Books
-
A. Molev,
Sugawara Operators for Classical Lie Algebras.
Mathematical Surveys and Monographs, 229. American Mathematical Society,
Providence, RI, 2018.
-
A. Molev,
Yangians and Classical Lie Algebras.
Mathematical Surveys and Monographs, 143. American Mathematical Society,
Providence, RI, 2007.
Errata
Papers
-
D.J. Choi, A. Molev and U.R. Suh,
Generalized finite and affine W-algebras in type A ,
preprint.
-
N. Jing, M. Liu and A. Molev,
The q-immanants and higher quantum Capelli identities ,
preprint.
-
A. I. Molev,
Representations of the super-Yangian of type D(n,m) ,
preprint.
-
Y. Ikeda, A. Molev and G. Sharygin,
On the quantum argument shift method ,
preprint.
-
N. Jing, M. Liu and A. Molev,
Quantum Sugawara operators in type A ,
Advances in Mathematics 454 (2024), 109907, 26 pp.
-
A. Molev and E. Ragoucy,
Representations of the super-Yangian of type B(n,m) ,
Journal of Algebra 659 (2024), 1-22.
-
N. Jing, M. Liu and A. Molev,
Eigenvalues of quantum Gelfand invariants ,
Journal of Mathematical Physics 65 (2024), 061703, 10 pp.
-
A. Molev and E. Ragoucy,
Gaussian generators for the Yangian associated with the Lie superalgebra osp(1|2m) ,
Journal of Algebra 655 (2024), 722-757.
-
A. I. Molev,
A Drinfeld-type presentation of the orthosymplectic Yangians ,
Algebras and Representation Theory 27 (2024), 469-494.
-
A. I. Molev,
Representations of the super Yangians of types A and C ,
Algebras and Representation Theory 26 (2023), 1007-1027.
-
A. I. Molev,
Representations of the Yangians associated with Lie superalgebras osp(1|2n) ,
Communications in Mathematical Physics 398 (2023), 541-571.
-
A. I. Molev,
Representations of the orthosymplectic Yangian ,
preprint.
-
A. I. Molev,
W-algebras associated with centralizers in type A ,
International Mathematics Research Notices 2022, 6019-6037.
-
A. I. Molev,
Odd reflections in the Yangian associated with gl(m|n) ,
Letters in Mathematical Physics 112 (2022), no. 1, Paper No. 8, 15 pp.
-
A. Molev and O. Yakimova,
Monomial bases and branching rules ,
Transformation Groups 26 (2021), 995-1024.
-
A. I. Molev,
On Segal-Sugawara vectors and Casimir elements for classical Lie algebras ,
Letters in Mathematical Physics 111 (2021), no. 1, Paper No. 8, 23 pp.
-
A. Molev, E. Ragoucy and U.R. Suh,
Supersymmetric W-algebras ,
Letters in Mathematical Physics 111 (2021), no. 1, Paper No. 6, 25 pp.
-
A. I. Molev,
Casimir elements and Sugawara operators for Takiff algebras ,
Journal of Mathematical Physics 62 (2021), 011701, no. 1, 13 pp.
-
A. I. Molev,
Center at the critical level for centralizers in type A ,
Journal of Algebra 566 (2021), 163-186.
-
N. Jing, M. Liu and A. Molev,
Representations of quantum affine algebras in their R-matrix realization ,
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 16 (2020), 145, 25 pp.
-
A. I. Molev and E. Ragoucy,
Classical W-algebras for centralizers ,
Communications in Mathematical Physics 378 (2020), 691-703.
-
N. Jing, M. Liu and A. Molev,
Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: types B and D ,
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 16 (2020), 043, 49 pp.
-
N. Jing, M. Liu and A. Molev,
Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: Type C ,
Journal of Mathematical Physics 61 (2020), 031701, no. 3, 41 pp.
-
A. Molev and O. Yakimova,
Quantisation and nilpotent limits of Mishchenko-Fomenko subalgebras ,
Representation Theory 23 (2019), 350-378.
-
A. Molev and E. Ragoucy,
Higher order Hamiltonians for the trigonometric Gaudin model ,
Letters in Mathematical Physics
109 (2019), 2035-2048.
