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THE RECIPROCITY OBSTRUCTION FOR RATIONAL POINTS
ON COMPACTIFICATIONS OF TORSORS UNDER TORI OVER
FIELDS WITH GLOBAL DUALITY

JOOST VAN HAMEL

ABSTRACT. This paper studies the reciprocity obstruction to the local—global

principle for compactifications of torsors under tori over a generalised global
field of characteristic zero. Under a non-divisibility condition on the second

Tate—Shafarevich group for tori, it is shown that the reciprocity obstruction is

the only obstruction to the local—global principle. This gives in particular an

elegant unified proof of Sansuc’s result on the Brauer—Manin obstruction for
compactifications of torsors under tori over number fields, and Scheiderer’'s
result on the reciprocity obstruction for compactifications of torsors under tori

over p-adic function fields.

LetK be a field of characteristic zero that Hast 2)-dimensional global duality
in étale cohomology with respect to a collectionrefocal fieldsK c K, c K
indexed byv € Qk. Examples of such fields are totally imaginary number fields
(thenn = 1) and function fields over-local fields. See Section 1 for details.

Let X be a smooth projective variety ovir. Writing X(Ak) := [Tvea X(Kv),
we have aeciprocity pairing

X(Ak) x H"(X,Q/Z(d)) — Q/Z.

Writing X(Ak)"™P" for the collections of points that pair to zero with every
w € H™L(X,Q/Z(d)), we have thatX(K) — X(Ak)™P". In particular, when
X(Ak)™P"=0thenX(K) = 0.

Hence the reciprocity pairing gives an obstruction to the local-global principle.
WhenK is a number field, this obstruction is easily seen to be equivalent to the
obstruction coming from the well-knowBrauer—Manin pairing

X(Ak) x H2(X,Gp) — Q/Z.
Main result

In this paper we will show that under a technical assumption on Galois
cohomology of tori the reciprocity obstruction is the only obstruction to the local—
global principle for any smooth compactification of a torsor under a torus over
K (i.e., any smooth projective variety containing a principal homogeneous space
under a torus oveK as a Zariski-dense open subvariety).

Theorem 1. Let K be a field of characteristic zero with global duality. Assume
that for every torus T over K there is an:;NO such thaflII?(K, T) is an N-torsion
group.
Then for any smooth compactification X of a torsors under a torus over K we
have that XAk )™" = 0if and only if X(K) = 0.
1
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Proof. This follows immediately from Corollary 3.3 and Corollary 4.3. 0

This generalises (and simplifies the proof of) the original result of Sansuc that
for a smooth compactification of a torsor under a torus over a number field the
Brauer—Manin obstruction is the only obstruction against the Hasse principle (see
[S] and also [SK]).

The condition orlII?(K, T) is not only known to hold for number fields, but
also forp-adic function fields (this follows from the duality theorems in [SvH]). In
particular, we get a proof of the following unconditional result, due to Scheiderer
(private communication), that has not appeared in the literature before.

Corollary. Let p be a prime and let K be a p-adic function field (i.e., a finite
extension of,[t]). Then for any smooth compactification X of a torsor under a
torus over K we have that(Ak)"P" = 0 if and only if X(K) = 0.

Method of proof
The proof usepseudo-motivitlomology
H..(X,Z) := Ext_* (RT(X/K,Gp),Gm)

as defined in [vH1] for smooth projective varieties over a field of characteristic
zero (see Section 2 for some more information).

This homology theory (covariant iX) can be considered to be in between
motivic homology ancetale homology with coefficients id (see [VH1], [VH2]).
It is more tractable than motivic homology, but it still contains some important
geometric/arithmetic data.

In particular, in certain casé®lg(X,Z) can decide whetheX hasK-rational
points.

Theorem 2. Let X be a smooth compactification of a torsor under a torus over a
field k of characteristic zero. Then the degree map

Ho(X,2) — Ho(Spek,2) =Z
is surjective if and only if Xk) # 0.

Proof. If X(k) # 0, then functoriality of'Ho(—,Z) implies the surjectivity of the
degree map. The converse follows from Corollary 4.3, since the'higp-,Z) —
Ho(—,Z); is compatible with the degree map. O

This is the key result in the paper and in fact an easy consequence of
Hilbert's Theorem 90 and Steinberg’s result that the invertible functions on a
torus are characters up to translation. Theorem 1 is then essentially a purely
formal consequence of global duality. However, to avoid any unnecessary
technical subtleties we will actually derive Theorem 1 from the slightly stronger
Corollary 4.3.

