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Abstract

This is an unformatted version of my book Mostly Surfaces, which

is Volume 60 in the A.M.S. Student Library series. This book has the

same content as the published version, but the arrangement of some

of the text and equations here is not as nice, and there is no index.

Preface

This book is based on notes I wrote when teaching an undergraduate seminar
on surfaces at Brown University in 2005. Each week I wrote up notes on
a different topic. Basically, I told the students about many of the great
things I have learned about surfaces over the years. I tried to do things in as
direct a fashion as possible, favoring concrete results over a buildup of theory.
Originally, I had written 14 chapters, but later I added 9 more chapters so
as to make a more substantial book.

Each chapter has its own set of exercises. The exercises are embedded
within the text. Most of the exercises are fairly routine, and advance the
arguments being developed, but I tried to put a few challenging problems in
each batch. If you are willing to accept some results on faith, it should be
possible for you to understand the material without working the exercises.
However, you will get much more out of the book if you do the exercises.

The central object in the book is a surface. I discuss surfaces from many
points of view: as metric spaces, triangulated surfaces, hyperbolic surfaces,
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and so on. The book has many classical results about surfaces, both geo-
metric and topological, and it also has some extraneous stuff that I included
because I like it. For instance, the book contains proofs of the Pythagorean
Theorem, Pick’s Theorem, Green’s Theorem, Dehn’s Dissection Theorem,
the Cauchy Rigidity Theorem, and the Fundamental Theorem of Algebra.

All the material in the book can be found in various textbooks, though
there probably isn’t one textbook that has it all. Whenever possible, I will
point out textbooks or other sources where you can read more about what
I am talking about. The various fields of math surrounding the concept of
a surface—geometry, topology, complex analysis, combinatorics—are deeply
intertwined and often related in surprising ways. I hope to present this
tapestry of ideas in a clear and rigorous yet informal way.

My general view of mathematics is that most of the complicated things we
learn have their origins in very simple examples and phenomena. A good way
to master a body of mathematics is to first understand all the sources that
lead to it. In this book, the square torus is one of the key simple examples.
A great deal of the theory of surfaces is a kind of elaboration of phenomena
one encounters when studying the square torus. In the first chapter of the
book, I will introduce the square torus and describe the various ways that
its structure can be modified and generalized. I hope that this first chapter
serves as a good guide to the rest of the book.

I aimed the class at fairly advanced undergraduates, but I tried to cover
each topic from scratch. My idea is that, with some effort, you could learn
the material for the whole course without knowing too much advanced math.
You should be perfectly well prepared for the intended version of the class if
you have had a semester each of real analysis, abstract algebra, and complex
analysis. If you have just had the first 2 items, you should still be alright,
because I embedded a kind of mini-course on complex analysis in the middle
of the book.

Following an introductory chapter, this book is divided into 6 parts. The
first 5 parts have to do with different aspects of the theory of surfaces. The
6th part is a collection of several topics, loosely related to the rest of the
book, which I included because I really like them. Here is an outline of the
book.
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Part 1: Surfaces and Topology. In this part, we define such concepts as
surface, Euler characteristic, fundamental group, deck group, and covering
space. We prove that the deck group of a surface and its fundamental group
are isomorphic. We also prove, under some conditions, that a space has a
universal cover.
Part 2: Surfaces and Geometry. The first 3 chapters in this part in-
troduce Euclidean, spherical, and hyperbolic geometry, respectively. (In the
Euclidean case, which is so well known, we concentrate on nontrivial the-
orems.) Following this, we discuss the notion of a Riemannian metric on
a surface. In the final chapter, we discuss hyperbolic surfaces, as special
examples of Riemannian manifolds.
Part 3: Surfaces and Complex Analysis. In this part, we give a rapid
primer on the main points taught in the first semester of complex analysis.
Following this, we introduce the concept of a Riemann surface and prove
some results about complex analytic maps between Riemann surfaces.
Part 4: Flat Surfaces. In this part, we define what is meant by a flat cone
surface. As a special case, we consider the notion of a translation surface. We
show how the “affine symmetry group” of a translation surface, known as the
Veech group, leads right back to complex analysis and hyperbolic geometry.
We end this part with an application to polygonal billiards.
Part 5: The Totality of Surfaces. In this part, we discuss the basic ob-
jects one considers when studying the totality of all flat or hyperolic surfaces,
namely moduli space, Teichmüller space, and the mapping class group. As
a warmup for the flat-surface case, we discuss continued fractions and the
modular group in detail.
Part 6: Dessert. In this part, we prove 3 classic results in geometry. The
Banach – Tarski Theorem says that—assuming the Axiom of Choice—you
can cut up a ball of radius 1 into finitely many pieces and rearrange those
pieces into a (solid) ball of radius 2. Dehn’s Theorem says that you cannot
cut up a cube with planar cuts and rearrange it into a regular tetrahedron.
The Cauchy Rigidity Theorem says roughly that you cannot flex a convex
polyhedron.
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1 Book Overview

1.1 Behold, the Torus!

The Euclidean plane, denoted R2, is probably the simplest of all surfaces.
R2 consists of all points X = (x1, x2) where x1 and x2 are real numbers.
One may similarly define Euclidean 3-space R3. Even though the Euclidean
plane is very simple, it has the complicating feature that you cannot really
see it all at once: it is unbounded.

Perhaps the next simplest surface is the unit sphere. Anyone who has
played ball or blown a bubble knows what a sphere is. One way to define
the sphere mathematically is to say that it is the solution set, in R3, to the
equation

x2
1 + x2

2 + x2
3 = 1.

The sphere is bounded and one can, so to speak, comprehend it all at once.
However, one complicating feature of the sphere is that it is fundamentally
curved. Also, its most basic definition involves a higher-dimensional space,
namely R3.

9



The square torus is a kind of compromise between the plane and the
sphere. It is a surface that is bounded like the sphere yet flat like the plane.
The square torus is obtained by gluing together the opposite sides of a square,
in the manner shown in Figure 1.1.

Figure 1.1. The square torus

We will not yet say exactly what we mean by gluing , but we say intuitively
that a 2-dimensional being–call it a bug–that wanders off the top of the square
would reappear magically on the bottom, in the same horizontal position.
Likewise, a bug that wanders off the right side of the square would magically
reappear on the left side at the same vertical position. We have drawn a
continuous curve on the flat torus to indicate what we are talking about. In
§3.1 we give a formal treatment of the gluing construction.

At first it appears that the square torus has an edge to it, but this is an
illusion. Certainly, points in the middle of the square look just look like the
Euclidean plane. A myopic bug sitting near the center of the square would
not be able to tell he was living in the torus.

Consider what the bug sees if he sits on one of the horizontal edges. First
of all, the bug actually sits simultaneously on both horizontal edges, because
these edges are glued together. Looking “downward”, the bug sees a little
half-disk. Looking “upward”, the bug sees another little half-disk. These 2
half-disks are glued together and make one full Euclidean disk. So, the bug
would again think that he was sitting in the middle of the Euclidean plane.
The same argument goes for any point on any of the edges.

The only tricky points are the corners. What if the bug sits at one
of the corners of the squares? Note first of all that the bug actually sits
simultaneously at all 4 corners, because these corners are all glued together.
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As the bug looks in various directions, he sees 4 little quarter-disks that glue
together to form a single disk. Even at the corner(s), the bug thinks that he
is living in the Euclidean plane.

Modulo a ton of details, we have shown that the square torus has no
edges at all. At every point it “looks locally” like the Euclidean plane. In
particular, it is perfectly flat at every point. At the same time, the square
torus is bounded, like the sphere.

The torus is such a great example that it demands a careful and rigorous
treatment. The first question that comes to mind is What do we mean by
a surface? We will explain this in §2. Roughly speaking, a surface a space
that “looks like” the Euclidean plane in the vicinity of each point. We do not
want to make the definition of “looks like” too restrictive. For instance, a
little patch on the sphere does not look exactly like the Euclidean plane, but
we still want the sphere to count as a surface. We will make the definition
of “looks like” flexible enough so that the sphere and lots of other examples
all count.

1.2 Gluing Polygons

In §3 we give many examples of surfaces and their higher-dimensional ana-
logues, manifolds. One of the main tools we use is the gluing construction.
The square torus construction above is the starting point for a whole zoo of
related constructions.

3

2

1

3

1
2

Figure 1.2. Another torus

Imagine, for example, that we take the hexagon shown in Figure 1.2 and
glue the sides in the pattern shown. What we mean is that the 2 edges
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labelled 1 are glued together, according to the direction given by the arrows,
and likewise for the edges labelled 2 and 3. We can think of Figure 1.2 as a
distorted version of Figure 1.1. The hexagon has a left side, a right side, a
top, and a bottom. The top is made from 2 sides and the bottom is made
from 2 sides. The left and right sides are glued together and the top is glued
to the bottom. The resulting surface retains some of the features of the flat
torus: a bug walking around on it would not detect an edge. On the other
hand, consider what happens when the bug sits at the point of the surface
corresponding to the white dots. Spinning around, the bug would notice
that he turns less than 360 degrees before returning to his original position.
What is going on is that the sum of the interior angles at the white dots is
less than 360 degrees. Similarly, the bug would have to spin around by more
than 360 degrees before returning to his original position were he to sit at
the point of the surface corresponding to the black points. So, in general,
the bug would not really feel like he was living in the Euclidean plane. Our
general definition of surfaces and gluing will be such that the example we
gave still counts as a surface.

Figure 1.3 shows an example based on the regular octagon, in which the
opposite sides of the octagon are glued together.

3

4

1

2

3

4

1

2

Figure 1.3. Gluing an octagon together

This example is similar to the square torus, except that this time 8 cor-
ners, rather than 4, are glued together. A myopic bug sitting anywhere on
the surface except at the point corresponding the 8 corners might think that
he was sitting in the Euclidean plane. However, at the special point, the bug
would have to turn around 720 degrees (or 6π radians) before returning to
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his original position. We will analyze this surface in great detail. One can
view it as the next one in the sequence that starts out sphere, torus, . . . .
At least for this introductory section, we will call it the octagon surface. (It
is commonly called the genus 2 torus .) We can construct similar examples
based on regular 2n-gons, for each n = 5, 6, 7 . . ..

1.3 Drawing on a Surface

Once we have defined surfaces and given some examples, we want to work
with them to discover their properties. One natural thing we can do is divide
a surface up into smaller pieces and then count them. Figure 1.4 shows 2
different subdivisions of the square torus into polygons. We have left off the
arrows in the diagram, but we mean for the left/right and top/bottom sides
to be glued together.

Figure 1.4. Dividing the torus into faces

In the first subdivision, there are 4 faces, 8 edges, and 4 vertices. It first
appears that there are more edges, but the edges around the boundary are
glued together in pairs. So each edge on the boundary only counts for half
an edge. A similar thing happens with the vertices. We make the count

faces− edges + vertices = 4− 8 + 4 = 0.

In the second example, we get the count

faces− edges + vertices = 8− 14 + 6 = 0.

The same result holds for practically any subdivision of the square torus
into polygons. This result is known as the Euler formula for the torus . We
discuss this formula in more detail in §3.4.
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You can probably imagine that you would get the same result for a torus
based on a rectangle rather than a square. Likewise, we get the same result
for the surface based on the hexagon gluing in Figure 1.2. All these surfaces
have an Euler characteristic of 0.

Things turn out differently for the sphere. For instance, thinking of the
sphere as a puffed-out cube, we get the count

faces− edges + vertices = 6− 12 + 8 = 2.

Thinking of the sphere as a puffed-out tetrahedron, we get the count

faces− edges + vertices = 4− 6 + 4 = 2.

Thinking of the sphere as a puffed-out icosahedron, we get the count

faces− edges + vertices = 20− 30 + 12 = 2.

The Euler formula for the sphere says that the result of this count is always
2, under very mild restrictions. You can probably see that we would get the
same result for any of the “sphere-like” surfaces mentioned above.

Were we to make the count for any reasonable subdivision of the octagon
surface, we would get an Euler characteristic of −2. Can you guess the Euler
characteristic, as a function of n, for the surface obtained by gluing together
the opposite sides of a regular 2n-gon?

Another thing we can do on a surface is draw loops—meaning closed
curves—and study how they move around. The left side of Figure 1.5 shows
3 different loops on the square torus.

Figure 1.5. Loops on the torus
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One of the loops, the one represented by the thick vertical line, is different
from the others. Imagine that these loops are made from rubber bands,
and are allowed to compress in a continuous way. The first 2 loops can
shrink continuously to points, whereas the third loop is “stuck”. It can’t
make itself any shorter no matter how it moves. Such a loop is commonly
called essential . There are many essential loops on the torus. The right side
of Figure 1.5 shows another essential loop. In contrast, the sphere has no
essential loops at all.

We will see in §4 that there is an algebraic object we can associate to
a surface (and many other kinds of spaces) called the fundamental group.
The fundamental group organizes all the different ways of drawing loops on
the surface into one basic structure. The nice thing about the fundamen-
tal group is that it links the theory of surfaces to algebra, especially group
theory. Beautifully, it turns out that 2 (compact) surfaces have the same
Euler characteristic if and only if they have the same fundamental group.
The Euler characteristic and the fundamental group are 2 entry points into
the vast subject of algebraic topology.

For the most part, studying algebraic topology is beyond the scope of this
book, but we will study the fundamental group and related constructions, in
great detail. After defining the fundamental group in §4, we will compute a
number of examples in §5.

1.4 Covering Spaces

There is a nice way to unwrap the essential loops on a torus. The idea is that
we remember that the square torus is made from a square, which we think of
as the unit square with vertices (0, 0), (0, 1), (1, 0) and (1, 1). We draw a line
segment in the plane that starts out at the same point as the loop and has
the same length. We think of this path starting at the point (0, 0). Figure
1.6 shows an example. In this example, the unwrapped path joins (0, 0) to
(3, 2).

The process can be reversed. Starting with a line segment that joins (0, 0)
to (m,n), a point with integer coordinates, we can wrap the segment around
the torus so that it makes an essential loop. In fact, the essential loops that
start at (0, 0) are, in the appropriate sense, in one-to-one correspondence with
the points of Z2, the integer grid in the plane. The basic result is that any 2
essential loops L1 and L2, corresponding to points (m1, n1) and (m2, n2), can
be continuously moved, one into the other, if and only if (m1, n1) = (m2, n2).
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(3,2)

(0,0)

Figure 1.6: Unwrapping a loop on the torus

As we will explain in §6 and §7, this unwrapping construction can be
done for any surface. In the case of the torus, we see that the (equivalence
classes of) essential simple loops are in exact correspondence with the points
of the integer grid in the plane. One might wonder if a similarly nice picture
exists in general. The answer is “yes”, and in fact the picture becomes
more interesting when we consider surfaces, such as the octagon surface.
However, in order to “see” the picture in these cases, you have to draw
it in the possibly unfamiliar world of hyperbolic geometry. The idea is that
hyperbolic geometry does for the octagon surface (and most other surfaces as
well) what Euclidean geometry does for the square torus and what spherical
geometry does for the sphere.

We will discuss Euclidean, spherical, and hyperbolic geometry in §8, §9,
and §10 respectively. Our main goal is to understand how these geometries
interact with surfaces, but we will also take time out to prove some classical
geometric theorems, such as Pick’s Theorem (a relative of the Euler formula)
and the angle-sum formula for hyperbolic and spherical triangles.

The Euclidean, spherical, and hyperbolic geometries are the 3 most sym-
metrical examples of 2-dimensional Riemannian geometries . To put the 3
special geometries into a general context, we will discuss Riemannian geom-
etry in §11.

1.5 Hyperbolic Geometry and the Octagon

Now let us return to the question of unwrapping essential loops on the oc-
tagon surface. The octagon surface looks a bit less natural than the square
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torus, thanks to the special point. However, it turns out that the octagon
surface “wears” hyperbolic geometry very much in the same way that the
square torus “wears” Euclidean geometry.

We already mentioned that we will study hyperbolic geometry in detail
in §10. Here we just give the barest of sketches, in order to give you a taste
of the beauty that lies in this direction. One of the many models for the
hyperbolic plane is the open unit disk. There is a way to measure distances
in the open unit disk so that the shortest paths between points are circular
arcs that meet the boundary at right angles. These shortest paths are known
as geodesics . The left-hand side of Figure 1.7 shows some of the geodesics
in the hyperbolic plane. The boundary of the unit disk is not part of the
hyperbolic plane and the lengths of these geodesics are all infinite. A bug
living in the hyperbolic plane would see it as unbounded in all directions.

Figure 1.7. Gluing the octagon together

The hyperbolic plane shares many features with the Euclidean plane.
There is a unique geodesic joining any 2 distinct points, and any 2 distinct
geodesics meet in at most one point. Furthermore, the hyperbolic plane
is totally symmetric, in the sense that every point and every direction looks
exactly the same. A bug living in an otherwise empty hyperbolic plane would
not be able to tell where he was.

On the other hand, the hyperbolic plane and the Euclidean plane have
some important differences. For instance, the sum of the angles of a hyper-
bolic triangle, a shape bounded by 3 geodesic segments, is always less than
180 degrees, or π radians. (When we discuss angles in radians, we will often
leave off the word “radians”.) Similarly, the individual interior angles of a
regular octagon can take on any value less than 3π/8, which is the value
in the Euclidean case. The right hand side of Figure 1.4 shows a regular

17



hyperbolic octagon. We decrease the interior angles by making the octagon
larger and we increase the interior angles by making the octagon smaller.

In particular, we can adjust the size of the regular octagon so that the
interior angles are exactly π/8. We can then cut the resulting octagon out
of the hyperbolic plane and glue the sides together just as in Figure 1.3.
From the hyperbolic geometry point of view, the resulting surface would be
completely seamless: a myopic bug living on the surface could not tell that
he was not living in the hyperbolic plane. With the chosen interior angles,
the 8 corners fit together like 8 slices in a pizza to make a perfect hyperbolic
disk. We will consider this construction in detail in §12.

A similar construction can be made for the surfaces obtained by gluing
together the opposite sides of a regular 2n-gon, for each n = 5, 6, 7 . . .. All
these surfaces “wear” hyperbolic geometry in a seamless way, just like the
square torus “wears” Euclidean geometry.

Now, we can tile the Euclidean plane by copies of the unit square. The
vertices of this tiling are precisely the integer grid points. In the same way,
we can move our hyperbolic octagon around the hyperbolic plane and tile
the hyperbolic plane with copies of it. When drawn in the disk model, the
picture looks like the drawings in M. C. Escher’s Circle Woodcut series. To
our Euclidean eyes, the octagons appear to get smaller as they move out
toward the boundary of the disk. However, in the hyperbolic world, the
various octagons all have the same size.

The vertices of this tiling are a kind of hyperbolic geometry version of
the integer grid. These points are in one-to-one correspondence with the
equivalence classes of essential loops on the octagon surface. The same kind of
thing works for the surfaces corresponding to the (2n)-gons for n = 4, 5, 6 . . ..
In fact, such a construction works for all surfaces that have negative Euler
characteristic: one always gets a grid of points in the hyperbolic plane that
names the different essential loops on the surface. We will explore this in
detail in §12.

1.6 Complex Analysis and Riemann Surfaces

It turns out that there is a single kind of geometry which unifies Euclidean,
spherical, and hyperbolic geometry. This geometry, called Möbius or confor-
mal geometry, takes place in the Riemann sphere. The Riemann sphere is
the set C ∪∞, where C is the complex plane and ∞ is an extra point that
is added. For starters,
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• The Euclidean plane is identified with C.

• The hyperbolic plane is identified with the open disk {z ∈ C| ‖z‖ < 1}.

• The sphere is identified with all of C ∪∞, via stereographic projection

(x1, x2, x3) →
( x1

1− x3

)
+
( x2

1− x3

)
i, (0, 0, 1) → ∞.

See §9.5 for details on stereograpic projection.

Once these identifications are made, the symmetries of the relevant ob-
jects are all given by maps of the form

z → az + b

cz + d
, a, b, c, d ∈ C, ad− bc = 1. (1)

We will discuss these maps in more detail in §10.1. The point ∞ is added so
that when the expression in equation (1) looks like “something over 0”, we
define it to be ∞. Various conditions are placed on the coefficients a, b, c, d to
guarantee that the relevant set–e.g., the unit disk–is preserved by the map.

These kinds of transformations are called linear fractional , or Möbius ,
transformations. The Möbius transformations are prototypical examples of
complex analytic functions. These are continuous maps from C to C which
have the additional property that their matrix of partial derivatives, at each
point, is a similarity–i.e., a rotation followed by a dilation. This constraint
on the partial derivatives leads to a surprisingly rich family of functions and
this is the subject of complex analysis. In §13, we will give a rapid overview
of basic complex analysis, with a view towards its application to surfaces. In
§14 and §15 we will discuss some special complex analytic functions in detail.

Going back to our polygon gluing construction, we can view surfaces as
being made out of pieces of C that have been glued together. This point of
view leads to the notion of a Riemann surface, as we explain in §16. One can
think of a Riemann surface as a surface that “wears” C in the same seamless
way that the square torus “wears” Euclidean geometry or the octagon surface
“wears” hyperbolic geometry. Once we have the notion of a Riemann surface,
we can “do complex analysis on it” in much the same way that one can do
complex analysis in C or in C ∪∞.

The complex analysis point of view on a surface at first seems rather
remote from the geometric point of view discussed above, but in fact they
are quite similar. The close connection comes from the fact that the Möbius
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transformations play a distinguished role amongst the complex analytic func-
tions. One example of this is the following result, known as the Schwarz–Pick
Theorem:

Theorem 1.1 Let f be a complex analytic function from the unit disk to
itself. If f is one-to-one and onto, then f is a Möbius transformation (and
hence a hyperbolic isometry).

Theorem 1.1 is part of a larger theorem, called the Poincaré Uniformiza-
tion Theorem. The Uniformization Theorem gives a complete equivalence
between the Euclidean/spherical/hyperbolic geometry points of view of sur-
faces and the Riemann surface point of view. The proof of this result is
beyond the scope of our book, but in §16 we will at least explain the result
and its ramifications.

1.7 Cone Surfaces and Translation Surfaces

We have mentioned several times that the octagon surface does not “wear”
Euclidean geometry as well as the square torus does, and we have taken
some pains to explain how one can profitably view the octagon surface with
hyperbolic geometry eyes. However, in §17 we come full circle and consider
the octagon surface and related surfaces from the Euclidean geometry point
of view.

Suppose, as in Figure 1.2 above, we glue together the sides of a polygon
in such a way that the sides in each pair of glued sides have the same length.
The resulting surface has the property that it is locally indistinguishable
from the Euclidean plane, except at finitely many points. At these finitely
many points, a bug living in the surface would notice some problem related
to spinning around, as we discussed above. These special points are cone
points . A Euclidean cone surface is a surface that is flat except at finitely
many cone points.

When we discussed the “torus-like” surface defined in connection with
Figure 1.2, we mentioned the spinning-around problem a bug would face
when sitting at the 2 special points. At one of the special points, the bug
needs to spin more than 2π, say 2π + δ1, before returning to his original
position. At the other special point, the bug needs to spin less than 2π, say
2π − δ2, before returning to his original position. The numbers δ1 and −δ2
might be called the angle error at the special points.
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The numbers δ1 and δ2 depend on the hexagon in question. As one can see
by adding up the interior angles of a hexagon, we have δ1 = δ2. That is, the
total angle error is 0. This result holds for any Euclidean cone surface with
Euler characteristic 0. More generally, on a surface with Euler characteristic
χ, the total angle error is 2πχ. This result, known as the combinatorial
Gauss–Bonnet Theorem is one of the main results of §17.

Another topic in §17 is the application of Euclidean cone surfaces to
polygonal billiards. It turns out that the contemplation of rolling a fric-
tionless, infinitesimally small billiard ball around inside a polygonal shaped
billard table, whose angles are all rational multiples of π, leads naturally to
a certain Euclidean cone surface. One can profitably study this surface to
get information about how billiards would work out in the polygon.

The Euclidean cone surfaces associated to polygonal billiards have a spe-
cial structure. They are called translation surfaces . A translation surface is
a Euclidean cone surface, all of whose angle errors are integer multiples of π.
The square torus is the prototypical example of a translation surface, but it
is a bit too simple of an example in this case. The octagon surface provides
a better example. The octagon surface, considered from the Euclidean ge-
ometry perspective, is a translation surface. This surface has a single cone
point, and the angle error there is 4π. Translation surfaces are nicer than
general Euclidean cone surfaces for a variety of reasons. One reason is that,
as it turns out, it is possible to speak about directions (such as due north) on
a translation surface without any ambiguity. We will discuss these surfaces
in detail in §18.

1.8 The Modular Group and the Veech Group

We have wandered away from hyperbolic geometry and complex analysis, but
actually hyperbolic geometry and complex analysis are very closely related
to the subject of translation surfaces. Once again, let us consider the square
torus. A linear transformation of the form

T (x, y) = (ax+ by, cx+ dy), a, b, c, d ∈ Z, ad− bc = 1. (2)

acts as transformation of the square torus, via the following 4-step process:

1. Start with a point p in the square torus.

2. Choose a point (x, y) such that p represents the collection of points
glued to (x, y).
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3. Subtract off integer coordinates of T (x, y) until the result (x′, y′) lies
in the unit square.

4. The image of the map is p′, the point that names the collection of points
glued to (x′, y′).

Any ambiguity in the process that takes us from p to p′ is absorbed by the
gluing process.

So, any integer 2× 2 matrix with determinant 1 gives rise to a transfor-
mation of the square torus that, on small scales, is indistinguishable from
a linear transformation. The set of all such maps forms a group known as
modular group. The maps in equation (2) have the same form as the Möbius
transformations discussed above. Interpreting the maps in Equation 2 as
Möbius transformations instead of linear transformations, we can interpret
the modular group as a group of symmetries of the hyperbolic plane.

The modular group is an object of great significance in mathematics,
and we cannot resist exploring some of its properties that are not, strictly
speaking, directly related to surfaces. For instance, in §19 we will discuss
continued fractions and their connection to the modular group and hyperbolic
geometry. In §22 we will see that the modular group is the main ingredient in
the proof of the Banach–Tarski Theorem. The Banach–Tarski Theorem says
in particular that, assuming the axiom of choice, one can cut the unit ball in
R3 into finitely many pieces and rearrange these pieces so that they make a
solid ball of radius 100000. Though this result seems a bit far removed from
the theory of surfaces, it is quite beautiful and it shows how objects such as
the modular group pop up all over mathematics.

Getting back to translation surfaces, we will see in §18 that one can
associate to any translation surface a group of symmetries of the hyperbolic
plane. This group is known as the Veech group of the translation surface. It
often happens that the Veech group is trivial, or very small, but for many
special examples the Veech group is large and beautiful. For instance, the
Veech group associated to the regular octagon surface is closely related to a
tiling of the hyperbolic plane by triangles having angles 0, 0, and π/8. One
of the highlights of §18 is a discussion of (essentially) this example.

1.9 Moduli Space

The square torus is not the only translation surface without any cone points.
In §20 we consider the family M unit area parallelogram, in the same pattern
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as in Figure 1.1. Essentially the same analysis we made in connection with
Figure 1.1 can be made in connection with any surface in our family. All
these surfaces are seamlessly flat at each point. A myopic bug on any of
these surfaces would not be able to tell that he was not in the Euclidean
plane.

On the other hand, these various surfaces are typically not the same geo-
metrically. For instance, a surface made from a long thin rectangle obviously
has diameter greater than the diameter of the square torus. Similarly, such
a surface has a very short essential loop whereas all essential loops on the
square torus have length at least 1. We can consider the family M as a space
in its own right. Each point of M corresponds to a different flat torus. This
space M is known as the moduli space of flat tori. We will discuss M and
related objects in §20.

Amazingly, M turns out to be a surface in its own right, and (with the ex-
ception of 2 special points) this surface is modelled on hyperbolic geometry!
Just to repeat: the space of all tori made by gluing together unit area paral-
lelograms turns out to be a surface that naturally wears hyperbolic geometry
(away from 2 special points). One of the special points in M corresponds
to the square torus, and the other one corresponds to the surface obtained
by gluing together the opposite sides of a rhombus made from 2 equilateral
triangles. Referring to the discussion of covering spaces above, we can con-
sider the grid in the hyperbolic plane associated to M. It turns out that
the modular group acts as a group of symmetries of this grid. So, when we
consider the moduli space M of unit area flat tori, we get right back to the
modular group.

We can play a similar game for the octagon surface. As we discussed
above, we can create the octagon surface using a suitable chosen regular
octagon. However, we can also glue together other hyperbolic octagons to
produce a surface that “looks hyperbolic” at each point and has the same
Euler characteristic. When we consider the totality of such surfaces, we arrive
at a higher-dimensional generalization of M, also called moduli space. This
higher-dimensional space is not a surface, but it does share some features in
common with a hyperbolic surface.

In §20 we also discuss Teichmüller space, the space that relates to the
higher-dimensional version of M in the same way that the hyperbolic plane
relates to M. Teichmüller space shares some features with the hyperbolic
plane, but is much more mysterious and somewhat less symmetric. We will
discuss the group of symmetries of Teichmüller space, called the Mapping
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class group. The mapping class groups relate to the surfaces of negative
Euler characteristic in the same way that the modular group relates to the
square torus. We will further explore Teichmüller space in §21.

1.10 Dessert

There are a few topics in this book that I simply threw in because I like
them. §22 has a proof of the Banach- Tarski Paradox. One nice thing about
the proof is that it involves the modular group in an essential way. So, in a
strange way, the Banach–Tarski Paradox has some connection to hyperbolic
geometry.

§23 has a proof of Dehn’s Dissection Theorem, which says that one cannot
cut a cube into finitely many pieces, using planar cuts, and rearrange the
result into a regular tetrahedron. This result serves as a kind of foil for the
decomposition methods we use to prove the combinatorial Gauss–Bonnet
Theorem and other results. Polyhedral decomposition is quite robust in 2
dimensions, but not in higher dimensions.

§24 has a proof of the Cauchy Rigidity Theorem. This result says that
there at most one way to snap together a given collection of convex polygons
to produce a convex polyhedron. The proof involves some spherical geometry
and also the combinatorial Gauss–Bonnet Theorem.
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2 Definition of a Surface

We discussed surfaces informally in the previous chapter, and now the time
has come to give a formal definition of a surface. Here is the main definition.

Definition 2.1. A surface is a metric space X such that every point in
X has a neighborhood which is homeomorphic to the plane.

Don’t worry if you don’t know what some of the words in the above def-
inition mean. The point of this chapter is to explain what they mean. At
the end of the chapter, we will say a few words about higher-dimensional
surfaces, called manifolds.

2.1 A Word about Sets

A set is an undefined notion for us. Informally, a set is a collection of things,
called elements . A book on set theory, such as [DEV], will tell you all about
sets. You should be familiar with such sets as

• Z, the integers.

• N = {1, 2, 3, . . .}, the natural numbers.

• R, the real numbers.

A map between sets A and B is a rule, say f , which assigns to each element
a ∈ A, an element b = f(a) ∈ B. This is usually written as f : A → B.
The map f is one-to-one if f(a1) = f(a2) implies that a1 = a2. The map f
is onto if the set {f(a)| a ∈ A} equals B. The map f is a bijection if it is
both one-to-one and onto. Two sets are bijective if there is some bijection
between them. All the sets we consider will be bijective to either a finite set,
or N, or R.

The product A × B of sets is the set of ordered pairs (a, b) with a ∈ A
and b ∈ B. In particular, R2 = R×R is the plane.

2.2 Metric Spaces

A metric space is a set X together with a map d : X × X → R satisfying
the following properties:
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• Nondegeneracy . d(x, y) ≥ 0 for all x, y, with equality iff x = y.

• Symmetry . d(x, y) = d(y, x) for all x, y.

• Triangle Inequality d(x, z) ≤ d(x, y) + d(z, y) for all x, y, z.

d is called a metric on X. Note that the same set can have many different
metrics.

Here is the most boring example of a metric space. Given any set X
define d(x, y) = 0 if x = y and d(x, y) = 1 if x 6= y. This is called the discrete
metric on X.
Exercise 1. Let X = R2, the plane. Define the dot product

V ·W = v1w1 + v2w2.

Here V = (v1, v2) and W = (w1, w2). Also define

‖V ‖ =
√
V · V .

Finally, define d(V,W ) = ‖V − W‖. Prove that d is a metric on R2. The
metric in this exercise is known as the Euclidean metric on R2, or else the
standard metric.

If X is a metric space and Y ⊂ X is a subset, then the metric on X
automatically defines a metric on Y , by restriction. For instance, any subset
of the plane automatically can be interpreted as a metric space, using the
metric from Exercise 1.

Exercise 2. On Z define d(m,n) = 2−k, where k is such that 2k di-
vides |m − n| but 2k+1 does not. Also define d(m,m) = 0. For instance,
d(3, 7) = 2−2 = 1/4 because 22 divides 4 but 23 = 8 does not. Prove that d
is a metric on Z. This metric is called the 2-adic metric. It is quite different
from the usual metric on the integers.

2.3 Open and Closed Sets

Let X be a metric space with metric d. An open ball in X is a subset of the
form

{x| d(x, c) < r}.
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Here c is the center of the ball and r is the radius. Say that a subset U ⊂ X
is open if for every point x ∈ U there is some open ball Bx such that x ∈ Bx

and Bx ⊂ U . Note that open balls are open sets.

Exercise 3. Prove that the intersubsection of two open sets is open. Prove
also that the arbitrary union of open sets is open.

Here is some vocabulary, which will be familiar to you if you have had a
real analysis class:

• The notation X −A means the complement of A in X, namely the set
of points in X which are not in A.

• Given a point x ∈ X, a neighborhood of x is any open subset U ⊂ X
such that x ∈ U . For instance, the ball of radius r about x is a perfectly
good neighborhood of x.

• The interior of a set A ⊂ X is the union of all open subsets of A. By
Exercise 3, the interior of a set is open. Sometimes the interior of A is
denoted as Ao. Put another way Ao is the largest open set contained
in A.

• A set C ⊂ X is closed if X − C is open.

• The closure of a set A is the set

A = X − (X − A)o.

