RATIONALITY OF THE TRIVIAL LATTICE RANK WEIGHTED
MOTIVIC HEIGHT ZETA FUNCTION FOR ELLIPTIC SURFACES

JUN-YONG PARK

ABSTRACT. Let k be a perfect field with char(k) # 2, 3, set K = k(t), and let Wflnm
be the moduli stack of minimal elliptic curves over K of Faltings height n from
the height-moduli framework of [[BPS22]] applied to MLI ~ P(4,6). For [E] €
W,‘l“i“, let S — Pi be the associated elliptic surface with section. Motivated by the
Shioda-Tate formula, we consider the trivariate motivic height zeta function

Z(u,v;t) = Z( Z u'® vrk(E/K))t” € Ky(Stek )[u, vIIt],
n=0 [E]lemin

which refines the height series by weighting each height stratum with the trivial
lattice rank T(S) and the Mordell-Weil rank rk(E /K). We prove rationality for the
trivial lattice specialization Zr,(u; t) = Z(u, 1; t) by giving an explicit finite Euler
product. We conjecture irrationality for the Néron—Severi Zygs(w;t) = Z(w,w; t)
and the Mordell-Weil Zy;,(v; t) = Z(1, v; t) specializations.

1. INTRODUCTION

Let k be a perfect field with char(k) # 2,3, and set K := k(t). An elliptic curve
E/K determines a relatively minimal elliptic surface with section

f:S— IF’,i
unique up to isomorphism (see [Mir89,/SS10] for background on elliptic surfaces).

The arithmetic of E/K is reflected in the geometry of S, and a basic organizing
principle is the Shioda—Tate formula [[Shi90]

(1 p(S) = T(S) + rk(E/K),

where p(S) = rkNS(S;) is the geometric Picard rank, T(S) is the rank of the geomet-
ric trivial lattice generated by the zero section, a fiber class, and the components of
reducible fibers not meeting the zero section, and rk(E /K) is the Mordell-Weil rank.
For the relatively minimal elliptic surfaces f : S — ]P’i with section considered in
this paper, we have q(S) =0 and p,(S) = n—1, hence the standard bounds

2) 2<p(S)<10n, 2<T(S)<10n, O<rk(E/K)<10n—2,
where p(S) < 10n = h%}(S) is the Lefschetz bound over k = C (or in general the
Igusa’s inequality p(S) < b,(S) = 12n—2).

In [BPS22]], Bejleri-Park—Satriano construct height-moduli stacks of rational points
on proper polarized cyclotomic stacks. In the fundamental modular curve example

-/Vm ~P(4,6), A~ Opye(1),
a minimal elliptic curve over K can be viewed as a rational point of A-height n on

Mm over K. This yields a separated Deligne-Mumford stack of finite type
Wrin = Wrin (P(4,6),0(1))
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parametrizing minimal elliptic curves over K of discriminant degree 12n. Here
a K-rational point of Mu of A-height n means the stacky height n with respect
to the Hodge line bundle A, in the sense of [ESZB23]]. Under the identification
M, = P(4,6) one has A ~ Op6)(1), and this height agrees with the Faltings
height of the corresponding elliptic curve by [BPS22), Cor. 7.6].

Guided by (I)), we introduce the following motivic generating series (see [Eke25]]
for background on the Grothendieck ring of stacks) refining the height generating
series in [BPS22| §8] by weighting each height stratum with the lattice ranks of the
associated relatively minimal elliptic surface.

Definition 1.1. Let k be a perfect field of characteristic # 2,3, and consider the
height-moduli stack
wrin = Wit (P(4,6), 0(1))
Tk

parametrizing minimal elliptic curves over K = k(t) of discriminant height 12n.
The trivariate height zeta function is

Z(u,v;t) = Z( Z uT(S)vrk(E/K)) t" € K,(Stek)[w, vILt],
[E

n>0 Jewymin
where for each [E] € W™" we write S — P} for the associated relatively minimal
elliptic surfaces f : S — PP, with section, and:

e T(S) is the rank of the trivial lattice of S;
e 1k(E/K) is the Mordell-Weil rank.

The following specializations are the associated bivariate height zeta functions:

(3) ZTriV(u; t) = Z(uz 11 t):
(4) ZMW(VJ t) = Z(lz V, t):
(5) Zns(w; t) == Z(w, w; t).