As we will see in Section 5, the approach taken here is strongly related to the
approach of Colliot-Thlene and Sansuc in the case of number fields: Corollary 4.3
is equivalent to their result that a smooth compactification of a torsor under
a torus has rational points if and only if the so-callielémentary obstruction
vanishes. However, the proofs in the present paper are simpler, and extend easily
to higher cohomological dimension. This can be explained by the fact that for
the varieties under consideration the homological formalism of pseudo-motivic
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homology happens to be more natural than the doabmological formalism of
descent.

Structure of the paper

Most of this paper is devoted to setting up the conceptual framework and
establishing its formal properties. In Section 1 we recall the concept of an
local field, originally due to Parshin, and we will introduce a cohomological
global analogue:(n+ 2)-dimensional global duality iretale cohomology. We
will introduce the reciprocity pairing in this framework and establish some basic
properties. In Section 2 we will recall the definition and basic properties of pseudo-
motivic homology. In Section 3 we define a cap-product between pseudo-motivic
homology ancetale cohomology and we establish a partial duality.

After setting up the proper framework in the first three sections, we show in
Section 4 that a principal homogeneous space under a torus actually coincides with
the degree 1 part of its zero-dimensional homology. This is essentially a rephrasing
of Steinberg’s result on the invertible functions on a torus. The main results then
follow immediately.

Finally, in Section 5 we will compare the methods used here to other methods
in the literature.

1. Higher dimensional local and global duality

1.1. Higher dimensional local duality

In this paper, am-local field(for n > 1) will be a fieldk that admits a sequence
of fields

Ko,Ki,...,kn =Kk
such that:
e kp is a finite field
e For eachi > 0 the fieldk; is the quotient field of an excellent henselian
discrete valuation ringy; with residue fieldk;_1.

A generalised n-local fieldvill be a field satisfying the same hypotheses, except
thatko is only required to bejuasi-finite i.e., a perfect field with absolute Galois
group isomorphic t&.

A generalisedn-local field k with k; of characteristic zero satisfies-
dimensional local duality igtale cohomology

e There is a canonical isomorphigaf;(k,Q/Z(n)) = Q/Z
e For any finite Galk/k)-moduleM and anyi € Z the Yoneda pairing

HE(k, M) x Extyy™ (M, Q/Z(n)) — HE(k,Q/Z () = Q/Z

is a perfect pairing of finite groups.

e WhenM is a finite unramified Ggk/k)-module (whose torsion is prime
to the characteristic oky if n = 1), then the unramified cohomology
of M is precisely the annihilator of the unramified cohomology of
s£0mM,Q/Z(n)) in the duality pairing.

Forn =1 this is classical (see for example [§1,2]), for finite kg this is [DW,
Th. 1.1, Prop. 1.2]. The proofs easily generalise to the case of quasikfjnite



4 JOOST VAN HAMEL

1.2. Higher dimensional global duality
LetK be a field of characteristic zero and suppose we have

e A collectionQ of discrete valuations: K — Z.

e An n > 1 such that for everw ¢ Q the quotient fieldk!" of the
henselisatiord!! of the discrete valuation ring, := {x € K: v(k) > 0}
is ann-local field.

e Aring Ok C K such that for all but finitely many € & we have that
Ok C O.

We will use the notatio\k (or simplyA) for the ring ofadelescorresponding to
(K,Q), i.e., the subring of]ycq KI' consisting of the{x, }veq With x, € &, for all
but finitely manyv € Q. Since for every finite Ggk/k)-moduleM we have that
M extends to atale sheaf over an affine open subschehe Speyk, we may
define theadelic étale cohomology group

He(Ak,M) == lim H&(OF, M) x [ H&(K M)
Vcu ve ve
open affine \ veV VeV

By abuse of notation we writeé € Spex if Ok C 0y and similarly for every
affine open subschemé C Spex. We write I1I'(K,M) for the kernel of the
map

HL (K, M) — HL (A, M).