Put another way, A is the smallest closed set which contains A.

• The boundary of A is the set

∂A = A− Ao.

• A set A ⊂ X is dense if A = X. For instance, the set of rational
numbers is dense in the set of real numbers.
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2.4 Continuous Maps

A map between metric spaces is just a map in the set theoretic sense. There
are two equivalent definitions of continuity for maps between metric spaces.
The first one is much cleaner but the second one is probably more familiar.

Definition 2.2. The map f : X → Y is continuous if it has the follow-
ing property: For any open V ⊂ Y the set

U = f−1(V ) := {x| f(x) ∈ V }
is an open set of X.

Definition 2.3. First, f is continuous at x ∈ X if, for any ǫ > 0, there
is some δ > 0 such that dX(x, x

′) < δ implies that dY (f(x), f(x
′)) < ǫ. Here

dX is the metric on X and dY is the metric on Y . Then f is continuous on
X if f is continuous at each point of X.

Exercise 4. Show that the two definitions of continuity coincide.

Now let X, Y, Z all be metric spaces. Let f : X → Y be a map, and let
g : Y → Z be map. The composition h = g ◦ f is defined as h(x) = g(f(x)).
So h is a map from X to Z.

Lemma 2.1 The composition of continuous maps is continuous.

Proof: Definition 2.2 works much better for this. Let W be an open
subset of Z. Our goal is to show that h−1(W ) is open in X. Note that
h−1(W ) = f−1(V ), where V = g−1(W ). Since g is continuous, V is open.
Since f is continuous and V is open, U is open. This works for any choice of
open W , so we are done. ♠

Exercise 5. Give an example of metric spaces X and Y , and f : X → Y
such that

• f is a bijection.

• f is continuous.

• f−1 (the inverse map) is not continuous.

This is a classic problem.
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2.5 Homeomorphisms

Let X and Y be two metric spaces. A map h : X → Y is a homeomorphism if
h is a bijection and both h and h−1 are continuous. Compare Exercise 5. The
spacesX and Y are said to be homeomorphic if there is some homeomorphism
from X to Y . Intuitively, two sets are homeomorphic if one can be “warped”
into the other one. Often we do not care exactly which metric we are using,
but we just bring in the metric to be able to talk about things like continuity
and open sets. Another way to “throw out the metric” is to introduce the
notion of a topological space. In some ways topological spaces are easier to
work with than metric spaces and more flexible, but they are more abstract.
If you are interested in this, check out a book on point-set topology, such as
[MUN].

Even though sets might look very different to the eye, they might be
homeomorphic. The next exercise gives some examples of this.

Exercise 6. Prove that the following subsets of the plane (with the standard
metric) are all homeomorphic to each other:

• An open ball.

• The interior of a (filled-in) triangle.

• The plane itself.

Exercise 7. We can give R the standard metric d(x, y) = |x − y|. Prove
that R is not homeomorphic to R2, with its standard metric.

Exercise 8 (Challenge). You can imitate the construction in Exercise
1 to put a metric on R3, 3-dimensional space. Prove that R2 is not homeo-
morphic to R3. As it turns out Rm and Rn are homeomorphic if and only
if m = n. When you try to prove something like this, you start getting into
algebraic topology.

2.6 Compactness

We will sometimes use the notion of compactness . Say that an open covering
of a metric space X is a collection {Uα} of open sets in X whose union is
X. Say that a subcovering of a given covering is a subcollection that still
covers X. Say that a finite subcover is a subcover that only has finitely many
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elements in it.

Definition 2.4. A metric space X is compact if every covering of X has a
finite subcover.

The notion of compactness is easier to understand for subsets of Euclidean
space. When X is a subset of Euclidean space, X is compact if and only if X
is closed and contained in some ball. This result is known as the Heine–Borel
Theorem.

The original definition of compactness is perfectly adapted to the notion
of continuous maps. Suppose that X and Y are homeomorphic. Then X is
compact if and only if Y is compact. Here we prove one result which indicates
the power of the definition of compactness.

Lemma 2.2 Suppose that f : X → R is a continuous function. If X is
compact, then f is bounded.

Proof: Let Un = f−1(−n, n). Since f is continuous, the set Un is open.
Evidently, the collection {Un} covers X. Since X is compact, there is some
finite list of these sets which also covers X. Letting UN be the largest of
these finitely many sets, we see that |f | ≤ N on X. ♠

2.7 Surfaces

Now let’s go back to Definition 2.1. Let X be a surface. This means, first
of all, that X is a metric space. So, it makes sense to talk about open and
closed sets onX and also continuous functions fromX to other metric spaces.
What makes X a surface is that each point x ∈ X has an open neighborhood
U such that U is homeomorphic to R2. You should picture U as a little open
disk drawn around x. So X has the property that, around every point, it
“looks like” the plane. This is how we make sense of the discussion at the
end of §1.1.

Exercise 9. The unit sphere S2 in R3 is the set {(x, y, z)| x2+y2+ z2 = 1}.
This set inherits a metric from R3. Prove that S is a surface, according to
our definition. So, for each point x ∈ S you need to find an open subset
Ux ⊂ S and also a map fx : Ux → R2 which is a homeomorphism. (Hint :
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Try to use symmetry to reduce the problem to showing that just one point
in S2 has the desired neighborhood.)

Exercise 10. Consider the following subset of R4:

T 2 = {(x, y, z, w)| x2 + y2 = 1; z2 + w2 = 1}.

This set inherits a metric from R4. You might recognize T 2 as the product
of two circles. Prove that T 2 is a surface. This surface is known as a torus .
(Hint : Again, try to use symmetry.) Once we make sense of the gluing con-
struction, we will see that T 2 is homeomorphic to the square torus discussed
in the previous chapter.

Figure 2.1: A torus

In the coming chapters, we will construct many more examples of surfaces
besides the ones in Exercises 9 and 10.

2.8 Manifolds

A manifold is essentially a higher-dimensional surface. Though this book is
about surfaces, I am including a subsection about manifolds in case you are
curious about them. If you just want to learn about surfaces, you can safely
skip this subsection.

Definition 2.5: An n-dimensional manifold is a metric space, such that
every point has a neighborhood which is homeomorphic to Rn.

Technical Comment. This definition of a manifold is slightly nonstan-
dard. The usual definition replaces metric space with Hausdorff topological
space. However, in most cases the metric space definition singles out the
same objects as manifolds. The reason we are using the metric space defini-
tion is that it is more concrete.
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I will give a nice example of a manifold at the end of this section, but
first I will introduce a general tool for producing manifolds. The tool is the
Implicit Function Theorem, a classic result from multivariable calculus. The
full Implicit Function Theorem and its proof can be found in practically any
book on advanced calculus; e.g., see [SPI]. We will prove a special case below,
a case that is fairly easy to prove yet still produces nice examples.

Let f : Rn+1 → R be a continuous function. Assume also that the
partial derivatives of f exist and are continuous functions. This means that
the gradient ∇f exists and is continuous. Say that 0 is a regular value for f
if it never happens that both f(x1, . . . , xn+1) = 0 and ∇f(x1, . . . , xn+1) = 0
at the same point.

Theorem 2.3 If 0 is a regular value for f , then f−1(0) is an n dimensional
manifold.

Proof: Let S = f−1(0). First of all, S is a metric space: The distance
between any two points in S is defined to be their Euclidean distance in
Rn. It remains to check that every point in S has a neighborhood that is
homeomorphic to Rn.

Let p = (x1, . . . , xn+1) ∈ S be an arbitrary point. We know that ∇f(p) is
nonzero. If we rotate and scale space and replace f by a constant multiple of
f , we do not change S at all. So, without loss of generality, we can assume
that

p = (0, . . . , 0); ∇f(p) = (0, . . . , 0, 1).

Let P = Rn × {0}. We think of (0, . . . , 0, 1) as the vertical direction and P
as the horizontal directions. See Figure 2.2 below.

Let Q denote the open cube of diameter ǫ centered at (0, . . . , 0). We call
a line segment special if it has one endpoint on the bottom face of Q and one
endpoint on the top face of Q. Since ∇f varies continuously, we can choose
ǫ small enough so that f increases along any special segment, if we move
along it from the bottom to the top. Let U = Q ∩ S. Then U is an open
neighborhood of p in S. It suffices to show that U is homeomorphic to an
open cube in Rn, since an open cube in Rn is homeomorphic to Rn itself.
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(0,0,0)

Q
S

P

Figure 2.2. Putting a cube around S

Now, Q∩P is an open cube, and the map h(x1, . . . , xn+1) = (x1, . . . , xn, 0)
ss a map from U to Q∩P . We just have to show that h is a homeomorphism.
Here are the main points.

• h is a distance decreasing map so (using the ǫ − δ definition of conti-
nuity) h is continuous.

• Each vertical line intersects S at most once, because f increases as we
move upward along a vertical line. Hence, h is one-to-one.

• We can connect any point on the top face of Q to (0, . . . , 0) by “half” of
a special segment. Since f(0, . . . , 0) = 0, and f increases along special
segments, f is positive on the top face of Q. Similarly, f is negative
on the bottom face of Q. Since f increases along vertical segments, we
have f = 0 somewhere on each vertical segment, by the intermediate
value theorem. So, every vertical segment intersects S. Hence h is
onto.

• Suppose that X1 and X2 are two points in Q∩P that are very close to-
gether. Consider the last coordinates z1 and z2 of h

−1(X1) and h−1(X2),
respectively. If z1 and z2 are too far apart, then we can join the points
(X1, z1) and (X2, z2) by part of a special segment. Since both these
points lie in S, we have a contradiction. This shows, a bit informally,
that h−1 is continuous.

We have succeeded in showing that an arbitrary point of S has a neighbor-
hood which is homeomorphic to Rn. ♠

Now we give a nice example of a 3-dimensional manifold. You can think
of the set of 2 × 2 (real valued) matrices as a copy of R4. There is a nice
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map from this space into R, namely the determinant (minus 1):

f
([

a b
c d

])
= ad− bc− 1.

Exercise 11. Show that 0 is a regular value for f .

In the above example, f−1(0) is usually denoted by SL2(R). Thus
SL2(R) is the set of unit determinant real 2× 2 matrices. By Theorem 2.3,
the space SL2(R) is a 3-dimensional manifold. A similar argument shows
that SLn(R), the set of unit determinant n × n matrices, is a manifold of
dimension n2 − 1. The space SLn(R) is an example of a manifold which is
also, and in a compatible way, a group. Such objects are called Lie groups .
The book [CHE] is a classic reference on this subject; see also [TAP].
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3 The Gluing Construction

The purpose of this chapter is to explain the gluing construction discussed
informally in Chapter 1. This construction is usually done for topological
spaces, but it can be done for metric spaces as long as we are a bit careful.
The advantage to using topological spaces is that the construction always
works. The disadvantage to using topological spaces is that it takes a long
time to figure out what the construction actually means. For metric spaces,
things don’t always work out, but whatever happens is more understandable.
Also, for our purposes, things always work out.

3.1 Gluing Spaces Together

Before we start, we need to recall the notion of the infimum from real anal-
ysis. Let S ⊂ R be a set consisting entirely of non negative numbers. Then
x = inf S denotes the smallest member of the closure of S. Such a number
always exists and is unique. The existence (and uniqueness) of the infimum
is known as the completeness axiom for the reals.

Let X be a set and let δ : X × X → R be a map which satisfies the
equation δ(x, y) = δ(y, x) ≥ 0. Note that δ need not satisfy the triangle
inequality. The purpose of this section is to show how to replace δ by a
new function which sometimes remembers some of the structure of δ and yet
satisfies the triangle inequality.

Let x, y ∈ X be two points. Say that a chain from x to y is a finite
sequence of points x = x0, x1, . . . , xn = y. Let us call this chain C. We define

δ(C) = δ(x0, x1) + δ(x1, x2) + . . .+ δ(xn−1, xn).

Certainly, δ(C) ≥ 0 as long as x 6= y. Next, we define

d(x, y) = inf
C

δ(C).

The infimum is taken over the set of all possible values δ(C), where C is a
chain from x to y.

This probably looks like an insane definition, but we will try to make it
intuitive. Think of δ(x, y) as the cost of flying from city x to city y—let’s
say from Providence to Tahiti. Now, you’re really desperate to get to Tahiti,
and have tons of free time but little money. So, you look on the Internet and
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try to find all possible flights. You are willing to take any conceivable chain
of connecting flights, as long as you start in Providence and end in Tahiti.
After searching through all the possiblities, you select the most economical
flight. This is d(x, y). The difference between this scenario and the idealized
one we’re talking about is that X could be an infinite metric space. So, there
could be infinitely many chains, and you need to take the infimum rather
than just a minimum (which may not exist.) The function d is sometimes
called the pathification of δ.

Exercise 1. Show that d satisfies the following axioms:

• d(x, y) ≥ 0.

• d(x, y) = d(y, x).

• d(x, y) ≤ d(x, z) + d(z, y).

So it looks like d is a metric. However, note that we are leaving off the part
that would say d(x, y) = 0 iff x = y. In fact give an example of a δ on
X = R2 which satisfies the first two axioms for a metric, whose pathification
is the zero map.

Again, let X be a set. An equivalence relation on X is a relation of the
form ∼, which satisfies three properties:

• x ∼ x for all x.

• x ∼ y iff y ∼ x.

• x ∼ y and y ∼ z imply x ∼ z.

An equivalence class is a subset S = {y ∈ X| y ∼ x}. So, S is the set of all
elements which are equivalent to x. Note that every two equivalence classes
are either disjoint or identical. Thus, it makes sense to talk about the set of
equivalence classes. This set is denoted X/∼.

Now let’s see how ∼ interacts with a metric. Let d′ be a metric on X.
As above, let X/∼ denote the set of equivalence classes of X. Let us define,
for S1, S2 ∈ [X], the function

δ(S1, S2) = inf d′(s1, s2).

36



The infimum is taken over all possibilities where s1 ∈ S1 and s2 ∈ S2. In
other words the “distance” from S1 to S2 is the “minimum” distance between
a member of S1 and a member of S2.

Let d be the pathification of δ. We call X/∼ a good quotient if d is a
metric on X/∼. We think of X/∼ as the result of gluing certain points of
X together. Moreover, if x ∼ y and x′ is near x and y′ is near y, then the
pathification process forces x′ to be near y′. So, at least in the case when
we get a good quotient, the operation of gluing two points together sort of
drags the rest of X along, like a rubber sheet. Before we give concrete exam-
ples, we point out that sometimes the gluing process leads to a horrible mess.

Exercise 2. Let X = R and write x = y iff x − y is rational. Show
that R/∼ is not a good quotient.

3.2 The Gluing Construction in Action

In this section, which is mainly a series of exercises, we give you a chance to
work through lots of concrete examples of the abstract construction given in
the previous section.

Exercise 3. Let X = X1 ∪ X2, where X1 and X2 are each copies of the
unit disk, equipped with the standard metric, and d(p1, p2) = 1 if p1 ∈ X1

and p2 ∈ X2. You should picture two disks hovering, one on top of the other.
Define p1 ∼ p2 if and only if either p1 = p2 or else p1 and p2 are corresponding
points in the boundaries of X1 and X2. Prove that the space X/∼ is a good
quotient, and is homeomorphic to the 2-sphere.

Exercise 4. The projective plane is the quotient of the sphere S2 by the
equivalence relation p ∼ −p. The points p and −p are called antipodal points .
Prove that the projective plane is a surface.

Exercise 5. Let X = S1 × [0, 1] be a cylinder. Define an equivalence
relation by the rule that (x, 0) ∼ (x, 1) and also (x, y) ∼ (x, y). Prove that
X/ ∼ is a good quotient, and also a surface, and also homeomorphic to the
torus. See Figure 2.1.
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Exercise 6. Let X be a metric space of the form

T × {1, 2, 3, 4, 5, 6, 7, 8}.

So, X is the disjoint union of 8 triangles. Define an equivalence relation on
X so that the resulting space is a surface and homeomorphic to a sphere.

Exercise 7. Describe how to glue a finite number of triangles together
to make the octagon surface discussed in Chapter 1.

Exercise 8. We have already discussed the square torus in §1.1. Here is
another desciption of the same space. On R2 define the equivalence relation
(x1, y1) ∼ (x2, y2) iff x1 − x2 and y1 − y2 are both integers. Prove that both
quotients we have described are good quotients and homeomorphic to each
other. Prove also that the resulting space is homeomorphic to the surface of
a donut, as in Figure 2.1.

Now we mention the cylinder and the Möbius band. Technically, these
are surfaces with boundary. Both surfaces are obtained by gluing together
one pair of opposite sides of a rectangle, as shown in Figure 1.

Figure 3.1 The cylinder and the Möbius band

The Möbius band has some amazing properties. First of all, it only has
one boundary component. Second of all, consider a bug embedded in the
Möbius band that travels from top to bottom. When the bug gets back to
its original position, its notions of left and right are reversed.

We call a compact surface orientable if it does not contain a Möbius
band. Otherwise, we call the surface nonorientable. Figure 3.2 shows two
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prototypical examples of nonorientable surfaces, the projective plane (left)
and the Klein bottle (right). We have drawn in Möbius band subsets in both
cases.

Figure 3.2. The projective plane and the klein bottle

Exercise 9. Prove that the version of the projective plane shown on the left-
hand side of Figure 3.2 is homeomorphic to the version described in Exercise
4.

3.3 The Classification of Surfaces

Suppose that S1 and S2 are two compact surfaces. Let D1 and D2 be small
open disks in S1 and S2. We assume that the lengths of the boundaries of
D1 and D2 are the same. We cut out D1 and D2 from S1 and S2 to produce
two new spaces. Finally, we glue the boundary of S1 −D1 to the boundary
of S2 −D2 by an isometric map. We call the result S1♯S2. Technically, the
result depends on the choice of D1 and D2, but any choice of D1 and D2

leads to the same surface up to homeomorphism. Figure 3 shows an example
of the connect-sum operation applied to two tori.

Figure 3.3 The Connected Sum
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Exercise 10. Prove that S1♯S2 is a surface. (Hint: The main difficulty is
finding coordinate charts along the “seam”.)

Letting T 2 stand for the torus, the surface

T2♯ · · · ♯T2,

made from g connected sum operations, is called the surface of genus g. In
general, the genus of a compact surface is the integer g such that χ(S) =
2 − 2g. A surface of genus g is sometimes denoted Σg. We say “it”, be-
cause any g-fold connected sum of g tori gives rise to the same surface up to
homeomorphism. This fact is part of the classification of surfaces.

Theorem 3.1 (Classification of Surfaces) Let X be a compact surface.
If X is orientable, then there is some g such that X is homeomorphic to Σg.
If X is nonorientable, then there is some g such that Σ is homeomorphic to
Σg♯P . Here P is the projective plane.

If we assume that X is made from gluing together finitely many triangles
according to the construction above, then the proof of the Theorem 3.1 is
elementary. Roughly speaking, you cut X open into one big polygon and
analyze the way the sides are glued together. The book [KIN] has a proof
along these lines. The proof of the Euler formula that we give in the next
section is quite similar to the proof of Theorem 3.1.

The proof for an arbitrary compact surface is to reduce to the special
case where X is built from triangles. In other words, one shows that X is
homeomorphic to a surface built from triangles. We say in this case that
X has a triangulation. It turns out that every compact surface does have a
triangulation, but the result is quite difficult to prove.

3.4 The Euler Characteristic

We will establish Euler’s formula for orientable surfaces. Suppose that Σg is
decomposed into polygons. We will prove that

χ(Σg) := faces− edges + vertices = 2− 2g. (3)

The sum in equation (3) defines χ(Σg), and the result is the formula for
χ(Σg).
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First of all, we reduce to the case when the decomposition has just a
single face. Suppose that Σg is decomposed into more than one face. We
can find faces F1 and F2 joined together along an edge e. We can remove e
and set F = F1 ∪e F2. By this we mean that we stick F1 and F2 together
along e and call the union F . We have created a new decomposition with
one fewer face and one fewer edge. In particular, we have not changed the
Euler characteristic.

It remains to consider the case when there is just one face whose boundary
edges are paired in some way. We call this a gluing pattern for Σg. We say
that the gluing pattern has a cross if we can find two pairs of glued edges
(e1, e2) and (f1, f2) such that any line segment connecting e1 to e2 crosses
any line segment connecting f1 to f2, as shown in Figure 3.4. In other words,
the edges e1, e2 separate the edges f1, f2 from each other on the boundary of
P .

2

e e

f

f

1

1

2

Figure 3.4. A crossing pattern of edges

Lemma 3.2 If the gluing pattern for Σg does not have a cross, then it has
a pair of consecutive edges that are glued together.

Proof: We will assume that the gluing pattern has neither a cross nor a pair
of consecutive edges and derive a contradiction. Say that a special segment
is a line segment in the interior of F that joins the midpoints of a glued
pair of edges. Let L1 be a special segment. We rotate so that L1 is vertical.
Since L1 does not join consecutive segments, and there are no crosses, we
can find a special segment L2 that lies to the left of L1. Since L2 does not
join consecutive segments, we can find a special segment L3, separated from
L1 by L2. Next, we can find a special segment, L4, separated from L1 and
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L2 by L3. And so on. In this way, we produce an infinite list L1, L2, . . . of
distinct special segments. This contradicts the fact that F only has finitely
many edges. ♠

Lemma 3.3 If the gluing pattern for Σg has a cross, then Σg is not a sphere.

Proof: Let (e1, e2) and (f1, f2) be two pairs of edges participating in a cross,
as shown in Figure 3.5. Without loss of generality, it suffices to consider the
case when the e and f edges are contained in the edges of the unit square.
Figure 3.5 below shows the situation. The thick segments between the e
edges and the f edges each represent a finite union of edges of F . Though
we have not drawn things this way, one more of these segments could be
empty.

H

Figure 3.5. A torus with flaps.

Were we to glue the opposite sides of the unit square, we would get a
torus, as shown on the left hand-side of Figure 3.5. To obtain Σg from this
picture, we delete the white “flaps” from the torus, and then glue together
the edges of the corresponding boundary, according to the original gluing
pattern. The relevant boundary is drawn thickly.

It is convenient to draw the torus in a different way, this time with the
handle drawn on the inside. Rather than draw the handle, we have just
added the letter H, to denote that the drawn disk is really a disk with a
handle attached. The right-hand side of Figure 3.5 shows this. Were we to
draw the “flaps”, they would be on the outside of the shaded region.

The right-hand side of Figure 3.5 realizes Σg as the connected sum of
another oriented surface and a torus. In particular, Σg cannot be a sphere.
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♠

Lemma 3.4 Euler’s formula is true for a sphere.

Proof: Our proof goes by induction on the number of edges of F . In case F
just has 2 edges, the decomposition of Σ has 1 edge and 2 vertices. We have

χ(Σ0) = 2− 1 + 1 = 2.

This takes care of the base case. In general, some pair of consecutive edges
of F is glued together. Since F is orientable, these edges point in opposite
directions, as shown in Figure 3.6.

Figure 3.6. Gluing consecutive edges

In this case, we glue up the edges and erase the vertex between them.
The result is a gluing pattern for Σg that is based on a polygon with 2 fewer
edges. This is the induction step. ♠

Now we consider the general case. Our result goes by induction on g. We
have already taken care of Σ0. In light of Lemma 3.4, the converse of Lemma
3.3 is true: If Σg is not a sphere, then the gluing pattern for Σg does have a
cross. Otherwise, we could just “zip up” Σg one pair of edges at a time and
produce a sphere.

So, we start with a cross and reproduce the construction made in the
proof of Lemma 3.3. That is, we arrive at the picture in Figure 3.5. When
we replace our disk-with-handle with a disk, we produce a gluing diagram,
based on a polygon F ′, for the surface Σg−1. Here F

′ has 4 fewer edges than
F does. At the same time, F and F ′ have the same set of vertices, and they
are glued together in the same way.
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By induction, Euler’s formula holds for Σ′. Hence

f ′ − e′ + f ′ = 2− 2(g − 1).

Here f ′ = 1 is the number of faces in the decomposition and e′ is the number
of edges, and v′ is the number of vertices. By construction f ′ = f and
e′ = e− 2 and v′ = v. So, we get

f − e+ v = 2− 2g,

as desired.

Exercise 11. Prove Euler’s formula for nonorientable surfaces.
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4 The Fundamental Group

The purpose of this chapter is to define the fundamental group, an object
we discussed briefly in §1.3. In the next chapter, we will compute some
examples. As we mentioned in §1.3, the fundamental group is an object
that organizes all the different loops on a surface (or any topological space,
for that matter). In this chapter, I will first talk about groups in general,
then groups will disappear from the discussion for a while; then they will
come back in a really surprising way. For a more formal treatment of the
fundamental group, see, e.g., [HAT].

4.1 A Primer on Groups

If you haven’t had any group theory, you can find a treatment in any number
of abstract algebra books; see, for instance, [HER]. A group is a set G,
together with an “operation” ∗, which satisfies the following axioms:

• g1 ∗ g2 is defined and belongs to G for all g1, g2 ∈ G.

• g1 ∗ (g2 ∗ g2) = (g1 ∗ g2) ∗ g3 for all g1, g2, g3.

• There exists a (unique) e ∈ G such that e ∗ g = g ∗ e = g for all g ∈ G.

• For each g ∈ G there is a (unique) element h such that g∗h = h∗g = e.
This element is called “g inverse” and is usually written as h = g−1.

The group G is called Abelian if, additionally, g1 ∗ g2 and g2 ∗ g1 are always
equal. A subgroup of a group is a subset H ⊂ G which is closed under the
group law. So, if h ∈ H then h−1 ∈ H and if h1, h2 ∈ H then h1 ∗ h2 ∈ H.

Here are some examples of groups:

• Z, with the + operation, forms an Abelian group.

• If G1 and G2 are groups, then G1 ×G2 can be made a group using the
law (g1, g2) ∗ (h1, h2) = (g1 ∗ h1, g2 ∗ h2).

• The set SLn(Z) of n× n integer matrices with determinant 1 forms a
non-Abelian group. The group law is matrix multiplication.
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• Let A be a collection of n things, for instance A = {1, ..., n}. Say that
a permutation is a bijection f : A → A. There are n! different permu-
tations, and they form a finite group. The ∗ operation is composition
of maps. This group is called Sn.

Let G1 and G2 be groups. A map f : G1 → G2 is a homomorphism if

f(a ∗ b) = f(a) ∗ f(b)

for all a, b ∈ G1. Here the ∗ on the left-hand side is the rule for G1 and the ∗
on the right-hand side is the one for G2. The map f is called an isomorphism
if f is a bijection and also a homomorphism.

Here is a nice example. Let G be a finite group, and let n be the number
of elements in G. We’re going to produce a homomorphism from G into Sn,
the permutation group on n things. The n things are just the elements of
G. So, given an element g ∈ G, how do we permute the elements of G?
We define the map fg : G → G using the rule fg(h) = gh. It turns out
that fg is a bijection, and fg1 = fg2 only if g1 = g2. The map g → fg is
a one-to-one homomorphism from G into Sn. We have essentially given the
proof of Cayley’s theorem: every finite group is isomorphic to a subgroup of
a permutation group.

4.2 Homotopy Equivalence

Now we go back to metric spaces. Let X and Y be metric spaces. Let
I = [0, 1] be the unit interval. Two maps f0, f1 : X → Y are said to be
homotopic if there is a continuous map F : X × I → Y such that

• F (x, 0) = f0(x) for all x ∈ X.

• F (x, 1) = f1(x) for all x ∈ X.

To explain the intuitive idea, it is useful to define ft : X → Y by the formula
ft(x) = F (x, t). Then the map ft interpolates between f0 and f1, with ft
being very close to f0 when t is near 0 and ft being very close to f1 when t
is near 1. The map F is called a homotopy from f0 to f1.

If is useful to write f0 ∼ f1 if these maps are homotopic. Let C(X, Y )
denote the set of all continuous maps from X to Y . One can think of ∼ as
a relation on the set C(X, Y ).
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Exercise 1. Prove that ∼ is an equivalence relation on C(X, Y ).

Exercise 2. Prove that every two elements of C(X,Rn) are homotopic.
(Hint : Prove that any map f : X → Rn is homotopic to the zero-map f0
defined by the property f0(x) = 0 for all x. Then, use the fact that ∼ is an
equivalence relation.)

Exercise 3 (Challenge). Let P be a polynomial

P (x) = xn + an−1x
n−1 + . . .+ a0.

Let Q be the polynomial Q(x) = xn. So, P and Q have the same leading
term. We can think of P as a map from C to C. Here C is the complex
plane. For any R we can let X ⊂ C be the circle of radius R centered at 0.
That is

X = {z ∈ C| |z| = R}.
First of all, prove that 0 6∈ P (X) if R is sufficiently large. This means that
we can think of P and Q as maps from X to Y = C − {0}. Prove that
P,Q : X → Y are homotopic if R is sufficiently large.

4.3 The Fundamental Group

From now on we are going to take X = I, the unit interval, and we are going
to study the space Y by looking at the maps from I into Y . For this entire
discussion we choose a special “reference point” y0 ∈ Y , which we call the
basepoint .

Say that a loop in Y is a continuous map f : I → Y such that

f(0) = f(1) = y0.

The reason for the terminology should be pretty clear. Say that two loops f0
and f1 are loop homotopic if there is a homotopy F from f0 to f1 such that
ft is a loop for all t ∈ [0, 1]. This is to say that F (0, t) = F (1, t) = y0 for all
t. We write f0 ∼ f1 in this case. Figure 4.1 shows an example. Just as in
Exercise 1, this relation is an equivalence relation. Note that the equivalence
relation here is slightly different than the one in the previous section, because
of the added constraint that F (0, t) = F (1, t) = y0 for all t.
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Y

Figure 4.1. homotopic loops

As a set, π1(Y, y0) is the set of equivalence classes of loops. The really
interesting thing is that we can make π1(Y, y0) into a group. Here is the
construction. Suppose that we have two elements [f ] and [g] of π1(Y, y0).
We can let f and g be representatives of the equivalence classes [f ] and [g],
respectively. That is, f : [0, 1] → Y is a loop and g[0, 1] → Y are both loops.

g
f

Figure 4.2. Composing loops

We define the new loop h = f ∗ g by the following rule.

• If x ∈ [0, 1/2], we define h(x) = f(2x). That is, the first half of h traces
out all of f , but twice as fast.

• If x ∈ [1/2, 1], we let x′ = x − 1/2 and then we define h(x) = g(2x′).
That is, the second half of h traces out g, but twice as fast.

We write h = f ∗ g. See Figure 4.2.

Exercise 4. Suppose that f̂ and ĝ are different representatives for [f ] and
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[g]. That is, f and f̂ are equivalent loops and g and ĝ are equivalent loops.

Let ĥ = f̂ ∗ ĝ. Prove that [ĥ] = [h]. In other words, prove that h and ĥ are
equivalent loops. This exercise is pretty easy, but quite tedious.

Given Exercise 4, we can define

[f ] ∗ [g] = [f ∗ g], (4)

and this definition is independent of the equivalence class representatives we
used to make the definition.

Exercise 5. Show, for any three loops, f, g, h, that (f ∗ g) ∗ h is equiva-
lent to f ∗ (g ∗ h). This means that ([f ] ∗ [g]) ∗ [h] = [f ] ∗ ([g] ∗ [h]). This is
the associative law for groups.

Exercise 6. Let e be the loop defined by the rule e(x) = y0 for all x ∈ I.
Show that [e] ∗ [g] = [g] ∗ [e] = [g] for all loops g. This means that [e] plays
the role of the identity element in π1(Y, y0).

Exercise 7. Let g be any loop. Define the loop g∗ so that it satisfies
the equation g∗(x) = g(1−x). In other words, g∗ traces out the same loop as
g, but in the opposite direction. Prove the following result: If g1 and g2 are
equivalent, then g∗1 and g∗2 are equivalent. Finally, prove that [g] ∗ [g∗] = [e]
and [g∗] ∗ [g] = [e]. In other words, the inverse of [g] is given by [g∗].

Combining Exercises 5, 6, and 7, we see that π1(Y, y0) is a group. So, to
each space Y we can pick a basepoint y0 and then define the group π1(Y, y0).
This group is known as the fundamental group of Y . (We will see below that
the group you get does not really depend on the basepoint.)

4.4 Changing the Basepoint

Say that two points y0, y1 are connected by a path if there is a continuous
map f : I → Y such that f(0) = y0 and f(1) = y1. Say that Y is path
connected if every two points in Y can be connected by a path. For instance
Rn is path connected whereas Z is not.

Lemma 4.1 Suppose that y0, y1 ∈ Y are connected by a path. Then π1(Y, y0)
and π1(Y, y1) are isomorphic groups. In particular, if Y is path connected,
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then the (isomorphism type of the) group π1(Y, y) is independent of the choice
of basepoint y and we can just write π1(Y ).

Proof (Sketch). Let d be a path which joins y0 to y1. Let d
∗ be the reverse

path, which connects y1 to y0. We want to use d and d∗ to define a map from
π1(Y, y0) to π1(Y, y1). Given any y0-loop f0 : I → X with f0(0) = f0(1) = y0,
we can form a y1-loop by the formula

f1 = d ∗ f ∗ d∗.

In other words, the first part of f1 travels backward along d from y1 to y0,
the second part travels around f0, and the third part travels back to y1. You
should picture a lasso, as in Figure 4.3.

y d
f

y10

Figure 4.3. A lasso

Using arguments similar to the ones for the exercises above, you can show
the following result: If f0 and f̂0 are equivalent, then f1 and f̂1 are equivalent.
In other words, the map H, which sends [f0] ∈ π1(Y, y0) to [f1] ∈ π1(Y, y1) is
well defined independent of the equivalence class representative used to define
it. So, now we have a well-defined map H : π1(Y, y0) → π1(Y, y1). After this,
one shows that H is a homomorphism. That is, H([f ]∗ [g]) = H([f ])∗H([g]).
This is not hard to do once you draw a picture of what is going on.

Rather than show that H is one-to-one and onto directly, one can define a
map H∗ : π1(Y, y1) → π1(Y, y0) just by reversing the roles of the two points.
In other words, the loop f1 is mapped to

f ∗
0 = d∗ ∗ f1 ∗ d.