Remark 1.2. Setting u = v = 1 forgets the lattice rank grading and specializes to
the univariate motivic height zeta function Z5(t) = Z(1,1;t) € Ky(Stck,)[t] and
likewise to its inertial refinement ZZ;(t) which encodes the totality of rational
points on Mm over K = k(t). [BPS22, Thm. 8.9] shows that both series are in
fact rational in t, i.e. lie in K,(Stck,)(t), and gives explicit formulas.

In this paper we focus on Zp;,(u; t). The key point is that the trivial lattice is
governed by local bad reduction: its rank is determined by the geometric Kodaira
fiber configuration of 7;: S; — ]P’%(. Writing Triv(S) € NS(S;) for the geometric
trivial lattice and T(S) := rk(Triv(S)), we have the following explicit formula.

Lemma 1.3. Let 7: S — ]P’,l< be a relatively minimal elliptic surface with section, and
let  be the multiset of singular fibers of m;: S — IP’]}{. If m, denotes the number of
irreducible components of the fiber at v, then

T(S) = 2+ > (m,—1).

veEf
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Definition 1.4. Fix n > 1. For a geometric fiber configuration f, let W;“in’(f) C Wflnin
denote the locus parametrizing those [E] € W:‘i“ whose associated surface S;; — IP’}{
has singular fiber configuration f (cf. [BPS22, Thm. 7.16]).

Definition 1.5. Fix n > 0. By Proposition Wfl“i“ admits a finite constructible
stratification by Kodaira data, and T(S) is constant on each stratum. For n > 1 and
each T with 2 < T < 10n, let

Wrin(T) € Wmin

be the finite union of those Kodaira strata on which T(S ) = T (hence a finite union
of locally closed substacks). For n = 0, set W™ := W;"™"(2).
The trivial-lattice-rank-weighted motivic height zeta function is

Zra (s £) = > > uT {WM(T)}H " € Ko(Stek)[u][].
n>0 T>2
We prove that Zq,;,(u; t) is rational after inverting I (see Remark [2.6]), and we
give an explicit finite Euler product (Theorem [2.9)).

Theorem 1.6. Let k be a perfect field with char(k) # 2,3 and put s = t'/*2. Then
Zrriy (U3 t) € Ko(Stek )L™ 1[u](s).
Moreover, Z;,(u; t) admits an explicit finite Euler product in s.

The proof is a motivic local-to-global factorization argument [[Kap00, [CLL16],
implemented on the twisted-map stratification of the height-moduli W™" via the
evaluation morphisms [[GP06]]. Throughout we use the Bejleri-Park—Satriano cor-
respondence [[BPS22, Thm. 3.3] between rational points, minimal weighted linear
series, and twisted morphisms; in particular, local reduction conditions are en-
coded by representable twisted morphisms to ﬂm ~ P(4,6), yielding a moduli-
theoretic Tate’s algorithm [Tat75]] compatible with the minimal model program [[BPS22),
Thm. 7.12]. Unordered collections of local factors supported at distinct points of
P! are governed by symmetric powers Sym" (P'). We reorganize these symmetric-
power contributions using the power structure on K,(Stck,)[IL.™'], and we record
the resulting identity explicitly in Lemma Since only finitely many local fac-
tor types occur, this yields a finite Euler product after inverting I [[GZLMHT3]].
The only unbounded discrete parameter is the cusp contact order in the two fam-
ilies I, and I}, which is collapsed by geometric resummation. Finally, specializing
x, = u™! for a € A,. together with the cusp substitutions produces the Euler
product expression for Zy,;, (u; t) in K,(Stck, )[L ™' ][u](s) with t = s'2.

Remark 1.7. Replacing Wffin(T) by its inertia stack (see [[HP23, §2] for back-
ground on the inertia stack Z(X') of an algebraic stack X") gives

TZp(wst) = D> > u” {TWM(T)} " € Ky(Stek)[u][t]-

n=0 T>=2

After inverting L, the same argument yields a finite Euler product for ZZ,;,(u; t).



2. RATIONALITY OF THE TRIVIAL LATTICE RANK WEIGHTED CASE

Throughout, let k be a perfect field with char(k) # 2,3, set K = k(t), and let
7: S — P be the relatively minimal elliptic surface with section associated to E /K.
Write Triv(S) € NS(S;) for the geometric trivial lattice and T(S) = rk Triv(S).

Proposition 2.1. Fix n > 1. The discriminant degree constraint ), e(F,) = 12n
implies that only finitely many geometric fiber configurations f occur among surfaces
parametrized by W". Consequently,

Wmin — |_| Wmin,(f)
n n
f
is a finite constructible stratification. Moreover, the trivial lattice rank T(S) is con-
stant on each stratum W;m“’(f).