-
N. Jing, M. Liu and A. Molev,
Isomorphism between the R-matrix and Drinfeld presentations of Yangian
in types B, C and D ,
Communications in Mathematical Physics 361 (2018), 827-872.
-
N. Jing, S. Kožić, A. Molev and F. Yang,
Center of the quantum affine vertex algebra in type A ,
Journal of Algebra 496 (2018), 138-186.
-
A. I. Molev and E. E. Mukhin,
Eigenvalues of Bethe vectors in the Gaudin model ,
Theoretical and Mathematical Physics 192 (2017), 1258-1281.
-
S. Kožić and A. Molev,
Center of the quantum affine vertex algebra associated with trigonometric R-matrix ,
Journal of Physics. A. Mathematical and Theoretical 50 (2017), 325201 (21pp).
-
T. Arakawa and A. Molev,
Explicit generators in rectangular affine W-algebras of type A ,
Letters in Mathematical Physics
107 (2017), 47-59.
-
A. I. Molev, E. Ragoucy and N. Rozhkovskaya,
Segal-Sugawara vectors for the Lie algebra of type G_2 ,
Journal of Algebra 455 (2016), 386-401.
-
L. Frappat, N. Jing, A. Molev and E. Ragoucy,
Higher Sugawara operators for the quantum affine algebras of type A ,
Communications in Mathematical Physics 345 (2016), 631-657.
-
V. Futorny and A. Molev,
Quantization of the shift of argument subalgebras in type A ,
Advances in Mathematics 285 (2015), 1358-1375.
-
A. I. Molev and E. E. Mukhin,
Invariants of the vacuum module associated with the Lie superalgebra gl(1|1) ,
Journal of Physics. A. Mathematical and Theoretical 48 (2015), 314001 (20pp).
-
A. I. Molev and E. Ragoucy,
Classical W-algebras in types A, B, C, D and G ,
Communications in Mathematical Physics 336 (2015), 1053-1084.
-
T. Matsumoto and A. Molev,
Representations of centrally extended Lie superalgebra psl(2|2) ,
Journal of Mathematical Physics 55 (2014), Art. 091704.
-
A. I. Molev and E. E. Mukhin,
Yangian characters and classical W-algebras ,
in "Conformal Field Theory, Automorphic Forms and Related Topics"
(W. Kohnen, R. Weissauer, Eds), Springer, 2014, pp. 287-334.
-
A. P. Isaev, A. I. Molev and O. V. Ogievetsky,
Idempotents for Birman-Murakami-Wenzl algebras and reflection equation ,
Advances in Theoretical and Mathematical Physics 18 (2014), 1-25.
-
A. I. Molev and E. Ragoucy,
The MacMahon Master Theorem for right quantum superalgebras
and higher Sugawara operators for $\widehat{\mathfrak{gl}}_{m|n}$,
Moscow Mathematical Journal 14 (2014), 83-119.
-
A. I. Molev and N. Rozhkovskaya,
Characteristic maps for the Brauer algebra ,
Journal of Algebraic Combinatorics
38 (2013), 15-35.
-
N. Iorgov, A. I. Molev and E. Ragoucy,
Casimir elements from the Brauer-Schur-Weyl duality ,
Journal of Algebra 387 (2013), 144-159.
-
A. I. Molev,
Feigin-Frenkel center in types B, C and D ,
Inventiones mathematicae 191 (2013), 1-34.
-
A. I. Molev,
Pfaffian-type Sugawara operators ,
preprint.
-
A. P. Isaev, A. I. Molev and O. V. Ogievetsky,
A new fusion procedure for the Brauer algebra and evaluation homomorphisms ,
International Mathematics Research Notices (2012), 2571-2606.
-
A. I. Molev,
Combinatorial bases for covariant representations
of the Lie superalgebra gl(m|n) ,
Bulletin of the Institute of Mathematics, Academia Sinica
6 (2011), 415-462.
-
Alexei Davydov and Alexander Molev,
A categorical approach to classical and quantum Schur-Weyl duality,
Contemporary Mathematics 537 (2011), 143-171.
-
A. P. Isaev and A. I. Molev,
Fusion procedure for the Brauer algebra,
St. Petersburg Mathematical Journal 22 (2011), 437-446.
