆(s)−1

I∗0 ( j ̸= 0,1728) (2, 1) 4 L12 −L11 1
1− (L12 −L11)u4 s6

I∗0 ( j = 0,1728) (2, 1) 4 L11 1
1−L11 u4 s6

IV∗ ( j = 0) (3, 2) 6 L10 1
1−L10 u6 s8

III∗ ( j = 1728) (4, 3) 7 L9 1
1−L9 u7 s9

II∗ ( j = 0) (6, 5) 8 L8 1
1−L8 u8 s10

TABLE 1.

increment of the local factor, the u–exponent records the corresponding trivial-
lattice increment from its non-cusp markings, and AΘ records the normalized mo-
tivic class of the one-fiber locus.

For the cusp families Ik and I∗k, the table gives the one-fiber motivic contribution
for each contact order k ≥ 1. In the factor–type Euler product for H(s;x), the
exponents β j,I• and β j,I∗•

record only the number of cusp markings of each cusp
shape in factor type j; the individual contact orders are not part of the inertia
label. The infinite k–variation is collapsed by the geometric resummations

xI• =
∑

k≥1

uk−1sk =
s

1− us
, xI∗•

=
∑

k≥1

uk+4sk+6 =
u5s7

1− us
,
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so that each cusp marking contributes one factor∆(s)−1 = (1−us)−1. Consequently,
factor type j contributes the cusp factor

∆(s)−(β j,I•+β j,I∗•
),

together with the monomial prefactor

u5β j,I∗• sβ j,I•+7β j,I∗•

coming from the cusp substitutions.

3. APPLICATIONS TO MODULAR CURVES WITH PRESCRIBED LEVEL STRUCTURE

We apply the Main Theorem to the genus-0 modular curves M1(N) parametriz-
ing generalized elliptic curves with level-N structure Γ1(N), introduced by [DR73]
(see also [Con07, §2]). The fine modular curve M1(N) parametrizes families
(E,S, P) → B where (E,S) → B is a semistable elliptic curve with section S and
P ∈ Esm[N](B) is an N -torsion section such that the divisor P + S is relatively am-
ple [KM85, §1.4]. We focus on N = 2, 3,4, where the modular curves are genuinely
stacky. Throughout, let k be a perfect field with char(k) ̸= 2, 3.

3.1. Level-2 structure. We consider the height moduli

WΓ1(2)
n

�

P(2, 4),O(1)
�

= Mn,P1
k

�

M1(2),L
�

,

where M1(2)∼= P(2, 4) over Z
�

1
2

�

is the moduli stack of generalized elliptic curves
with Γ1(2)-structure (cf. [Beh06, §1.3]). Equivalently, M1(2) admits the universal
Weierstrass presentation

y2 = x3 + a2 x2 + a4 x with (a2, a4) ∈ H0
�

P1,O(2n)
�

×H0
�

P1,O(4n)
�

.

3.2. Level-3 structure. We consider the height moduli

WΓ1(3)
n

�

P(1, 3),O(1)
�

= Mn,P1
k

�

M1(3),L
�

,

where M1(3)∼= P(1, 3) over Z
�

1
3

�

is the moduli stack of generalized elliptic curves
with Γ1(3)-structure (cf. [HM17, Prop. 4.5]). Equivalently, M1(3) admits the uni-
versal Weierstrass presentation

y2 + a1 x y + a3 y = x3 with (a1, a3) ∈ H0
�

P1,O(n)
�

×H0
�

P1,O(3n)
�

.

3.3. Level-4 structure. We consider the height moduli

WΓ1(4)
n

�

P(1, 2),O(1)
�

= Mn,P1
k

�

M1(4),L
�

,

where M1(4)∼= P(1, 2) over Z
�

1
2

�

is the moduli stack of generalized elliptic curves
with Γ1(4)-structure (cf. [Mei22, Ex. 2.1]). Equivalently, M1(4) admits the univer-
sal Weierstrass presentation

y2+a1 x y+a1a2 y = x3+a2 x2 with (a1, a2) ∈ H0
�

P1,O(n)
�

×H0
�

P1,O(2n)
�

.
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Reduction type Θ (r, a) mv − 1 AΘ :=
{WΓ1(2),Θ

n,P1 }

{PGL2}L6n−10
P1-Euler factor in Z Γ1(2)Triv (u; t)

Ik≥1 ( j =∞) (0, 0) k− 1 L8 1
1−L8 s∆(s)−1

III ( j = 1728) (4, 1) 1 L7 1
1−L7 u s3

I∗k≥1 ( j =∞) (2, 1) k+ 4 L6 −L5 1
1− (L6 −L5)u5 s7∆(s)−1

I∗0 ( j ̸= 0,1728) (2, 1) 4 L6 −L5 1
1− (L6 −L5)u4 s6

I∗0 ( j = 0,1728) (2, 1) 4 L5 1
1−L5 u4 s6

III∗ ( j = 1728) (4, 3) 7 L4 1
1−L4 u7 s9

TABLE 2.