Note that f ∗
0 and f0 are not precisely the same loop. If you draw pictures

you will see that there is some extra slack in f ∗
0 . However, it turns out that

[f ∗
0 ] = [f0]. In other words, the two loops are loop homotopic. Thus H and

H∗ are inverses of each other. Hence H is an isomorphism. ♠
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4.5 Functoriality

The word functoriality refers to a situation where you are assigning one kind
of an object to another in a way which respects the “natural” transformations
between the two kinds of objects. This notion is defined precisely in any
book on category theory. In our case, we are assigning a group π1(Y, y0) to
a pointed space (Y, y0). (By pointed space we mean a space with a chosen
basepoint.) The natural transformations of pointed spaces are basepoint-
preserving continuous maps and the natural transformations between groups
are homomorphisms.

We would like to see that our transformation (or functor) from spaces to
groups respects these transformations. Lemmas 4.2 and 4.3 together contain
this information.

Lemma 4.2 Let (Y, y0) and (Z, z0) be two pointed spaces, and let f : Y → Z
be a continuous map such that f(y0) = z0. Then there is a homomorphism
f∗ : π1(Y, y0) → π1(Z, z0).

Proof: Let [a] ∈ π1(Y, y0) be an equivalence class of loops, with representa-
tive a. So, a : I → Y is a loop. The composition f ◦a is loop in Z. We define
f∗[a] = [f ◦ a]. If [a0] = [a1], then there is a homotopy H from a0 to a1. But
then f ◦H is a loop homotopy from f ◦ a0 to f ◦ a1. So, [f ◦ a0] = [f ◦ a1]
and our map is well defined. Note that f ◦ (a ∗ b) = (f ◦ a) ∗ (f ◦ b). Hence
f ∗ ([a] ∗ [b]) = (f∗([a])) ∗ (f∗([b])). Hence f∗ is a homomorphism. ♠

Suppose that f : Y → Z is a continuous map and g : Z → W is a
continuous map. Let’s arrange so that f(y0) = z0 and f(z0) = w0. Then
g ◦ f is a map from Y to W and (g ◦ f)∗ is a homomorphism from π1(Y, y0)
to π1(W,w0).

Lemma 4.3 (g ◦ f)∗ = g∗ ◦ f∗.

Proof: Let [a] ∈ π1(Y, y0). Then

(g ◦ f)∗[a] = [(g ◦ f) ◦ a] = [g ◦ (f ◦ a)] = g∗[f ◦ a] = g∗f∗[a].

That is it. ♠
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If f : Y → Y is the identity map, then f∗ is the identity map on π1(Y, y0).
Also, if h : Y → Z is a homeomorphism, then we have the inverse homeo-
morphism h−1. But h ◦ h−1 is the identity. Hence h∗ ◦ h−1

∗ is the identity
homomorphism. Likewise h−1 ◦ h∗ is the identity homomorphism. In short
h∗ (and also h−1

∗ ) is a group isomorphism. So

Theorem 4.4 If π1(Y, y0) and π1(Z, z0) are not isomorphic groups, then
there is no homeomorphism from Y to Z which maps y0 to z0.

The above is slightly contrived because we don’t really care about these
basepoints. Recall that π1(Y, y0) does not depend on the basepoint if Y is
path connected. So

Theorem 4.5 Suppose Y and Z are path connected spaces. If π1(Y ) and
π1(Z) are not isomorphic, then Y and Z are not homeomorphic.

What’s really great about this result is that we can use it to tell the
difference between spaces just by looking at these groups. Of course, the
question remains: How do we actually compute these groups? In the next
chapter, we will go into much more details about this.

4.6 Some First Steps

Here we will just take some first steps in the computation of fundamental
groups. Once we have more theory, these computations will be easy. So,
what fundamental groups can we compute? It is easy to see (compare Exer-
cise 2) that any two loops in Rn (based at 0) are equivalent. Hence π1(R

n, 0)
is the trivial group.

Exercise 8A (Challenge). Prove that there is a loop in S2 (the 2-sphere)
whose image is all of S2. (Hint : If you know about the Hilbert plane-filling
curve from real analysis, you’re in good shape for this problem.)

Exercise 8B (Challenge). Prove that π1(S
2, p) is the trivial group. Here

p ∈ S2 is any point. (Hint : The intuitive idea is this: If the loop misses some
point q 6= p, you can just “slide” the loop “down to p” by pushing it away
from the missed point. However, you have to deal with the loops which come
from Exercise 8A.)
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Exercise 9. If (Y, y0) and (Z, z0) are two pointed spaces, then the prod-
uct

(Y × Z, (y0, z0)

is again a pointed space. Prove that

π1(Y × Z, (y0, z0)) = π1(Y, y0)× π1(Z, z0).

Exercise 10 (Challenge). Prove that π1(S
1, p) is nontrivial. (Hint : Think

of S1 as the unit circle in R2 and consider the loop

f(t) = (cos(2πt), sin(2πt)).

Show that this loop is inequivalent to the identity loop.)

Let T = S1×S1. Here T 2 is the torus. From Exercises 9 and 10 we know
that π1(T

2) is nontrivial. (We don’t worry about the basepoint because T
is obviously path connected.) On the other hand, by Exercise 8, π1(S

2) is
trivial. Hence S2 and T 2 are not homeomorphic!
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5 Examples of Fundamental Groups

The purpose of this chapter is to compute the fundamental group for some
familiar objects:

• the circle;

• the torus;

• the 2-sphere;

• the projective plane;

• lens spaces;

• the Poincaré homology sphere.

I will work out the first three in detail and then guide you through the compu-
tation for the others. The last section is too advanced for an undergraduate
course but I couldn’t resist.

5.1 The Winding Number

Let S1 be the circle. We think of S1 as the set of unit complex numbers in
C. We choose 1 for our basepoint of S1. In this section we will describe how
to assign an integer to a continuous loop g : [0, 1] → S1.

First we will explain the idea intuitively and then we will get to the
formalities. Think of the loop g as describing a bug crawling around the unit
circle. Imagine that you are at the center of the circle watching the bug.
You always follow the bug with your eyes, staring straight at it the whole
time. (Your rubber neck allows you to do this.) After the bug has completed
his trip, you are looking in the same direction as initially. However, your
head has been twisted around some number of times. The winding number
is the integer, positive for counterclockwise and negative for clockwise, which
names how many times your head is twisted around.

Now we come to the formalities. Let R denote the real numbers. There
is a natural map E : R → S1 given by

E(t) = exp(2πit) = cos(2πt) + i sin(2πt).
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This map is certainly onto and continuous, but it has some other special
properties. Say that an open special arc in S1 is a set of the form

C(z) = {w ∈ S1| d(z, w) < 1/100}.

Here d(z, w) = |z −w|, the usual Euclidean distance. The choice of 1/100 is
convenient but fairly arbitrary. The point is just that open special arcs are
smaller than semicircles.

Exercise 1. Let C be an open special arc. Prove that E−1(C) consists
of a countably infinite number of disjoint open intervals and that the re-
striction of E to any of them is a homeomorphism from the interval onto
C.

Lemma 5.1 Let [a, b] ⊂ R be an interval. Suppose g : [a, b] → S1 is a map
such that g([a, b]) is contained in a special arc. Suppose also that there is a
map g̃ : {a} → R such that E◦g̃(a) = g(a). Then we can define g̃ : [a, b] → R

such that E ◦ g̃ = g on all of [a, b]. This extension of g̃ is unique.

Proof: If E had an inverse we could define g̃ = E−1 ◦ g. Also, we would
be forced to make this definition and so the extension of g̃ to [a, b] would be
unique. Unfortunately, E is not invertible. Fortunately, we have Exercise 1,
which shows that E is “invertible” in some sense. Let C be the special arc
which exists by hypothesis. Let C̃ ⊂ E−1(C) be the unique interval from

Exercise 1 which contains g̃(a). By Exercise 1, the map E : C̃ → C is a

homeomorphism. Let F : C → C̃ be the inverse of (the restricted version of)

E. Since g[a, b] ⊂ C we can (and must) define G̃ = F ◦ g. ♠

Let 1 = E(Z) be the basepoint of S1. Let I = [0, 1]. Recall that an
element of π1(S

1, 1) is a map g : I → S1 such that g(0) = g(1) = 1.

Exercise 2. Given the map g, prove that there exists some N with the
following property. If x, y ∈ [0, 1] and |x− y| < 1/N then the set g([x, y]) is
contained in a special arc. (Hint : You might want to use the fact that every
infinite sequence in [0, 1] has a convergent subsequence. This is basically the
Bolzano–Weierstrass theorem.)

Here is an improved version of Lemma 5.1.
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Lemma 5.2 Let g : [0, 1] → S1 be a loop. Then there is a unique map

g̃ : [0, 1] → R such that g̃(0) = 0 and E ◦ G̃ = G on all of [0, 1].

Proof: From Exercise 2 we can find some N so that the points ti = i/N
have the following property. The image g([ti, ti+1]) is contained in a special
arc for i = 0, . . . , (N − 1). Now we go by induction. First of all, by Lemma
5.1 we can define g̃ uniquely on [t0, t1]. But then by Lemma 5.1 again, we
can define g̃ uniquely on [t1, t2]. And so on. ♠

Definition 5.1. We define the winding number of g to be the value of g̃(1) ∈
Z. We write this as w(g). Note that g̃(1) ∈ Z because g(1) = E(g̃(1)) = 0.

We would like to see that the winding number only depends on the ho-
motopy class of the loop. Going back to our intuitive notion of the winding
number, suppose that two bugs are running around the unit circle, and they
stay pretty close to each other. Then you will always be looking in about the
same direction if you watch either bug. So, your head will be turned around
the same number of times if you watch either bug. Now we give the formal
proof.

Lemma 5.3 Suppose that g0 and g1 are homotopic loops in S1. Then w(g1) =
w(g1).

Proof: Let G be the homotopy between g0 and g1. Let gt(x) = G(x, t).
The same argument as in Exercise 2 proves that there is some N with the
following property: If s, t ∈ [0, 1] are any points such that |s− t| < 1/N and
x ∈ [0, 1] is fixed, then

|G(x, s)−G(x, t)| < 1/100.

Using the other notation, we have d(gs(x), gt(x)) < 1/100. But then d(g̃s(x), g̃t(x))
is either less than 1/100 or greater than 1/2. By continuity, the alternative
cannot change. Also

d(g̃s(0), g̃t(0)) = d(0, 0) = 0 < 1/100.

This shows that the first alternative always holds and g̃s(x) and g̃t(x) are
always within 1/100 of each other. But then w(gs) = w(gt), because both
are integers within 1/100 of each other. From here it is easy to see that
w(g0) = w(g1). ♠
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5.2 The Circle

We will use the winding number to compute π1(S
1, 1), the fundamental group

of the circle.
Given a loop g, representing an element of π1(S

1, 1), we define

w([g]) = w(g).

By Lemma 5.3, this gives us a well-defined map w : π1(S
1, 1) → Z.

Lemma 5.4 w is onto.

Proof: Let g(t) = exp(2πint). Then w(g) = n. ♠

Execise 3. Prove that w is a homomorphism.

Lemma 5.5 w is an isomorphism.

Proof: Since w is a homomorphism, it suffices to prove the following state-
ment. If w(g) = 0, then g is homotopic to the constant loop. Now, if
w(g) = 0, then g̃ : [0, 1] → R is a loop. But π1(R, 0) = 0. Hence there is a

loop homotopy G̃ from g̃ to the constant loop g̃0 : S
1 → R. But then E ◦ G̃

is a loop homotopy from g to the constant loop in S1. This shows that w is
an isomorphism. ♠

The last result shows that π1(S
1, 1) is isomorphic to Z.

Remark. The main property we used about the circle was the existence
and special properties of the map E : R → S1. We also used the property
that π1(R, 0) = 0. It turns out that this will be a general method for us
when we compute the fundamental groups. All the special properties we es-
tablished are summarized by the statement that R is the universal cover of
S1 and E is the universal covering map. In the next chapter I will develop
these ideas in great generality.
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5.3 The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra says that every complex polynomial

P (z) = a0 + a1z + · · ·+ anz
n

has a root. This result has a nice proof based on the ideas we have been
developing. For convenience, we divide through so that an = 1. We think
of P as a continuous map from C to C. If P has no roots, then P is a
continuous map from C to C − {0}.

Let Cr denote the circle of radius r centered at the origin. Let S1 denote
the unit complex numbers. Given r > 0, consider the map γr : S1 → S1

given by

γr(u) =
P (ru)

|P (ru)| .

By construction γr is a continuous loop, and hence an element of π1(S1).
When r is small, P (Cr) is just a tiny loop around f(0) 6= 0. Hence

[γr] = 0 ∈ π1(S1) for r small. But γr varies continuously with r. Hence
[γr] = 0 for all r. On the other hand, when z ∈ Cr and r is large, we have

P (z) = zn + f(z), |f(z)| < ǫr|P (z)|.

Here ǫr is some constant that tends to 0 as r → ∞. The point is that the
highest order term dominates the sum of the remaining terms.

Our estimate tells us that γr converges to the loop z → zn as r → ∞.
Hence [γr] = n for r large. This is a contradiction. The only way out is that
P is not a continuous map from C to C − {0}. But then 0 must be in the
image of P . That is, P has a root.

5.4 The Torus

Exercise 9 of Chapter 4 asked you to show that

π1((Y, y)× (Z, z)) = π1(Y, y)× π1(Z, z).

The torus T 2 is homeomorphic to S1 × S1 and also path connected. Hence
π1(T

2) = Z ×Z. Iterating, we get π1(T
n) = Zn.
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5.5 The 2-Sphere

Let I = [0, 1] as above. Let x ∈ S2 be some basepoint. This section,
which consists mainly of exercises, will guide you through the proof that
π1(S

2, x) = 0.
Say that a loop g : I → S2 (anchored at x) is bad if g(I) = S2 and

otherwise is good .

Exercise 4. Prove that any good loop is homotopic to a point.

Exercise 5. Let [a, b] be an interval, and let H be a hemisphere in R2.
Let f : [a, b] → H be a continuous map. Prove that there is homotopy
F : [a, b]× [0, 1] → ∆ such that

• F (a, t) and F (b, t) are independent of t.

• F (x, 0) = f(x) for all x.

• f1 : [a, b] → ∆ is contained in a circular arc joining f(a) to f(b).

Exercise 6. Let g be an arbitrary loop on S2. Prove that there is a finite
partition 0 = t0 < t1 < . . . < tn = 1 such that g maps each interval [ti, ti+1]
into a hemisphere. Now conclude from Exercise 5 that g is loop homotopic
to a good loop.

Since every loop in S2 is loop homotopic to a good loop, and every good
loop is loop homotopic to a point, every loop in S2 is homotopic to a point.
Therefore, π1(S

2, x) = 0. The same argument works for Sn, with n > 2.

5.6 The Projective Plane

As in §3.2, we think of P 2, the projective plane, as the quotient S2/∼, where
x ∈ S2 is equivalent to itself and to the antipodal point −x. There is a nice
map E : S2 → P 2 given by E(x) = [x]. As our notation suggests, E plays the
same role here that the same-named map played above when we considered
the circle.

Let x+ = (0, 0, 1), and let x− = (0, 0,−1). Clearly, we have E(x+) =
E(x−).

Exercise 7. Suppose that g : [0, 1] → P 2 is a loop based at x+. Prove
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that there is a unique map g̃ : [0, 1] → S2 such that g̃(0) = x+ and E ◦ g̃ = g
(Hint : Just imitate what was done for the circle.)

Note that either g̃(1) = x+ or g̃(1) = x−. We define w(g) = +1 if g̃(1) = x+

and w(g) = −1 if g̃(1) = x−.

Exercise 8. Prove that w([g]) is well defined independent of the loop ho-
motopy equivalence class of g. Prove also that w gives an isomorphism from
π1(P

2) to Z/2.

In general we have P n = Sn/∼, where x ∼ −x. Thus there is always
this two-to-one map from Sn to P n. An argument similar to the one given
above shows that π1(P

n) = Z/2. Here P n is called projective n-space.

5.7 A Lens Space

Before reading this section, you should probably know what a manifold is;
see §2.8 for details.

We think of S3 as the set of the form

{(z, w)| |z|2 + |w|2 = 1} ⊂ C2 = R4.

This is an exotic way of expressing the fact that S3, the 3-sphere, is the unit
sphere in R4. The equality C2 = R4 comes from the map

(x1 + iy1, x2 + iy2) → (x1, y1, x2, y2).

Here is a nice equivalence relation on S3. Let’s define

(z, w) ∼ (uz, u2w)

if and only if u is some 5th root of unity. Each equivalence class on S3/∼ has
5 points. Let’s call this space L(2, 5). The 2 comes from the u2 term, and
the 5 comes from the fact that we are taking 5th roots of unity. Obviously,
you could make this construction for other choices.

Here is a sketch of how to visualize L(2, 5). Any point in L(2, 5) is equiva-
lent to a point of the form (z, w), where the argument of z lies in the interval
(0, 2π/5). Let S ⊂ S3 be this set. We can write

S =
⋃

θ∈[0,2π/5]
Sθ,
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where Sθ consists of points of the form (z, w) where z = exp(iθ). The whole
sphere S3 is tiled by 5 copies of S. For instance, one of the adjacent copies
consists of those sets Sθ, where θ ∈ [2π/5, 4π/5].

Now we are going to (partially) explain how to visualize S. The “slice”
Sθ is a disk, and the boundary of Sθ is the circle

C = {0} × {w : |w| = 1}.

All the slices share C as a common boundary, but otherwise they are disjoint.
So, S looks something like a circular pillow, or the solid region between two
contact lenses stuck boundary to boundary. The left-hand side of Figure 5.1
shows a side view. The two dots represent C. To get a better picture, you
could revolve this planar figure about the vertical axis.

Figure 5.1. The domain S

The right-hand side of Figure 5.1 shows a top view of S. We imagine
that we are looking at S0, and that the rest of S is underneath. The other
boundary component is S2π/5. We have drawn the circle C as a pentagon, to
suggest the what is going on. We observe the following things.

• Each point in the interior of S is equivalent only to itself.

• Each point on the interior of the “front” of S, meaning the set S0 −C,
is equivalent to one point on S2π/5 − C.

• Each point on one of the edges of C is equivalent to the 4 other points at
corresponding positions on the other edges. The triangular subdivision
is supposed to serve as a guide to the gluings.

I have not described things completely, because I want to leave you some-
thing to think about.
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Exercise 9. Prove that L(2, 5) is a good quotient in the sense of §3.1,
and also a manifold.

There is an obvious map E : S3 → L(2, 5). Using E we can show that
π1(L(2, 5)) = Z/5. Generalizing this construction in an obvious way, we see
that we can produce a 3-manifold whose fundamental group is Z/n. These
spaces L(m,n) are called lens spaces .

5.8 The Poincaré Homology Sphere

Before we give the last example, we need to make a detour and discuss a
different way to think about S3. Let SO(3) denote the group of orientation
preserving (i.e., physically possible) rotations of S2. It turns out that there
is an amazing map from S3 to SO(3) which is really the map from S3 to P 3

in disguise. So, given an element q ∈ S3, we need to produce a rotation Rq

of S2.
Here is the construction. We think of S3 as the unit quaternions . That

is, a point in S3 can be thought of as a symbol of the form

a+ bi+ cj + dk, a, b, c, d ∈ R, a2 + b2 + c2 + d2 = 1.

The symbols i, j, k satisfy the following rules:

• i2 = j2 = k2 = −1.

• ij = k and jk = i and ki = j.

Given these rules, you can multiply quaternions together in a way which is
similar to how you multiply complex numbers together.

Given any q ∈ S3 as above, we define

q−1 = a− bi− cj − dk.

Then you can check that qq−1 = q−1q = 1. In other words, the unit quater-
nions form a group under multiplication!

We can identify R3 with the pure quaternions, namely those of the form
0 + bi+ cj + dj. The isomorphism to R3 is just given by

0 + ai+ bj + ck → (a, b, c).
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Thus our special R3 has the usual Euclidean metric on it, coming from the
identification with the usual R3.

Given p ∈ R3 we define

Rq(p) = qpq−1.

Exercise 10 (Challenge). Show that Rq preserves R3 (the pure quater-
nions) and is an orientation-preserving rotation.

Multiplication turns out to be associative and so we have

Rq1 ◦Rq2(p) = q1(q2pq
−1
2 )q−1

1 = Rq1 ◦Rq2(p).

This works for any p. Hence the map q → Rq is a homomorphism. As you
might expect, we define E(q) = Rq. Note that E(−q) = E(q). It turns out
that the kernel of E is precisely {1,−1}. So, E is both a continuous surjection
(with good local inverse properties) and a two-to-one homomorphism from
S3 to SO(3).

Now for our last example. Given the quaternionic picture of S3, we can
define a very interesting 3-dimensional manifold. If G ⊂ SO(3) is a finite

subgroup, then G̃ = E−1(G) is a subgroup with twice the number of elements.
Now we can define an equivalence on S3 by the rule q1 ∼ q2 iff there exists
some g ∈ G̃ such that gq1 = q2. If G has N elements, then G̃ has 2N
elements and each equivalance class of S3/∼ has 2N elements. It turns out

the quotient space is a manifold with fundamental group G̃.
As a special case, let G be the orientation-preserving symmetries of the

icosahedron, the most interesting finite subgroup of SO(3). Then G̃ is an
order 120 group known as the binary icosahedral group. The quotient in this
case is called the Poincaré homology sphere, and its fundamental group is G̃.

Figure 5.2. A Dodecahedron
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The Poincaré homology sphere is one of the great examples in geometry.
In the lens space example, S3 is tiled by 5 copies of a kind of “double lens”.
In the Poincaré homology sphere example, it turns out that S3 is tiled by 120
spherical dodecahedra. The spherical dodecahedra look combinatorially the
same as Euclidean dodecahedra, but they are “puffed-out” much in the same
way that spherical triangles are. Figure 5.2 shows a dodecahedron, drawn
so that the thick lines represent visible edges and the thin lines represent
hidden edges.

Any point in S3 is equivalent to a point in one of these dodecahedra, and
no two points in the interior of a dodecahedron are equivalent to each other.
Thus, analyzing the Poincaré homology sphere boils down to understanding
how points on the boundary of one of the dodecahedra are glued together.
What happens is that each face of the dodecahedron is glued to the opposite
face, with a 2π/5 twist.
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6 Covering Spaces and the Deck Group

In §1.4 we discussed how the process of “unwrapping” the essential loops on
the square torus leads naturally to the integer grid in the plane. We also
mentioned that something similar can be done for the octagon surface and
its relatives. The purpose of this chapter and the next one is to make the
unwrapping process precise, and to consider it in much greater generality.
The central objects in this chapter are covering spaces and the deck group,
objects which play the role that the plane and the integer grid, respectively,
played in §1.4. Along the way, we will relate covering spaces and the deck
group to the fundamental group.

6.1 Covering Spaces

Let X̃ and X be path connected metric spaces. Let E : X̃ → X be a
continuous map. An open set U ⊂ X is said to be evenly covered if the
preimage E−1(U) consists of a countable disjoint union of sets Ũ1, Ũ2, . . .

such that the restriction E : Ũj → U is a homeomorphism. (This makes

sense because Ũj is a metric space in its own right.) It is customary to

require that U is path connected in this definition. The sets Ũj are called
components of the pre-image. The map E is said to be a covering map if
every point in X has a neighborhood that is evenly covered. In this case, X̃
is said to be a covering space of X.

The “mother of all examples” is the map E : R → S1 discussed in §5.1.
Here we will describe this map in another way. We still think of the line
as R, but now we think of the circle as the space X obtained from [0, 1]
by gluing 0 to 1. This time, our map E is given by E(x) = [x − floor(x)].
Here floor(x) is the greatest integer less or equal to x. So, x− floor(x) is the
fractional part of x. Finally, E(x) is the equivalence class of the fractional
part of x. The map E is continuous even though it does not appear to be
so. If x1 is sligtly smaller than an integer and x2 is slightly larger than the
same integer, then E(x1) and E(x2) are on opposite sides of [0, 1]. However,
the gluing brings them close together in X.

Exercise 1. Verify that E : R → S1 is indeed a covering map in the
example(s) given above. Reconcile the two examples and see that essentially
they are the same thing.
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6.2 The Deck Group

We are going to give more examples of covering spaces below, but the whole
idea of a covering space is enhanced by another concept–the deck group. So,
we will bring up the deck group before talking more about covering spaces.
We have already associated one group to a (pointed) metric space, namely
the fundamental group. Now we are going to assign a group in a second way.
Let E : X̃ → X be a covering map as above. Say that a deck transformation
is a homeomorphism h : X̃ → X̃ such that E ◦ h = E.

As a mnemonic, think about how the deck group relates to shuffling a
deck of cards. There is a natural map E, from your deck of cards to a single
card. You can think of holding the deck of cards directly above the single
card and then E is vertical projection. If you shuffle the cards and redo the
map E there is no change. So, a deck transformation in this case corresponds
to shuffling the deck.

In general, you can think of X̃ as a kind of deck of cards and X as a
single card. The analogy isn’t perfect because X̃ is connected, but for an
evenly covered neighborhood U ⊂ X, the set Ũ = E−1(U) really is like a
deck of cards. The deck transformation h somehow permutes the disjoint
components of Ũ like shuffling permutes the cards.

If h is a deck transformation, so is h−1. Likewise if h1 and h2 are deck
transformations, then so is h1 ◦ h2. Thus, the set of deck transformations
forms a group under composition. This group is called the deck group of
(X̃,X,E).

Let’s revisit our covering space example considered in the last section. In
both examples, the transformation x → x + 1 is a covering transformation.
In the first case, this follows from the identity exp(2πi(x+ 1)) = exp(2πix).
In the second example, it is obvious from the definition of E.

Exercise 2. Verify that the deck group in the above example is Z. In
other words, the maps x → x + n for n ∈ Z are the only covering transfor-
mations.

Note the deck group of (R, S1, E) is Z, the same as π1(S
1); that is, the

deck group and the fundamental group are isomorphic. Below we will prove
a result that gives general conditions under which this is true.
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6.3 A Flat Torus

The next really great example of a covering space is E : R2 → X, where X
is a flat torus . As discussed in §1.9, we can make a flat torus X by gluing
together the opposite sides of a parallelogram P0, as shown in Figure 6.1.

Figure 6.1. The flat torus

The resulting surface X is homeomorphic to S1×S1, and the fundamental
group is isomorphic to Z2. There is a nice covering map from R2 to X. We
can tile R2 with translates of P0, as shown in Figure 6.2. Given any point
x ∈ R2, we choose a parallelogram Px such that x ∈ Px. There is a unique
translation Tx : Px → P0 and we define E(x) = [Tx(x)] ∈ X.

Figure 6.2. The parallelogram tiling

The beautiful thing about this map is that it is well defined even when
x lies on the interface between two or more parallelograms. For example,
suppose that x lies on a horizontal edge, as shown in Figure 6.2. Then we
could take Px to be the parallelogram either above x or below x. In the one
case Tx(x) would like in the middle of the top edge of P0 and in the other
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case Tx(x) would lie in the middle of the bottom edge of P0. However, these
two points are identified on X.

Exercise 3. Prove that E : R2 → X is a covering map and that the
deck group in this case is precisely the group of translation symmetries of
the tiling, namely Z2. Once again, the deck group and the fundamental
group are isomorphic.

There are a few things about the flat torus example that do not quite
represent the general case. For instance, the deck group and fundamental
group are both Abelian, and this is rather a special situation. However, in
spite of the limitations of the torus example, I would say that it accounts
for 80 percent of my intuition about covering spaces. In any case, it is a
good example to learn well! The example in Exercise 5 below accounts for
another 19 percent of my intuition, and then the last 1 percent comes from
more complicated examples.

6.4 More Examples

Here are two more examples of covering spaces and deck groups. In the next
example, the fundamental group and the deck group are nontrivial finite
groups.

Exercise 4. Let S2 be the 2-sphere and let P 2 be the projective plane,
defined as the set of equivalence classes of antipodal points on S2. Show
that the obvious map S2 → P 2 is a covering map. (Note: In order to do this
problem, you first have to recall the metric on P 2.) Show that the deck group
in this example is Z/2. Once again, the deck group and the fundamental
group are isomorphic.

So far, all the examples we have seen have Abelian deck groups. The
next exercise shows an important example in the case when the group is not
Abelian.

Exercise 5. Let X be a space that is homeomorphic to an ∞ symbol,
as shown on the right-hand side of Figure 6.3 below. Let X̃ be the 4-valent
infinite tree. Exhibit a map E : X̃ → X which is a covering map. (The
tree in Figure 6.3 is only partially drawn. It is meant to go on forever and
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have valence 4 at each vertex.) Prove that the deck group for (X̃,X,E) is
isomorphic to the free group on 2 generators. Once again, the deck group
and the fundamental group are isomorphic.

Figure 6.3. The 4-valent tree and the figure 8

6.5 Simply Connected Spaces

Recall that a path connected space is one in which every two points can be
joined by a continuous path. Let X be a path connected metric space. X
is said to be simply connected if π1(X) is trivial. This definition does not
depend on the basepoint, because the isomorphism type of the fundamental
group is independent of basepoint in path connected spaces. The plane is
simply connected and so is a tree.

Suppose that f0, f1 : [0, 1] → X are two paths. Suppose also that
f0(0) = f1(0) and f1(0) = f1(1). In other words, the two paths have the
same beginning and the same ending. We say that f0 and f1 are path homo-
topic if there is a homotopy F from f0 to f1 such that ft(0) and ft(1) are
independent of t. Here, as usual, ft(x) = F (x, t), where F is a map on the
unit square. Intuitively, a path homotopy slides the one path to the other
without moving the endpoints. In the case where ft(0) = ft(1), the notion
of a path homotopy coincides with the notion of a loop homotopy.

The next exercise relates the idea of a path homotopy to the idea of sim-
ple connectivity.
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Exercise 6. Suppose that X is simply connected. Prove that any two
paths, which have the same endpoints as each other, are homotopic. (Out-
line: Let x be the starting point of both loops. Consider the loop g formed
by first doing f0 forward and then doing f1 backward. Then [g] ∈ π1(X, x).
Hence g is loop homotopic to the identity. Let G be the loop homotopy.
Try to modify G slightly so that G becomes a path homotopy from f0 to f1.
Figure 6.4 shows what we hope is a suggestive picture.)

Figure 6.4. altering a homotopy

Exercise 7. Let {Bi} denote any countable union of disjoint closed balls in
R3. Prove that R3 −⋃

Bi is simply connected.

6.6 The Isomorphism Theorem

Here is the main theorem in this chapter, and (in my opinion) one of the best
theorems in algebraic topology.

Theorem 6.1 (Isomorphism) Suppose that

• E : X̃ → X is a covering map.

• X and X̃ are path connected.

• X̃ is simply connected.

Then π1(X) is isomorphic to the deck group for (X̃,X,E).

The rest of the chapter is devoted to proving the Isomorphism Theorem.
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6.7 The Bolzano–Weierstrass Theorem

A sequence of points {cj} in a metric space X is called Cauchy if, for every
ǫ > 0, there is some N such that i, j > N implies that d(ci, cj) < ǫ. A conver-
gent sequence is automatically Cauchy, and one can ask about the converse.
X is said to be complete if every Cauchy sequence in X converges to a point
in X.

Exercise 8. Prove that Q, the rationals, is not complete.

The basic axiom for R is that it is complete. You might ask how one
proves that R is complete. The usual way is to construct R from Q in a
way that builds in completeness. Here is the barest sketch of the idea. Start
with the set X of all Cauchy sequences in Q. Define two Cauchy sequences
{ai} and {bi} to be equivalent if the shuffled sequence a1, b1, a2, b2, a3, b3, . . .
is also a Cauchy sequence. Intuitively, equivalent sequences (were they to
converge) have the same limit. R is defined as the set of equivalence classes
in X. Cauchy sequences are added, subtracted, multiplied, and (when pos-
sible) divided term by term, and you have to check that these operations
respect the equivalence relation.

Exercise 9. Using the completeness of R as an axiom, prove the follow-
ing result. Let Q1 ⊃ Q2 ⊃ Q3 · · · be a nested sequence of cubes in Rn such
that the diameter of Qn tends to 0 as n tends to ∞. Then

⋂
Qn is one point.

(Hint : look at the sequence of centers.)

Theorem 6.2 (Bolzano–Weierstrass) A sequence {cn} contained in the
unit cube Q0 has a convergent subsequence.

Proof: Note that Q0 is the union of 2n cubes having half the size as Q0. At
least one of these subcubes, Q1, must contain cj for infinitely many indices.
But Q1 is a union of 2n subcubes having half the size as Q1. At least one
of these subcubes, Q2, must contain cj for infinitely many indices. And so
on. The intersection

⋂
Qn, a single point, by Exercise 2, is the limit of some

subsequence of {cj}. ♠
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6.8 The Lifting Property

In this section, E : X̃ → X is a covering map. Let Q be a cube, and
let f : Q → X be a continuous map. We say that a lift of f is a map
f̃ : Q → X̃ such that E ◦ f̃ = f . This notion is just a generalization of what
we talked about in the previous chapter. The purpose of this section is to
prove the formal version of the result we talked about, for some examples, in
the previous chapter.

We begin with a technical result.

Lemma 6.3 There is some N with the following property. If Q′ ⊂ Q is a
subcube with side length less than 1/N , then f(Q) is contained in an evenly
covered neighborhood of X.

Proof: If this result is false, then we can find a sequence of subcubes {Qn},
with diameter tending to 0 such that f(Qj) is not contained in an evenly
covered neighborhood. Let {cj} be the center of Qj. This sequence has a
convergent subsequence, by the Bolzano–Weierstrass Theorem. Tossing out
everything but the cubes corresponding to this subsequence, we can assume
that {cj} converges to some x ∈ Q. Then f(x) is contained in some evenly
covered neighborhood U . But then f(Qn) ⊂ U for n large, by continuity.
This is a contradiction. ♠

Lemma 6.4 Let Q be a cube, and let f : Q → X be a continuous map. Let
v be a vertex of Q, and let x̃ ∈ X be a point such that E(x̃) = f(v). Suppose
that f(Q) is contained in an evenly covered neighborhood. Then there is a

unique lift f̃ : Q → X̃ such that f̃(v) = x̃.