Proof Fixn>1andletS — Pi be a surface parametrized by W;“in. For any rel-
atively minimal elliptic surface with section one has ) .1 e(F,) = e(S;) and in
k

our height-n locus this total Euler number equals 12n (equivalently, the discrimi-
nant has degree 12n). For each singular fiber F,, the Kodaira-Néron classification
[Kod63), Né4] gives the types I, I; (k = 1) and ILIIL IV, Ij, IV*, IIT*, IT*. Their Eu-
ler numbers satisfy e(I;) = k, e(I;) = k + 6 while the remaining types have Euler
number e(F,) € {2,3,4,6,8,9,10} (see [Her91] Table 1]). Since >, e(F,) = 12n,
the integers k occurring in fibers of type I, and I; are bounded in terms of n.
Hence there are only finitely many multisets of Kodaira symbols (equivalently, fiber
configurations f) whose Euler numbers sum to 12n. Therefore only finitely many
configurations occur, and W;ni“ = |_|f W;“i“’(f) is a finite stratification by locally
closed substacks as in [BPS22, Thm. 7.16]. Finally, on a fixed stratum W,Tin’(f)
the multiset § (hence the integers m,) is constant, so Lemma [1.3| implies that
T(S)=2+ Zvef(mv — 1) is constant on that stratum. [ |

A multivariate height series. We briefly recall the local indexing used in the
twisted-maps description of height-moduli. By [BPS22, Thm. 5.1] the height-n
moduli stack M, (X, £) on a proper polarized cyclotomic stack X" with polariz-
ing line bundle £ admits a finite stratification by locally closed substacks indexed
by admissible local conditions and degrees: there is a finite disjoint union of mor-
phisms

| | 5 o(X, £)/Sp — M, (X, L),
I,d

where HZ -(X, L) is the moduli stack of representable twisted morphisms of stable
height d to (X, £) with and local twisting conditions

r= ({rl,al}, e, {rs,as}),

recording the stabilizer orders r; and the corresponding characters a; at the stacky
marked points of the source root stack. The indices (T, d) range over those satis-
fying the height decomposition formula

S
a.
n=d+ Z—l.
im1 i

4



Here S C S, is the subgroup permuting stacky marked points of the same local
type.

Definition 2.2. For the Euler-product argument it is useful to distinguish local
factor types from elementary local patterns. Let ZP(4,6) be the cyclotomic inertia
stack.

(1) local factor types. Let J denote the finite set of local factor types occurring
in the Tate-algorithm stratification via twisted maps (see [BPS22, §7]); concretely
one may take

J= {II, 101, IV, IT%, 1T, V¥, T5(j # 0, 1728), T:(j € {0,1728}), L., 1*},

where I, and I} are the two cusp shapes over j = 00.

(2) Elementary local patterns. Let .4 denote the set of elementary local patterns
used to index evaluation conditions, i.e. the inertia components in which the eval-
uation maps land. Away from the cusp j = o0, the inertia label determines the
Kodaira symbol, so the non-cusp patterns form a finite set

A= {H, I, 1V, 11, TIT%, IV¥, T3(j #0,1728), Ii(j € {0,1728})}.

At the cusp j = o9, the inertia label records only the cusp shape (I, or I}); the
additional integer k > 1 (contact order with the boundary, equivalently the pole
order of j) is part of the admissible local data on a twisted-maps chart and is treated
as a multiplicity parameter within the cusp shape. Accordingly we set

A=A, UL, L}

For a € A, let m(a) € Z-, be the number of irreducible components of the
corresponding Kodaira fiber, so that m(a)—1 is its contribution to the trivial lattice.
For the cusp shapes I, and I, the component number depends on the contact order
k > 1 (of the corresponding I, or I} fiber); this k—-dependence will be incorporated
later by geometric resummation (Lemma [2.8)). In summary, J indexes the local
factor types (basic chart types) that become Euler factors under the power structure
on K,(Stck, ), whereas A indexes the evaluation labels, i.e. exactly what inertia can
see; in particular, over j = oo inertia distinguishes only the two cusp shapes and
not the contact order k.

Remark 2.3. When an evaluation condition lands over the cusp j = oo, the corre-
sponding component of the cyclotomic inertia stack ZP(4, 6) records only the cusp
shape (multiplicative I, or additive I}); it does not record the multiplicity k > 1.
Equivalently, inertia detects that j has a pole, but not its pole order. The missing
discrete datum is the contact order with the boundary. Geometrically, it is visible
on the log canonical model obtained by contracting, in each reducible fiber, the
components not meeting the zero section.