Similarly we define the complex of abelian grouREe(A,M) for any étale
sheaf (or complex oétale sheaves)l over some open subschetdeC Spewy.
We have a map

RMet(K,M) — Rl &(A,M)

and we define the compldX (K, A; M) to be the complex of abelian groups that
makes a triangle

R et(K,A;M) — RMe(K, M) — RMCe(A,M).

As the notation indicates, the corresponding cohomology groligs, A; M) =
H'(RM(K,A;M)) should be thought of as relative cohomology groups. By
definition we have a long exact sequence

c s HL(K ATM) — HE(K M) — HE(ALM) — HEY(KGAM) —

Remark 1.1. The relative cohomology groups;(K,A; —) can be thought of as
the cohomology with compact supports of Sgeegarded as something very open
in a compactification of Spegx (compare [M,§ll.2]). This way of seeing it

is more in line with Grothendieck—Verdier approach to cohomology and duality.
However, a notatiorH; can lead to confusion when studying the cohomology
of varieties overK, so the ‘Eilenberg—MacLane’-style of notation as relative
cohomology seems more convenient.
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For any finite GalK/K)-module M, any i, j € Z we have that arw €
Ext,(M,Q/Z(j)) induces maps

H(K,AiM) — HE (K A Q/Z())
HeW(K,M) — Hg™ (K, Q/Z())
He(A. M) — Het™ (A Q/Z()))
which are compatible with the long exact sequences of the(a#k). Allowing
wto vary we get the&¥oneda pairings
HE(K,AM) @ Ext, (M, Q/Z (7)) — HE™ (K, A Q/Z (1)),
HeW(K, M) © Exti, (M, Q/Z(})) — Hel (K, Q/Z (1)),
He((A,M) © Exti, (M, Q/Z (1) — He™ (A;Q/Z(j))-
We say thaK has(n+ 2)-dimensional global duality igtale cohomology if:
e We have an isomorphisrii?(K,A;Q/Z(n)) ~ Q/Z such that the

et
boundary mapi (A, Q/Z(n)) — Hgﬁz(K,A; Q/Z(n)) corresponds to
the summation mag, .o Q/Z 2, Q/Z.

e For every finite GglK/K)-moduleM and anyi € Z the Yoneda pairing
HE(K, AT M) x ExtZ?7'(M,Q/Z(n)) — HE(K,A;Q/Z(n) ~ Q/Z
is a perfect pairing of abelian groups.
As a purely formal consequence we get duality for any bounded corfapleix
constructiblegtale sheaves defined over an open subsetSpex: we have that
HE(K,AE) x Exte 27 (4,Q/Z () — HETA(K,A;Q/Z(n) ~Q/Z

is a perfect pairing of abelian groups for every Z.
Examples of fields that satisfyn + 2)-dimensional global duality irétale

cohomology are

e Totally imaginary number fields (with = 1)

e Function fields of curves over generalisgd— 1)-local fields withk; of

characteristic zero.

Remark 1.2. To get 3-dimensional global duality for number fields that admit real
embeddings, one needs to take care of the real places separately (aglingy,
Having done that, the methods of this paper still apply.

1.3. The reciprocity pairing

Let X be a smooth projective variety over a figddhaving (n+ 2)-dimensional
global duality inétale cohomology.
For anyi, j € Z the restriction map gives pairings of sets
X(K) x Hy(X, Q/Z(j)) — HL(K; Q/Z(j))
X(A) x Het(Xa,Q/Z(])) — He( A Q/Z(])).-
Here ‘ ‘
Hei(Xa, Q/Z (1)) := He( A RT (X /K, Q/Z(J)))-
When we compare these two pairings, we see that composition with the
restriction mapH,(X,Q/Z(j)) — HL(Xa,Q/Z(j)) and the boundary map
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HL(A;Q/Z())) — Hgl(K,A;Q/Z(j)) transforms the second pairing into a
pairing _ _

X(A) x Hy(X,Q/Z(j)) — H H(K, A Q/Z(j))
with the property that the image of the m&pK) — X(A) lands into the subset

X(A)HaXQ/Z0) =[x} € X(A): ({x},w) = O for anyw € HL(X,Q/Z(j))}
Takingi = n+1, j = n, we get thaeciprocity pairing
X(A) x HE(X,Q/Z(n)) — HE (K A Q/Z(j)) = Q/Z
mentioned in the introduction and the fact that
X(K) < X(A)OPr = X (A)-H& " (X.Q/2(),
1.4. Generalised global duality beyond finite coefficients