-
Lucy Gow and Alexander Molev,
Representations of twisted q-Yangians,
Selecta Mathematica, New Series 16 (2010), 439-499.
-
V. Futorny, A. Molev and S. Ovsienko,
The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules for finite
W-algebras,
Advances in Mathematics 223 (2010), 773-796.
-
A. I. Molev,
Littlewood-Richardson polynomials,
Journal of Algebra 321 (2009), 3450-3468.
-
A. V. Chervov and A. I. Molev,
On higher order Sugawara operators,
International Mathematics Research Notices (2009), no. 9, 1612-1635.
-
A. I. Molev,
Comultiplication rules for the double
Schur functions and Cauchy identities,
Electronic Journal of Combinatorics 16(1) (2009), R13, 44pp.
-
Y. Billig, A. Molev and R. Zhang,
Differential equations in vertex algebras
and simple modules for the Lie algebra of vector fields on a torus,
Advances in Mathematics 218 (2008), 1972-2004.
-
A. P. Isaev, A. I. Molev and A. F. Os'kin,
On the idempotents of Hecke algebras,
Letters in Mathematical Physics 85 (2008), 79-90.
-
A. I. Molev,
On the fusion procedure for the symmetric group
,
Reports on Mathematical Physics 61 (2008), 181-188.
-
V. Futorny, A. Molev and S. Ovsienko,
Gelfand-Tsetlin bases for representations
of finite W-algebras and shifted Yangians,
in "Lie theory and its applications in physics VII"
(H.-D. Doebner and V.K. Dobrev, Eds)
Proceedings of the VII International Workshop,
Varna, Bulgaria, June 2007,
Heron Press, Sofia, 2008, pp. 352-363.
-
A. I. Molev and E. Ragoucy,
Symmetries and invariants of twisted quantum algebras
and associated Poisson algebras
,
Reviews in Mathematical Physics 20 (2008), 173-198.
-
M. J. Hopkins and A. I. Molev,
A q-analogue of the centralizer construction and
skew representations of the quantum affine algebra
,
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)
2 (2006), paper 092, 29 pp.
-
A. I. Molev,
Representations of the twisted quantized enveloping algebra of type Cn
,
Moscow Mathematical Journal,
6 (2006), 531--551.
-
D. Arnaudon, A. Molev and E. Ragoucy,
On the R-matrix realization of Yangians
and their representations
,
Annales Henri Poincaré,
7 (2006), 1269-1325.
-
M. J. Hopkins and A. I. Molev,
On the skew representations of the quantum affine algebra
,
Czechoslovak Journal of Physics 56 (2006), 1179-1184.
-
Y. Billig, V. Futorny and A. Molev,
Verma modules for Yangians
,
Letters in Mathematical Physics 78 (2006), 1-16.
-
A. I. Molev,
Skew representations of twisted Yangians
,
Selecta Mathematica, New Series 12 (2006), 1-38.
-
A. I. Molev,
Gelfand-Tsetlin bases for classical Lie algebras
,
in "Handbook of Algebra",
Vol. 4, (M. Hazewinkel, Ed.), Elsevier, 2006, pp. 109-170.
-
V. Futorny, A. Molev and S. Ovsienko,
Harish-Chandra modules for Yangians
,
Representation Theory, 9 (2005), 426 - 454.
-
A. Molev,
Littlewood-Richardson problem for Schubert polynomials
,
Australian Mathematical Society Gazette, 31 (2004), 295 - 297.
-
Yu. Bahturin and A. Molev,
Casimir elements for some graded Lie algebras and superalgebras
,
Czechoslovak Journal of Physics 54 (2004), 1159 - 1164.
-
A. I. Molev, V. N. Tolstoy and R. B. Zhang,
On irreducibility of tensor products of evaluation
modules for the quantum affine algebra
,
Journal of Physics. A. Mathematical and Theoretical 37 (2004), 2385 - 2399.
-
A. Molev and V. Retakh,
Quasideterminants and Casimir elements for the
general linear Lie superalgebra,
International Mathematics Research Notices, no. 13 (2004), 611-619.