(1) The multiplicative family I,. If the fiber at t € P! is of type I, (k > 1), then
the contraction produces an A,_; surface singularity. Etale locally one has
xy =u",
5



where u is a local parameter at t. Since an étale neighbourhood of the universal
nodal fiber over the cusp [oo] € Mu ~ P(4,6) is given by xy = s (with s a
parameter at the cusp), the classifying map ¢, : P! — Mm satisfies s = u*. Thus
¢, meets the boundary with contact order k, and v(A) = k for type I,.

(2) The additive family I;. If the fiber at t is of type I; (k = 1), then the contraction
produces a Dy, surface singularity. The classifying map still lands at j = oo with
boundary contact order k (so locally s = u"), while the discriminant valuation is
shifted by the starred contribution: v(A) = k + 6 for type I;.

For Z,;, one has
m(l,)—1=k—1, m(l;)—1=k+4,
so the trivial lattice exponent depends linearly on k in each cusp family.

Definition 2.4. Fix an auxiliary variable s with s'* = t. Introduce variables {x,} 4c 4
and define

(6) H(s;x) = Z Z(]_[ xav){wgnin’(ﬂ}sm € Ky(Stek)[x][sT,
n=0 | \vef
where for fixed n the inner sum ranges over the finitely many geometric fiber con-
figurations f occurring in height n (Proposition [2.1)).

For each singular fiber F, in f, let a, € A denote the corresponding inertia/evaluation
label (Definition[2.2]). Away from the cusp j = oo this label is the Kodaira symbol,
while over j = oo it records only the cusp shape I, or I. The additional contact
order k > 1 at the cusp is part of the twisted-maps chart data and is not recorded
by the variables x,,.

Remark 2.5. The local conditions defining the strata are imposed via evaluation
maps ev; to ZP(4,6), hence are naturally indexed by connected components of the
inertia stack. In particular, the same Kodaira symbol may correspond to distinct in-
ertia components. For example, Ij splits into distinct inertia components according
to whether j € {0,1728} or j ¢ {0,1728}. Accordingly we index local conditions
by inertia labels, not by Kodaira symbols alone.

Remark 2.6. We work in the localized ring K,(Stck,)[IL."!]. Localization is used
to place the argument in a ring where quotient stack identities for linear algebraic
groups (e.g. GL,,, PGL,) and the power—structure identities for symmetric powers
hold uniformly as equalities of rational functions, thereby justifying the reorgani-
zation of unordered local factors into Euler factors.

Lemma 2.7. Let A be the finite set of elementary local patterns from Definition
and let H(s;x) be the multivariate height series defined in (6). After inverting L, the
series H(s; X) is a rational function of s with coefficients in K,(Stck, )[L ' ][x].
More precisely, there exist:
e a finite index set J of local factor types,
e motivic classes A; € Ky(Stck )[L™],
e integers ¢; = 1, recording the discriminant degree increment contributed by

one local factor of type j,
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e and exponents f3; , € Z for a € A, recording how many markings of inertia
type a occur in a local factor of type j,

such that

—{P'}
7) ’H(s;x):l_[(l—Aj(l_[xgj’“)scf) & Ko(Stck)[LI[x](s).

jeJ acA
Equivalently, writing

Y;(s;x) == Ai(l_[ xaj’“)scj,

acA
one has the explicit specialization

8) 1-v) = {sym" (@)} v =

N=>0

1
(1-Y)(1-LY))

Moreover, for a € {1,,1,} the exponent f3; , counts only the number of cusp markings
of the given cusp shape in factor type j; it does not record the contact order k > 1.

Proof. By [BPS22, Thm. 7.16], for each n the stack Wfqni“ admits a finite locally
closed stratification by charts of the form
(P(4,6),0(D)/st,

d]P’l

where ’HZ - (P(4,6),0(1)) parametrizes representable twisted morphisms with an
M

ordered list of stacky markings and admissible local data. We write the admissible
local condition as

F= (Mo (,K)), K=K, kL), K=K, k),

where T,. records the ordered list of non-cusp inertia labels, and kI,kI* record the
contact orders at cusp markings of shape I, and I.

For each marking there is an evaluation morphism

ev,: 1! 1(P(4,6),0(1)) > IP(4,6),  (9,%y,...,5)— ¢(Z),

d,P;

and prescribing an inertia label a € A is equivalent to requiring ev; to land in
the corresponding connected component of ZP(4,6). Over the cusp j = oo, the
inertia label records only the cusp shape a € {I,,I’}; the contact orders k; are
extra admissible boundary contact data on the chart (Remark. The variables
X = {X,}4e 4 therefore record only inertia labels, i.e. only what can be read off from
the evaluations ev;, and H(s; x) is obtained from the stratification by forgetting the
extra contact-order data.