Proof: Let U ⊂ X be the evenly covered neighborhood such that f(Q) ⊂ U .

Recall that E−1(U) is a disjoint union of sets Ũ1, Ũ2, . . . such that the restric-

tion E : Ũj → U is a homeomorphism. Let Ũk be the component that

contains x̃, and let F be the inverse of the restriction of E to Ũk. Then we
can and must define f̃ = F ◦ f . ♠

Just as we did in the previous chapter, we want to now remove the hy-
pothesis that f(Q) is contained in an evenly covered neighborhood.
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Theorem 6.5 Let Q be a cube and let f : Q → X be a continuous map. Let
v be a vertex of Q, and let x̃ ∈ X̃ be such that E(x̃) = f(v). Then there is a

unique lift f̃ : Q → X̃ such that f̃(v) = x̃.

Proof: By Lemma 6.3, we can find some N such that any subcube of diam-
eter less than N is mapped into an evenly covered neighborhood of f . Let’s
partition Q into such cubes, say Q = Q1, . . . , Qm. We can order these cubes
so that, for each k, the cube Qk shares at least one vertex vk with some Qj

for j < k. Also, we set things up so that the initial vertex v = v1 is a vertex
of Q1. We define f̃ on Q1 using Lemma 6.4. This tells us the value of f̃ on
v2 and determines how we define f̃ on Q2. The uniqueness guarantees that
the definition on Q2 is compatible with the definition on Q1. The key point
is that Q1∩Q2 is contained in an evenly covered neighborhood. We continue
like this, from cube to cube, until we have defined f̃ in the only way possible
on all of Q. ♠

We will only need the above result for the case of the unit interval [0, 1]
and the unit square [0, 1]2, but it is nice to know in general.

6.9 Proof of the Isomorphism Theorem

The proof comes in 4 steps:

1. Define the isomorphism.

2. Prove that it is a homomorphism.

3. Prove that the homomorphism is injective.

4. Prove that the homomorphism is surjective.

6.10 Define the Isomorphism

Since X is path connected, the isomorphism type of π1(X, x) is independent
of the choice of basepoint. Let x ∈ X be a basepoint. Let G = π1(X). Let

D be the deck transformation group. Let x̃ ∈ X̃ be some point such that
E(x̃) = x. We make this choice once and for all. Suppose that h ∈ D is a
deck transformation. Then ỹ = h(x̃) is some other point. Note that

E(ỹ) = E ◦ h(x̃) = E(x̃) = x.
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Since X̃ is path connected, there is some path f̃ : [0, 1] → X̃ such that

f̃(0) = x̃ and f̃(1) = ỹ. Let f = E ◦ f̃ . By construction, f is a loop based at
f . Define

Φ(h) = [f ] ∈ G. (5)

To see that Φ is well defined, suppose that f̃0 and f̃1 are two loops connecting
x̃ to ỹ. Since X̃ is simply connected, there is a path homotopy F̃ from f̃0 to
f̃1. But then F = E ◦ F̃ is a loop homotopy from f0 to f1. Hence [f0] = [f1]
and Φ is well defined. Φ is our map from D to G.

6.11 Homomorphism

This step looks quite mysterious, but it is fairly obvious if you draw pictures.
Let h1, h2 ∈ D be two deck transformations. We want to prove that

Φ(h1 ◦ h2) = Φ(h1)Φ(h2).

Let ỹj = hj(x̃) for j = 1, 2. Let f̃j be a path joining x̃ to ỹj. Let fj = E ◦ f̃j.
Then Φ(hj) = [fj].

Let z̃ = h1 ◦ h2(x̃). Note that h1 ◦ f̃2 is a path joining the points

h1(x̃) = ỹ1 and h1(ỹ2) = h1 ◦ h2(x̃).

Therefore, the concatenated path f̃1 ∗ (h1 ◦ f̃2) joins x̃ to z̃. But then

Φ(h1 ◦ h2) = [E ◦ (f̃1 ∗ (h1 ◦ f̃2))] = [(E ◦ f̃1) ∗ (E ◦ h1 ◦ f̃2)]

=∗ [(E ◦ f̃1) ∗ (E ◦ f̃2)] = [f1 ∗ f2] = [f1][f2] = Φ(h1)Φ(h2).

The starred equality comes from the fact that E ◦ h1 = E.

Exercise 10. Choose the example of the flat torus, given above, and go
through the above argument step by step, illustrating the proof with pic-
tures.

6.12 Injectivity

Since Φ is a homomorphism, we can show that Φ is injective just by showing
that Φ has a trivial kernel. So, suppose that Φ(h) is the trivial element in
π1(X, x).
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Lemma 6.6 h(x̃) = x̃.

Proof: Let ỹ = h(x̃). We want to show that ỹ = x̃. Let f̃ be a path which
joins x̃ to ỹ. It suffices to show that f is path homotopic to the constant path.
Let f = E ◦ f̃ . Then Φ(h) = [f ]. By hypothesis, there is a loop homotopy
F from f to the trivial loop. Let Q be the unit square. By construction,
F : Q → X is a continuous map such that f0 = f and f1 is the constant map.
From the lifting theorem, there is a lift F̃ : Q → X̃ such that F̃ (0, 0) = x̃

and E ◦ F̃ = F . Here are 3 properties of F̃ :

• f̃0 is a lift of f0 = f . From the uniqueness of lifts, f̃0 = f̃ .

• f̃1 is the constant path since f1 is the constant path.

• F (0, t) and F (1, t) are the basepoint in X, independent of t. Hence

F̃ (0, t) and F̃ (1, t) are constant maps. That is, the endpoints of f̃t do
not change with t.

From the first item, the endpoints of f̃0 are x̃ and ỹ. From the second item,
the endpoints of f̃1 are x̃ and x̃. From the third item, we see that the two
sets of endpoints coincide, forcing x̃ = ỹ. ♠

The following lemma finishes our injectivity proof.

Lemma 6.7 If h is a deck transformation such that h(x̃) = x̃, then h is the
identity.

Proof: Let ỹ be some other point of X̃. We want to show that h(ỹ) = ỹ.

Let f̃ be a path joining x̃ to ỹ. Let x = E(x̃) and y = E(ỹ). Let f = E ◦ f̃ .
Then f : [0, 1] → X is a path which joins x to y.

The paths f̃ and h ◦ f̃ are both lifts of f which agree at 0. That is,
f̃(0) = x̃ and h ◦ f̃(0) = h(x̃) = x̃. By uniqueness of lifts, these two lifts are

the same. In particular, ỹ = f̃(1) = h ◦ f̃(1) = h(ỹ). ♠
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6.13 Surjectivity

Let [g] ∈ π1(X, x) be some element. We want to produce a deck transfor-

mation h such that Φ(h) = [g]. Let ỹ ∈ X̃ be any point. We need to define

h(ỹ). So, let f̃ be a path joining x̃ to ỹ. Let f = E ◦ f̃ . Then f is a path in
X joining x to y = E(ỹ). Consider the concatenated path γ = g ∗ f . From
the lifting property we can find a lifted path γ̃ which joins x̃ to some other
point, which we define as h(ỹ). Figure 6.5 illustrates the construction in case

X̃ = R2 and X = T 2, the torus.

f

xg

h(y)

x

y

y

Figure 6.5. Lifted paths

Exercise 11. Show that the definition of h(ỹ) is independent of the choices
of f and g. (Hint : imitate the proof given in the previous section.)

To compute Φ(h), we consider the case that ỹ = x̃. Then we can take f̃
to be the trivial path. In this case γ̃ is a path joining x̃ to h(x̃) and E ◦ γ̃
differs from g = E ◦ g̃ just by concatenating the constant loop. Assuming
that h is a deck transformation, we have Φ(h) = [γ] = [g].

To finish the proof, we just have to show that h is a deck transformation.

Lemma 6.8 E ◦ h = h.
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Let’s compute E ◦ h(ỹ). By construction, both γ and f connect x to y.
We have

E ◦ h(ỹ) =1 E ◦ γ̃(1) = γ(1) = y = f(1) = E ◦ f̃(1) =2 E(ỹ).

Equality 1 comes from the fact that γ̃(1) = h(ỹ) by definition. Equality 2

comes from the fact that f̃(1) = ỹ, by definition. ♠

Lemma 6.9 h is continuous.

Proof: Let ỹ ∈ X̃ be a point. Let y = E(ỹ). There is an evenly covered

neighborhood U ⊂ X of y. Let Ũ − 1 be the component of h−1(U) which

contains ỹ. Let Ũ2 = h(Ũ1). Then Ũ2 is another component of h−1(U) be-

cause E ◦ h = E. Let Fj be the inverse of the restriction of E to Ũj. Then

h = F2◦E on Ũ1. Being the composition of continuous maps, h is continuous.
♠

Were we to make the above construction for the element [g]−1, we would
produce the map h−1. Hence h is invertible. The same argument as above
shows that h−1 is continuous. Hence h is a homeomorphism. Now we know
that h belongs to the deck group. This completes our proof.
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7 Existence of Universal Covers

In the previous chapter, we proved the Isomorphism Theorem, a result which
relates the triple (X̃,X,E) to the fundamental group π1(X). Here X̃ is a

simply connected covering space of X and E : X̃ → X is a covering map. X̃
is known as the universal cover of X. We use the word “the” because, as it
turns out, any two universal covering spaces of X are homeomorphic to each
other.

In this chapter we will prove the existence (but not uniqueness) of a

universal cover X̃ under certain assumptions on X. The conditions we place
on X are somewhat contrived, but we want to streamline the existence proof.
Our main interest in this result is the case when X is a compact surface, and
any compact surface satisfies the conditions we impose.

The reader interested in seeing the fully general existence and uniqueness
proof should consult an algebraic topology book such as [HAT]. The exact

condition on X that guarantees the existence of X̃ is that X is semilocally
simply connected , and in all such cases X̃ is unique.

7.1 The Main Result

Given a metric space M and two continuous paths f0, f1 : [0, 1] → M , we
define

D(f0, f1) = sup
t∈[0,1]

d(f0(t), f1(t)). (6)

Let x ∈ M . We say that the pair (M,x) is conical if, for each y ∈ M there
is a continuous path γy : [0, 1] → M such that γy(0) = x and γy(1) = y. We
insist that γx is the trivial path, and also we make the following continuity
requirement. For any y ∈ M and any ǫ > 0, there is some δ > 0 such that
d(y, z) < δ implies that D(γy, γz) < ǫ.

The idea behind our definition is that you are making M into a kind of
cone, with x as the apex. The pair (Rn, 0) is a prototypical example of a
conical pair. The paths you can use in this example are just line segments
traced out at unit speed.

Exercise 1. Prove (M,x) is conical if M is homeomorphic to Rn.

Say that the path f0 in M is good if there is some ǫ > 0 with the fol-
lowing property: Suppose that D(f0, f1) < ǫ and f0 and f1 have the same
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endpoints. Then there is a homotopy F from f0 to f1 which does not move
the endpoints. That is, ft(0) and ft(1) are independent of t.

Definition 7.1. A metric space X is good if every path in X is good and
every point x ∈ X is such that the ball Bǫ(x) is both simply connected and
conical for some ǫ > 0. The value of ǫ is allowed to vary with the point and
the path.

Here is our main result.

Theorem 7.1 Any good metric space has a simply connected cover.

Exercise 2. Prove that a flat torus is good.

Exercise 3. Prove that any finite graph is good.

Exercise 4 (Challenge). Prove that any compact surface is good. (Hint :
In the proof of Theorem 12.10 we sketch the argument for complete hyper-
bolic surfaces.)

Exercise 5. Give an example of a metric space that has no nontrivial good
paths. (Hint : swiss cheese.)

Here is the construction of X̃ and the map E : X̃ → X. Choose a
basepoint x ∈ X. We define X̃ to be the set of pairs (y, [f ]) where y ∈ X is a
point and f is a path which joins x to y. Here [f ] denotes the path homotopy
equivalence class of f . That is, [f1] = [f2] if and only if there is a homotopy
from f1 to f2 that does not move the endpoints.

So far X̃ is just a set. We define

D([f0], [f1]) = infD(f0, f1). (7)

The infimum is taken over all paths f0 which represent [f0] and all paths f1
which represent [f1]. Finally, we define

d̃((y0, [f0]), (y1, [f1])) = d(y0, y1) +D([f0], [f1]). (8)

Exercise 6. Prove that d̃ is a metric on X̃. (Hint : The only hard part of

this exercise is showing that d̃(p, q) = 0 implies p = q. Here p, q ∈ X̃. This
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amounts to showing that D([f0], [f1]) = 0 implies that [f0] = [f1]. Deduce
this from the goodness of X.)

There is an obvious map E : X̃ → X, given by E(y, [f ]) = y. There are
a few things about E that we can see right away. Since E does not increase
distances, E is a continuous map. Also, E is onto because X is path con-
nected.

Exercise 7. Use the fact that X is path connected to prove that X̃ is
also path connected.

It remains to prove that E is a covering map and that X̃ is simply con-
nected. We will prove these two statements in the next two sections.

7.2 The Covering Property

Let y ∈ X be a point, and let U be an ǫ-ball about y, chosen to be both
simply connected and conical. Let H denote the set of path homotopy classes
of curves joining x to y. We first produce a homeomorphism Ψ from E−1(U)
to U ×H. This is a formal way of saying that E−1(U) is a disjoint union of
copies of U .

z

x y

Figure 7.1. The path f ∗ γ(z, y)

For any z ∈ U , let γ(y, z) be the path joining y to z, as specified by the
definition of a conical metric space. Let γ(z, y) denote the reverse path. Let
(z, [f ]) ∈ E−1(U) be a point. We define

Ψ((z, [f ])) = (z, [f ∗ γ(z, y)]). (9)

See Figure 7.1. If f0 and f1 are both representatives of [f ], then a path
homotopy from f0 to f1 extends to a path homotopy from f0 ∗ γ to f1 ∗ γ.
Hence [f0 ∗ γ] = [f1 ∗ γ]. Hence, our map Ψ is well defined.
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Lemma 7.2 Ψ is a bijection.

Proof: Suppose Ψ(z0, [f0]) = Ψ(z1, [f1]). Then z0 = z1. We set z = z0 = z1.
We know that [f0 ∗ γ(z, y)] = [f1 ∗ γ(z, y)]. Writing γ = γ(z, y), we have
[f0 ∗ γ] = [f1 ∗ γ] but then

[f0] = [f0 ∗ γ ∗ γ−1] = [f1 ∗ γ ∗ γ−1] = [f1].

This shows that Ψ is injective.
Now we show that Ψ is surjective. Given any pair (z, [g]) ∈ U ×H, the

path f = g ∗ γ(y, z) connects x to z. The two paths g and

f ∗ γ(z, y) = g ∗ γ(y, z) ∗ γ(z, y)

are clearly homotopic. Hence Ψ(z, [f ]) = (z, [g]). ♠

We put a metric on U×H by declaring that points in different components
are 1 apart. Within a single component, U × {h}, we just use the metric we
already have on U .

Lemma 7.3 Ψ is a homeomorphism.

Proof: We already know that Ψ is a bijection. We just have to show that
Ψ and Ψ−1 are both continuous. We will consider Ψ. Suppose that (z0, [f0])
and (z1, [f1]) are very close. Then f0 ∗ γ(z0, y) and f1 ∗ γ(z1, y) are two very
nearby paths, both having endpoints x and y. Since X is good, we have

[f0 ∗ γ(z0, y)] = [f1 ∗ γ(z1, y)]

once these paths are sufficiently close. Also z0 and z1 are very close. So, the
second coordinates of Ψ(z0, [f0]) and Ψ(z1, [f1]) agree, and the first coordi-
nates are very close. This shows (a bit informally) that Ψ is continuous.

Now we consider Ψ−1. Using the notation from the proof of the previous
lemma, we have

Ψ−1(z, [g]) = (z, [f ]),

where f = g ◦ γ−1. If (z0, [g0]) and (z1, [g1]) are less than 1 apart, then
[g0] = [g1]. But then, we can use the same path g to represent both [g0] and
[g1]. But then f0 = g ∗ γ(z0, y)−1 and f1 = g ∗ γ(z1, y)−1 are also close. This
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shows that Ψ−1 is continuous. ♠

Now we know that Ψ is a homeomorhism from E−1(U) to U × H. Let
π : U × H → U be projection onto U . Then the restriction of π to each
component of U ×H is clearly a homeomorphism. These components are of
the form U × {h}, where h ∈ H.

Finally, note that
E = π ◦Ψ. (10)

For each component Ũ of E−1(U) there is some h ∈ H so that Ψ(Ũ) = U×{h}
and Ψ is a homeomorphism from Ũ to U × {h}. But then the restriction to

Ũ of E = π ◦ Ψ is the composition of two homeomorphisms, and hence a
homeomorphism. This completes the proof that E is a covering map.

7.3 Simple Connectivity

We take the basepoint x̃ ∈ X̃ to be the pair (x, ∗) where ∗ is the trivial

loop connecting x to x. Suppose f : [0, 1] → X̃ is a loop. This means that
f(t) = (xt, [γt]), where xt ∈ X and γt is a path connecting x to xt. Both [γ0]
and [γ1] are trivial elements of π1(X).

Let β(s) = xt. Define βt : [0, 1] → X by the formula

βt(s) = β(st). (11)

Note that βt and γt are both paths which join x to xt.

Lemma 7.4 [βt] = [γt] for all t ∈ [0, 1].

Proof: Let J be the set of parameter values for which [βt] = [γt]. We have
0 ∈ J because β0 and γ0 are both trivial in π1(X, x). We show J = [0, 1] by
showing that J is both closed and open.

Closed : Suppose that [βt] = [γt] for a sequence of t values converging to
s. Since β and f are both continuous,

(xs, [γs]) = lim
t→s

(xt, [γt]) = lim
t→s

(xt, [βt]) = (xs, [βs]).

Therefore [βs] = [γs].
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Open: Suppose [βt] = [γt]. Let βst denote the restriction of β to [s, t].
For s close to t we can take γt ∗ βst as a representative for [γs]. Here we are

using the fact that E : X̃ → X is a covering map. But then

[γs] = [γt ∗ βst] = [βt ∗ βst] = [βs].

The central equality comes from the fact that [βt] = [γt]. ♠

By Lemma 7.4 we have

f(t) = (β(t), [βt]). (12)

Since f is a loop in X̃, the point f(1) = (x, [β]) is just the basepoint in X̃.
Hence [β] is the trivial element in π1(X, x).

For any null loop β, we get the path f = fβ defined by equation (12).
The loop fβ depends continuoutly on the loop β. As β shrinks down to a
point, fβ shrinks down to the constant map. This shows that f is homotopic

to a constant map, and hence X̃ is simply connected.
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8 Euclidean Geometry

This chapter begins the second part of the book. It is the first in a series of 3
chapters in which we consider the classical 2 dimensional geometries. In this
chapter we will prove some results about Euclidean geometry in the plane.
Since Euclidean geometry is so familiar, we will not spend too much time
on the basics. Following an introductory first section, we will concentrate
on interesting theorems. Most of the theorems revolve around the theme of
cutting complicated polygons into simpler ones.

8.1 Euclidean Space

The standard dot product on Rn is given by the formula

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + · · ·+ xnyn. (13)

The norm of a vector X = (x1, . . . , xn) is given by

‖X‖ =
√
X ·X. (14)

The dot product satisfies the fundamental Cauchy–Schwarz Inequality .
We will give two proofs of this inequality.

Lemma 8.1 For any vectors X and Y , we have

|X · Y | ≤ ‖X‖‖Y ‖.

Assuming Y is nonzero, we get equality if and only if X is a multiple of Y .

First Proof. To avoid trivialities, assume Y is nonzero. For any choice of
t, we have

‖X‖2 + t2‖Y ‖2 + 2t(X · Y ) = ‖X − tY ‖ ≥ 0.

Plugging in t = (X ·Y )/‖Y ‖2, multiplying through by ‖Y ‖2, and simplifying,
we get the inequality. The only way to get equality is that ‖X − tY ‖ = 0.
But then X = tY . ♠

The proof above is the standard proof. Now I will give a second proof
which, though more involved, makes the result look less mysterious.
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Second Proof. If c and s are real numbers such that c2 + s2 = 1, then
the map

R12




x1

x2

. . .
xn


 =




cx1 + sx2

−sx1 + cx2

. . .
xn


 (15)

preserves the dot product. The map R12 changes coordinates 1 and 2 and
leaves the rest alone. There is an analogous symmetry Rij (depending on c
and s) which changes coordinates i and j and leaves the rest alone. Applying
suitable choices of these symmetries, we can reduce to the special case when
Y = (x1, 0, . . . , 0). In this case, the inequality is obvious. ♠

The Euclidean distance Rn is given by the formula

d(X, Y ) = ‖X − Y ‖. (16)

Lemma 8.2 d satisfies the triangle inequality.

Proof: For any vectors A and B, we have

‖A+B‖2 = (A+ B) · (A+ B) =

‖A‖2 + 2(A ·B) + ‖B‖2 ≤∗ ‖A‖2 + 2‖A‖‖B‖+ ‖B‖2 ≤ (‖A‖+ ‖B‖)2.
The starred inequality follows from the Cauchy–Schwarz inequality. Hence

‖A+ B‖ ≤ ‖A‖+ ‖B‖.

Setting A = X − Y and B = Y − Z, we see that

d(X, Y ) = ‖X − Z‖ = ‖A+ B‖ ≤ ‖A‖+ ‖B‖

≤ ‖X − Y ‖+ ‖Y − Z‖ = d(X, Y ) + d(Y, Z).

This holds for any triple X, Y, Z of vectors, and thereby completes the proof.
♠

The angle θ between two vectors X and Y obeys the equation

cos(θ) =
X · Y

‖X‖‖Y ‖ . (17)
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To understand this equation, we consider the case ‖X‖ = ‖Y ‖ = 1. We
can use compositions of the isometries mentioned above to rotate so that
X = (1, 0, . . . , 0) and Y = (c, s, 0, . . . , 0), where c2 + s2 = 1. Then, we have

cos(θ) = X · Y = c. (18)

This last equation matches our expectation that cos(θ) is the first coordinate
of a unit vector in the plane that makes an angle of θ with the positive x-axis.

Now that we have defined distances and angles in Euclidean space, we
talk a bit about volumes of solids. Given n linearly independent vectors
V1, . . . , Vn in Rn, the parallelepiped spanned by these vectors is defined as
the set of all linear combinations

∑
ajvj, a1, . . . , an ∈ [0, 1].

The volume of this parallelepiped is given by

det(V1, . . . , Vn) =
∑

σ

(−1)|σ|
n∏

i=1

Vi,σ(i). (19)

The sum takes place over all permutations σ. The quantity |σ| is 0 if σ is
an even permutation and 1 if σ is an odd permutation. Finally, Vij is the
jth component of Vi. If you have not seen the definition of the determinant
before, this book is not place to learn it. See any book on linear algebra.

It would be nice if every solid body could be decomposed into finitely
many parallelepipeds. Then one could define the volume of an arbitrary solid
body by summing up the volumes of the pieces. Unfortunately, this doesn’t
work, and one must resort to some kind of limiting process. For instance,
you fill up a given solid, as best as possible, with increasingly small cubes,
and take a limit of the corresponding sums. This is what is typically done
in a calculus class. This procedure suffices to give a satisfactory definition of
volume for household solids, such as spheres and ellipsoids.

Taking a measure-theoretic approach vastly broadens the number of solid
bodies whose volume one can define in a satisfactory way. With the exception
of Chapter 22, where we prove the Banach–Tarski Theorem, we will always
deal with very simple solids for which all reasonable definitions of volume
coincide.
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8.2 The Pythagorean Theorem

Our definition of distance in R2 somewhat has the Pythagorean Theorem
built into it. The distance from the point (a, b) to (0, 0) is defined to be
c =

√
a2 + b2. So, we automatically have a2 + b2 + c2. Here a, b and c are

the side lengths of the right triangle with vertices (0, 0) and (a, 0) and (a, b).
Note that this triangle is rather special: Two of its sides are parallel to the
coordinate axes.

Here we will prove the Pythagorean Theorem for an arbitrary right trian-
gle in the plane. There are many, many proofs; I’ll present my two favorites.

A

C

B

A

A

A

A

B

B

B

B
C

C

C

C

Figure 8.1. Two views of the Pythagorean Theorem

Referring to the left half of Figure 8.1, the outer square has area (A+B)2.
At the same time, the outer square breaks into 4 right triangles, each having
area AB/2, and an inner square having area C2. Hence (A+B)2 = 2AB+C2.
Simplifying gives A2 + B2 = C2. That is the first proof.

Here is the second proof. For any right triangle, there is a constant k such
that the distance from the right-angled vertex to the hypotenuse is k times
the length of the hypotenuse. This constant k only depends on the shape
of the triangle, and not on its size. By the base times height formula for
area, the area of the triangle is kL2, where L is the length of the hypotenuse.
Again, the constant k only depends on the shape of the triangle and not on
its size. The three triangles on the right-hand side of Figure 8.1 have the
same shape. The large one has area kC2, and the two small ones have area
kA2 and kB2. Hence kC2 = kA2 + kB2. Cancelling the k (a constant we
don’t care about) gives A2 + B2 = C2.

8.3 The X Theorem

Here we prove a classic result from high school geometry. Let S1 be the
unit circle in the plane and let A and B be two chords of S1, as shown on
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the left-hand side of Figure 8.2. Let L(A,B) be the length of the region
R(A,B) ⊂ S1 opposite the two acute angles of A ∩ B. (In case A ⊥ B we
choose arbitrarily.) Figure 8.2 shows R(A,B) drawn thickly.

Figure 8.2. The chords A and B.

Theorem 8.3 (The X Theorem) L(A,B) only depends on the acute an-
gle θ(A,B) between A and B and not on the positions.

Proof: To see this, imagine that A and B are toothpicks that we can roll
to a new location. The right-hand side of Figure 8.2 shows what happens
when roll A parallel to itself. By symmetry (about the line perpendicular
to the direction of motion) the same length of arc is added to one side of
R(A,B) as is subtracted from the other. Hence, the sum of the lengths does
not change. The same goes when we roll B parallel to itself. At the same
time, rotating the disk by any amount changes neither the angle between A
and B nor L(A,B). Rotating and rolling as necessary, we can get to any
position without changing L(A,B). ♠

When A and B cross at the center of S1, we have L(A,B) = 2θ(A,B).
By the X Theorem, this result holds in general.

As a limiting case, the X Theorem applies when A∩B ∈ S1. In this case,
we can reformulate the result. We fix two points x1, x2 ∈ S1 and consider
the angle θ(y) between yx1 and yx2 as a function of y ∈ S1. The X Theorem
implies that θ(y) is independent of y.

8.4 Pick’s Theorem

During college I learned Pick’s Theorem from a friend and classmate of mine,
Sinai Robins. If you want to learn a whole lot about Pick’s Theorem and
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its higher-dimensional generalizations, see the the book [BRO] by Matthias
Beck and Sinai Robins.

Figure 8.3. Some lattice polygons

Let Z2 ⊂ R2 denote the ordinary lattice of integer points. Say that a
lattice polygon is a polygon in R2 whose vertices lie in Z2. That is, the
vertices have integer coordinates. Figure 8.3 shows some examples. Let P
be a lattice polygon. We let i(P ) denote the number of vertices contained in
the interior of the region bounded by P . We let e(P ) denote the number of
vertices contained on the edges of P . (The vertices of P are included in the
count for e(P ).)

Theorem 8.4 (Pick) The area of the region bounded by P is

i(P ) +
e(P )

2
− 1.

For the examples in Figure 8.3, you can of course verify the formula di-
rectly. During our proof, we will often use the phrase “the area of P”, when
we really mean to say “the area of the region bounded by P”. We hope that
this slight abuse of terminology does not cause confusion.

Exercise 1. Let P be a parallelogram whose vertices have integer coor-
dinates. Prove that the area of P is an integer. (Hint : Work in C and
translate so that the vertices are 0 and V and W and V +W . Then establish
the formula area(P ) = Im(VW ).)

We say that a lattice parallelogram P is primitive if i(P ) = 0 and e(P ) =
4.

Lemma 8.5 Pick’s Theorem holds for primitive parallelograms.
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Proof: By Exercise 1, the parallelogram P has integer area. To finish the
proof, we just have to show that P has area at most 1.

Let X be the square torus obtained by identifying the opposite sides of
the unit square. Note that X has area 1. Let E : R2 → X be the universal
covering map. See §6.3. Let P o denote the interior of the region bounded by
the primitive parallelogram P .

We claim that E(P o) is embedded in X. Otherwise, we can find two
points x1, x2 ∈ P o such that e(x1) = e(x2). But then x1−x2 ∈ Z2. Let V be
the vector whose tail is x1 and whose head is x2. This is a vector with integer
coordinates. Using the convexity of P , we can find a vector W parallel to V
whose tail is a vertex of P and whose head lies either on the interior of an
edge of P or in P0. Figure 8.4 shows the situation.

W

V

P

Figure 8.4. Translating a vector

Since W ∈ Z2, and the vertices of P are in Z2, the head of W lies in
Z2. But then we either have i(P ) > 0 or e(P ) > 4, which is a contradiction.
Now we know that E(P ) is embedded. Since E(P ) is embedded, we see that

area(P ) = area(E(P )) ≤ area(X) = 1.

This completes the proof. ♠

We say that a primitive triangle is a lattice triangle T such that i(T ) = 0
and e(T ) = 3.

Exercise 2. Prove Pick’s Theorem for primitive triangles.

We say that P dissects into two lattice polygons P1 and P2 if

• P1 and P2 bound disjoint open regions, and P1 ∩P2 is a connected arc.
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• The closed region bounded by P is the union of the closed region
bounded by P1 and the closed region bounded by P2.

Lemma 8.6 Suppose that P dissects into P1 and P2. If Pick’s Theorem
holds for P1 and P2, then it also holds for P .

Proof: Let A = area(P ) and A1 = area(P1), etc. Obviously A = A1 + A2.
Let n denote the number of vertices on P1 ∩P2. Let i = i(P ) and i1 = i(P1),
etc. We have

i = i1 + i2 + n− 2, e = e1 + e2 − 2n+ 2.

Therefore,

i+ e/2− 1 = i1 + i2 + n− 2 + e1/2 + e2/2− n+ 1− 1

= (i1 + e2/2− 1) + (i2 + e2/2− 1) =∗ A1 + A2 = A.

The starred equality comes from Pick’s Theorem applied to P1 and P2. ♠

P

P1

P2

Figure 8.5. Dissecting a polygon

Exercise 3. Suppose that P is a lattice polygon that is not a primitive
triangle. Prove that P can be dissected into two lattice polygons.

By Exercise 3, any lattice polygon can be written as the finite union of
primitive triangles, each of which have area 1/2. Hence, any lattice polygon
has area which is a half-integer. The rest of our proof goes by induction on
the area.

Lemma 8.7 If P is a lattice polygon with area at most 1/2 then P is a
primitive triangle. In particular, Pick’s Theorem holds for P .
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Proof: Applying Exercise 3 iteratively, we see that any lattice polygon can
be divided into primitive triangles. If P is not a primitive triangle, then P
can be divided into at least 2 primitive triangles. But each such triangle has
area 1/2. This would force P to have area at least 1. ♠

Now let P be a general lattice polygon. If P is not a primitive triangle,
we can dissect P into two lattice polygons P1 and P2 having smaller area.
By induction Pick’s Theorem holds for P1 and P2. But then Pick’s Theorem
holds for P as well. This completes the proof.

8.5 The Polygon Dissection Theorem

We continue with the theme of polygon dissections. Here we prove a classic
result about polygon dissections. This result is called the Bolyai–Gerwein
Theorem, but the earliest attribution I have seen is to a work by William
Wallace from 1807; See [WAL]. A dissection of a polygon P is a description
of P as the union

P1 ∪ · · · ∪ Pn

of smaller polygon, no two of which overlap. That is, the polygons have
disjoint interiors.

Two polygons P and P ′ are said to be dissection equivalent if there are
dissections

P =
n⋃

i=1

Pi, P ′ =
n⋃

i=1

P ′
i

such that Pi and P ′
i are isometric for all i = 1, . . . , n. In this case, we write

P ∼ P ′.

Exercise 4. Prove that ∼ is an equivalence relation.

Figure 8.6 illustrates why a triangle is always equivalent to a parallelo-
gram.
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Figure 8.6. Equivalence between a triangle and a parallelogram

Figure 8.7 illustrates why a parallelogram is always equivalent to a rect-
angle.

Figure 8.7. Equivalence between a parallelogram and a rectangle

Combining the two facts we have just illustrated, we see that a triangle
is always equivalent to some rectangle. Let R(A,B) be a rectangle with side
lengths A and B. We take A < B.

Lemma 8.8 Let A′ ∈ (A,B). Then R(A,B) ∼ R(A′, B′). Here B′ is such
that A′B′ = AB. In particular, any rectangle is equivalent to a square.

Proof: Figure 8.8 shows a 2 step construction, based on a real parameter
t ∈ (0, B). The first part of the figure shows that R ∼ S, and the second part
shows that S ∼ T . The two central figures are both copies of S, but we have
chosen to emphasize a different decomposition in each copy. The shape of
the rectangle T varies continuously with the parameter t! The construction
works when t is small, and continues to work until we reach some t0 so that
the point x(t0) coincides with a corner of T (t0). But, in this extreme case,
T is a square. As t varies in [0, t0], the rectangle T (t) interpolates between
R(A,B) and a square. ♠
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Figure 8.8. Two part construction

Lemma 8.9 A triangle of area A is equivalent to a 1× A rectangle.

Proof: First of all, our triangle is equivalent to some rectangle. By the
previous result, any two rectangles of the same area are equivalent. ♠

Now we can finish the proof. It suffices to prove the result for unit area
polygons. Let P be a polygon of unit area. We first dissect P into finitely
many triangles T1, . . . , Tm, having areas a1, . . . , am. Each Tk is equivalent to
a rectangle R(1, ak). But, when we stack up all these rectangles, we get a
rectangle having side lengths 1 and

∑
ak = 1. That is, any unit area polygon

is equivalent to the unit square. The final result is immediate.
You might wonder whether the same result holds for polyhedra in higher

dimensions. This turns out to be false, and the result is known as Dehn’s
Dissection Theorem. We will give a proof of Dehn’s Dissection Theorem in
Chapter 23.