Later in this paper we will usén+ 2)-dimensional global duality to detect
elements irHZ(K,A; X(M)) for a finitely generated group scheme over Here
afinitely generated group scheroeer a perfect fieldk is a group schem@& such
thatG(K) is a finitely generated group. and

X(M) := #0m(M, Gp)

is the Cartier dual oM.
Morally speaking, one would expect a perfect pairing

HO(K, M BZ(n—1))) x HA(K, A; X(M)) — HE3(K, A Z(n) = Q/Z

for suitable ‘motivic’ complexes of sheav@&$n— 1) andZ(n) (recall that in the
motivic formalism we haveGy, = Z(1)[1]). This holds indeed foK a number
field (cf. [M, §l.4]), but | do not know of such a full duality in any other case
(nevertheless, foK a p-adic function field, the results of [SvH] give the required
duality betweenHZ(K,M®"Z(1)) and HZ(K,A;X(M)) without introducing a
complexZ(2)). Besides, to apply such a result to a reciprocity pairing on a
projective varietyX, one would not just need Rig to be finitely generated in
order to play the role oM, but one would also have to prove that in that case
HE(X/K,Z(n)) = Picx )k ®Z(n—1).

To avoid these complications, we look at the Yoneda pairing
1)
HE (K M E Q/Z(n— 1)) x HA(K, A X(M)) — HEFZ(K, AT Q/Z () = Q/2

associated to the isomorphisms

M QL@Z/m(n—l) ~ Rji”om(X(M),GméLQZ/m(n—l)) =RszomX(M),Z/m(n)[1])
forallme N.

Proposition 1.3. Let K be a field that haén+ 2)-dimensional global duality, and
let M be a finitely generated group scheme over KIIIF(K,X(M)) is purely
N-torsion for some Nt N, then the pairing1) is nondegenerate on the right.

Proof. By Hilbert's Theorem 90 and a trace argument we have that there is an
N’ € N such thatH}(A, X (M)) is purelyN’-torsion. Hence the long exact sequence
of relative cohomology and the hypothesis Hi? implies thatHZ (K, A; X (M))
embeds intdZ(K,A; X(M) ®-Z /NN).
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Global duality then implies thaHZ(K,A;X(M)) embeds into the dual of
HYY(K,M&-Z/NN'(n— 1))), hence into the dual oH} (K,M&-Q/Z(n—
1))). O

We will also use the following easy lemma.

Lemma 1.4. Let K be a field that hagn + 2)-dimensional global duality. The
pairing

(20 HEH(K.Q/Z(n)) x Ha(K,A;Z) — HEPA(K,A;Q/Z(n))) = Q/Z

is nondegenerate on the right.

Proof. This follows easily from the fact thaHi(K,A;Z) = (MveaZ)/Z,
whereasHJ"*(K,Q/Z(n)) surjects onto the kernel of the ma@,.oQ/Z =

He (A.Q/Z(n)) — HE*(K,A;Q/Z(n))) = Q/Z. O
2. Pseudo-motivic homology

Letk be a field of characteristic zero. L¥tbe a nonsingular variety ovér We
write Xsm, for the smooth site oveX (i.e., underlying category the smooth schemes
of finite type overX and coverings the surjective smooth morphisms).

For any sheaf” on Xsy, we denote byRIM (X /Ksm, %) the total direct image in
the derived category of sheaves @pe)sm of .# under the structure morphism
X — Sped.

We put

Cg* (X, Gm) = Rr(X/ksm, Gm)
%*(X, Gm)-[ = TSer(X/ksm, Gm)
¢ (X,Z/m(])) :=RT (X /ksm, Z/m(]))
. . L .
¢ (X, Z/m(j)):=¢"(X,Gm):®Z/m(j — 1)
CK*C(X,Z) :: RL%”](S (%*(X,Gm), Gm)
CK*C(X, Z)-[ :: R%bm(sm(%* (X, Gm)-[, Gm)
Co(X,Z/m)q) i= Ratom, (67(X,Z/m)),Z/m)
Hl(x) _)(T) = HI(kSI'T‘h (g* (X7 _)(T))
lHic(sz)(r) = Hil(ksmycg*c(xaz)(r))
HiC(X,Z/m)(T) = H_i(ksm,%f(X,Z/m)(r))
Y65 (X,Z/m) == 7 (ES(X, Z/m) ) fori=0,1

m

Here HC(X,Z) is pseudo-motivic homology with compact suppoand
H°(X,Z/m) is ordinary étale homology with compact supports. The two are
related by a Kummer exact sequence. Wheis projective, there is no need to
specify that we use compact supports, and we will just wWHt€X, Z).