Passing to the quotient by S; forgets the ordering among markings of the same
inertia type. Fix a local factor type j. Repeating this local factor N times is governed
by unordered configurations of N support points on the coarse curve P!, hence by
the symmetric power Sym” (P!). Set

Yi(s;%x) = Ai(l_[ ng»a)st

acA
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Accordingly, the contribution of all unordered collections of local factors of type j
sums to

D sym" ()} - ¥(s:0".

N>0
By the power-structure/Kapranov zeta-function identity on K,(Stck,)[IL.™'] as in
[GZLMHT3), §17,

> {symM(X)}- yN = (1),

N=0

this equals (1 — Yj)_{Pl}. Since {P'} = 1 + L, we obtain the explicit rational form

1 1
—_v Yy} =
@ G T aa oy

Since only finitely many local factor types occur (Definition [2.2]), multiplying over
j €J yields and hence rationality of #(s;x) in s after inverting L.

Finally, for a € {I,,I;} the exponent f3; , counts only the number of cusp mark-
ings of the given cusp shape in factor type j; the individual contact orders k; are
handled separately by geometric resummation. [ |

Lemma 2.8. Let R be a commutative ring.

(1) Geometric resummation Fix A € R. For integers a,c > 1 and b,d > 0, one has
in R[u, t]

(10) ZAuak+btck+d — Ay@tbpetd,
k>1

1
1—uate’

Moreover, if kq,...,k,, = 1 are independent and contribute multiplicatively with the
same step (a,c), then

M u 1
(11) Z Al_[uaki+btcki+d :A(ua+btc+d) .
kpyonky>1  i=1 (1 —uate)”
Equivalently, each marking contributes one factor (1 —u®t®)™}, so M such markings
. _ . . M
contribute the power (1 —u®t®)™, up to the monomial shift (u“*bt”d) .

(2) Cusp shapes for Z,;, Assume char(k) # 2,3 and work in R = K,(Stck,)[IL™*].
Introduce an auxiliary variable s with t = s'2, so that t" corresponds to deg(A) =
12n, while s records the integral discriminant degree deg(A).

After specializing xg = um =1 for B € A, a cusp marking of shape I, (resp. I')
with contact order k > 1 contributes weight u*~s* (resp. u***s**®), since
m(l,)—1=k—1, v(A) =k, m(l;)—1=k+4, v(A)=k+6.

Hence summing over k > 1 at a single cusp marking gives, in R[u,s],

5.7
- s u’s
(12) X, = E utlsk = T Xp = E uFtsktt = ———

k>1 —us k>1 1—us



In particular, each cusp marking of either shape contributes one factor (1—us)™! after
resummation. Thus a factor type j with 3;; markings of shape I, and f3;;. markings
of shape I} contributes the cusp factor

(1 —us )—(ﬂj,l. +ﬁj,lf)’

together with the monomial shift
u5/3j,1f Sﬁj,1.+7/5j,1’.‘

coming from (12).
Proof. For (10), factor out the k = 1 term and apply the geometric-series identity:
1
Auak+thk+d :Aua+b tc+d ute k :Aua+btc+d . .
Z Z( ) 1 —uyate

k>1 k>0

Equation follows because the sum over (k,, ..., k,,) factorizes as a product of
M copies of (10]). Part (2) is with (a,c) = (1,1) applied in R[[u,s] to the two
monomial weights u*~!s* and u***s**®, yielding and the stated denominator
power. |

Note that although the resummations sum over all k > 1, for any fixed height n
only finitely many contact orders can occur: since Y, v(A), = 12n and v(A) =k
for I and v(A) = k+6 for I}, one has k < 12n (resp. k < 12n—6) on the height-n
stratum. Thus the “infinite” cusp sum is merely a generating function device, and
each coefficient [t"] (equiv. [s!?"]) receives contributions from finitely many k.

We now prove the Main Theorem.

Theorem 2.9 (Rationality and finite Euler product for Z;,). Let k be a perfect field
of characteristic # 2,3, and set s = t'/12 (so t = s'2). Then
Zray (U5 £) € Ko(Stek )L [u](s).