8.6 Line Integrals

We now discuss line integrals as a preparation for presenting and proving
Green’s Theorem. This material can be found in any book on several variable
calculus; see, for instance, [SPI].

A linear functional is a linear map from R2 to R. A 1-form on an open
subset U ⊂ R2 is a smooth choice p → ωp of a linear functional at each
point p ∈ U . We mention two special 1-forms, dx and dy. These 1-forms are
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defined on every point of R2, and

dx(v1, v2) = v1, dy(v1, v2) = v2, (20)

for any tangent vector (v1, v2) based at any point. One can write a general
1-form ω as a pointwise varying linear combination of these two special ones.
That is,

ω = fdx+ gdy, (21)

where f, g : U → R are smooth functions. At the point p, we have

ωp(V ) = f(p)v1 + g(p)v2. (22)

Here V = (v1, v2) is some vector based at p.
Let γ : [0, 1] → R be a smooth curve, and let ω be a 1-form. We define

∫

γ

ω =

∫ 1

0

ωγ(t)(γ
′(t))dt.

Exercise 5. Prove that
∫

γ

ω1 + ω2 =

∫

γ

ω1 +

∫

γ

ω2.

In other words, the integral is linear.

Exercise 6. Prove that ∫

−γ

ω = −
∫

γ

ω.

Here −γ is the curve obtained by reversing the direction of γ.

It turns out that the integral only depends on the image and orientation
of γ. If

s : [0, 1] → [0, 1]

is an orientation-preserving diffeomorphism, then setting β = γ ◦ s, we have

Lemma 8.10 ∫

β

ω =

∫

γ

(ω).
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Proof: By Exercise 5, it suffices to consider the forms fdx and gdy. The
proof for gdy is the same as for fdx, so we will just consider the case ω = fdx.
In this case we set γ(t) = (u(t), v(t)) and note that

∫

γ

ω =

∫ 1

0

(fu′) dt,

Here u′ = du/dt. At the same time
∫

β

ω =

∫ 1

0

d(u ◦ s)
dt

f ◦ s(t) dt =∗
∫ 1

0

(
fu′

)
◦ s(t) s′(t)dt.

The starred equality is the chain rule. The first integral equals the last by
the change-of-variables formula for integration. ♠

Here is an important observation. Since the line integral only depend on
the oriented image of γ, we can specify a line integral just by specifying a
curve in the plane and its orientation.

Line integrals can be more generally defined for piecewise smooth curves.
To say that γ is a piecewise smooth curve is to say that γ = γ1 ∪ · · · ∪ γn,
where each γj is a smooth curve, and consecutive curves meet end to end.
We define ∫

γ

ω =
n∑

j=1

∫

γj

ω.

In particular, line integrals make sense for polygonal arcs.

Exercise 7. This is a crucial exercise. Let P1 and P2 and P be the polygons
from Figure 8.4. Suppose that all these polygons are oriented counterclock-
wise. Prove that ∫

P

ω =

∫

P1

ω +

∫

P2

ω.

8.7 Green’s Theorem for Polygons

Let D be a polygon in the plane, and let γ = ∂D, the boundary of D oriented
counterclockwise. Let ω = fdx+gdy be a 1-form defined in an open set that
contains D in its interior. Green’s Theorem says that

∫

γ

ω =

∫

D

(gx − fy) dxdy. (23)
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Here fy = ∂f/∂y and gx = ∂g/∂x. The integral on the right is a double
integral.

In our proof, it is convenient to let dω be the integrand on the right hand
side of equation (23). We will just use this piece of notation to shorten our
equations, but actually dω has a meaning as the exterior derivative of ω. See
[SPI] if you are curious about this.

We say that a special triangle is a right triangle whose sides are parallel
to the coordinate axes. The three white triangles in Figure 8.9 below are
examples of special triangles.

Exercise 8. Let D be the special triangle with vertices (0, 0) and (A, 0)
and (0, B) with A and B positive. Let γ be the boundary of D, oriented
counterclockwise. Let ω = fdx. Prove that

∫

γ

ω =

∫ A

0

(f(x, 0)− f(x, x′))dx,

where x′ (as a function of x) is such that (x, x′) lies on the diagonal of D.

Lemma 8.11 Green’s Theorem is true for special triangles.

Proof: Let D be a special triangle. We can translate the whole picture so
that the vertices of D are as in Exercise 8. By the Fundamental Theorem of
Calculus, we get

∫

D

dω =

∫

D

(−fy) =

∫ A

x=0

(∫ x′

y=0

(−fy)dy
)
dx

=

∫ A

0

(f(x, 0)− f(x, x′))dx =

∫

γ

ω.

The last equality comes from Exercise 8. ♠

Our next result has an easy direct proof, but we will give a rather long-
winded proof to illustrate a crucial property of line integrals.

Lemma 8.12 Green’s Theorem is true for any rectangle whose sides are
parallel to the coordinate axes.
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Proof: Let R be such a rectangle. We write R = T1 ∪ T2, where T1 and T2

are two special triangles meeting along a diagonal. We certainly have∫

R

dω =

∫

T1

dω +

∫

T2

dω.

On the other hand, by Exercise 7, we have∫

∂Rd

ω =

∫

∂T1

ω +

∫

∂T2

ω.

Here ∂R denotes the boundary of R taken counterclockwise, and likewise
for the other expressions. Since Green’s Theorem holds for special triangles,
we can equate the right-hand sides of our last two equations. But then we
can equate the left-hand sides as well. Hence Green’s Theorem holds for R. ♠

Lemma 8.13 Green’s Theorem is true for any triangle.

Proof: Figure 8.9 shows how we can realize an arbitrary triangle D as a
set of the form R − T1 − T2 − T3, where R is a rectangle and Tk is a special
triangle for k = 1, 2, 3. We have∫

D

dω +
∑∫

Tk

dω =

∫

R

dω.

The same cancellation trick as in the previous lemma shows that∫

∂D

ω +
∑∫

∂Tk

ω =

∫

∂R

ω.

Green’s Theorem, applied to cases we already know, allows us to cancel off
all terms, leaving just the one we don’t know. ♠
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Figure 8.9. A union of triangles

Lemma 8.14 Green’s Theorem is true when the domain D is an arbitrary
polygon.

Proof: Partition D into triangles and apply the same cancellation trick as
above. ♠
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9 Spherical Geometry

The purpose of this chapter is to prove some results about spherical geometry.
As usual, S2 denotes the unit sphere inR3. Most of the results in this chapter
can be found in any book on differential geometry; see, for instance, [BAL].
The one topological result, the Hairy Ball Theorem, can be found in most
topology books; see, for instance, [GPO].

9.1 Metrics, Tangent Planes, and Isometries

S2 has two natural metrics on it. The easiest one to define is the chordal
metric: the distance between p, q ∈ S2 is ‖p−q‖. This just uses the Euclidean
metric on R3.

The other metric is often called the round metric. We define the length
of a curve on S2 to be its length when considered a curve in R3. So, if
γ : [a, b] → S2 is a differentiable curve, we have

L(γ) =

∫ b

a

‖γ′(t)‖ dt. (24)

The distance between two points p and q in the round metric is the infimum
of the lengths of all paths on S2 that join p to q. We will see below that
this infimum is realized by a path that is an arc of a great circle. We will
see in Chapter 11 that this way of defining a metric is part of a general
construction.

In this chapter we will ignore the chordal metric and work with the round
metric. Fortunately, any isometry of the chordal metric is an isometry of the
round metric and vice versa. The point is that one can give a formula for
the one metric in terms of the other. This will become more clear when we
work out what the shortest paths are in the round metric.

Later, when we study Riemannian surfaces, we will see that an object
called the tangent plane plays a fundamental role in the theory. For the
case of the sphere, the tangent plane has a very short and simple definition.
The tangent plane to S2 at the point p ∈ S2 is the plane Tp(S

2) such that
p ∈ Tp(S

2) and Tp(S
2) is perpendicular to the vector pointing from 0 to p.

The tangent plane has the following nice property. Any curve γ : [a, b] → S2

is such that the velocity γ′(t) lies in the tangent plane Tγ(t)(S
2).
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Any rotation of R3 gives rise to an isometry of S2. One such rotation is
given by the matrix

Mt =




cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 1


 .

This map rotates by t around the z axis and thus rotates S2 about the north
and south poles. One can find similar maps that rotate around the other two
coordinate axes. We call a rotation about one of the coordinate axes a basic
rotation.

Just by composing the basic rotations, we can move any one point of S2

to any other point. Moreover, once we know that we can move any point
of S2 to any other, we see that we can find an isometry of S2 that fixes
any given point and rotates through an angle t about that point. Indeed, if
T : S2 → S2 is an isometry that carries (0, 0, 1) to p, then TMtT

−1 is the
desired rotation about p.

All the isometries we have described so far come from orientation-preserving
linear maps of R3. The other “half” of the isometries come from orientation-
reversing linear maps ofR3. One such isometry is given by the map (x, y, z) →
(x, y,−z). This map interchanges the north and south poles of S2 and fixes
the equator. More generally, if v ∈ S2 is any point, the map

Tv(w) = −w + 2(v · w)v (25)

is an orientation-reversing isometry. The point is that Tv is obviously a linear
transformation, and a short calculation shows that

Tv(w1) · Tv(w2) = w1 · w2.

Note also that Tv(v) = −v, so that Tv swaps v and −v. We call the maps in
equation (25) basic reflections .

9.2 Geodesics

There are many equivalent definitions of a geodesic. To avoid a buildup
of terminology, we will give a definition that only relies on what we have
already presented. A geodesic on S2 is a curve γ : [a, b] → S2 with the
following properties:
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• γ has constant speed.

• If t1 and t2 are any sufficiently close parameters in [a, b], then the
restriction of γ to [t1, t2] is the shortest curve on S2 that joins γ(t1) to
γ(t2). In other words, γ is locally a length-minimizing curve.

We will see that a curve is a geodesic if and only if it has constant speed
and its image lies in a great circle. A great circle is the intersection of a plane
through the origin with S2. The study of geodesics on S2 is a classical one.
It is treated in essentially every book on differential geometry. Here we just
establish a few basic facts.

Lemma 9.1 The shortest differentiable path joining two points on the sphere
exists and is an arc of a great circle.

Proof: Let x and y be two points. We rotate so that x is the north pole.
For convenience, we assume that y is not the south pole, so that there is a
unique great circle C joining x and y. Let γ be any differentiable curve that
joins x to y.

There is a map φ : S2 → C. The point φ(p) is the point of C that lies on
the same line of latitude. Geometrically, we think of rotating S2 around the
north and south poles, and watching p rotate around until it sticks on C.

The differential dφp is a map from the tangent plane Tp(S
2) onto the line

tangent to C at φ(p). We note two properties of this map.

• If v is parallel to a line of longitude, then ‖dφ(v)‖ = ‖v||.

• If w is parallel to a line of latitude, then dφ(v) = 0.

Note also that the lines of longitude and latitude are perpendicular whenever
they intersect.

These properties imply that dφ is a distance nonincreasing map. More-
over, dφ strictly decreases the length of any tangent vector that is not parallel
to a line of longitude. Therefore, the length of φ(γ) is strictly less than the
length of γ unless γ traces out a line of longitude. But then γ traces out
C, because the lines of longitude are great circles and only one great circle
connects x to y (in our case). ♠

Recall that two points x, y ∈ S2 are called antipodal if x = −y. Two
points are antipodal if and only if they lie on more than one great circle. In
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case x and y are not antipodal, we define the geodesic connecting x to y to
be the shorter of the two great circular arcs connecting x to y.

Now that we know about geodesics, we can prove a basic result about
isometries of S2.

Lemma 9.2 Any isometry of S2 is a composition of basic reflections.

Proof: Note that a basic rotation, i.e. a rotation about one of the coordinate
axes, is a composition of two basic reflections. So, if we can prove that every
isometry is the composition of basic rotations and basic reflections, then we
have proved that every isometry is the composition of basic reflections.

Let I be a mystery isometry of S2. Since we can move any point of S2

to any other point using compositions of basic rotations, we can compose
I with basic rotations so that the result fixes (0, 0, 1). So, without loss of
generality, we can assume that I fixes (0, 0, 1).

The equator E on S2 is the set of points of the form (x, y, 0). The equator
divides the sphere into the upper hemisphere and the lower hemisphere. Any
point on the lower hemisphere is farther from (0, 0, 1) than is any point on
the upper hemisphere. For this reason, I(E) = E. Now, E is a circle and
I is an isometry of E. So, I acts on E either as a rotation or a reflection.
Composing I with basic reflections and/or rotations, we can assume that I
fixes every point on E.

Any point p ∈ E is connected to (0, 0, 1) by the arc γp, which is one
quarter of a great circle. Since I fixes the endpoints of γp, and γp is the
unique shortest path joining p to (0, 0, 1), we have I(γp) = γp. Moreover, I
preserves distances along γp. Hence I fixes every point of γp. Since p is an
arbitary point of E, we see that I fixes every point of the upper hemisphere.
A similar argument shows that I fixes every point of the lower hemisphere.
Hence, I is the identity. ♠

9.3 Geodesic Triangles

Let d denote the distance on S2. If x and y are antipodal, then d(x, y) = π.
In general, d(x, y) = θ, where θ is the angle between the vector pointing to
x and the vector pointing to y. Familiar formulas in linear algebra give

cos(d(x, y)) = x · y, sin(d(x, y)) = ‖x× y‖. (26)
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Here × is the cross product. What makes these formulas simple is the fact
that ‖x‖ = ‖y‖ = 1.

We measure angles on S2 using the dot product on R3. Suppose that C1

and C2 are two geodesics connecting x to y1 and y2. The angle between C1

and C2 at x is just the angle between the tangent vectors at x. This is the
same as the dihedral angle between the plane Π1 containing (0, x, y1) and the
plane Π2 containing (0, x, y2). As usual, there are two angles we can measure
at x, and the sum of these angles is π.

Let x1, x2, x3 be three points, all contained in the same hemisphere. Then
there is a unique geodesic Cj joining xj−1 and xj+1, with the indices taken
cyclically. The union of these geodesics is called a spherical triangle. Let θj
be the interior angle at xj, and let Lj denote the length of Cj.

There is a beautiful formula for the area of a spherical triangle, known as
Giraud’s Theorem. (Thomas Harriot discovered the result in 1603 but did
not publish it.) The area is given by

θ1 + θ2 + θ3 − π. (27)

This result is a special case of the general Gauss–Bonnet Theorem, a result
proved much later on. Here we sketch a proof of Giraud’s Theorem. The
case when the 3 points lie on the same great circle is trivial. In all other
cases, the whole triangle lies in an open hemisphere.

Say that a lune is a region bounded by two great semicircles. A lune has
two vertices. By symmetry, the interior angles at either end of the lune are
the same. Any two lunes having the same interior angles are isometric to
each other. Let A(θ) be the area of a lune having angle θ.

Lemma 9.3 A(θ) = 2θ for all θ ∈ [0, π].

Proof: If θ = π, the lune is precisely a hemisphere. Hence

A(π) = 2π. (28)

Moreover, a lune having interior angle θ decomposes into n lunes having
interior angle θ/n. Hence

A(θ) = nA(θ/n). (29)

Combining equations (28) and (29) we see that A(θ) = 2θ whenever θ is a
rational multiple of π. But A is a continuous function of θ. Hence A(θ) = 2θ
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for all θ. ♠

Now let T be a geodesic triangle, contained in a hemisphere, having in-
terior angles θ1, θ2, and θ3. Extending the sides of T , we can cover S2 by 6
lunes.

Figure 9.1, which needs some interpretation, shows the situation. In
Figure 9.1, we have drawn T extremely small, and placed near (say) the north
pole. We are looking down on T . The sides of T practically look straight
because T is very small. We have extended the sides of T and partially shown
them. These sides continue all the way around S2 and join up again near the
south pole, where they form another copy T ′ of T . Our technical assumption
about T lying in a hemisphere guarantees that T and T ′ are disjoint. We
have drawn the boundary of T thickly, and we have shaded two of the lunes.
These two lunes meet at both vertices, the other vertex being near the south
pole.

Figure 9.1. Dissected sphere

By Lemma 9.3, the total area of the lunes is

4(θ1 + θ2 + θ3). (30)

With the exception of some points on the edges of the lunes, every point
of S2 − (T ∪ T ′) is covered once by a lune. At the same time, every point of
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T ∪ T ′ is covered 3 times by the union of the lunes. Letting A be the area of
T (and T ′) we have

4(θ1 + θ2 + θ3) = (4π − 2A) + 6A = 4π + 4A. (31)

Simplifying this equation gives A = θ1 + θ2 + θ3 − π, as desired.

Exercise 1. Try to draw a version of Figure 9.1 that shows the entire
sphere, as well as the 6 lunes.

9.4 Convexity

It doesn’t really make much sense to talk about the convexity of a general
subset of S2, because some pairs of points on S2 can be joined by more than
one shortest path. However, if X ⊂ S2 is entirely contained in an open
hemisphere H, then any two points of X can be joined by a unique arc of a
great circle that has length less than π. This arc remains inside H. We call
this the geodesic segment joining the points.

We call X convex if the geodesic segment joining any pair of points in X
remains in X. This definition appears to depend on H, but it does not.

Exercise 2. Prove that the notion of convexity for X does not depend
on the hemisphere relative to which it is defined. That is, if X is contained
in the intersection H1 ∩H2 of two open hemispheres, then X is convex rela-
tive to either one of them.

If X ⊂ H ⊂ S2 is an arbitrary set, we define the convex hull of X to be
the intersection of all the closed convex subsets of H that contain X. We
call this set Hull(X).

Exercise 3. Prove that Hull(X) is well defined, independent of the open
hemisphere that contains X. Prove also that Hull(X) is convex relative to
any open hemisphere that contains it.

The purpose of the next 2 exercises is to establish some background re-
sults needed for the Cauchy Rigidity Theorem, proved in Chapter 24. We
say that a convex spherical polygon is a simple closed polygonal curve in S2

made from arcs of great circles that is contained in a hemisphere and bounds
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a convex set contained in that same hemisphere. We insist that consecutive
arcs make an angle which is distinct from π. From Exercise 3, the definition
of a convex spherical polygon does not depend the choice of hemisphere that
contains it.

Exercise 4. Let Γ be a convex spherical polygon. Let Ĉ be a great cir-
cle that extends a side C of Γ. Then Γ − C is contained in one of the two
open hemispheres bounded by Ĉ.

Exercise 5. Let Q and Q′ be convex spherical quadrilaterals. Let the sides
of Q be C1, C2, C3, C4. Let θj be the interior angle between Cj and Cj+1.
Make the same definitions for Q′. Suppose that Cj and C ′

j have the same
length for all j. Label a vertex of Q by a (+) if θ > θ′ at that vertex, and by
a (−) if the opposite inequality holds. Prove that the labels of the vertices
of Q must have the form (+,−,+,−) or (0, 0, 0, 0), up to cyclic ordering.

9.5 Stereographic Projection

Let C denote the complex numbers. We think of ∞ as an extra point and
consider C∪∞. We want to think of C∪∞ as a sphere. To do this, we want
to put a metric on C ∪ ∞ so that the result is homeomorphic to a sphere.
The metric we get on C ∪∞ is not really so natural, but it does allow us to
speak of continuous maps from C ∪ ∞ to itself. This is something we will
take up in the next chapter.

One way to put a metric on C ∪∞ is to choose a map from S2 to C ∪∞
which is a homeomorphism from C to S2 minus a single point, say (0, 0, 1).
Then, we put a metric on C ∪∞ so that our map is an isometry. One very
nice map from S2 to C ∪∞ is stereographic projection.

(0,0,1)

Figure 9.2. Stereographic projection
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As Figure 9.2 (drawn 1 dimension down) illustrates, stereographic pro-
jection has the following geometric description. We identify C with the
horizontal plane R2 × {0} in R3. Half of S2 lies above this plane and half
below. We map (0, 0, 1) to ∞. Given any other point p ∈ S2, we define
φ(p) ∈ C to be the point such that (0, 0, 1) and p and φ(p) are collinear.

The formula is given by

φ(x, y, z) =
( x

1− z

)
+
( y

1− z

)
i. (32)

The inverse map is given by

φ−1(x+ iy) =
( 2x

1 + x2 + y2
,

2y

1 + x2 + y2
, 1− 2

1 + x2 + y2

)
.

One can check easily that these maps are inverses of each other.

Exercise 6. Check that our formula for stereographic projection matches
the geometric description.

Exercise 7. Check that φ gives a homeomorphism from S2 − (0, 0, 1) to
C.

One of the nice facts about stereograpic projection is the following. If
C ⊂ S2 is a circle, then φ(C) is either a circle in C or else a straight line
(union ∞). When C contains the point (0, 0, 1), this result is fairly obvious
from the geometric description. The idea is that any circle C ⊂ S2 has the
form ΠC ∩ S2 for some plane ΠC . When (0, 0, 1) ∈ ΠC , we see from the
geometric description that

φ(ΠC) = (C ∩ ΠC) ∪∞.

A general geometric proof, based on conic sections, is given in [HCV]. In
§14.3, we will give a proof based on complex analysis.

Exercise 8 (Challenge). Find your own proof that stereographic pro-
jection maps circles in S2 to either circles or straight lines in C.

9.6 The Hairy Ball Theorem

Let me end the chapter with the Hairy Ball Theorem. This is really a result
about the topology of the sphere, and not its geometry, but it is such a great
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result that I wanted to put it in.
A unit field on S2 is a continuous choice of unit vector tangent to S2

at each point. The Hairy Ball Theorem says that a unit field on S2 does
not exist. The name of the theorem (which has somewhat fallen out of
favor) comes from the following interpretation: If you have a sphere that is
completely covered in hair, you cannot comb the hair so that it lies flat and
varies continuously. There has to be some kind of cowlick somewhere.

We will suppose that a unit field exists, and derive a contradiction. Sup-
pose we have a unit field U on S2. Let γ : [0, 1] → S2 be the a smooth loop,
so that γ(0) = γ(1). For each t ∈ [0, 1), we let θ(t) denote the counterclock-
wise angle between the tangent vector γ′(t) and our vector field at γ(t). We
choose so that θ(t) varies continuously. As t → 1, the value θ(t) necessarily
tends to an integer multiple of 2π. We let

N(U , γ) = lim
t→1

θ(t)− θ(0). (33)

Intuitively, you are walking along γ, turning your head according the direc-
tion of U . Once you get back to where you start, you will be looking in the
same direction as when you started, except that your head will be turned
around N times counterclockwise! Compare this discussion about the wind-
ing number given in §5.1,

Exercise 9. Prove that the quantity N(U , γ) is independent of the smooth
parametrization of γ, as long as the orientation does not switch. Also
prove that N(U , γ) = N(U , γ′) when γ and γ′ are homotopic loops. (Hint :
N(U , γ) is continuous and integer-valued.)

Consider the case when γ is a small loop that winds once around the
north pole. As we walk around γ, keeping our head aligned with the unit
field, our head always points in roughly the same direction. So, when we
make one complete circuit, our neck is twisted once around. (Don’t try this
at home.) That is N(U , γ) = ±1. If we replace γ by −γ, the loop that is
oriented in the opposite direction, the sign of N(U , γ) switches.
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Figure 9.3. Two homotopies

We orient γ so that N(U , γ) = 1. There are two ways to slide γ to a small
loop around the south pole. On the one hand, we can push γ around the
side, following a single line of longitude and keeping γ small. On the other
hand, we can pull γ down over the whole sphere, moving through the circles
of latitude. Figure 9.1 shows a top-down view of the two methods. One
method leads to a small loop β about the south pole and the other method
leads to −β, the oppositely oriented loop. By Exercise 1, we have

N(U , β) = N(U , γ) = N(U ,−β) = −N(U , β) = 1.

This equation says that 1 = −1, which is a contradiction. This proves the
Hairy Ball Theorem.
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10 Hyperbolic Geometry

The purpose of this chapter is to give a bare bones introduction to hyperbolic
geometry. Most of material in this chapter can be found in a variery of
sources, for example [BE1], [KAT], [RAT], or [THU]. The first 2 sections of
this chapter might not look like geometry at all, but they turn out to be very
important for the subject.

10.1 Linear Fractional Transformations

Now we take up the discussion started in §1.6. Suppose that

A =

[
a b
c d

]

is a 2×2 matrix with complex number entries and determinant 1. The set of
these matrices is denoted by SL2(C). In fact, this set forms a group under
matrix multiplication.

The matrix A defines a complex linear fractional transformation

TA(z) =
az + b

cz + d
.

Such maps are also called Möbius transformations . Note that the denomi-
nator of TA(z) is nonzero as long as z 6= −d/c. It is convenient to introduce
an extra point ∞ and define TA(−d/c) = ∞. This definition is a natural one
because of the limit

lim
z→−d/c

|TA(z)| = ∞.

The determinant condition guarantees that a(−d/c) + b 6= 0, which explains
why the above limit works. We define TA(∞) = a/c. This makes sense
because of the limit

lim
|z|→∞

TA(z) = a/c.

Exercise 1. As in §9.5, we introduce a metric on C ∪ ∞ so that C ∪ ∞
is homeomorphic to the unit sphere S2 ⊂ R3. Prove that TA is continuous
with respect to this metric. (Hint : Use the limit formulas above to deal with
the tricky points.)
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Exercise 2. Establish the general formula

TAB = TA ◦ TB,

where A,B ∈ SL2(R). In particular (since A−1 exists) the inverse map T−1
A

exists. By Exercise 1, this map is also a continuous map of C∪∞. Conclude
that TA is a homeomorphism of C ∪∞.

10.2 Circle Preserving Property

A generalized circle in C ∪ ∞ is either a circle in C or a set of the form
L∪∞, where L is a straight line in C. Topologically, the generalized circles
are all homeomorphic to circles. In this section we will prove the following
well-known result.

Theorem 10.1 Let C be a generalized circle and let T be a linear fractional
transformation. Then T (C) is also a generalized circle.

One can prove this result by a direct (though tedious) calculation. The
book [HCV] has a nice proof involving the geometry of stereographic pro-
jection. For fun, I will give a rather unconventional proof. I’ll prove 4
straightforward lemmas and then give the main argument.

Lemma 10.2 Let C be any generalized circle in C. Then there exists a
linear fractional transformation T such that T (R ∪∞) = C.

Proof: If C is a straight line (union ∞), then a suitable translation followed
by rotation will work. So, consider the case when C is a circle. The linear
fractional transformation

T (z) =
z − i

z + i

maps R ∪ ∞ onto the unit circle C0 satisfying the equation |z| = 1. The
point is that every point z ∈ R is the same distance from i and −i, so that
|T (z)| = 1. Next, one can find a map of the form S(z) = az + b that carries
C0 to C. The composition S ◦ T does the job. ♠

Lemma 10.3 Suppose that L is a closed loop in C ∪∞. Then there exists
a generalized circle C that intersects L in at least 3 points.
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Proof: If L is contained in a straight line (union ∞) the result is obvious.
Otherwise, L has 3 noncollinear points and, like any 3 noncollinear points,
these lie on a common circle. ♠

Lemma 10.4 Let (z1, z2, z3) = (0, 1,∞). Let a1, a2, a3 be a triple of distinct
points in R ∪ ∞. Then there exists a linear fractional transformation that
preserves R ∪∞ and maps ai to zi for i = 1, 2, 3.

Proof: The map T (z) = 1/(a3−z) carries a3 to ∞, but does not necessarily
do the right thing on the points a1 and a2. However, we can compose T by
a suitable map of the form z → rz + s to fix the images of a1 and a2. ♠

Lemma 10.5 Suppose T is a linear fractional transformation that fixes 0
and 1 and ∞. Then T is the identity map.

Proof: Let

T (z) =
az + b

cz + d
.

The condition T (0) = 0 gives b = 0. The condition T (∞) = ∞ gives c = 0.
The condition T (1) = 1 gives a = d. Hence T (z) = z. ♠

Now we can give the main argument. Suppose that there is a linear
fractional transformation T and a generalized circle C such that T (C) is not
a generalized circle. Composing T with the map from Lemma 10.2, we can
assume that C = R∪∞. By Lemma 10.3 there is a generalized circle D such
that D and T (R ∪∞) share at least 3 points. Call these 3 points c1, c2, c3.

Again by Lemma 10.2, there is a linear fractional transformation S such
that S(R∪∞) = D. There are points a1, a2, a3 ∈ R∪∞ such that S(aj) = cj
for j = 1, 2, 3. Also, there are points b1, b2, b3 ∈ R ∪∞ such that T (bj) = cj
for j = 1, 2, 3. By Lemma 10.4 we can find linear fractional transformations
A and B, both preserving R ∪∞ such that A(aj) = zj and B(bj) = zj for
j = 1, 2, 3. Here (z1, z2, z3) = (0, 1,∞). The two maps

T ◦B−1, S ◦ A−1
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both map (0, 1,∞) to the same 3 points, namely (c1, c2, c3). By Lemma 10.5,
these maps coincide. However, note that

T ◦B−1(R ∪∞) = T (R ∪∞)

is not a generalized circle and S ◦ A−1(R ∪∞) = D is a generalized circle.
This is a contradiction.

10.3 The Upper Half-Plane Model

Now we turn to hyperbolic geometry. We are going to imitate the procedure
we used in §9.1 to define the round metric on the sphere. Once we define
the hyperbolic plane as a set of points, we will define what we mean by the
lengths of curves in the hyperbolic plane. Then, we will proceed as in the
case of the sphere.

Let U ⊂ C be the upper half-plane, consisting of points z with Im(z) > 0.
As a set, the hyperbolic plane is just U . However, we will describe a funny
way of measuring the lengths of curves in U . Were we to use the ordinary
method, we would just produce a subset of the Euclidean plane. So, given a
differentiable curve γ : [a, b] → U , we define

L(γ) =

∫ b

a

|γ′(t)|
Im(γ(t))

dt. (34)

In words, the hyperbolic speed of the curve is the ratio of its Euclidean speed
to its height above the real axis.

Here is a simple example. Consider the curve γ : R → U defined by

γ(t) = i exp(t).

Then the length of the portion of γ connecting γ(a) to γ(b), with a < b, is
given by ∫ b

a

exp(t)

exp(t)
dt =

∫ b

a

dt = b− a.

The image of γ is an open vertical ray, but our formula tells us that this
ray, measured hyperbolically, is infinite in both directions. Moreover, the
formula tells us that γ is a unit speed curve: it accumulates b − a units of
length between time a and time b.
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The hyperbolic distance between two points p, q ∈ U is defined to be the
infimum of the lengths of all piecewise differentiable curves connecting p to
q. Let us consider informally what these shortest curves ought to look like.
Suppose that p and q are very near the real axis, say

p = 0 + i 10−100, q = 1 + i 10−100.

The most obvious way to connect these two points would be to use the path

γ(t) = t+ i 10−100.

This curve traces out the bottom of the (Euclidean unit) square shown in
Figure 10.1. Our formula tells us that this curve has length 10100.

Figure 10.1. Some paths in the hyperbolic plane

Another thing we could do is go around the other three sides of the square.
For the left vertical edge, we could use the path γ from our first calculation.
This edge has length

log(1)− log(10−100) = 100.

The top horizontal edge has height 1 and Euclidean length 1. So, this leg
of the path has length 1. Finally, by symmetry, the length of the right
vertical edge is 100. All in all, we have connected p to q by a path of length
201. This length is obviously much shorter than the first path. It pays to
go upward because, so to speak, unit speed hyperbolic curves cover more
ground the farther up they are. Our second path is much better than the
first but certainly not the best. For openers, we could save some distance
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by rounding off the corners. We will show in §10.6 below that the shortest
curves, or geodesics , in the hyperbolic plane are either arcs of vertical rays
or arcs of circles that are centered on the real axis.

When U is equipped with the metric we have defined, we call U the
hyperbolic plane and denote it by H2. So far we have talked about lengths
of curves in H2, but we can also talk about angles. The angle between two
differentiable and regular (i.e., nonzero speed) curves in H2 is defined simply
to be the ordinary Euclidean angle between them. That is, the hyperbolic
and Euclidean angle between two intersecting curves is just the Euclidean
angle between the two tangent vectors at the point of intersection. So, in the
upper half-plane model of hyperbolic geometry, the distances are distorted
(from the Euclidean model) but the angles are not.

Now that we have talked about hyperbolic length and angles, we discuss
hyperbolic area. Given how hyperbolic length relates to Euclidean length,
it makes sense to say that the area of a small patch of hyperbolic space is
the ratio of its Euclidean area to its height squared. Since the “height” of a
patch varies throughout the patch, we really have something infinitesimal in
mind. Thus, precisely, we define the hyperbolic area of a region D ⊂ H2 to
be the integral ∫

D

dx dy

y2
. (35)

10.4 Another Point of View

An inner product on a real vector space V is a map 〈 , 〉 : V ×V → R which
satisfies the following properties:

• 〈av + w, x〉 = a〈v, x〉+ 〈w, x〉 for all a ∈ R and v, w, x ∈ V .

• 〈x, y〉 = 〈y, x〉.

• 〈x, x) ≥ 0 and 〈x, x) = 0 if and only if x = 0.

You can remember this by noting that an inner product satisfies the same
formal properties as the dot product.

For the moment, we care mainly about inner products on R2. At the
point z = x+ iy we introduce the inner product

〈v, w〉z =
1

y2
(v · w). (36)
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We mean to apply this to vectors v and w that are “based at” z. We then
define the hyperbolic norm to be

‖v‖
H

2 =
√
〈v, v〉z. (37)

With this definition, the length of γ : [a, b] → H2 is given by
∫ b

a

‖γ′(t)‖γ(t) dt. (38)

With this formalism, the notion of hyperbolic length looks much closer to
the Euclidean notion. In Chapter 11 we will see that this way of doing things
is the beginning of Riemannian geometry.