For technical reasons we will work with the truncated versigf{X, Z )., which
is somewhat easier to work with. By definition, it fits wikhf(X,Z/m) into a
Kummer exact sequence.
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Remark 2.1. We only need the smooth topology in the definition of the complexes
CL(X,Z) ). After that, the comparison between smooth cohomology &at
cohomology assures that we might as well compute everything oatéte site,
and get the same results In particutdt(ksm, ¢ (X,Z/m(j))) = HL(X,Z/m(j)).

2.1. Some calculations

In the present paper we are interested in varieties with a finitely generated Picard
scheme. For these varieties the truncated pseudo-motivic homology has a very
simple structure.

Lemma 2.2. Assume X is a smooth projective geometrically irreducible variety
over k such that the Picard scherRey  is a finitely generated group scheme.
Then we have a triangle

H0M(Pick jk, Gm)[1] — C(X,Z)y — Z.
Proof. By Cartier duality this follows from the fact that we have a triangle
Gm — €' (X,Gm)r — Picxk[—1].

Corollary 2.3. With X as above, we have a long exact sequence

-+ — HY(k, #om(Picx k, Gm)) — Ho(X,Z): — H°(k, Z)
— H?(k, #0om(Picx , Gm)) — - -

Lemma 2.4. Assume V is a smooth geometrically connected variety over k such
that Pic, = 0. Then we have a triangle

AomKNV]* /K ,Gm) — €. (V,Z); — Z

Proof. It is not hard to deduce from the discussion in [vH2, Sec. 1.2] that we have
atriangle

Gm—%¢*(V,Z): — M.

where M is (the complex concentrated in degree zero associated to the sheaf
represented by) a finitely generated group scheme lkvethecking the global
sections ovek then gives thaM is the group scheme corresponding to the finitely
generated Galois modukéV|* /k*. O

Lemma 2.5. Let X be a nonsingular projective variety over k and let\X be an
open subvariety, then the natural map

1H8(V72)T - lHO(X7Z)T
is surjective

Proof. This is part of [vH2, Cor. 1.5]. O

2.2. Homology classes of points

For any varietyv over k we have that the covariantly functorial properties of
pseudo-motivic homology give a natural map

V (k) — H§(V,2).



THE RECIPROCITY OBSTRUCTION FOR COMPACTIFACTIONS OF TORIC TORSORS 9
We denote the homology class ok&alued pointx € V (k) by [x], If X corresponds
toamap: Spek — V then[x] corresponds to the morphism
R (X/k,Gm) — Gm
induced by the natural morphism
Gm — 1.Gm

of sheaves orX. We will not make a distinction in notation between the class
[X] € H§(V, Z) and its image under the truncation mi§(V,Z) — HS(V,Z).
The sheafified version of this map gives a morphism of sheaves (of sets) over

ksm
V - YV, 2)

with the image o¥ landing in the inverse image of 1 under the degree map
YENv,z) - 2.

See [vH1] and [vH2] for more information.

Lemma 2.6. Assume V is a smooth geometrically connected variety over k such
that Pig, x = 0. Then the morphism

V— %C(VZ) = Rszom, (T (V /Ksm, Gm),Gm)

is given by locally sending a sectioreX/ to the map that sends a local section f
of I (V /Ksm, Gm) to f(X).

Proof. This follows immediately from the definitions. O

3. The cap-product and partial generalised global duality for pseudo-
motivic homology

3.1. Definition and basic properties of the cap product

Let X be a smooth variety over a fiekbf characteristic zero. Sin6g®(X,Z) =
Rszom,,(¢*(C,Gm),Gm), we have well-defined Yoneda-products

HE(X,Z) x HI(X,Gm) — HI T (K,Gp)
HE(X,Z) x HI(X,Q/Z(1)) — HIT (K,Q/Z(1)).
Applying Tate twist to the torsion coefficients in the second pairing gives us
HE(X,Z) x HI(X,Q/Z(m)) — HIT(K,Q/Z (m)).
for anyme Z. Similarly, we have the truncated versions
HE(X,Z)e x HI(X,Gm)r — H 7 (K, G)
HEX, Z)e x HI(X,Q/Z (M) — HIT (K, Q/Z(m)).