-
A. I. Molev, E. Ragoucy and P. Sorba,
Coideal subalgebras in quantum affine algebras
,
Reviews in Mathematical Physics 15 (2003), 789-822.
-
A. I. Molev,
Yangians and their applications
,
in "Handbook of Algebra",
Vol. 3, (M. Hazewinkel, Ed.), Elsevier, 2003, pp. 907-959.
-
A. I. Molev,
A new quantum analog of the Brauer algebra
,
Czechoslovak Journal of Physics 53 (2003), 1073-1078.
-
A. I. Molev and E. Ragoucy,
Representations of reflection algebras
,
Reviews in Mathematical Physics 14 (2002), 317-342.
-
A. I. Molev,
Irreducibility criterion for tensor products
of Yangian evaluation modules
,
Duke Mathematical Journal 112 (2002), 307-341.
-
A. I. Molev,
Yangians and transvector algebras,
Discrete Mathematics 246 (2002), 231-253.
-
A. I. Molev and G. I. Olshanski,
Degenerate affine Hecke algebras and centralizer construction
for the symmetric groups,
Journal of Algebra 237 (2001), 302-341.
-
A. I. Molev and G. I. Olshanski,
Centralizer construction for twisted Yangians,
Selecta Mathematica, New Series 6 (2000), 269-317.
-
A. I. Molev,
Weight bases of
Gelfand-Tsetlin type for representations of classical Lie
algebras,
Journal of Physics. A. Mathematical and Theoretical 33 (2000), 4143-4168.
-
A. I. Molev,
A weight basis
for representations of even orthogonal Lie algebras,
in ``Combinatorial Methods
in Representation Theory",
Adv. Studies in Pure Math.
28 (2000), 221-240.
-
A. I. Molev,
On Gelfand-Tsetlin bases for representations of
classical Lie algebras,
in ``Proceedings of the 12-th International Conference FPSAC'00",
Moscow, June 2000.
Springer-Verlag 2000, pp. 300-308.
-
A. I. Molev,
A basis for representations of symplectic Lie algebras
,
Communications in Mathematical Physics 201 (1999), 591-618.
-
A. I. Molev and M. L. Nazarov,
Capelli identities for classical Lie algebras
,
Mathematische Annalen 313 (1999), 315-357.
-
A. I. Molev and B. E. Sagan,
A Littlewood-Richardson rule for factorial Schur functions
,
Transactions of the American Mathematical Society 351 (1999), 4429-4443.
-
A. I. Molev,
A quantum Sylvester theorem and representations of Yangians
,
in ``Proceedings of the 11-th Conference on
Factorial Power Series and Algebraic Combinatorics",
(C. Martinez, M. Noy and O. Serra, Eds),
Barcelona, June 1999,
pp. 379-387.
-
A. I. Molev,
On elementary representations of Yangians,
in ``Group22: Proceedings of the XXII
International Colloquium in Group Theoretical Methods in Physics",
Hobart, 1998. Internat. Press, Cambridge,
MA, 1999, pp. 433-437.
-
A. I. Molev,
Finite-dimensional irreducible representations of twisted Yangians
,
Journal of Mathematical Physics 39 (1998), 5559-5600.
-
A. I. Molev,
Factorial supersymmetric Schur functions and super Capelli identities
,
in ``Kirillov's Seminar on Representation Theory",
(G. I. Olshanski, Ed.),
Amer. Math. Soc. Transl.,
Ser. 2, Vol. 181, AMS, Providence, R.I., 1998, pp. 109-137.
-
A. I. Molev,
Stirling partitions of the symmetric group
and Laplace operators for the orthogonal Lie algebra
,
Discrete Mathematics 180 (1998), 281-300.
-
A. I. Molev and B. E. Sagan,
A Pieri rule for generalized factorial Schur functions
,
in ``Proceedings of the 9-th Conference on
Factorial Power Series and Algebraic Combinatorics",
Vienna, July 1997,
Vol. 3, 517-523.