10.5 Symmetries

The hyperbolic metric has more symmetries than you might think. Say that
a real linear transformation is a linear transformation TA based on a matrix
with real entries. In this case, TA(z) ∈ C provided z ∈ C −R.

Exercise 3. Prove that z 6∈ R implies that TA(z) 6∈ R. Prove also that
TA maps H2 into itself.

The element TA is a homeomorphism of C ∪∞ which preserves H2.

Exercise 4. We say that a real linear fractional transformation is basic
if it has one of three forms:

• T (z) = z + 1.

• T (z) = rz.

• T (z) = −1/z.

Prove that any real linear fractional transformation is the composition of
basic ones.

It turns out that these maps are all hyperbolic isometries. This is pretty
obvious for the map T (z) = z + 1. The hyperbolic metric is built so that
the second map is a hyperbolic isometry, and in a moment we will give two
proofs of that fact. The really surprising thing is that the third map turns
out to be a hyperbolic isometry as well.
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Lemma 10.6 The map T (z) = rz is a hyperbolic isometry.

First Proof. If γ is any curve in H2, then the dilated curve T (γ) moves r
times as fast in the Euclidean sense but is r times farther from the real axis.
Hence T (γ) and γ move at the same hyperblic speed at corresponding points.
So, if we connect points p and q by some curve γ we can connect the points
T (p) and T (q) by the curve T (γ), which has the same length—and vice versa.
This shows that the distance from p to q is the same as the distance from
T (p) to T (q). ♠

Second Proof. Suppose that v and w are two vectors based at z ∈ H2.
Then we think of dT (v) = rv and dT (w) = rw as two vectors based at T (z).
Here dT is linear differential of T , i.e., the matrix of first partial derivatives.
Looking at the formula in equation (36), we see that

〈dT (v), dT (w)〉T (z) = 〈rv, rw〉rz =
1

r2y2
(rv · rw) = 1

y2
(v · w) = 〈v, w〉z.

So, T preserves the hyperbolic inner product at each point. Since the hyper-
bolic metric is defined entirely in terms of this family of inner products, T is
an isometry. ♠

Exercise 5. Prove that the map T (z) = −1/z is a hyperbolic isometry.

Combining Exercises 4 and 5, we see that any real linear fractional trans-
formation is a hyperbolic isometry of H2. Recall that in §2.8 we proved
SL2(R) is a 3-dimensional manifold. So, H2 has a 3-dimensional group of
symmetries!

Say that a generalized circular arc is an arc of a generalized circle. We al-
ready know that any linear fractional transformation maps generalized circles
to circles. Hence, any real linear transformation maps generalized circular
arcs to generalized circular arcs.

Exercise 6. Prove that a real linear fractional transformation T has the
following property: if a and b are two smooth curves in H2 which intersect
at a point x and make an angle of θ, then T (a) and T (b) make the same angle
θ at the point T (x). (Hint : If you don’t feel like grinding out the calculation,
you can assume the result is false and then deduce that the differential dT
fails to map circle to circles. In any case, the result is obvious for all the
basic maps except z → −1/z, and so it suffices to consider this one.)
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10.6 Geodesics

In this section we will describe the shortest curves connecting two points in
H2. We first consider the case of points p and q that lie on the imaginary
axis.

Lemma 10.7 The portion of the imaginary axis connecting p to q is the
unique shortest curve in H2 that connects p to q.

Proof: Our proof is very similar to the proof we gave in Lemma 9.1 for the
spherical case. Consider the map F defined by the equation F (x+ iy) = iy;
see Figure 10.2. Looking at the definition of the hyperbolic metric, we see
that F is hyperbolic speed nonincreasing. That is, if γ is a curve in H2,
then the hyperbolic speed of F (γ) at any point is at most the hyperbolic
speed of γ at the corresponding point. Moreover, if the velocity of γ has
any x-component at all, then F (γ) is slower at the corresponding point. The
idea here is that F does not change the y-component of the hyperbolic speed,
but kills the x-component. The total hyperbolic length of γ is the integral
of its hyperbolic speed. Thus the hyperbolic length of F (γ) is less than the
hyperbolic length of γ, unless γ travels vertically the whole time. Our result
follows immediately from this. ♠

Figure 10.2. The map F

It follows from symmetry that the vertical rays in H2 are all geodesics. A
vertical ray is the unique shortest path in H2 connecting any pair of points
on that ray.
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Exercise 7. Let p and q be two arbitary points in H2. Prove that there is
a hyperbolic isometry—specifically, some linear fractional transformation—
that carries p and q to points that lie on the same vertical ray.

Theorem 10.8 Any two distinct points in H2 can be joined by a unique
shortest path. This path is either a vertical line segment or else an arc of a
circle that is centered on the real axis.

Proof: We have already proved this result for points that lie on the same
vertical ray. in light of Exercise 7, it suffices to prove, in general, that the
image of a vertical ray under a linear fractional hyperbolic isometry is one
of the two kinds of curves described in the theorem.

Let ρ be a vertical ray, and let T be a linear fractional transformation
that is also a hyperbolic isometry. From the work in §10.2 we know that
T (ρ) is an arc of a circle. Since T preserves R ∪∞, both endpoints of this
circular arc lie on R∪∞. Finally, since T preserves angles, T (ρ) meets R at
right angles at any point where T (ρ) intersects R. If T (ρ) limits on ∞, then
T (ρ) is another vertical ray. Otherwise, T (ρ) is a semicircle, contained in a
circle that is centered on the real axis. ♠

10.7 The Disk Model

Now that we have defined geodesics in the hyperbolic plane, we can go for-
ward and define geodesics polygons. Before we do this, we would like to have
another model in which to draw pictures. This other model is sometimes
more convenient.

Let ∆ be the open unit disk. There is a (complex) linear fractional map
M : H2 → ∆ given by

M(z) =
z − i

z + i
. (39)

This map does the right thing because z ∈ H2 is always closer to i than to
−i and so |M(z)| < 1. Since M maps circles to circles and preserves angles,
M maps geodesics in H2 to circular arcs in ∆ that meet the unit circle at
right angles.

Sometimes it is convenient to draw pictures of geodesics in the unit disk
rather than in the hyperbolic plane. So, when it comes time to draw pictures,
we will be drawing circular arcs that meet the unit circle at right angles. The
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geodesics that go through the Euclidean center of ∆ are just unit line seg-
ments. The rest of them “bend inward” toward the origin.

Exercise 8. Draw pictures of 10 geodesics in the disk model.

Rather than just think of ∆ as a convenient place to draw pictures, we
can also think of ∆ as another model ofH2. The cheapest way to do this is to
say that the distance the two points p, q ∈ ∆ is defined to be the hyperbolic
distance between the points M−1(p) and M−1(q) in H2.

A more direct approach is to define a new inner product at each point
z ∈ ∆. The formula is given by

〈v, w〉z =
4v · w

(1− |z|)2 . (40)

Once we have this inner product, we can directly define lengths of curves in
∆ as in equation (38). Then we can define distances in ∆ as in the upper
half-plane model. It turns out that this new method produces the same re-
sult as the cheap method. The proof is a calculation similar to our second
proof of Lemma 10.6. We just prove that M is an isometry relative to the
inner product on H2 and the inner product on ∆.

Exercise 9. Prove that the map M is an isometry from H2 and ∆, when
lengths are defined in terms of the inner product in equation (40). That is,
prove that

〈v, w〉z = 〈dM(v), dM(w)〉M(z)

for any pair of vectors v and w based at z ∈ H2.

The disk ∆, equipped with its metric, is known as the Poincaré disk model
of the hyperbolic plane. When T is a real linear fractional transformation,
the map M ◦ T ◦ M−1 is an isometry of ∆. Since M preserves angles, the
hyperbolic angle between two curves in ∆ is the same as the Euclidean angle
between them. Thus, in both our models, Euclidean and hyperbolic angles
coincide.

Before we continue, we mention one more piece of terminology. The ideal
boundary of H2 is defined to be R ∪∞ in the upper half-plane model and
the unit circle in the disk model. Points on the ideal boundary are called
ideal points . The ideal points are not points in H2. They are considered
“limit points” of geodesics in H2.
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10.8 Geodesic Polygons

Now that we have our two models of the hyperbolic plane, and we know
that the geodesics are, we are ready to consider geodesic polygons in the
hyperbolic plane. To save words, we will use the term H2 rather loosely to
refer to either of our two models of the hyperbolic plane. Since there is an
isometry, namely M , carrying one model to the other, there doesn’t seem to
be much harm in doing this.

Say that a geodesic polygon in H2 is a simple closed path made from
geodesic segments. Here, “simple” means that the path does not intersect
itself. Say that a solid geodesic polygon is the region in H2 bounded by
a geodesic polygon. It is convenient to allow some of the “vertices” of the
polygon to be ideal points. We call such “vertices” by the name ideal vertices .
The interior angle of a polygon at an ideal vertex is 0: the two geodesics both
meet the ideal point perpendicular to the ideal boundary.

We point out a special geodesic triangle, called an ideal triangle. An
ideal triangle is a geodesic triangle having 3 infinite geodesic sides and 3
ideal vertices; see Figure 10.3 below. The main result in this section, the
Gauss–Bonnet formula for hyperbolic geodesic triangles, is the hyperbolic
analogue of the result in §9.3. The proof is very similar, too.

Theorem 10.9 Let T be a geodesic triangle in the hyperbolic plane. The
area of T equals π minus the sum of the interior angles of π. In particular,
the sum of these interior angles is less than π.

We will give the same kind of proof that we gave for the analogous result
in §9.3.

Lemma 10.10 Theorem 10.9 holds for ideal triangles.

Proof: We are trying to prove that any ideal triangle has area π. You can
move any one ideal triangle to any other using an isometry of H2. So, it
suffices to prove this result for a single triangle. Let us prove this for the
triangle T , in the upper half-plane model, with vertices −1 and 1 and ∞.
We first observe that ∫ ∞

y=y0

1

y2
dy = 1/y0.

122



Now we compute our area, using equation (35). Integrating in the y direction,
we have

area(T ) =

∫ 1

x=−1

∫ ∞

y=
√
1−x2

1

y2
dy =

∫ 1

−1

1√
1− x2

dx = π.

The last integral is most easily done making the trigonometric substitution
x = sin(t) and dx = cos(t). ♠

Let T (θ) denote a geodesic triangle having two vertices on the ideal
boundary of H2 and one interior vertex having interior angle θ.

Lemma 10.11 Theorem 10.9 holds for T (θ).

Proof: Any two such triangles are isometric to each other. We first match
up the interior vertices and then suitably rotate one triangle so that the sides
emanating from the common vertex match. In particular, any incarnation of
T (θ) has the same area. Let

f(θ) = π − area(T (θ)).

We want to show that f(θ) = θ for all θ ∈ [0, π). We already know that
f(0) = 0, by the previous result.

O

A B

C

Figure 10.3. Two dissections
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To analyze the general situation, we work in the disk model and choose
T (θ) so that it has an interior vertex O at 0. Figure 10.3 shows a dissection
proof that

f(θ1 + θ2) = f(θ1) + f(θ2),

as long as θ1 + θ2 ≤ π. Just to make the picture clear, we point out the
following:

• The triangle T (θ1) has vertices O,A,B.

• The triangle T (θ2) has vertices O,B,C.

• The triangle T (θ1 + θ2) has vertices O,A,C.

• The triangle with vertices A,B,C is an ideal triangle.

To make this formula work even when θ1 + θ2 = π, we set f(π) = π. The
quadrilateral we have drawn can be dissected in two ways. One way gives
A1 + A2. The other way gives A+ π. Here Ak is the area of T (θk) and A is
the area of T (θ1 + θ2).

Since f(π) = π, we can use our formula inductively to show f(rπ) = rπ
for any rational r ∈ (0, 1). But the function f is pretty clearly continuous.
Since f is the identity on a dense set, f is the identity everywhere. ♠

Now we take an arbitrary geodesic triangle and extend the sides so that
they hit the ideal boundary of H2. Then we consider the dissection of the
ideal triangle defined by the (ideal) endpoints of these sides, as shown in
Figure 10.4.

Figure 10.4. A Dissected ideal triangle.
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The ideal triangle and also the three outer triangles are of the kind we have
already considered. Theorem 10.9 holds true for these. The ideal triangle has
area π, and the three outer triangles have areas α, β, and γ, the three interior
angles of the inner triangle. Hence, the inner triangle has area π−α−β−γ,
as desired. This completes the proof.

A solid geodesic polygon P is convex if it has the following propery: if
p, q ∈ P are two points then the geodesic segment joining p and q is also
contained in P . It is easy to prove, inductively, that any convex geodesic
polygon can be decomposed into geodesic triangles.

Lemma 10.12 The area of a convex geodesic n-gon is (n − 2)π minus the
sum of the interior angles.

Proof: Just decompose into triangles and then apply the triangle theorem
multiple times. ♠

Exercise 10 (Challenge). Suppose that θ1, θ2, θ3 are three numbers whose
sum is less than π. Prove that there is a hyperbolic geodesic triangle with
angles θ1, θ2, θ3.

Exercise 11 (Challenge). Say that a geodesic triangle is δ-thin if every
point in the interior of the (solid version of) triangle is within δ of a point
on the boundary. Note that there is no universal δ so that all Euclidean
triangles are δ-thin. Prove that all hyperbolic geodesic triangles are 10-thin.
(The value δ = 10 is far from optimal.)

10.9 Classification of Isometries

Let T be a real linear fractional transformation. If T (∞) = ∞, then we
have T (z) = az + b. If T (∞) 6= ∞, then the equation T (z) = z leads to a
quadratic equation az2 + bz + c, with a, b, c ∈ R. If T is not the identity,
then there are 3 possibilities:

• T fixes one point in H2 and no other points.

• T fixes no points in H2 and one point in R ∪∞.

• T fixes no points in H2 and two points in R ∪∞.
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T is called elliptic, parabolic, or hyperbolic, according to which possibility
occurs. We will discuss these three cases in turn. Before we start, we mention
a helpful construction. Given isometries g and T , we call S = gTg−1 a
conjugate of T . Note that g maps the fixed points of T to the fixed points
of S.

Suppose T is elliptic. Working in the disk model, we can conjugate T so
that the result S fixes the origin. In this case, S maps each geodesic through
the origin to another geodesic through the origin. Moreover, S preserves
the distances along these geodesics. From here, we see that S must be a
rotation. So, in the disk model, all the elliptic isometries are conjugate to
ordinary rotations.

Suppose that T is parabolic. Working in the upper half-plane model, we
can conjugate T so that the result S fixes ∞. In this case S(z) = az + b. If
a 6= 1, then S fixes an additional point in R. Since this does not happen,
a = 1. Hence S(z) = z + b. So, in the upper half-plane model, all parabolic
isometries are conjugate to a translation.

Suppose that T is hyperbolic. Working in the upper half-plane model,
we can conjugate T so that the result S fixes 0 and ∞. But then S(z) = rz
for some r 6= 0. So, in the upper half-plane model, all hyperbolic isometries
are conjugate to dilations (or contractions).

Neither the parabolic elements nor the hyperbolic elements have fixed
points in H2, but they still behave in a qualitatively different way. Consid-
ering the parabolic map S(z) = z + b, we see that there is no ǫ > 0 such
that S moves all points of H2 more than ǫ. For example, the hyperbolic
distance between iy and S(iy) tends to 0 as y → ∞. On the other hand, if
we examine the map S(z) = rz, we see that there is some ǫ > 0 such that S
moves all points of H2 by at least ǫ. Indeed, ǫ = | log(r)|.
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11 Riemannian Metrics on Surfaces

The purpose of this chapter is explain what is meant by a smooth surface with
a Riemannian metric. The main construction generalizes what we did for
the sphere in §9.1 and also (especially) what we did for the hyperbolic plane
in §10.3. We will give the main definition of a surface with a Riemannian
metric at the end, after assembling all the preliminary definitions.

A smooth surface with a Riemannian metric is a special case of a smooth
Riemannian manifold . Smooth Riemannian manifolds are the subject of dif-
ferential, or Riemannian, geometry. A book such as [DOC] gives an excellent
general account of smooth Riemannian manifolds.

11.1 Curves in the Plane

A smooth curve in R2 is a smooth map f : (a, b) → R2. Such a map is
typically given by equations

f(t) = (x(t), y(t))

such that x(t) and y(t) are smooth functions. This is to say that

dnf

dtn
=

(dnx
dtn

,
dny

dtn

)

exists for all n. We will usually write f ′(t) for df/dt.
The function f is regular if f ′(t) 6= 0 for all t ∈ (a, b). As usual, f ′(t) is

known as the velocity of f at t. Sometimes it is useful to talk about smooth
curves defined on closed intervals. Thus, if we write f : [a, b] → R2, we
really mean that f is defined on some larger open interval (a− ǫ, b+ ǫ) and
is smooth there. In particular f : [0, 0] → R2 is defined in a neighborhood
of 0. This is the usual treatment of the problem with taking derivatives at
the endpoints.

11.2 Riemannian Metrics on the Plane

We defined inner products at the top of §10.4. Let I denote the set of inner
products on R2. Let U ⊂ R2 be an open set. A Riemannian metric on U
is a smooth map Ψ : U → I. In other words, a Riemannian metric on U is
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a choice Gp of inner product for each p ∈ U . This choice gives rise to the
functions gij(p), via the formula

gij(p) = Gp(ei, ej). (41)

Here e1 = (1, 0) and e2 = (0, 1). We require that the functions gij are smooth
functions on U . So, you can specify a Riemannian metric on U by specifying
4 smooth functions gij : U → R subject to the following constraints:

• g12(p) = g21(p) for all p ∈ U .

• For all p ∈ U , the matrix {gij(p)} is positive definite. That is, the
matrix has positive eigenvalues.

A curve in U is just a curve in R2 which happens to lie entirely in U .
We can measure the length of a curve in U relative to the given Riemannian
metric, as follows: Let f : [a, b] → U be a smooth curve. We define

Riemannian length(f) =

∫ b

a

√
Gf(t)(f ′(t), f ′(t)) dt. (42)

The integrand above is called the Riemannian speed of f at t. So, we are
computing the Riemannian length of f by integrating its Riemannian speed.
Of course, these quantities depend on the choice of Riemannian metric. If
we choose the standard Riemannian metric, which is to say the ordinary dot
product at each point, then we recover the ordinary notions of speed and
length.

Exercise 1: Using the material in the previous chapter, describe the Rie-
mannian metric on the upper half-plane which gives rise to the hyperbolic
plane.

Exercise 2: Come up with a sensible definition of the Riemannian area
of a subset of R2, assuming that R2 has been equipped with a Riemannian
metric.

Exercise 3. Give an example of a Riemannian metric, defined on all of
R2, which has the following property. Any two points in R2 can be joined
by a smooth curve whose Riemannian length is less than 1.
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Exercise 4. Let G be a Riemannian metric on the plane and let p, q be
two distinct points. Prove that there is some ǫ > 0 such that any curve
connecting p to q has length at least ǫ relative to G. Of course, ǫ depends
on the metric. (Hint : Use the fact that a positive continuous function on a
compact set has a positive infimum.)

11.3 Diffeomorphisms and Isometries

Let U and V be two open subsets of R2. A diffeomorphism from U to V is
a homeomorphism f : U → V with the following additional properties:

• f is smooth, that is, all orders of partial derivatives of f exist.

• For each p ∈ U , the matrix df(p) of first partial derivatives is nonsin-
gular. That is, df defines a vector space isomorphism at each point.
We abbreviate this by saying that f is regular .

• f−1 is smooth and regular.

Actually, the third condition follows from the other two and the Inverse
Function Theorem.

Note that dfp maps a tangent vector based at p to a tangent vector based
at f(p). Suppose that U and V are given Riemannian metrics. We say that
a diffeomorphism f : U → V is a Riemannian isometry if

Hf(p)(dfp(v), dfp(w)) = Gp(v, w), ∀v, w, p.

Here v and w are vectors and p ∈ U . Also G is the Riemannian metric
defined on U , and H is the Riemannian metric defined on V . We have
already encountered this concept in our second proof of Lemma 10.6.

Here is another point of view on Riemannian isometries. A Riemannian
metric on U ⊂ R2 turns U into a metric space in the following way. Given
p, q ∈ U we define S(p, q) to be the set of smooth curves in U which join p to
q. We define d(p, q) to be the infimum of the lengths of curves in S(p, q). This
is exactly what we did both for the sphere and for the hyperbolic plane in
the preceding chapters. A smooth map f : U → V is a Riemannian isometry
if and only if it is a metric isometry relative to the two metric space structures.

Exercise 5. Prove that d really is a metric on U . Prove also that a Rie-
mannian isometry between U and V gives rise to a metric space isometry.
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Exercise 6 (Challenge). Prove that there is a Riemannian metric on
the plane which makes it isometric to the upper hemisphere of S2, relative
to the round metric. (This part is not so hard.) Now, prove that there is
no Riemannian metric on the plane which makes it isometric to the upper
hemisphere of S2 relative to the chordal metric. See §9.1 for definitions.

11.4 Atlases and Smooth Surfaces

Recall that a surface is a metric space S such that every point has a neigh-
borhood which is homeomorphic to R2. We say that a collection of such
neighborhoods is called an atlas . The neighborhoods themselves are called
coordinate charts . So, each element of the atlas is a pair (U, h), where U is
an open subset of Σ and h : U → R2 is a homeomorphism. We require that
the union of all the coordinate charts in the atlas is the entire surface. In
other words, each point in the surface is contained in at least one coordinate
chart.

Suppose now that (U1, h1) and (U2, h2) are 2 coordinate charts, and it
happens that V = U1 ∩ U2 is not empty. We define V1 = h1(V ) and V2 =
h2(V ). Being the intersection of two open sets, V is an open subset of both
U1 and U2. Since h1 and h2 are homeomorphisms, V1 and V2 are open subsets
of R2. On V1 the map

h12 = h2 ◦ h−1
1

is well defined. We have h12(V1) = V2. The map

h21 = h1 ◦ h−1
2

is defined on V2 and evidently h21(V2) = V1. The two maps h12 and h21 are
inverses of each other. Also, both maps are continuous, since they are the
composition of continuous maps. In summary h12 : V1 → V2 is a homeomor-
phism and h21 : V2 → V1 is the inverse homeomorphism. These two functions
are called overlap functions because they are defined on the overlaps between
coordinate charts.

Our atlas on Σ is said to be a smooth structure if all its overlap functions
are smooth diffeomorphisms. In other words, every time we can produce an
overlap function h12 : V1 → V2, it turns out to be a diffeomorphism. We say
that a smooth surface is a surface equipped with a smooth structure.
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Here is an annoying technical point. Let (U, h) be a pair such that U
is an open subset of Σ and h : U → R2 is a homeomorphism. If (U, h) is
not part of our atlas, then we can enlarge our atlas by including (U, h) in
it. This will produce possibly some new overlap functions. If all the new
overlap functions are diffeomorphisms, then we say that (U, h) is compatible
with our atlas. We say that our atlas is maximal if it already contains all
compatible coordinate charts. It is conventional for us to require that our
atlases be maximal. However, this point never actually comes up in practice.

11.5 Smooth Curves and the Tangent Plane

We have already discussed what we mean by a smooth curve in the plane.
Now we will generalize the idea, and speak about smooth curves on a smooth
surface. If we happen to have a smooth surface embedded in Euclidean space,
such as the sphere embedded in R3, then it is easy to talk about smooth
curves. For instance, we could say that a smooth curve f : (a, b) → S2 is
smooth if each of the 3 coordinate functions is smooth. When we deal with
an abstract smooth surface, the situation is a bit trickier. We always need
to refer back to the coordinate charts defining the surface.

Let Σ be a smooth surface. Say that a map f : (a, b) → Σ is smooth at t
if there is some ǫ > 0 such that the following holds.

• (t− ǫ, t+ ǫ) ∈ (a, b).

• f((t− ǫ, t+ ǫ)) is contained in a coordinate chart (U, h) in our atlas.

• The curve h ◦ f : (t− ǫ, t+ ǫ) → R2 is a smooth curve.

The fact that our overlap functions are all diffeomorphisms means that the
notion of smoothness does not depend on which coordinate chart we use. In
other words, if f(t − ǫ, t + ǫ) ⊂ U1 ∩ U2 and (U1, h1) and (U2, h2) are both
coordinate charts, then

h2 ◦ f = h12 ◦ (h1 ◦ f).
Since h12 is smooth, the curve h1 ◦ f is smooth if and only if the curve h2 ◦ f
is smooth. Here are using the fact that the composition of smooth maps is
again smooth. This fact is in turn a consequence of the chain rule.

We say that f : (a, b) → Σ is smooth if f is smooth at each t ∈ (a, b).
We say that f : [a, b] → Σ is smooth if f is defined and smooth on a larger
interval (a− ǫ, b+ ǫ).
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Let p ∈ Σ be a point. Suppose that

f1, f2 : [0, 0] → Σ

are two curves such that f1(0) = f2(0) = p. We write f1 ∼ f2 if there is a
coordinate chart (U, h) such that p ∈ U and h ◦ f1 and h ◦ f2 have the same
velocity at 0. In other words, (h ◦ f1)′(0) = (h ◦ f2)′(0).

Exercise 7. Prove that ∼ is well defined, independent of the coordinate
chart we use. Prove also that ∼ is an equivalence relation.

We define Tp(Σ) to be the set of equivalence classes of curves f : [0, 0] → Σ
such that f(0) = p. We can make Tp(Σ) into a vector space as follows. If [f1]
and [f2] are two equivalence classes of curves, we define [f1] + [f2] to be the
equivalence class of the curve g such that the velocity of h ◦ g is the velocity
of h ◦ f1 plus the velocity of h ◦ f2. That is,

(h ◦ g)′(0) = (h ◦ f1)′(0) + (h ◦ f2)′(0).

Exercise 8. Prove that this notion of addition is well defined. In other
words, if we made this definition relative to two different coordinate charts
(U1, h1) and (U2, h2), then we could get the same answer. (Hint : Use the
fact that

h2 ◦ g = h12 ◦ (h1 ◦ g)
(and likewise for f1 and f2) and the fact that dh12 is a linear transformation
at each point. Now use the chain rule.)

We can also define scaling on Tp(Σ). We define r[f ] to be the equivalence
class of the curve which has r times the velocity of f at 0, measured in any
coordinate chart. Again, this is well defined because the overlap functions
are diffeomorphisms.

All in all, Tp(Σ) is a vector space for each p ∈ Σ.

Exercise 9. Prove that Tp(Σ) is isomorphic to R2.

11.6 Riemannian Surfaces

Suppose that Σ is a smooth surface. This means that we have a (maximal)
atlas on Σ whose overlap functions are smooth diffeomorphisms. Suppose,
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for each coordinate chart (U, h), we choose a Riemannian metric on R2. We
say that our choice is consistent if all the overlap functions are Riemannian
isometries relative to the choices. Thus, the overlap function h12 considered
above is a Riemannian isometry from V1 to V2, when V1 is equipped with
the Riemannian metric associated to (U1, h1) and V2 is equipped with the
Riemannian metric associated to (U2, h2).

A Riemannian metric on Σ is a consistent choice of Riemannian metrics
on R2, one per coordinate chart. This definition is pretty abstract, so I will
give a second definition at the end of this section which is perhaps more
concrete.

Let f : [a, b] → Σ be a smooth curve. We can define the Riemannian
length of f as follows: First of all, we can find a partition a = t0 < · · · <
tn = b such that f([ti, ti+1]) is contained in a coordinate chart (Ui, hi). Next,
we can define Li to be the Riemannian length of

hi ◦ f([ti, ti+1]).

Finally, we define the length of f to be L0 + · · · + Ln. In other words,
we compute the lengths of a bunch of little pieces of f and then add them
together.

Lemma 11.1 The Riemannian length of f is well defined, independent of
the choices made in its definition.

Proof: Suppose first of all that we keep the partition the same but use new
coordinate charts (U ′

i , h
′
i) such that f([ti, ti+1]) ⊂ U ′

i . Then, on [ti, ti+1] we
have

h′
i ◦ f = (h′

i ◦ hi) ◦ (hi ◦ f).
But the map h′

i ◦ hi is an overlap function and is an isometry relative to the
two Riemannian metrics. Thus Li = L′

i. This shows that the Riemannian
length of f does not change if we use different coordinate charts from our
atlas.

Suppose now that a = s0 < ... < sm = b is another partition, and we
are using a different sequence {(U ′

i , h
′
i)} of coordinate charts to calculate the

length. Then by considering all the si and also all the tj (from our original
partition) we can find a refinement a = u0 < · · · < ul = b which contains
all the si and also all the tj. (Basically, we just take the collection of all the
numbers and then resort them.)
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We can use the charts (Ui, hi) to compute the length relative to the u-
partition, and we will get the same answer as if we used the t-partition. The
point here is just that integration is additive:

∫ ti+1

ti

=

∫ uk+1

t1

+ · · ·+
∫ ti+1

uk+h−1

.

Here ti = uk < · · · < uk+h = ti+1. Likewise, we can use the charts (U ′
i , h

′
i)

to compute the length relative to the u-partition, and we will get the same
answer as if we used the s-partition. Thus, we reduce to the previously con-
sidered case where the partition is the same but the charts change. ♠

Here is another point of view. The object Tp(Σ) is a 2-dimensional real
vector space for each point p ∈ Σ. We could define a Riemannian metric on Σ
to be a smoothly varying choice of inner product Gp on the vector space Tp(Σ)
for each point p ∈ Σ. We just have to make sense of the notion of smooth-
ness. If we fix a coordinate chart (U, h), then a Riemannian metric G on Σ
gives rise to a Riemannian metric H on R2 as follows. Suppose we have a
point q ∈ R2 and two vectors v, w. Let p = h−1(q) ∈ U and [f1], [f2] ∈ Tp(Σ)
be the two classes so that (h ◦ f1)

′(0) = v and (h ◦ f2)
′(0) = w. Then we

define Hq(v, w) = Gp([f1], [f2]). To say that our Riemannian metric on Σ
varies smoothly is to say that H is a smooth Riemannian metric on R2 for
any choice of coordinate chart. This other definition is completely equivalent
to the one I gave above.

Exercise 10. Make up a plausible definition for what a smooth Riemannian
n-manifold ought to be, and develop the theory as far as we have done here
for surfaces.
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12 Hyperbolic Surfaces

In this chapter we will take up the informal discussion from §1.5. We will first
explain what a hyperbolic surface is, and then we will show how the gluing
construction discussed informally in §1.5 leads to a hyperbolic surface; see
[RAT] for a much more general treatment. In fact, we will present a general
method of constructing hyperbolic surfaces out of convex geodesic hyperbolic
polygons. At the end, we will prove that every complete hyperbolic surface
is covered by the hyperbolic plane.

12.1 Definition

We will give two definitions of a hyperbolic surface. The first definition re-
quires the material in the last chapter while the second definition does not.

Definition 12.1. A hyperbolic surface is a smooth surface with a Rieman-
nian metric, such that each point on the surface has a neighborhood that is
isometric to an open disk in the hyperbolic plane.

Our second definition is more elementary and does not require the ma-
terial on Riemannian manifolds discussed in the previous chapter. On the
other hand, the second definition requires a few preliminaries of its own. Let
U and V be two open subsets of H2. Say that a disk-like set is a subset of
the plane that is homeomorphic to an open disk. Say that a map f : U → V
is a local hyperbolic isometry if the restriction of f to each open component
of U agrees with the restriction of a hyperbolic isometry. The easiest case
to think about is when U and V are both connected. Then f : U → V is a
local isometry iff f is the restriction of a hyperbolic isometry to U .

Definition 12.2. A hyperbolic structure on Σ is an atlas of coordinate
charts on Σ such that the following holds:

• The image of every coordinate chart is a disk-like subset of H2.

• The overlap functions are local hyperbolic isometries.

• The atlas is maximal.

Now we reconcile the two definitions. Suppose that Σ is a hyperbolic
surface according to Definition 12.1. Then the local isometries mentioned in
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Definition 12.1 give rise to an atlas of coordinate charts in which the overlap
functions are local isometries. This atlas is not maximal, but then we can
complete it to a maximal atlas using Zorn’s lemma. (See any book on set
theory, such as [DEV], for a discussion of Zorn’s lemma. ) In this way, we
see that Σ is a hyperbolic surface according to Definition 12.2.

Exercise 1. Prove that a local hyperbolic isometry is a smooth map. This
amounts to showing that a linear fractional is infinitely differentiable.

Suppose that Σ is a hyperbolic surface according to Definition 12.2. Accord-
ing to Exercise 1, the system of coordinate charts on Σ has smooth overlap
functions. Therefore, Σ is a smooth surface. We can define a Riemannian
metric on Σ as follows. Let p ∈ Σ be a point. Let (U, f) be a coordinate chart
about p. This means that U is an open neighborhood of p and f : U → H2

is a homeomorphism onto a disk-like set. Let V,W ∈ Tp(Σ) be two tangent
vectors. This is to say V = [α] and W = [β] where α, β : (−ǫ, ǫ) → Σ are
smooth curves with α(0) = β(0) = p. We define

Hp(V,W ) = Gf(p)((f ◦ α)′(0), (f ◦ β)′(0)).
Here G is the Riemannian metric on the hyperbolic plane. In other words,
we have just used the coordinate chart to transfer the metric on H2 to the
tangent space TpΣ of Σ at p. The fact that the overlap functions are all
hyperbolic isometries implies that the above definition of the metric is inde-
pendent of which coordinate chart is used. This puts a Riemannian metric
on Σ with the desired properties. Equipped with this metric, Σ satisfies
Definition 12.1.

Now we know that the two definitions pick out the same objects as hy-
perbolic surfaces.

12.2 Gluing Recipes

We would like a way to systematically build hyperbolic surfaces. Recall
from §10.8 that a convex geodesic polygon is a convex subset of H2 whose
boundary consists of a simple closed path of geodesic segments. The idea is
to glue together a bunch of geodesic polygons, taking care to get the angle
sums correct.

Let P be a geodesic polygon. Let e ∈ P be an edge. Say a decoration of
e is a labelling of e by both a number and an arrow. Say that a decoration

136



of P is a decoration of every edge of P . Whenever we have built surfaces by
gluing the sides of a polygon together, we have always based the construction
on a decoration of the polygon.