More precisely, let J, A;, c;, and f3; , be as in Lemma[2.7] Put

j2

A(s) :=1—us, bj = Z ﬂj,ﬁ(m(ﬁ) — 1), m; == ﬁj,I. + /jj,l’j,

BeAy
and define
B;:=b;+5p, Cij=¢;j+PBj1, +7Bjr Yi(u;s) :=A4A; uPisG A(s)™.
Then one has the finite Euler product
1
(13)  Zny(ut)=u*-L-| | ,
jes (1 - J?j(u;S))(l —L- yj(u;S))

Moreover, all dependence on k > 1 in the cusp families I and I; (over j = 00) is
absorbed by the single geometric-series denominator A(s)™* = (1 —us)™%.

(t =s12).

Proof. Work in the localized ring K,(Stck,)[IL."!]. By Lemma we have

—{P'}
(14) H(s; %) = ]—[(1—,4](]_[ xaj’“)scf) € K,(Stck )L I[x](s).

jeJ acA
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Trivial lattice baseline. By Lemma for an elliptic surface S with singular fiber
configuration f one has

T(S)=2+ ) (m,—1).

VEf

Under the specializations below, the monomial attached to f is quef(mv—l), ie. it
records only the fiber contributions. Thus passing from # to Z, introduces the
global factor u?.

Height-zero term. By Definition [1.5/one has W™ = Wrin(2), so
[to] ZTriV(u; t) = u2{w(r)nin}.

For n = 0 the discriminant degree is 0, hence the corresponding elliptic curve over
K = k(t) has everywhere good reduction and is therefore constant. Equivalently,
Wy identifies with the moduli stack of smooth elliptic curves,

Wé“m = M.
Therefore {W(r)“i“} =L as in [[Eke25]], and the required constant term is u® - L.

Non-cusp specialization. For 8 € A, specialize x; = u™#~!. Then for each j € J
the product of the non-cusp variables contributes the monomial u%, where

b = Z B p(m(B)—1).

ﬁ E’AHC

Cusp resummation. Over the cusp j = o0, the contact order k > 1 varies.
In the discriminant-degree grading (with t = s'?), a cusp marking of shape I,
(resp. I¥) with contact order k contributes weight u*~s* (resp. u**4s**¢). Hence
(Lemma [2.8]) we have the substitutions
5.7
s u’s

X, = Zuk_lsk =1 = As)H, Xpe = Zuk+45k+6 =T = ws’A(s) 7,

k>1 —us k>1 —us
with A(s) =1 —us. Therefore, for each j € J the cusp contribution becomes

Bjrx

I

xp xp = uth Pt TR A(SY, =y + Bix;-

Combining with the non-cusp specialization yields, inside the jth factor of (14),
Af(l_[ xaj"’)scf — A, ubisC A(s)™ = Vi(u;s),
acA
where
B] == b]+5/5],1f’ C] :C]+/:}],I.+7/3],If‘
Thus
—{P'}
Znp ) =12 (M} [ [(1-ws) 7, (=52
je
Finally, since {P'} = 1 + L in K,(Stck,), we may expand
—{P'} 1
(1—yj(u;5)) = ;
(1-Y,ws)(1-L- ¥ws))
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which gives (13)). The dependence on k > 1 in the cusp families is absorbed by
the single geometric-series denominator A(s)™! = (1 —us)™! through the above
resummations. [ |

Remark 2.10. Assume char(k) # 2, 3. For each Kodaira type © and n > 1, let
W@

n,P!

be the moduli stack of minimal elliptic fibrations over IP}{ of discriminant degree
12n having exactly one singular fiber of type © over a varying degree—one place
and semistable everywhere else.

The one-fiber motivic classes {ngl} carry a universal dependence on the height
n coming from the 10n—dimensional space of Weierstrass coefficients (equivalently,
from the spaces of sections of degrees 4n and 6n in the weighted presentation
./\/l1 1 =~ P(4,6)). In particular, after dividing by the Aut(P') = PGLz—factorI the
remaining motivic class grows as L'°**°() uniformly in ©. Accordingly we nor-
malize local factor coefficients by

{We]pl }
{PGLZ} LLion+C’

for some fixed integer C (e.g. C = —18 as in Table[1)). The choice of C is immaterial
for the Euler product: changing C rescales every local factor coefficient by the same
global power of I and does not change its type (i.e. does not change the exponents

B;, C;, m; nor the finite set of factor types).

Then [BPS22| Thm. 1.6] and [[HP19, Cor. 2] determine the following normalized
one-fiber motivic classes.