All these pairings can be call@ap-product pairinggnd will be denoted by- N —.
For ak-valued pointx: Spek — X, and anw € H!(X,Q/Z(m))) we have
that

(3) XNw=i"weH (k,Q/Z(m)).
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This follows easily from the definitions, in particular from the fact that the
homology clas$x] is defined using the the natural mapgs — i.Gm and the pull-
back homomorphisnit is defined using the natural m&yZ(m) — i.Q/Z(m).

WhenK is a field with global(n+ 2)-dimensional duality iretale cohomology,
we also get

HE(Xa, Z) () x HI(X,G)¢) = HITHH(K,A; G)
HEX, Xa; Z) @) x HI(X,G) ) — HITTH(K,A; G).
for G= G, orQ/Z(m), and equation (3) gives a commutative diagram of pairings

rcpr

(4) V(A)  xH™(V,Q/Z(m) = Q/Z

! I |

HE(Va. Z) ) <H™L(V,Q/Z(m) = Q/Z
3.2. Partial generalised global duality for pseudo-motivic homology

Theorem 3.1. Let X be a smooth projective variety over a field K having- 2)-
dimensional global duality irgtale cohomology. Assume tHaity i is a finitely

generatedGal(K /K)-module and thaHlZ(K,X(PicX/K)) is purely N-torsion for
some Ne N. Then the cap-product pairing

H-1(X, Xa: Z)e x HMH(X,Q/Z (n)r — H™2(K,A;Q/Z(n) = Q/Z
is nondegenerate on the left.

Proof. The triangle of Lemma 2.2 gives the following diagram of compatible
pairings with exact rows

0 —— HZ(K,A; X(Pick k) ——— H_1(X,Xa; Z)r —— HY(K,A;Z)

0+ H™ (K, Picyx ®- Q/Z(n—1)) + H™(X,Q/Z(n)): + H™1(K,Q/Z(n))
! | v
Q/z Q/Z Q/z

where the second pairing is the pairing (1) and the fourth pairing is the pairing of
Lemma 1.4. Since both pairings are nondegenerate ofKith&)-side, it follows
that the third pairing is nondegenerate on tkeA )-side as well. O

Corollary 3.2. Let X be as in Theorem 3.1. Then the left kernel of the pairing
"Ho(Xa; Z)r x H™ (X, Q/Z(n)): — Q/Z
is precisely the image of the map
"Ho(X,Z)r — Ho(Xa, Z)x

Proof. This follows from Theorem 3.1, the exact sequence for the cohomology of
the pair(K,A), and the fact that we have a compatible diagram of pairings

Ho(Xa;Z):  x H™(X,Q/Z(n)): — Q/Z

L H |

Ho1(X, Xa:Z)r x HMYX,Q/Z(n)): — Q/Z
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Corollary 3.3. Let X be as in Theorem 3.1. If(X)"P" -£ 0, then the degree map
Ho(X,Z2)r — Z
is surjective.
Proof. Take an adlic point {x,} € X(A)™". The compatibility between cap-
product and the ma}i(A) — Ho(Xa, Z); implies that its homology class
[{x}] € Ho(Xa, Z)x

is orthogonal to anyw € H™(X,Q/Z(n)), so certainly to anyw €
H"™1(X,Q/Z(n));. Therefore, the homology clags,}] is the restriction of some
y<€ Ho(X,Z). Since eaclix,] € Ho(Xk,,Z) is of degree 1, the degreeypis 1. [0

4. Pseudo-motivic homology of toric varieties

Proposition 4.1. Let V be atorsor under a torus T over k.
() The triangle of 2.4 is naturally isomorphic to the triangle

T YV, 2 —Z

(i) The natural map V.- Y#£(V,Z), induces a T -equivariant isomorphism of
V with the connected component#’(V, Z ), mapping tol € Z.

Proof. The first part of the proposition follows by Cartier duality from the
sheafified version of Rosenlicht’s result that we have a short exact sequence

See [Ro], and also [Ray, Cor. VII.1.2.], [CTS, Prop. 1.4.2].