We say that a gluing recipe for a hyperbolic surface is a finite list P1, . . . , Pn

of decorated polygons. There are some conditions we want to force:

• If some number appears as a label, then it appears as the label for
exactly two edges. This condition guarantees that we will glue the
edges together in pairs.

• If two edges have the same numerical label, then they have the same
hyperbolic length. This allows us to make our gluing using (the restric-
tion of) a hyperbolic isometry.

• Any complete circuit of angles adds up to 2π. This condition guarantees
that a neighborhood of each vertex is locally isometric to H2.

2

4

4

1

3

2

1

3

1

34

2

Figure 12.1. A complete circuit

The third condition requires some explanation. A complete circuit is a
collection of edges

e1, e
′
1, e2, e

′
2, e3, e

′
3, . . . , e

′
k, e1.

with the property, for all j, that ej and e′j have the same numerical label and
e′j and ej+1 are consecutive edges of the same polygon. (Here we are taking
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the indices cyclically, so that k+1 is set equal to 1.) Figure 12.1 shows what
we have in mind.

There is one subtle condition that we need also to require. Let vj be the
vertex incident to e′j and ej+1. Then the arrow along ej+1 points to vj iff the
arrow along e′j+1 points to v′j+1. Figure 12.1 depicts a situation where this
holds. The point here is that we want the edges in our chain to emanate
from a single vertex in the quotient space. The edges ej and e′j+1 subtend an
angle αj and we want α1 + · · ·+ αk = 2π.

12.3 Gluing Recipes Lead to Surfaces

Theorem 12.1 Any gluing recipe gives rise to a hyperbolic surface.

Proof: Given a gluing recipe, we can form a surface Σ as follows. First
of all, we start out with the metric space X which is the disjoint union of
P1, . . . , Pn. We can do this by declaring d(p, q) = 1 if p ∈ Pi and q ∈ Pj with
j 6= i. For p, q ∈ Pj (the same polygon) we just use the hyperbolic metric.
So, you should picture X approximately as a stack of polygons hovering in
the air, as on the left-hand side of Figure 12.1.

Now we define an equivalence relation on X using the rule that p ∼ p′ iff p
and p′ are corresponding points on like-numbered edges. Here corresponding
should be pretty obvious. Suppose e and e′ are two like-numbered edges,
both having length λ. Then there is some t such that p is t units along e
measured in the direction of the arrow. Likewise there is some t′ such that
p′ is t′ units along e′. Then p and p′ are corresponding points iff t = t′.

The nontrivial equivalence classes typically have 2 members, with 1 mem-
ber coming from each edge. However, for the vertices of the polygons, each
of which belongs to two edges, the corresponding equivalence class might
be larger. In Figure 12.1, the equivalence class of the relevant vertex has 4
elements.

The surface is defined as Σ = X/∼. We would like to show that Σ is in-
deed a surface, so we have to construct an atlas of coordinate charts. Suppose
that x is an interior point of some polygon P . Then some open neighborhood
Ux of x remains in the interior of P . No point in Ux is equivalent to any other
point of Σ. The inclusion map Ux → P ⊂ H2 gives a coordinate chart from
Ux to H2. We take Ux to be a metric disk.

Suppose now that p ∈ Σ is an equivalence class consisting of two points,
in the interiors of a pair of edges, that are glued together when the edges are
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paired. That is, p = {q, q′}, with q ∈ e and q′ ∈ e′, where e and e′ are open
edges. Let P and P ′ be the polygons containing e and e′, respectively. Let U
and U ′ be small half-disk neighborhoods of q and q′ in P and P ′, respectively,
as shown in Figure 12.2.

Figure 12.2. Half-disk neighborhoods

We define h : U ∪ U ′ → H2 so that the following holds.

• The map h, when restricted to either U or U ′, is the inclusion map
composed with a hyperbolic isometry.

• h(e ∩ U) = h′(e′ ∩ U ′) and the arrows go the right way.

• h(U) and h(U ′) lie on opposite sides of h(e) = h(e′).

This is pretty obvious. We first define h as the inclusion map on both halves,
and then we compose one half of the map with a suitable isometry to adjust
things. The main point here is that U ∩ e and U ′ ∩ e′ are open geodesic
segments of the same length.

Exercise 2. Prove that ∆ = (U ∪ U ′)/ ∼ is homeomorphic to an open
disk. More precisely, prove that h defines a homeomorphism ∆ to a disk in
H2. Finally, prove that ∆ is an open neighborhood of p in Σ.

Finally, suppose that p is the equivalence class coming from some ver-
tices of our polygons. Then we have one of the circuits mentioned above.
Let {q1, . . . , qk} be the equivalence class of p. In the example shown in Fig-
ure 12.1, we have k = 4. Let Pj be the polygon that has qj as a vertex. In
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each Pj we choose a little wedge-shaped neighborhood consisting of all points
of Pj within ǫ of qj.

Exercise 3. Prove that the union (U1 ∪ · · · ∪ Uk)/ ∼ is homeomorphic
to a disk.

We define a map h : U1 ∪ · · · ∪Uk → H2 in such a way that the following
holds.

• The map h, when restricted to any Uj, is the inclusion map composed
with a hyperbolic isometry.

• h respects the gluing of edges.

Expressing the last condition is a bit clumsy, but I hope that you can see
what it means. If two edges are glued together, then h sends them (or at
least the portions inside our little pizza slices) to the same segment in H2.

Exercise 4. Prove that (U1 ∪ . . . ∪ Uk)/ ∼ is an open neighborhood of
p in Σ and that h gives a homeomorphism from this set onto an open disk in
H2. (Hint : The circuit condition guarantees that the images of h fit together
to make a single hyperbolic disk.)

From the way we have defined things, the overlap functions are all local
hyperbolic isometries, so we have found an atlas on Σ whose overlap func-
tions are local hyperbolic isometries. We can complete this to a maximal
atlas, if we like, using Zorn’s lemma. ♠

12.4 Some Examples

Here are some additional examples for you to work out. The first exercise
asks you to work out the discussion in §1.5. The next example points to more
flexible and systematic approach.

Exercise 5. Prove that there is a regular convex 4n-gon, with angles π/2n,
provided that n ≥ 2. Call this polygon P4n. Decorate P4n by giving the op-
posite sides and making the arrows point in the same direction. See Figure
1.7. Prove that P4n, as decorated, is a gluing diagram for a hyperbolic surface.
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Exercise 6. Prove that there exists a right angled regular hexagon. Con-
struct a decoration of 4n such hexagons in such a way that it is the gluing
diagram for a hyperbolic surface.

Exercise 7 (Challenge). If you take n = 2 in Exercises 5 and 6 you
get homeomorphic surfaces. Prove that they are not isometric.

Exercise 8 (Challenge). Prove that there are uncountably many surfaces,
all homeomorphic to the octagon surface from Exercise 5, no two of which
are isometric to each other.

12.5 Geodesic Triangulations

So far, we have shown how to build some hyperbolic surfaces from gluing
diagrams. In this section we will show that every compact hyperbolic surface
arises from this construction. We begin with a well-known construction in
H2.

Let X ⊂ H2 be a finite collection of points. For each p ∈ X, we let Np

be the set of points that are closer to p than to any point of X.

Lemma 12.2 Np is convex. If Np is bounded, then Np is the interior of a
convex geodesic hyperbolic polygon.

Proof: Say that a geodesic half-plane is a set of points in H2 lying to one
side of a hyperbolic geodesic. Geodesic half-planes are convex. Given any
two points p, q ∈ H2, the set of points closer to p is a geodesic half-plane.
For this reason, Np is the intersection of finitely many geodesic half-planes,
and the boundary of Np is contained in a finite union of geodesics. Since the
intersection of convex sets is convex, Np is convex. In case Np is bounded,
the boundary evidently is a convex geodesic polygon. ♠

Say that a geodesic triangulation of a hyperbolic surface is a decompo-
sition of the surface as the finite union of geodesic triangles. Every pair of
triangles should either be disjoint or share an edge or share a vertex. If a
hyperbolic surface has a geodesic triangulation, then we can cut the surface
open along the triangles and thereby obtain a description of the surface in
terms of a gluing diagram.
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Lemma 12.3 Every compact hyperbolic surface has a geodesic triangulation.

Proof: Let S be the surface. By compactness, there is some d ∈ (0, 1) such
that every disk of radius d on the surface is isometric to a disk of radius d
in H2. Place a finite number of points on S in such a way that every disk
of radius D/K contains at least one point. The constant K is yet to be
determined. Let X denote this finite set of points.

Given p ∈ X, let Bd(p) denote the disk of radius d about p. Let Np ⊂ S
be the set of points in S that are closer to p than to any other point in X.
We claim that each Np is isometric to the interior of a convex geodesic hy-
perbolic polygon provided that K is large enough. (This is not an immediate
consequence of the previous result because we are working on a surface and
not directly in H2.) The boundary of Np consists of points q such that q is
equidistant between p and some other point p′ of X. Let Xp denote the set
of points p′ ∈ X such that some point of Np is equidistant from p and p′. We
can choose K large enough so that Np ⊂ Bd(p) and Xp consists entirely of
points in the Bd(p). Now we apply the previous result. This shows that Np

is the interior of a convex geodesic polygon.
We have partitioned S into convex geodesic polygons. To finish the tri-

angulation, we just add in extra geodesic segments, as needed, to divide each
of the convex polygons into triangles. ♠

Theorem 12.3 allows to prove the Gauss–Bonnet Theorem for hyperbolic
surfaces.

Theorem 12.4 (Gauss–Bonnet) The hyperbolic area of a compact hyper-
bolic surface S is −2πχ(S), where χ(S) is the Euler characteristic of S. In
particular, the area only depends on the Euler characteristic.

Proof: We give S a geodesic triangulation. From §3.4, we have the formula

χ(S) = F − E + V, (43)

where F is the number of faces in the triangulation, E is the number of edges,
and V is the number of vertices.

Each triangle in the triangulation has 3 edges, and each edge belongs to
two triangles. For this reason, E = 3F/2. At the same time, the total sum
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of all the interior angles of all the triangles is 2πV , because the sum of these
angles around any one vertex is 2π. Putting these equations together, we get

χ(S) = −F

2
+ V = −F

2
+

1

2π

∑

angles

θi. (44)

For each triangle τ , let θi(τ), for i = 1, 2, 3, be the three interior angles of τ .
Hence

−2πχ(S) = π
(
F −

∑

angles

θi

)
=

∑

triangles

(
π − θ1(τ)− θ2(τ)− θ3(τ)

)
=∗

∑

triangles

area(τ) = area(S).

The starred equality comes from Theorem 10.9. ♠

Theorem 12.4 is a special case of the Gauss-Bonnet Theorem from dif-
ferential geometry. See [BAL] for a discussion of the proof of this general
result.

12.6 Riemannian Covers

We say that a Riemannian cover of a Riemannian manifold X is a Rie-
mannian manifold X̃ such that the covering map E : X̃ → X is a local
isometry. We mean that the differential dE is an isometry on each tangent
plane, measured with respect to the two Riemannian metrics.

Lemma 12.5 Suppose that X is a Riemannian manifold and X̃ is a covering
space of X. Then one can make X̃ into a Riemannian manifold in such a
way that the covering map E : X̃ → X is a Riemannian cover.

Proof: First of all, X̃ inherits the structure of a manifold. We have the cov-
ering map E : X̃ → X. Each point x̃ ∈ X̃ lies in a small open neighborhood
Ũ such that U = Ũ is an evenly covered neighborhood of x = E(x̃) and also

(U, φ) is a coordinate chart for x. The composition φ ◦ E : Ũ → Rn gives a
coordinate chart for an open neighborhood of x̃. The overlap functions for

143



these coordinate charts on X̃ are the same as for the coordinate charts on
X. Hence X is a smooth manifold and E is a smooth map.

There exists a unique Riemannian metric on X̃ so that E : X̃ → X is an
isometry. We define the metric g̃ such that

g̃x̃(X, Y ) = gx(dE(X), dE(Y )).

Here dE is the differential of E. Here X and Y are tangent vectors to X̃ at x̃.
When measured in the local coordinates we have described, the differential
dE is just the identity map. So, the metric g̃ is actually an inner product.

There is a second way to think about the Riemannian metric on X̃ which
perhaps is more clear. The Riemannian metric on X is just a collection of
Riemannian metrics on various open sets of Rn that are compatible in the
sense that all overlap functions are isometries. We may, first of all, restrict
our attention to open sets in X that are evenly covered by the covering map.
We can then use the preimages of these open sets as coordinate charts in X̃.
Since the overlap functions for the charts on X̃ are the same as on X, the
same collection of compatible metrics defines a Riemannian metric on X̃. ♠

Exercise 9. Show that a Riemannian covering map E : X̃ → X is distance
nonincreasing. Also, give an example of a Riemannian covering from a con-
nected space X̃ to a connected space X that is not a global isometry. That
is, give an example where there are points x̃, ỹ ∈ x̃ that are farther apart
than their corresponding images x, y ∈ X.

Recall that a metric space is complete if every Cauchy sequence in the
space converges. For a Riemannian manifold, there is a different notion,
called geodesic completness , which people often mean when they say that a
Riemannian manifold is complete. However, the two definitions are the same,
thanks to the Hopf–Rinow Theorem. See [DOC] for a proof. We mention
this just to keep consistent with other texts. We only care about the metric
completeness.

Lemma 12.6 Let E : X̃ → X be a Riemannian covering space. If X is
complete, then so is X̃.

Proof: Let {x̃n} be a Cauchy sequence in X̃. We have constructed things

in such a way that the map E : X̃ → X is distance nonincreasing. Setting
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xn = E(x̃n), we now know that {xn} is a Cauchy sequence in X. Since X
is complete, there is some limit point x∗. There is an evenly covered neigh-
borhood U of x∗ which contains xn for n large. But then all the points x̃n

lie in the same component of Ẽ−1(U) for n large. But E : Ũ → U is a
homeomorphism. In particular, E maps convergent sequences to convergent
sequences and so does E−1. Since {xn} is a convergent sequence in U , the

sequence {x̃n} is a convergent sequence in Ũ . ♠

12.7 Hadamard’s Theorem

In this section we prove Hadamard’s Theorem, in two dimensions. See [DOC]
for a proof in general. The version of Hadamard’s Theorem we prove is a
technical step in our proof that any complete hyperbolic surface is covered
by H2. Just for this section, let H = H2 stand for the hyperbolic plane.

Theorem 12.7 (Hadamard) Let H be a complete and simply connected
surface that is locally isometric to H2. Then H is globally isometric to H2.

A surface is oriented if we can make a continuous choice of basis for each
tangent plane. Any simply connected surface is oriented. Let h ∈ H be a
point and let h ∈ H be a point. Both points have neighborhoods which are
isometric to disks in the hyperbolic plane. Thus we can find an isometry I
between a neighborhood U ⊂ H of h and a neigborhood U ⊂ H of h. Let
x ∈ H be any point. We can take I to be orientation preserving.

Let γ be a continuous path connecting h to x.

Lemma 12.8 I can be extended to a neighborhood of γ in such a way that
I is a local isometry at every point along γ.

Proof: We think of γ as a map from [0, 1] to H , with γ(0) = h and γ(1) = x.
Say that a point t ∈ [0, 1] is good if this lemma holds for the restriction of γ
to the interval [0, t]. Note that 0 is good. Note also that if t is good, then
so is s ∈ [0, t]. Hence the set J of good points is an interval that contains
0. Moreover, since local isometries are defined on open sets, J is an open
interval.

We claim that J is a closed interval. Suppose that all points t ∈ [0, s)
are good. We take a sequence of points {sn} ∈ [0, s) such that sn → t. Then
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{γ(sn)} is a Cauchy sequence. Since I is not distance increasing, {I(γ(sn)}
is also a Cauchy sequence. Since H is complete, this Cauchy sequence con-
verges. We define

I(t) = lim I(γ(sn)).

We would like to see that in fact I is defined and a local isometry in a
neighborhood of γ(t).

There is a local isometry I ′ carrying a neighborhood U of γ(t) to a disk
in H2. Since every two points have isometric neighborhoods, we can assume
that I ′ and I agree on γ(t). Once n is large, we have γ(sn) ∈ U . The
points I(γ(sn)) and I ′(γ(sn)) are the same distance from I(γ(t)). So, we
may adjust I ′ by a rotation so that I and I ′ agree on some γ(sn). But then
I and I ′ agree on all of γ(sn, t]. The point is that two orientation-preserving
isometries agree everywhere provided that they agree on two points. This
shows that the union map I ∪ I ′ is a local isometry at all points of γ[0, t].

Our argument shows that t is good, and therefore that J is a closed in-
terval. Since J is open, closed, and connected, we must have that J = [0, 1].
♠

Now we have a candidate map I : H → H . However, we need to see
that this map is well defined. That is, we need to see that the point I(x) is
independent of the choice of path γ joining h to x. This is where we use the
simple connectivity assumption.

Let γ0 and γ1 be two paths joining h to x. We think of γ0 and γ1 both
as maps from [0, 1] into H, with γ0(0) = γ1(0) = h and γ0(1) = γ1(1) = x.
Since H is simply connected, there is a path homotopy γt from γ0 to γ1. The
point xt = I(γt(1)) varies continuously with t. On the other hand, note that
the same extension in the above lemma works for both γs and γt as long as
s and t are close together. Hence xs = xt for s and t close. But this shows
that xt does not move at all.

Our extension gives a local isometry I : H → H . But the existence of
our extension just used the following.

• Completeness of H .

• Local homogeneity of H , in connection with the map I ′ above.

• Path connectivity and simple connectivity of H.
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All these properties hold with the two spaces reversed. Reversing the roles
of H and H , we construct the inverse map I−1 using the same method.
Hence both I and I−1 are homeomorphisms and local isometries. Bring local
isometries, both maps I and I−1 are globally distance nonincreasing. This is
only possible if both these maps are global isometries.

12.8 The Hyperbolic Cover

We are almost done with the proof that every complete hyperbolic surface is
covered by the hyperbolic plane. We just need one more technical result.

Lemma 12.9 A complete hyperbolic surface is good in the sense of Chapter
7.

Proof: Let X be a complete hyperbolic surface. A sufficiently small ball
about any x ∈ X is isometric to a hyperbolic disk. Such sets are obviously
both conical and simply connected. Indeed, we can join each point y ∈ Bǫ(x)
to x by a geodesic. We just need to see that any path in X is good.

Consider a continuous path f0 : [0, 1] → X. Every point x ∈ f0[0, 1] has
a neighborhood Ux that is isometric to a hyperbolic disk. By compactness,
there is a single positive constant, say 2ǫ that works for all points of f0[0, 1].
Let f1 : [0, 1] → X be a path such that D(f0, f1) < ǫ. This means that
distance between f0(t) and f1(t) is less than ǫ. For each t ∈ [0, 1] there is a
geodesic gt[0, 1] → X connecting f0(t) to f1(t) that remains within the ǫ-ball
about f0(t).

For s sufficiently near t, the two paths γs and γt lie in the 2ǫ ball about
γ0(t). Therefore, the path γt varies continuously with t. But then the map
F (s, t) = γs(t) gives a homotopy from f0 = F (0, ∗) to f1 = F (1, ∗). ♠

Theorem 12.10 A complete hyperbolic surface is universally covered by H2.

Proof: Let X be a complete hyperbolic surface. We know that X is a good
metric space in the sense of Chapter 7. By Theorem 7.1, there exists a sim-
ply connected covering space X̃ and a covering map E : X̃ → X. The space
X̃ is complete by Lemma 12.6. But then, by Hadamard’s Theorem, X̃ is
isometric to H2. ♠
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What I (and many people) find really great about this result is that it
opens the door to beautiful tilings of the hyperbolic plane. These are the
kinds of tilings drawn by M. C. Escher in his Circle Woodcut series. Here we
will sketch the idea behind these tilings. We begin with a general exercise
that justifies the construction we give below.

Exercise 10. Let X̃ → X be a Riemannian covering of a complete Rie-
mannian manifold X. Let U be a simply connected open subset of X. Let
Ũ = E−1(U). Prove that U is evenly covered by Ũ and that the restriction

of E to any component of Ũ is an isometry between that component and
U . (Hint : Imitate the proof of Hadamard’s Theorem to construct an inverse
map that is also a local isometry.)

Now consider a description of a hyperbolic surface as one obtained by
gluing together the sides of a hyperbolic polygon. For instance, if we glue
together 4 regular right angled hexagons in a suitable pattern, we get a
hyperbolic surface of Euler characteristic −2; see §12.4. Let X be a hyper-
bolic surface obtained by this construction. The interiors of the right angled
hexagons are embedded and simply connected in X. We can consider the
preimages of these open hexagons in H2 by pulling them back by the map
E. By Exercise 10, the result is an infinite collection of open right angled
hexagons H2.

At the same time, X contains a graph whose edges are embedded geodesic
arcs. These arcs are the images of the edges of the hexagons under the gluing
maps. The preimages of these arcs in H2 are the interfaces between the open
hexagons. The whole picture fits together to give a tiling of H2 by right
angled hexagons. Being right angled, these hexagons necessarily meet 4 per
vertex. This is a hyperbolic geometry analogue of the picture we developed
in §6.3.

In §6.3, we actually went the other way around. We started with the
tiling and then produced the covering map. The situation here is so concrete
that we can actually do the same thing. We take an infinite supply of regular
right angled hyperbolic hexagons and glue them together so that they meet
4 per vertex. The same argument as the one given in Chapter 12 shows that
the result is locally isometric to the hyperbolic plane. With a bit of effort,
one can see that the resulting space is both simply connected and complete,
and hence globally isometric to the hyperbolic plane. Once we have built this
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tiling of H2 by hexagons, we can imitate the construction in §6.3, directly
producing the covering map from H2 to the surface.

Given that we can construct the universal cover E : H2 → X directly
in this case, without resorting to Theorem 12.10, you might wonder why we
need this result at all. I suppose that the best answer to this question is that
Theorem 12.10 is completely general. We do not have to fool around with
the combinatorics of gluing together infinite families of polygons every time
we want to construct the universal cover of a hyperbolic surface.
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13 A Primer on Complex Analysis

The purpose of this chapter is to present some of the foundational results
in complex analysis. I have tried to write this chapter in such a way that
someone who knows no complex analysis could follow along. However, the
development here is rather rapid and terse. The ideal reader is a person
who has already taken a semester of complex analysis, but who perhaps does
not remember the proofs of the main results. This chapter collects the basic
results in one place. All the material here can be found in any book on
complex analysis; see, e.g., [AHL].

13.1 Basic Definitions

Throughout the chapter U will denote an open subset of C, the complex
plane. Let f : U → C be a continuous map. We say that f has a complex
derivative at z ∈ U if the quotient

f ′(z) = lim
h→0

f(z + h)− f(z)

h

exists and is finite. Note that h is allowed to be a complex number. f
is said to be complex analytic in U if f ′(z) exists for all z ∈ U and the
function z → f ′(z) varies continuously in U . Complex analytic functions are
sometimes called holomorphic functions . The two terms are synonyms.

Complex analysis is mainly the study of complex analytic functions. In
this chapter we will discuss complex analytic functions from 3 points of view:

• A complex analytic function is a function that has a complex derivative
at each point, as we have just discussed.

• A complex analytic function is a function which satisfies the Cauchy
Integral Formula.

• A complex analytic function is a function which agrees with its Taylor
series in a neighborhood of each point.

Each of these concepts brings out a different characteristic of a complex
analytic function. A major part of an undergraduate complex analysis course
is explaining why these three definitions are the same. Among other things,
we will establish the equivalence of the 3 definitions in this chapter.
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Here is an overview of this chapter. The next several sections lead up to
the Cauchy Integral Formula. Once we establish the Cauchy Integral For-
mula, we will prove a number of results about complex analytic functions.
We will consider the connection to power series at the end.

Exercise 1. Suppose that f and g are complex analytic in U and g is
never 0 in U . Prove that the functions f + g and f − g and fg and f/g are
all complex analytic in U . Conclude that any function P (z)/Q(z), where P
and Q are polynomials, is complex analytic away from the roots of Q.

Exercise 2. Suppose that f is complex analytic on U and g is complex
analytic on V and f(U) ⊂ V . Prove g ◦ f is complex analytic and the com-
plex derivative satisfies (g ◦ f)′(z) = g′(f(z))f ′(z). This is the chain rule.

Being a complex analytic map is rather special. For instance, the function
f(z) = z2 + 3z is not complex analytic in C. So, not all smooth maps are
complex analytic.

We can think of a complex analytic function f as a map from R2 to R2

by writing
f(x+ iy) = u(x+ iy) + iv(x+ iy).

Recall that f is differentiable at the point (x, y) if the matrix of partial
derivatives

df =

[
ux uy

vx vy

]

exists at p = (x, y) and

lim
t→0

f(p+ tv)− f(v)

t
= df |p(v).

Here t ∈ R. To say that f has a complex derivative at z = x+ iy is the same
as saying that f is differentiable and df |p is the composition of a rotation
and a dilation. That is

[
ux uy

vx vy

]
=

[
r cos(θ) r sin(θ)
−r sin(θ) r cos(θ)

]
, r ∈ R, θ ∈ [0, 2π).

Equating terms, we get

ux = vy, uv = −vx.
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These are called the Cauchy–Riemann equations . Thus, if f is complex
analytic, then its first partials vary continuously and satisfy the Cauchy–
Riemann equations.

The converse is also true: f is complex analytic provided that df exists,
is continuous, and satisfies the Cauchy–Riemann equations.

13.2 Cauchy’s Theorem

Suppose γ is a smooth oriented arc in C and f is a complex valued function
defined in a neighborhood of γ. We define a complex line integral along γ as
follows. Letting g : [a, b] → γ be a smooth parametrization of γ that respects
the orientation of γ, we define

∫

γ

f dz =

∫ b

a

f(g(t))
dg

dt
dt.

The same argument as in §8.6 shows that the answer only depends on γ and
not the parametrization. Also, were we to switch the orientation, the value
of the line integral would switch signs.

Exercise 4. Let λ be a counterclockwise oriented circle centered at 0, and
let f(z) = 1/z. Prove that

∫
λ
f dz = 2πi.

If we have a finite union γ = {γj} of smooth oriented arcs, we define
∫

γ

f dz =
∑

j

∫

γj

f.

In particular, we want to consider the case when γ is a circular polygon. A
circular polygon is an embedded loop made by concatenating line segments
and arcs of circles; see Figure 13.1 for an example.

Theorem 13.1 (Cauchy) Let γ be a circular polygon. Suppose that f
is complex analytic in a neighborhood of the domain bounded by γ. Then∫
γ
f dz = 0.

Proof: Let f = u + iv. Letting dx and dy be the usual line elements, we
can write
∫

∂D

f dz =

∫

∂D

(u+ iv)(dx+ idy) =

∫

∂D

(udx− vdy) + i

∫

D

(vdx+ udy).
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By Green’s theorem, the integral on the right-hand side equals
∫

D

(uy + vx)dxdy + i

∫

D

(ux − vy)dxdy.

Both pieces vanish, due to the Cauchy–Riemann equations. ♠

Remark: In §8.7 we proved Green’s Theorem for polygons. The case of
circular polygons follows from the polygon case and a straightforward limiting
argument. Alternatively, most books on multivariable calculus have a proof
of Green’s Theorem in great generality; see, e.g., [SPI]. Cauchy’s Theorem
holds in the same generality that Green’s Theorem holds, but the version we
state is sufficient for all the applications we give.

13.3 The Cauchy Integral Formula

Here is the beautiful Cauchy Integral Formula.

Theorem 13.2 (Cauchy Integral Formula) Let γ be a circular polygon,
oriented counterclockwise around the domain D that it bounds. Let a ∈ D−γ.
Suppose that f is complex analytic in a neighborhood U of D. Then

f(a) =
1

2πi

∫

γ

f(z)

z − a
dz. (45)

Proof: We translate the whole picture and consider without loss of generality
the case when a = 0. The function g(z) = f(z)/z is complex analytic in
U − {0}. Let β be the circular polygon shown in Figure 13.1.

λ

γ

0

153



Figure 13.1.

We have ∫

β

g dz = 0 (46)

by Cauchy’s Theorem. We allow the two oppositely oriented vertical seg-
ments in β to approach each other. In the limit, the contributions from the
two vertical segments cancel out, and equation (46) yields

∫

γ

g(z) =

∫

λ

g(z). (47)

Here λ is a counterclockwise circle centered at 0. Define

I =
∣∣∣
∫

γ

g(z)dz − 2πif(0)
∣∣∣. (48)

We want to show that I = 0. Combining Exercise 4 and Equation 47, we
have

I =
∣∣∣
∫

γ

g(z)dz − f(0)

∫

λ

dz

z

∣∣∣ =
∣∣∣
∫

λ

f(z)

z
dz −

∫

λ

f(0)

z
dz

∣∣∣. (49)

Now we have a bound on I that is expressed entirely in terms of λ. Rear-
ranging the terms of the last integral, we have

I =
∣∣∣
∫

λ

f(z)− f(0)

z
dz

∣∣∣ ≤ length(λ)× 2|f ′(0)|. (50)

The last inequality holds once λ is sufficiently small. Letting λ shrink to a
point, we see that I = 0, as desied. ♠

13.4 Differentiability

Here we use the Cauchy Integral Formula to prove some results about the
differentiability of complex analytic functions. Our first result is not so im-
portant in itself, but it illustrates how one uses the Cauchy Integral Formula
to get a formula for the derivative of a complex analytic function.

Theorem 13.3 Suppose that f is a complex valued and continuously differ-
entiable function defined in an open set U . If f satisfies the Cauchy Integral
Formula with respect to every circle in U , then f is complex analytic in U .
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Proof: Let a ∈ U and let γ ⊂ U be a circle surrounding a. Using the Cauchy
Integral Formula, we compute

lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

1

2πih

(∫

γ

f(z)

z − a− h
dz −

∫

γ

f(z)

z − a
dz

)
=

lim
h→0

1

2πi

∫

γ

f(z)

(z − a)(z − a− h)
dz ==

1

2πi

∫

γ

f(z)

(z − a)2
dz. (51)

This tells us that f has a complex derivative at a and also gives a formula
for it. ♠

Theorem 13.4 Suppose that f is a complex analytic function defined in an
open set U . Then f ′ is also complex analytic in U .

Proof: Note that f ′ exists just by virtue of the fact that f is complex ana-
lytic. Since f is complex analytic in U , Theorem 13.3 holds for f . Equation
(51) gives us a formula for f ′. We compute

lim
h→0

f ′(a+ h)− f ′(a)

h
= lim

h→0

1

2πih

(∫

γ

f(z)

(z − a− h)2
dz −

∫

γ

f(z)

(z − a)2
dz

)

=
2

2πi

∫

γ

f(z)

(z − a)3
dz. (52)

Here γ is some circle that surrounds a. Hence f ′ has a complex derivative
throughout U and equation (52) gives a formula for it. In light of equation
(52), the function f ′′ is continuous. Hence f ′ is complex analytic in U . ♠

An immediate corollary is that complex analytic functions are infinitely
differentiable. The calculation in equation (52), when done inductively, yields
the following formula for the nth derivative of a complex analytic function
f .

f (n)(a) =
n!

2πi

∫

γ

f(z)

(z − a)n+1
dz. (53)
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13.5 The Maximum Principle

Let f be a complex analytic function in a connected open set U . Here we
will show that f cannot take on its maximum value at a point in U unless
f is constant. We will assume that f takes on a maximum at some point
a ∈ U , and we will derive a contradiction. If f has an interior maximum,
we can compose f with translations and dilations and arrange the following
properties.

• |f(0)| = 1.

• U contains the unit disk.

• |F (z)| ≤ 1 for all |z| = 1.

• |F (z)| < 1 for some z such that |z| = 1.

Let γ be the unit circle. By the Cauchy Integral Formula we have

1 = |f(0)| = 1

2π

∣∣∣
∫

γ

f(z)

z

∣∣∣ ≤∗ 1

2π

∫

γ

|f(z)|dz < 1.

This is a contradiction. The starred inequality is essentially the triangle in-
equality. For later purposes we work out some consequences of the Maximum
Principle.

Lemma 13.5 Suppose that f(z)/zn is well defined at 0 and complex analytic
in a neighborhood of the unit disk. Then f(z) ≤ M |z|n, where M is the
maximum value of |f(z)| on the unit circle.

Proof: From the Maximum Principle we get the result that

|f(z)|/|zn| ≤ M.

Hence |f(z)| ≤ M |z|n. ♠

Lemma 13.6 Suppose, for all n, that the function f(z)/zn is well defined
at 0 and complex analytic in a neighborhood of the unit disk. Then f is
identically 0 on the unit disk.

Proof: From the preceding result, we have |f(z)| ≤ M |z|n. If |z| < 1, then

lim
n→∞

M |z|n = 0.

Hence |f(z)| = 0 if |z| < 1. By continuity, |f(z)| = 0 if |z| ≤ 1. ♠
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13.6 Removable Singularities

Here we will prove the following result:

Theorem 13.7 Let U be an open set that contains a point b. Suppose that
f is complex analytic and bounded on U − {b}. Then f(b) can be (uniquely)
defined so that f is complex analytic in U .

Proof: Let γ and β and λ be the loops used to prove the Cauchy Integral
Formula. So, λ is a small loop surrounding b and γ is a big loop surrounding
b. Let |λ| denote the radius of λ. Let D be the open domain bounded by γ.
We define g : D → C by the integral

g(a) =
1

2πi

∫

γ

f(z)

z − a
dz.

The same calculation as in the proof of Theorem 13.4 shows that g is complex
analytic on all of D. We will show that f(a) = g(a) for all a ∈ D − {b}.
Once we know this, we set f(b) = g(b) and we are done.

Now suppose that a 6= b. Since f(z) is bounded in a neighborhood of b
we have

lim
|λ|→0

∫

λ

f(z)

z − a
dz = 0.

But, by the Cauchy Integral Formula,

f(a) =
1

2πi

∫

β

f(z)

z − a
dz

no matter which choice of λ we make. Therefore

f(a) = lim
|λ|→0

1

2πi

∫

β

f(z)

z − a
dz =

1

2πi

∫

γ

f(z)

z − a
dz = g(a).