Reduction type Θ (r, a) mv − 1 AΘ :=
{WΓ1(3),Θ

n,P1 }

{PGL2}L4n−6
P1-Euler factor in Z Γ1(3)Triv (u; t)

Ik≥1 ( j =∞) (0, 0) k− 1 L4 1
1−L4 s∆(s)−1

IV ( j = 0) (3, 1) 2 L3 1
1−L3 u2 s4

IV∗ ( j = 0) (3, 2) 6 L2 1
1−L2 u6 s8

TABLE 3.

Reduction type Θ (r, a) mv − 1 AΘ :=
{WΓ1(4),Θ

n,P1 }

{PGL2}L3n−4
P1-Euler factor in Z Γ1(4)Triv (u; t)

Ik≥1 ( j =∞) (0, 0) k− 1 L2 1
1−L2 s∆(s)−1

I∗0 ( j = 0) (2, 1) 4 L
1

1−Lu4 s6

TABLE 4.
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4. IRRATIONALITY OF THE NÉRON–SEVERI AND MORDELL–WEIL SPECIALIZATIONS

The rationality of ZTriv(u; t) reflects the fact that the trivial lattice rank T (S) is
governed by local reduction data. Indeed, by Lemma 1.3 it depends only on the
multiset of fiber component numbers mv, hence is constant on each Kodaira stra-
tumWmin,(f)

n , in the finite constructible stratification of Proposition 2.1. This locality
is exactly what makes the evaluation-map factorization and the power structure on
K0(Stckk) applicable: unordered collections of local factors assemble into a finite
Euler product.

In contrast, the Mordell–Weil rank rk(E/K) is not determined by the fiber con-
figuration. Even on a fixed Kodaira stratum Wmin,(f)

n , the rank typically varies, re-
flecting genuinely global constraints rather than local reduction data. Since T (S) is
constant on Wmin,(f)

n , the Shioda–Tate formula (1) shows that variation of rk(E/K)
is equivalent to variation of the Néron–Severi rank ρ(S). Thus any refinement of
the height series by rk(E/K), or equivalently by ρ(S), necessarily detects global
jump phenomena invisible to the local factor stratification used for ZTriv.

One way to organize this global complexity is via Néron–Severi jump loci. Fix a
fiber configuration f and write Triv(f) ⊂ NS(Sk̄) for the sublattice generated by the
zero section, a fiber class, and the components of reducible fibers in the configu-
ration f. Inside Wmin,(f)

n , imposing that NS(Sk̄) contain additional algebraic classes
independent of Triv(f) (equivalently, that ρ(S), hence rk(E/K), jump) is an algebraic
condition. Over C, these conditions are naturally modeled by Noether–Lefschetz
(Hodge) loci for the variation of Hodge structure coming from the family of el-
liptic surfaces over Wmin,(f)

n , and the theorem of Cattani–Deligne–Kaplan [CDK95]
shows that such loci are, in general, only a countable union of closed algebraic sub-
sets. In particular, unlike the Kodaira stratification at fixed height n (which is finite
by Proposition 2.1), refinements by Néron–Severi lattice type are not expected to
admit a finite constructible stratification.

This suggests that the local-to-global factorization mechanism producing a finite
Euler product for ZTriv should structurally fail for the Mordell–Weil and Néron–
Severi specializations, and motivates the following conjecture.

Conjecture 4.1. Let k = C and K = C(z). The specializations

ZMW(v; t) := Z(1, v; t), ZNS(w; t) := Z(w, w; t)

are not rational in t with coefficients in K0(StckC)[L−1][v] (resp. [w]); i.e.

ZMW(v; t) /∈ K0(StckC)[L−1][v](t), ZNS(w; t) /∈ K0(StckC)[L−1][w](t).
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