To get the second part of the proposition, we need the extra information that
the mapl (V /ksm,Gm) — X(T) considered above is defined locally by sending a
local sectionf of I'(V /ksm, Gm) to the map that sends a local sectioaf T to
f(t-x)/f(x) for any local sectiorx of V. Comparing this with the description of
the mapv — Y25V, Z), in Lemma 2.6 gives the desired result. O

Corollary 4.2. LetV be a torsor under a torus T over k. For any field extension
K'/k we have that the natural map
V(K) — Ho(Ve,Z)
gives a TKk')-equivariant isomorphism of §') onto the subset of elements of
HE (Wi, Z) of degreel.
Corollary 4.3. Let V be a torsor under a torus T over k. Let X be a smooth
projective variety over k containing V as a Zariski-dense subvariety.
() The degree map
H§(V,2) — Z
is surjective if and only if k') # 0.
(i) The degree map
Ho(X,2); — Z
is surjective if and only if Xk) # 0.

Proof. The first statement follows immediately from Corollary 4.2, whereas the
second statement follows from the first combined with Lemma 2.5. O
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Remark 4.4. It is clear from the above, that we can sharpen Theorem 1 by
replacing the full grougH™%(X,Q/Z(n)) in the reciprocity pairing by the trun-
cated groupH""1(X,Q/Z(n))s, or its image under the map"*1(X,Q/Z(n)); —
H™1(X,Q/Z(n)).

In the case of a number field, this makes no difference, since the so-called
‘algebraic’ cohomological Brauer group, (which (X, Gp); in our notation)
is equal to the full cohomological Brauer grobig (X, Gn,).

5. Comparison with the literature

Torsors under a toru$ over a (generalised) global field which are trivial
everywhere locally are classified bii*(K, T). It follows from Rosenlicht’s result
and Hilbert Theorem 90 thati*(K,T) embeds intoH?(K, X (Picy «)) for any
smooth compactificatioX of a principal homogeneous spa¢eunderT. Under
the assumptions of Theorem 1, duality then gives IhEt K, T) embeds into the
dual ofH"}(K, Picy x ®-Q/Z(n—1)), hence into the dual ¢i" (X, Q/Z(n))-.
Therefore, it is not very surprising that the reciprocity pairing detects any failure
of the local—global principle.

The only problem is to relate the abstract ‘arithmetic’ pairing

LYK, T) x H™4(X,Q/Z(n)): — Q/Z
to the ‘geometric’ reciprocity pairing
X(A) x H™H(X,Q/Z(n)}x — Q/Z.

We have seen that pseudo-motivic homology provides a nice conceptual
intermediate to compare the two pairings, but there have been other approaches
as well. The existing literature deals with number fields, so here we consider the
Brauer group, rather that?(X,Q/Z(1)):.

In [S] the comparison between the ‘geometric’ and the ‘arithmetic’ pairing is
essentially done in Lemma 8.4, using explicit ways of representing classes in the
Brauer group and explicit cochain calculations. If one would want to apply this
approach to global duality fields of higher cohomological dimension, both the
higher degree of the cochains and the fact that the coefficients wouldp&im)
should complicate things considerably.

A more conceptual approach, due to Colliot€lédne and Sansuc, and described
in [CTS] uses the concept ofumiversal X-torsomunder groups of multiplicative
type. The most streamlined version of this approach is probably presented in [SK].
As in the present paper, the proof proceeds in two major steps. The first result is that
for any smooth projective variet{ over a number fieldk with X (Ay)B Xt £ 0
we have that the universttorsor exists, and the second result is that for a smooth
projective toric variety oveK the universaK-torsor exists if and only iK(K) # 0.

There is a very clear relation with the present paper: Colligdie and Sansuc
show that the universa-torsor exists if and only if the 2-fold extension of Galois
modules

0— k" — k(X)* — Div(X) — Pic(X) — 0
is trivial. This can be seen to be equivalent to the surjectivity of the degree map

Ho(X,2)r — Z.
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Therefore, the two steps of the proof are equivalent, but in both steps the methods
of proof are different. In particular in the first step the homology approach of the
present paper seems much more efficient than the approach of Colé@r€erand
Sansuc (or Skorobogatov’'s streamlined version in [Sk, Sec. 6.1]), where again the
core of the proof is a comparison of the ‘geometric’ and the ‘arithmetic’ pairing
using cocycle computations.
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