-
A. I. Molev,
Casimir elements for certain polynomial current Lie algebras
[preprint version],
in ``Group 21, Physical Applications and Mathematical Aspects of
Geometry, Groups, and Algebras,"
Vol. 1, (H.-D. Doebner, W. Scherer,
P. Nattermann, Eds). World Scientific, Singapore, 1997, 172-176.
-
A. Molev, M. Nazarov and G. Olshanskii,
Yangians and classical Lie algebras
,
Russian Mathematical Surveys 51 (1996), 205-282.
-
A. Molev,
A Remark on the Higher Capelli Identities,
q-alg/9603007, [unpublished note].
-
A. Molev,
Noncommutative symmetric functions and Laplace operators
for classical Lie algebras
,
Letters in Mathematical Physics 35 (1995), 135-143.
-
A. Molev,
Sklyanin determinant, Laplace operators and characteristic
identities for classical Lie algebras
,
Journal of Mathematical Physics 36 (1995), 923-943.
-
A. I. Molev,
On Stirling partitions of the symmetric group
,
``Actes du 7eme Congres SFCA", (B. Leclerc,
J.-Y. Thibon, Eds)
Paris, May-June 1995, 435-447.
-
A. I. Molev,
Yangians and Laplace operators for classical Lie algebras,
in ``Confronting the Infinite", Proceedings of the Conference in Celebration
of the 70th Years of
H. S. Green and C. A. Hurst.
World Scientific, Singapore 1995, pp. 239-245.
-
A. I. Molev,
Gelfand-Tsetlin basis for representations of Yangians
,
Letters in Mathematical Physics 30 (1994), 53-60.
-
A. I. Molev,
Russian translation of the book by V. Kac,
Infinite-dimensional Lie algebras.
Third edition. Cambridge University Press,
Cambridge, 1990.
Mir, Moscow, 1993.
-
A. I. Molev,
Representations of twisted Yangians
,
Letters in Mathematical Physics 26 (1992), 211-218.
-
A. I. Molev,
On certain class of unitarizable representations of the Lie algebra
u(p,q)
,
in ``Proc. Winter School on Geometry and Physics", Srni, January
1990,
Supplemento ai Rendiconti del Circolo Matematico di Palermo,
Serie II, no. 26 (1991), 207-215.
-
A. I. Molev,
Unitarizability of some Enright-Varadarajan u(p,q)-modules
,
in ``Topics in Representation Theory",
(A. A. Kirillov Ed.),
Advances in Soviet
Mathematics, vol. 2, AMS, 1991, pp. 199-219.
-
A. I. Molev,
Gelfand-Tsetlin basis for irreducible unitarizable highest
weight representations of u(p,q),
Funkt. Anal. i Prilozh.
23 (1989), 76-77.
English translation:
Functional Analysis and Its Applications 23 (1989), 236-238.
-
A. I. Molev,
On the algebraic structure of the Lie algebra of vector fields on the
line,
Mat. Sb. (N.S.) 134(176) (1987), 82-92.
English translation:
Mathematics of the USSR-Sbornik
62 (1989), 83-94.
-
A. I. Molev and L. M. Tsalenko,
Representations of the symmetric group in a free Lie
(super)algebra and in the space of harmonic polynomials,
Funkt. Anal. i Prilozh.
20 (1986), 76-77.
English translation:
Functional Analysis and Its Applications 20 (1986), 150-152.
-
A. I. Molev,
On the growth of some Lie algebras of vector fields,
Uspekhi Mat. Nauk
41 (1986), 205-206.
English translation:
Russian Mathematical Surveys 41 (1986), 213-214.
-
A. A. Kirillov and A. I. Molev,
Algebraic structure of a Lie algebra of vector fields,
Keldysh Institute of Appl. Math. Preprint 168,
Moscow, 1985.
English translation:
Selecta Mathematica
Sovietica 9 (1990), 155-169.
-
A. I. Molev,
A proof of the Kirillov-Kontsevich formula,
Uspekhi Mat. Nauk 39 (1984), 145-146.
English translation:
Russian Mathematical Surveys
39 (1984), 171-172.
-
A. A. Kirillov, M. L. Kontsevich and A. I. Molev,
Algebras of intermediate growth,
Keldysh Institute of Appl. Math. Preprint 39,
Moscow, 1983.
English translation:
Selecta Mathematica
Sovietica 9 (1990), 137-153.
|