A(ec) =

Convention. For each reduction type © in Table [1} let yg(u;s) denote the local
monomial appearing in the displayed denominator in the last column (e.g. y; =

L%s A(s)™Y, yy = LY*us®, etc.). The full P!-contribution of © in the Euler product
is the power-structure/Kapranov factor

(1 —J’e(u;s))_{Pl} = Z{SymN(IPl)}y@(u;s)N = (1 —y (u's))(ll —Ly, (u's))'

In Table we record only the reduced factor (1 —yol(u; s))_1 ; the second factor (1 —
L ye(u; s))_1 is inserted uniformly in the global Euler product (cf. Theorem .

These one-fiber motivic classes should be viewed as local building blocks for the
factor-type Euler product in Theorem[2.9] For each non-cusp type II, IIL, IV, IV*, IIT*, IT*
and the two distinct cases I5(j # 0,1728) and I5(j € {0, 1728}), the corresponding
local factor types contribute k—independent reduced local factors in the s—grading
(so t = s'%), namely (1 — _y@(u;s))_1 after the specialization x, = u™® for
a € A,.. In this way, the s—exponent in yg(u;s) records the discriminant s—degree

1The unparameterized Pi corresponds to taking the Aut(PP') = PGL, stack quotient; motivically
this factors out {PGL,} = L(L? — 1), thereby treating the base as a smooth conic. See [PS25]] for a
comprehensive treatment.
11



{Wne,]pl}

Reduction type ©|(r,a) |m, —1|Ag := PG Lo P!-Euler factor in Z;,(u; t)
Li>1 =00) [(0,0)] k—1 L' 1— ]L161 A(s)!
(=0 |61 0 L' ﬁ
I (j=1728) [(4,1)] 1 L' m
V(=0 |G| 2 L ﬁw
I, (Gj=00) [(2,1)] k+4 L2 —1L" 1—(L12—Li)u53m(s)—1
I (j#0,1728) |(2,1)| 4 L —1LY T— (L2 _1 Lit) 56
b (j=0,1728) |(2,1)| 4 L' m
vVs(j=0) |(3,2)] 6 L™ m
I (j =1728) |(4,3)| 7 L m
I (j=0) [(6,5)] 8 L %
TABLE 1.

increment of the local factor, the u—exponent records the corresponding trivial-
lattice increment from its non-cusp markings, and Ag records the normalized mo-

tivic class of the one-fiber locus.

For the cusp families I, and I}, the table gives the one-fiber motivic contribution
for each contact order k > 1. In the factor-type Euler product for H(s;x), the
exponents f3;; and f3;;. record only the number of cusp markings of each cusp
shape in factor type j; the individual contact orders are not part of the inertia
label. The infinite k—variation is collapsed by the geometric resummations

X =

k>1

Zuk—lsk =—

—us

k>1
12
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so that each cusp marking contributes one factor A(s)™! = (1—us)™!. Consequently,
factor type j contributes the cusp factor

A(S )—(ﬁj,l. +ﬁj,1f)’
together with the monomial prefactor

u5/3j,1f Sﬂj,l. +7B 1

coming from the cusp substitutions.

3. APPLICATIONS TO MODULAR CURVES WITH PRESCRIBED LEVEL STRUCTURE

We apply the Main Theorem to the genus-0 modular curves Hl (N) parametriz-
ing generalized elliptic curves with level-N structure I} (N), introduced by [DR73]]

(see also [[Con07, §2]). The fine modular curve /\_/ll(N ) parametrizes families
(E,S,P) — B where (E,S) — B is a semistable elliptic curve with section S and
P € E*[N](B) is an N-torsion section such that the divisor P + S is relatively am-
ple [KM85] §1.4]. We focus on N = 2, 3, 4, where the modular curves are genuinely
stacky. Throughout, let k be a perfect field with char(k) # 2, 3.

3.1. Level-2 structure. We consider the height moduli
WiB(P(2,4),0(1)) = Myp(My(2), £),

where M, (2) = P(2,4) over Z[%] is the moduli stack of generalized elliptic curves

with I3 (2)-structure (cf. [Beh06), §1.3]). Equivalently, M,(2) admits the universal
Weierstrass presentation

yi=x®+apx*+ax  with  (aya4) € H(P',O(2n)) x H(P', O(4n)).

3.2. Level-3 structure. We consider the height moduli
WrO(P(1,3),0(1)) = Mypi (M;(3), £),

where M, (3) = P(1, 3) over Z[%] is the moduli stack of generalized elliptic curves

with I} (3)-structure (cf. [HM17, Prop. 4.5]). Equivalently, M,(3) admits the uni-
versal Weierstrass presentation

y2+axy+ay=x* with  (a,a3) € H(P',O(n)) x H°(P',0(3n)).

3.3. Level-4 structure. We consider the height moduli
WrO(P(1,2),0(1)) = Myp(My(4), £),

where M, (4) = P(1,2) over Z[%] is the moduli stack of generalized elliptic curves

with I (4)-structure (cf. [Mei22} Ex. 2.1]). Equivalently, M, (4) admits the univer-
sal Weierstrass presentation

Y3 +a;xy+a;a,y = x*+a,x? with (a,,a,) € HO(]P’I, (’)(n)) xHO(]P’l, O(Zn)).

13



| WY | R
Reduction type ©|(r,a) |m, —1|Ag := W IP*-Euler factor in Z;, ' (u; t)
sy j=00) [(0,0)| k—1 L8 1_L851A(8)_1
m(j=1728) |(4,1)] 1 L7 m
I, =00) [(2,1)] k+4 L6 —1L5 1—(]L6—]L51)u5s7A(s)—1
I} (j #0,1728) |(2,1)| 4 L6 —1L5 1_(L6_1L5)u4s6
I (j=0,1728) |(2,1)| 4 LS m
I (j =1728) |(4,3)| 7 L* #W
TABLE 2.
Reduction type © |(r,a) |m, —1|Ag := % P!-Euler factor in Z&E}B)(u; t)
et (= 00) |(0,0)] k—1 L4 Ve
V(=0 |[(31)] 2 L3 #%254
V*(j=0) [(3,2)] 6 L? m
TABLE 3.
e _ W .
eduction type ©|(r,a) |m, —1|Ag := W IP*-Euler factor in Z "(u; t)
L1 (j=00) [(0,0)| k—1 L2 : _M:A(s)_l
LG=0 21| 4 L ﬁ
TABLE 4.
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4. IRRATIONALITY OF THE NERON—SEVERI AND MORDELL-WEIL SPECIALIZATIONS

The rationality of Zy;,(u; t) reflects the fact that the trivial lattice rank T(S) is
governed by local reduction data. Indeed, by Lemma it depends only on the
multiset of fiber component numbers m,, hence is constant on each Kodaira stra-
tum Wfl“in’(f), in the finite constructible stratification of Proposition This locality
is exactly what makes the evaluation-map factorization and the power structure on
K, (Stck, ) applicable: unordered collections of local factors assemble into a finite
Euler product.

In contrast, the Mordell-Weil rank rk(E/K) is not determined by the fiber con-
figuration. Even on a fixed Kodaira stratum W™™®, the rank typically varies, re-
flecting genuinely global constraints rather than local reduction data. Since T(S) is
constant on W;“i“’(f), the Shioda-Tate formula shows that variation of rk(E/K)
is equivalent to variation of the Néron—Severi rank p(S). Thus any refinement of
the height series by rk(E/K), or equivalently by p(S), necessarily detects global
jump phenomena invisible to the local factor stratification used for Z;,.

One way to organize this global complexity is via Néron—Severi jump loci. Fix a
fiber configuration § and write Triv) ¢ NS(S;) for the sublattice generated by the
zero section, a fiber class, and the components of reducible fibers in the configu-
ration f. Inside W:lin’(f), imposing that NS(S;) contain additional algebraic classes
independent of Triv\"¥ (equivalently, that p(S), hence rk(E/K), jump) is an algebraic
condition. Over C, these conditions are naturally modeled by Noether-Lefschetz
(Hodge) loci for the variation of Hodge structure coming from the family of el-
liptic surfaces over W;“i“’(f), and the theorem of Cattani-Deligne-Kaplan [[CDK95[]
shows that such loci are, in general, only a countable union of closed algebraic sub-
sets. In particular, unlike the Kodaira stratification at fixed height n (which is finite
by Proposition [2.1)), refinements by Néron-Severi lattice type are not expected to
admit a finite constructible stratification.

This suggests that the local-to-global factorization mechanism producing a finite
Euler product for Z, should structurally fail for the Mordell-Weil and Néron-
Severi specializations, and motivates the following conjecture.

Conjecture 4.1. Let k = C and K = C(z). The specializations
Zyw(vit) = Z(L,v;t),  Zys(w;t) == Z(w,w;t)
are not rational in t with coefficients in K,(Stcke)[IL ™' ][v] (resp. [w]); i.e.

Zyw(v5 ) € Ko(Steko)[LTIVI(E),  Zns(ws t) & Ko(Steke)[LT Iw](e).
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