So f(a) = g(a) for all a ∈ D − {b}. ♠

Lemma 13.8 Let D denote the unit disk. Suppose that f is complex analytic
in a neighborhood of D and |f(z)|/zn is bounded on D − {0}. Then f is
identically 0 on D.

Proof: The function f(z)/zn is complex analytic in the unit disk by the
above result. Lemma 13.6 now says that f is identically 0. ♠
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13.7 Power Series

We say that a sequence {an} of complex numbers satisfies the unit conver-
gence condition (or UCC) if

lim
n→∞

anρ
n = 0, ∀ρ ∈ [0, 1). (54)

The UCC implies that the terms in the sequence {|an|ρn} decay exponentially
fast for any ρ < 1. To see this, we choose any ρ∗ ∈ (ρ, 1) and note that

|an|ρn = |an|(ρ∗)n ×
( ρ

ρ∗

)n

<
( ρ

ρ∗

)n

for n sufficiently large.

Exercise 5. Suppose that {an} satisfies the UCC. Let k > 0 be any in-
teger and let C be any constant. Prove that the sequence {Cnkan} also
satisfies the UCC.

Now we will discuss the convergence of power series to complex analytic
functions, as well as the term-by-term differentiation of these series. Let {an}
be a sequence satisfying the UCC. First, we define a “finite series”, which is
just a polynomial.

fn(z) =
n∑

k=0

akz
k. (55)

Lemma 13.9 The sequence {fn(z)} is a Cauchy sequence of complex num-
bers for all |z| < 1.

Proof: If a, b > N and N is sufficiently large, then

|fa(z)− fb(z)| = |
b∑

n=a

anz
n| ≤

b∑

n=a

|an||z|n ≤
∞∑

N

δn =
δn

1− δ
.

Here we have chosen some ρ∗ > |z| and taken δ = |z|/ρ∗. This calculation
establishes what we want. ♠

Lemma 13.9 says that the limit

f(z) =
∑

anz
n = lim

n→∞
fn(z) (56)

exists provided that |z| < 1. Here is our main result about this infinite series.
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Theorem 13.10 f(z) is complex analytic in the open unit disk and f ′(z) is
obtained by differentiating the series term-by-term.

Proof: Let gN = f − fN . Then

f(z + h)− f(z)

h
=

fN(z + h)− fN(z)

h
+

gN(z + h)− gN(z)

h
.

From Exercise 1 above fN(z) is complex analytic. Also, the sequence {nan}
satisfies the UCC by Exercise 4. Hence, limN→∞ f ′

N(z) exists at every point
in the unit disk. Moreover, this limit is just obtained by differentiating the
series for f(z) term by term. To prove our result we just have to show that

lim
h→0

f(z + h)− f(z)

h
= lim

N→∞
f ′
N(z).

This is the same as showing that

lim
N→∞

lim
h→0

gN(z + h)− gN(z)

h
= 0.

On the individual terms we have the bound

|an(z + h)n − anz
n

h
| = |an||

(z + h)n − zn

h
| ≤∗ n|an||z + h|n−1.

The starred inequality comes from the fact that the map φ(z) = zn expands
distances in C by at most nδn−1 as long as |z| ≤ δ.

As long as h is fairly small, we can choose some δ < 1 and restrict our
attention to the case |z + h| < δ < 1. Given the above estimate, we get

|gN(z + h)− gN(z)

h
| ≤

∞∑

n=N

n|an|δn−1 =
∞∑

n=N

nδ|an|δn = RN .

(We are just calling the last expressionRN for convenience.) But the sequence
{nδ|an|} satisfies the UCC by Exercise 5. Hence, the terms comprising RN

decay exponentially. Hence, limN→∞RN = 0. But the inequality above holds
for any h with |z + h| < δ. Hence

lim
N→∞

lim
h→0

|gN(z + h)− gN(z)

h
| ≤ lim

N→∞
RN = 0.
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This is what we wanted to prove. ♠

The above result, applied iteratively, shows that the kth complex deriva-
tive f (k)(z) is complex analytic in the open unit disk and is obtained by
differentiating the series for f(z) term-by-term k times.

Our discussion, which focused on the unit disk, generalizes in a straight-
forward way. Say that the sequence {bn} satisfies the R-convergence criterion
if the sequence {anRn} satisfies the UCC. In this case the series

∑
bn(z−z0)

n

is complex analytic in the open disk of radius R about z0 and the same result
as above applies.

13.8 Taylor Series

The basic result we want to prove is that a complex analytic function equals
its Taylor series. We begin with a technical lemma.

Lemma 13.11 Suppose that f is complex analytic in a neighborhood of the
unit disk. Then the sequence

{f (n)(0)/n!}

is bounded and hence satisfies the UCC.

Proof: It follows immediately from equation (53) that |f (n)| ≤ Mn!, where
M is the maximum value attained by f on the closed unit disk. ♠

Lemma 13.11 says that the Taylor series for f about 0 defines a power
series which converges and is complex analytic in a neighborhood of the unit
disk. The next result says that f coincides with its Taylor series in the unit
disk.

Theorem 13.12 Suppose that f is complex analytic in a neighborhood of
the unit disk. Then f equals its Taylor series on the unit disk.

Proof: Since the Taylor series f̃ of f is defined and complex analytic on the
unit disk, we can consider the difference function f−f̃ . This complex analytic
function has zero Taylor series. Thus, it suffices to prove the following special
case. If the Taylor series of f vanishes identically at 0, then f is zero on the
whole unit disk.
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If g is any function with g(0) = 0, we have

|g(z)| ≤
∫ 1

0

|g′(tz)|dt. (57)

Here g′(tz) is the complex derivative of the function z → g(tz). Equation
(57) is best seen geometrically. The idea is that |g′(tz)| measures the speed
of the curve t → g(tz) which connects 0 to g(z).

Let ∆ be the closed unit disk. Fix n for the moment. Since fn(0) = 0 we
can choose δ > 0 so that |f (n)(z)| < 1 for all |z| < δ. Applying equation (57)
to g = f (n−1), we get

|f (n−1)(z)| ≤ |z|, ∀|z| ≤ δ. (58)

Applying equation (57) to g = f (n−2) and using the bound in equation (58),
we get

f (n−2) ≤ |z|2/2, ∀|z| ≤ δ. (59)

Continuing in this way, we get

|f(z)| ≤ |z|n/n!, ∀|z| ≤ δ. (60)

In particular, |f(z)|/|z|n is bounded on Dn − {0}, where Dn is the disk of
radius δ. Note that δ depends on n, but this does not bother us. By com-
pactness, |f(z)|/|z|n is bounded on ∆−Dn. Hence |f(z)|/|zn| is bounded on
∆ − {0}. Since this holds for all n, Lemma 13.8 says that f is identically 0
on the unit disk. ♠

Exercise 6. Define the exponential function

E(z) =
∞∑

n=0

zn

n!
.

Prove that the series defining E(z) converges on all of C. Prove also that
E ′(z) = E(z) and that E(z1 + z2) = E(z1)E(z2). For this last part, you can
do it by manipulating the series directly and applying the binomial theorem.
The restriction of E to R coincides with the familiar exponential function.

Exercise 7. Define the two functions

C(z) = 1− z2

2!
+

z4

4!
− z6

6!
· · · , S(z) = z − zz

z!
+

z5

5!
− z7

7!
· · · .
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Show that these series converge for all z ∈ C and that C(x) = cos(x) and
S(x) = sin(x) for all x ∈ R. Verify that E(z) = C(z) + iS(z).

Exercise 8. Let us define cos(x) and sin(x) such that the map

γ0(x) = (cos(x), sin(x))

is the unit speed counterclockwise parametrization of the unit circle such that
γ(0) = (1, 0). Prove that C(x) = cos(x) and S(x) = sin(x) for all x ∈ R.
(Hint : Consider the map γ1(x) = (C(x), S(x)). Check that

d

dx

(
C2(x) + S2(x)

)
= 0

using term-by-term differentiation. From here it is not too hard to show that
γ0 and γ1 are the same parametrization of the unit circle.)

Exercise 9. Our main result in this section is definitely false for smooth
functions that are not complex analytic. Consider the function

f(t) = exp(−1/t2), t > 0.

When t ≤ 0 we define f(t) = 0. Prove that f is smooth and has a trivial
Taylor series about 0. This shows that smooth functions need not equal their
Taylor series.
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14 Disk and Plane Rigidity

In this chapter, we apply some of the complex analysis developed in the
previous chapter, notably the Maximum Principle and Theorem 13.7, to
certain holomorphic maps of the disk and plane. The types of results we prove
show that certain weak-seeming conditions placed on a complex analytic
function actually place very strong restrictions on the function. These kinds
of rigidity results provide a link between complex analysis and geoemtry.

As an application of the results, we will prove that stereographic projec-
tion maps circles on S2 to circles in C ∪∞. While not the most elementary
possible proof, our proof does give an application of the complex analysis we
have been developing. For a geometric proof of the main result, see [HCV].

14.1 Disk Rigidity

We first prove Theorem 1.1, mentioned in Chapter 1.

Theorem 14.1 Let f be biholomorphism from the unit disk to itself. Then
f is a Möbius transformation.

Proof: If f(0) 6= 0, then we can find a linear fractional automorphism H of
∆ such that f◦H(0) = 0. Thus, it suffices to consider the case when f(0) = 0.
Since f ′(0) exists, the function g(z) = f(z)/z is bounded in ∆. Hence, this
function is complex analytic. Below we will show that |f(z)| ≤ |z| for all
z ∈ ∆, and the same argument, applied to f−1, shows that |f−1(z)| ≤ |z|
for all z ∈ ∆. These two inequalities show that |f(z)| = |z| on ∆. But then
g(∆) is contained in the unit circle, a 1-dimensional curve. This is impossible
unless g is a constant map. Hence there is a constant C such that f(z) = Cz.
Hence f is a linear fractional transformation.

It remains to show that |f(z)| ≤ |z| for z ∈ ∆. This is the same as
showing that |g(z)| ≤ 1 for all z ∈ ∆. Let Cr be the circle of radius r < 1
about 0. Then |g(z)| ≤ 1/r on Cr. Hence |g(z)| ≤ 1/r if |z| < r by the
Maximum Principle. Letting r → 1, we see that |g(z)| ≤ 1 on ∆. This is
what we wanted to prove. ♠

Exercise 1. Prove the same result for a biholomorphism from the upper
halfplane to itself.

163



The next result shows the distinguished role played by the hyperbolic
metric on the open unit disk, from the point of view of complex analysis.

Lemma 14.2 Let ∆ be the unit disk, equipped with the hyperbolic metric
from §10.7. Let f : ∆ → ∆ be a complex analytic map, not necessarily a
biholomorphism. Then f does not expand distances in the hyperbolic metric.

Proof: We would like to see, at each point p ∈ ∆, that the differential df
maps vectors having hyperbolic length 1 to vectors having hyperbolic length
at most 1. Call this the no-stretch property . It suffices to prove that the
no-stretch property holds for each p ∈ ∆. We can find Möbius transforma-
tions T1 and T2 such that T1(0) = p and T2(f(p)) = 0, respectively. The map
g = T2 ◦f ◦T1 satisfies g(0) = 0. Since T1 and T2 are hyperbolic isometries, g
has the no-stretch property at 0 if and only if f has the no-stretch property
at p. Since g(0) = 0, we just need to show that |g′(0)| ≤ 1 to establish the
no-stretch property for g at 0. The same argument as in the previous proof
establishes this fact. ♠

Lemma 14.2 is more flexible than it first appears. Any disk W0 in the
plane has its own hyperbolic metric, so that a similarity carrying ∆ to W0 is
a hyperbolic isometry. This principle should help you with the next exercise.

Exercise 2. Suppose that U is some open set in the plane and w ∈ U
is some point. Suppose also that G : U → ∆ is a holomorphic map. Prove
that there is some disk W ⊂ U , centered at w, whose size does not depend
on G, such that the hyperbolic distance from G(w) to G(w′) is less than 1
for all w′ ∈ W .

14.2 Liouville’s Theorem

Here is Liouville’s Theorem.

Theorem 14.3 (Liouville) Suppose that f is a bounded holomorphic func-
tion on C. Then f is constant.

Proof: Equation (51) says that

f ′(a) =

∫

γ

f(z)

(z − a)2
dz. (61)
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Taking γ to be a large circle of radius r about 0, we see that the right hand
side of the above equation is at most C/r for some constant C. Letting
r → ∞, we see that f ′(a) = 0. Since a is artitrary, f is constant. ♠

Exercise 3 (Challenge). A function f : C → R is called harmonic if it
has the following property. For any disk D, the value of f at the center of D
equals the average value of f on D. Prove that a bounded harmonic function
is constant. This result is equivalent to Liouville’s Theorem. (Sketch: You
want to show that f(a) = f(b) for all a, b ∈ C. Consider the difference
Cr = Ar − Br, where Ar is the average of f on the disk of radius r about
a and Br is the average of f on the disk of radius r about b. Show that
limr→∞Cr = 0, by analyzing the intersection Ar − Br and observing that
there is a lot of cancellation in the computation of Ar −Br when r is large.)

Exercise 4. Give an alternate proof of Liouville’s Theorem by showing that
the function g(z) = f(z)/z is holomorphic in the whole plane and then ap-
plying the Maximum Principle.

Exercise 5. Use Liouville’s Theorem to give another proof of the Fun-
damental Theorem of Algebra. (Hint : Let P (z) be a complex polynomial
supposedly with no roots. Consider f(z) = 1/P (z).)

Exercise 6. Suppose that g : C → C is a continuous map with the following
properties:

• g(0) = 0.

• g is holomorphic on C − {0}.

• |g(z)| < C|z| for |z| sufficiently large.

Prove that g(z) = Az for some constant A. Hint: First show that g is holo-
morphic on all of C, then show the same thing for h(z) = g(z)/z.

Exercise 7 (Challenge). Suppose that f : C → C is a holomorphic
function such that |f(z)| < |z|n for some n and all z with |z| sufficiently
large. Prove that f is a polynomial.
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Lemma 14.4 Suppose f is a homeomorphism of C that is complex analytic
except at finitly many points. Then f(z) = Az+B for some constants A and
B.

Proof: Combining Lemma 2.2 and Theorem 13.7, we see that f is complex
analytic on all of C. The function f ′(z) cannot identically vanish. So, we can
compose f with translations and then assume that f(0) = 0 and f ′(0) > 0.
But then there is some C > 0 such that |f(z)| > C|z| provided that |z| is
sufficiently small. Now consider the function

g(z) =
1

f(1/z)
. (62)

Note that g satisfies the conditions of Exercise 4. Hence g(z) = Az. But
then f(z) = z/A. Remembering that this new version of f is a translation
of the original, we see that the original version of f has the form Az +B. ♠

14.3 Stereographic Projection Revisited

Let φ : S2 → C ∪∞ be stereographic projection.

Lemma 14.5 The differential dφ is a similarity on the tangent plane Tx at
x ∈ S2 − {(0, 0, 1)}.

Proof: One can prove this result by a direct calculation, but we will give
a geometric proof. Our proof refers to Figure 14.1. We think of C as the
xy-plane. Let T = Tx and let T ′ be the plane through x parallel to C. Let
L be the line joining (0, 0, 1) to x. Figure 14.1 shows the intersection of all
these objects with the plane Π containing (0, 0, 0) and (0, 0, 1) and x. The X
Theorem from §8.3 implies that the lines T ∩ Π and T ′ ∩ Π make the same
angle with L = L ∩ Π. Hence, reflection in the plane P = L⊥ carries T
isometrically to T ′.

The differential dφ has the following description: First reflect T to T ′

through P , then radially project T ′ to C through p. Thus dφ is the compo-
sition of an isometry and a similiarity, which is just another similarity. ♠
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Figure 14.1. The Differential of Stereographic Projection

Exercise 8. Prove Lemma 14.5 by a direct calculation, using equation (32).

Lemma 14.6 Suppose I is an isometry of S2. Then I ′ = φ ◦ I ◦ φ−1 is a
linear fractional transformation.

Proof: Here is where complex analysis comes in. We can find a linear frac-
tional transformation T such that J = T ◦I ′ fixes ∞. It suffices to show that
J is a linear fractional transformation. The map J is smooth except at per-
haps a finite list of points. (The points we are not certain about are various
images and preimages of ∞.) Moreover, by Lemma 14.5, the differential dJ
is a similarity at all but finitely many points. Hence J is a homeomorphism
of C that is holomorphic except at finitely many points. By Lemma 14.4,
the map J is linear, and hence a linear fractional transformation. But then
I ′ is a linear fractional transformation. ♠

Now we come to the main application of the results in this section. Again,
this result has a direct geometric proof, but we want to show how one can
get the result from complex analysis.

Lemma 14.7 Stereographic projection maps circles on S2 to generalized cir-
cles in C ∪∞.

Proof: Let C be a circle on S2. Let I be an isometry of S2 such that I(C)
contains (0, 0, 1). As we remarked in §9.5, the curve L = φ(I(C)) is a straight
line (union ∞). Thus, φ(I(C)) is a generalized circle. But

φ(L) = I ′(φ(C)), I ′ = φ ◦ I ◦ φ−1.

167



By Lemma 14.4, the map I ′ is a linear fractional transformation. Therefore,
so is J = (I ′)−1. But φ(C) = J(L), where J is a linear fractional transfor-
mation and L is a generalized circle. Since linear fractional transformations
map generalized circles to generalized circles, as we saw in Chapter 10, we
see that J(L) = φ(C) is also a generalized circle. ♠

Exercise 9. Generalize the definition of stereographic projection so that it
works in all dimension and prove that generalized stereographic projection
maps spheres to spheres. You should be able to deduce this from the 2-
dimensional case and symmetry.

15 The Schwarz–Christoffel Transformation

In this chapter we will study some examples of Schwarz–Christoffel transfor-
mations. These maps turn out to give biholomorphisms between the upper
half-plane and the interiors of polygons. For ease of exposition, we will re-
strict our attention to the case when the sides of the polygon are parallel to
the coordinate axes. We call such polygons rectilinear polygons ; see Figure
15.1.

Figure 15.1. A rectilinear polygon

One remarkable thing about the Schwarz–Christoffel transformations is
that there is, in a sense, an explicit formula for them. The book [DRT] has
a great deal of information about these maps, including a discussion of their
history.

15.1 The Basic Construction

Suppose that x1 < x2 < · · · < xn ∈ R and e1, · · · , en are numbers such that
ej = ±1/2 for all j and e1 + · · ·+ en = −2.
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Let U ⊂ C denote the upper half-plane. Let U∗ ⊂ C denote the re-
gion obtained by deleting the closed downward pointing rays which start
at x1, . . . , xn. We are mainly interested in U , but the larger region U∗ is
convenient for technical purposes.

Figure 15.2. The region U∗

Consider the function

f(z) = (z − x1)
e1 · · · (z − xn)

en . (63)

If we try to define this function in all of C we run into trouble because we
cannot consistently define f all the way around a loop which circles around
xj. Since U∗ has no loops like this, f is defined and complex analytic in all
of U∗.

We define a function F : U∗ → C as follows. First we set F (i) = 0. Next,
for any z ∈ U∗, we let γ be a piecewise smooth path connecting 0 to z, and
we set

F (z) =

∫

γ

f(z)dz. (64)

Equation 64 is well defined by Theorem 13.1. It follows almost immediately
from the Fundamental Theorem of Calculus that F is holomorphic in U∗ and
F ′(z) = f(z). In particular, F ′(z) never vanishes in U∗. Here is our main
result about F .

Theorem 15.1 F is well defined and continuous on R ∪ ∞. The image
F (R ∪ ∞) is a closed polygonal loop whose sides are alternately parallel to
the real and imaginary axes. If F (R ∪∞) is an embedded polygon, then F
is a biholomorphism from U to the polygonal domain bounded by F (R∪∞).

15.2 The Inverse Function Theorem

As a prelude to proving Theorem 15.1. We prove a special case of the Inverse
Function Theorem. For the general case, see, e.g., [SPI].
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Theorem 15.2 Let f be a holomorphic map defined in a neighborhood of
z ∈ C. Suppose that f ′(z) 6= 0. Then the restriction of f to a neighborhood
of z has an inverse, and f−1 is also holomorphic.

Proof: We can translate and scale so that z = 0 and f(0) = 0 and f ′(0) = 1.
LetDr be the disk of radius r about 0. For r small, we have |f ′(z)−1| < 1/100
for all z ∈ Dr. Let z1 6= z2 be two points in Dr. Let L be the straight line
joining these points. Given our bounds on f ′(z) along L, we see that the
curve f(L) nearly has the same length as L and points almost in the same
direction as L at all points. Hence f(z1) 6= f(z2). Hence f is injective on Dr

for r small.
The same argument shows that f(∂Dr) is a closed loop that is at least

(say) r/2 from 0 and winds once around 0. Let ∆r denote the set of points w
such that f(∂Dr) winds once around w. Note that ∆r is an open neighbor-
hood of 0. Suppose there is some w ∈ ∆r−f(Dr). Consider the 1-paramater
family of loops γt = f(t∂Dr). For t close to 0, the loop γ1 winds 0 times
around w. On the other hand, γ1 winds once around w. In order for the
winding number to change in this way, γt must contain w for some t. But
then w ∈ f(Dr). Hence f : Dr → ∆r is a surjection.

Now we know that f : Dr → ∆r is a bijection. So, f−1 : ∆r → Dr exists.
Our injectivity proof also shows that f−1 is continuous: f cannot map far
away points close together. One way to see that f is differentiable at 0 is that
the dilated maps gn(z) = nf(z/n) converge to a similarity as n → ∞. But
the dilated inverse of f is the inverse of the dilation of f . Hence, the dilations
of f−1 also converge to a similarity. This shows that f−1 is differentiable at
0. The chain rule now shows that (f−1)′(0) = 1/f ′(0). The same argument
works at any other point z in the interior of Dn. This shows that f

−1 has a
continuously varying complex derivative in the interior of ∆n. Hence, f

−1 is
holomorphic in ∆n. ♠

15.3 Proof of Theorem 15.1

We already know that F is defined on R − {x1, . . . , xn}, and F is pretty
obviously continuous where defined.

Exercise 1. Prove that F is defined and continuous on R ∪ ∞. (Hint :
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use the same definition at these points as for the other points. The finiteness
of integrals such as ∫ 1

0

1

x1/2
dx;

∫ ∞

1

x−2 dx

is what makes the definition work.)

Now we want to analyze the image F (R ∪ ∞). The points x1, . . . , xn

divide R into the n + 1 intervals I0, . . . , In. Actually, I0 = (−∞, x1) and
In = (xn,∞) are rays. Let Jk = F (Ik).

When we square f , we get

f 2(z) = (z − x1)
±1 · · · (Z − xn)

±1.

From this we see that f 2 is positive on I0, negative on I1, positive on I2, and
so on. So, f is real on I0, pure imaginary on I1, real on I2, pure imaginary
on I3, and so on. But F ′(z) = f(z), and the argument of F ′(z) tells us how
F rotates points in a neighborhood of z. Hence J0 is a horizontal segment,
J1 is a vertical segment, J2 is a horizontal segment, and so on. Since F is
continuous on R ∪∞, we see that these segments all piece together to give
the kind of path described in Theorem 15.1.

We orient R from −∞ to +∞. If you walk along R, then U lies to
your left. Being complex analytic, the map F is orientation preserving. This
means that, as you walk around F (R), the image F (U) (at least locally) lies
to your left.

Exercise 2. Show that F (R) turns left at xj if ej = −1/2 and right if
ej = −1/2. Geometrically, f(U) looks like one quadrant in a neighborhood
of f(xj) if ej = −1/2 and three quadrants if ej = 1/2.

Given Exercise 2, and the fact that e1 + · · · + en = −2, the polygo-
nal path F (R) turns once around counterclockwise (the equivalent of 4 left
turns.) Hence F (I0) and F (In) travel in the same direction and fit together
seamlessly.

Now we suppose that F (R ∪∞) is an embedded polygon. Let R be the
region bounded by F (R ∪∞).

Lemma 15.3 F (U) ⊂ R.
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Proof: Let U = U ∪R∪∞. The set U is a compact subset of the Riemann
sphere S2 = C ∪∞. Lemma 2.2 tells us that F (U) is a bounded subset of
C. Since U is a compact subset of S2 and F is continuous, F (U) is compact.

If F (U) is not a subset of R, we can find a point p ∈ U such that F (p) lies
in the boundary of F (U) but not in ∂R. Note that p must lie in U because
F (U −U) = ∂R. By the Inverse Function Theorem, F maps a neighborhood
of p onto a neighborhood of F (p). But then F (p) could not lie in the bound-
ary of F (U). This contradiction shows that F (U) ⊂ R. ♠

Exercise 3. Use essentially the same argument that we gave in §5.3, in
connection with the Fundamental Theorem of Algebra, to show that F (U) =
R.

Lemma 15.4 F is one-to-one on U .

Proof: Let B ⊂ U denote the set of points z such that F (z) = F (z′) for
some other z′ ∈ U . Consider the extreme case when B = U . Choose some
z ∈ U∗ ∩R, and let {zn} be a sequence of points in U converging to z. Let
{z′n} be a sequence of points in U such that F (zn) = F (z′n).

By Theorem 15.2, the map F is one-to-one in a neighborhood of z, so there
is some minimum distance between z and z′n. Passing to a subsequence, we
can assume that z′n converges to some point z′ ∈ R∪∞. From the minimum
distance property, z 6= z′. By continuity F (z) = F (z′). But F is one-to-one
on R ∪∞.

Now we know that B 6= U . We will show that B is both open and closed.
Since U is connected, the only possibility is that B = ∅. Essentially, that
same argument we just gave to show that B 6= U shows that B is closed in
U . We just have to show that B is open.

Suppose that z ∈ B and F (z′) = F (z). By Theorem 15.2, F maps neigh-
borhoods of z and z′ onto neighborhoods of F (z) = F (z′). Hence B contains
a neighborhood of z. Hence B is open. ♠

Lemma 15.4 and Exercise 3 combine to show that F : U → R is a complex
analytic bijection. Theorem 15.2 now shows that F−1 is complex analytic.
Hence F is a biholomorphism. This completes the proof of Theorem 15.1.
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15.4 The Range of Possibilities

Theorem 15.1 explains how we can get some rectilinear polygons as images
of the upper half-plane under a Schwarz–Christoffel transformation. It turns
out that, up to scaling, we can get all of them this way. The idea is to
show that we can vary the inputs of the construction so as to produce every
possibility. Here is the main result.

Theorem 15.5 Up to scaling, every rectilinear polygon is the image of the
upper half-plane under a Schwarz–Christoffel transformation.

The proof of Theorem 15.5 is a bit hard going, but I included it because I
like the result and also because I will use Theorem 15.5 in the next chapter to
prove the Riemann Mapping Theorem. Once we know the Riemann Mapping
Theorem, we can say right away that every open solid polygon is the image
of the upper half-plane under a biholomorphsm. However, without knowing
Theorem 15.5, it seems difficult to prove, just from the Riemann Mapping
Theorem, that every biholomorphism from the upper half-plane to a recti-
linear polygon is given (up to composition with Möbius transformations) by
a Schwarz–Christoffel transformation.

One unfortunate thing about our proof of Theorem 15.5 is that it is not
completely self-contained. It relies on a basic result in topology known as
Invariance of Domain. The Invariance of Domain result has always struck
me as obviously true, but the proof is fairly difficult.

15.5 Invariance of Domain

The following result is Theorem 2B.3 in [HAT].

Theorem 15.6 (Invariance of Domain) Suppose that U ⊂ Rn is an open
set, and Φ : U → Rn is a continous and one-to-one map. Then Φ(U) is open
in Rn.

We are mainly interested in a certain corollary of the Invariance of Domain
result. Suppose that X and Y are spaces, both homeomorphic to open
subsets of Rn. A map Φ : X → Y is proper if it has the following property.
If K ⊂ Y is compact, then Φ−1(K) ⊂ X is compact.

Lemma 15.7 Let X and Y be spaces, both homeomorphic to open subsets
of Rn. Suppose also that X is nonempty and Y is connected. If Φ : X → Y
is a one-to-one, continuous, and proper map, then Φ(X) = Y .
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Proof: We suppose that this result is false and derive a contradiction. By
Invariance of Domain, Φ(X) is an open subset of Y . Moreover, Φ(X) is
nonempty. Since Y is connected, Y itself is the only subset of Y that is
simultaneously open, closed, and nonempty. We conclude that Φ(X) is not
closed. Hence, we can find a point

q ∈ Φ(X)− Φ(X).

Given the location of q, we can find a sequence {pk} ∈ Φ(X) such that
pk → q.

We can choose {pk} so that it lies in a compact subset of Y . Since Φ is
proper, there is a sequence {p′k}, contained in a compact subset of X such
that Φ(p′k) = pk. Since {p′k} lies in a compact subset ofX, this sequence has a
convergent subsequence. Passing to this subsequence, we let q′ = lim pk ∈ X.
Since Φ is continuous, Φ(q′) = q. This contradicts the fact that q 6∈ Φ(X).
♠

Given Lemma 15.7, the rest of our proof of Theorem 15.5 is self-contained.

15.6 The Existence Proof

Say that a marked loop is a counterclockwise oriented rectilinear loop with
a preferred edge. We fix some length n sequence Σ of “lefts” and “rights”,
with a total of 4 more “lefts” than ”rights”, and we let Y ′

Σ denote the space
of all marked polygons that have this sequence of turns as we trace around it
counterclockwise, starting with the preferred edge. Let YΣ ⊂ Y ′

Σ denote the
subset of embedded ones. Using the side lengths of the polygons, we consider
Y ′
Σ and YΣ as subsets of Rn. This makes these sets into metric spaces.

Exercise 4. Let Σ be a sequence of length n, as above. Prove that YΣ

and Y ′
Σ are both homeomorphic to open subset of Rn−2.

Exercise 5 (Challenge). Prove that YΣ is connected. (Hint : The re-
sult is certainly true for the sequence Σ = LLLL. Here YΣ is just the space
of rectangles. In general, do induction on the length of Σ. Show that a
rectilinear polygon always has a “spot” where you can continuously shrink
one of the edges to a point without destroying the embedding property; see
Figure 15.3.)
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Figure 15.3. Shrinking an edge

Let Σ1 and Σ2 be two sequences. We write Σ1 → Σ2 if Σ2 is obtained
from Σ1 by the insertion of LR or RL somewhere in Σ1. For any sequence
Σ2 except LLLL, there is some sequence Σ1 such that Σ1 → Σ2. Say that
the sequence Σ1 is good if some polygon in YΣ is the image F (R ∪∞) for a
Schwarz–Christoffel transform F .

Lemma 15.8 All sequences are good.

Proof: The sequence LLLL is certainly good. We will prove the following
statement. If Σ1 → Σ2 and Σ1 is good, then so is Σ2. This lemma then
follows from induction.

Let P be a polygon in Y1 that is realized as the image F (R∪∞) for some
Schwarz–Christoffel transformation F . Let x1, ..., xn be the special points
corresponding to F . The exponents e1, ..., en are chosen so as to match the
sequence of lefts and rights in Σ1.

Figure 15.4. A zig-zag.

Let’s say that Σ2 is obtained from Σ1 by inserting LR after the kth slot.
Then, between xk and xk+1, we insert two new points x′

1 and x′
2. We place

these points extremely close together, and right near the middle of the in-
terval bounded by xk and xk+1. We chose additional exponents e′1 = −1/2
and e′2 = 1/2. Let F ′ be the new Schwarz–Christoffel transform based on
the points x1, . . . , xk, x

′
1, x

′
2, xk+1, . . . , xn and the corresponding exponents.

When x′
1 and x′

2 are very close, the images F (R ∪ ∞) and F ′(R ∪ ∞) are
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almost identical, except that the single edge F (Ik) is replaced by a zig-zag, as
shown in Figure 15.4. If this perturbation is small, the polygon in question
is embedded. ♠

We fix a sequence of exponents e1, . . . , en, as above. These exponents
determine the corresponding sequence Σ of lefts and rights. The input to
our construction is a positive constant c and points x1 = −1 and 0 = x2 <
x3 < · · · < xn = 1. Let X ′ be the set of possible inputs. X ′ is homeomorphic
to Rn−2.

Given some particular input p ∈ X ′, the output is a polygonal loop
Φ(p) = F (R ∪ ∞). Here F is the Schwarz–Christoffel transformation from
equation (64), rescaled by c. We scale by c at the end for technical purposes.
By construction Φ(p) is a point in the space of Y ′ = Y ′

Σ. Thus, we have a
map Φ : X ′ → Y ′. The map Φ is pretty obviously continuous, given the
formula for the Schwarz–Christoffel transformation.

Lemma 15.9 Φ : X ′ → Y ′ is one-to-one.

Proof: Suppose that F1 and F2 are two Schwarz–Christoffel transformations
such that F1(R∪∞) and F2(R∪∞) trace out the same polygon. We mean
also that F1(xi) = F2(xi) for all i. Define G = F−1

1 F2 : U → U . This is
a biholomorphism that fixes −1, 0, and 1. By Exercise 6 below, G is the
identity. ♠

Exercise 6. Let G : U → U be a biholomorphism from the upper half-plane
to itself. Suppose that G fixes the points −1, 0, and 1. Prove that G is the
identity map.

Recall that Y ⊂ Y ′ is the subset of embedded polygons. We let X =
Φ−1(Y ). Since all sequences are good, X is nonempty. Since Φ is continuous,
X is open. To finish the proof of Theorem 15.5, we just have to show that
Φ : X → Y is proper. Then we can apply Lemma 15.7 and conclude that
Φ(X) = Y , as desired.

Let K be a compact subset of Y . We want to show that Φ−1(K) is a
compact subset of X. This is the same as showing that Φ−1(K) is a compact
subset of X ′. We can put this another way. Suppose {pk} is a sequence of
inputs that exits every compact subset of X ′. We want to prove that Φ(pk)
exits every compact subset of Y .
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Say that a special interval relative to the index k is an interval bounded
by consecutive points xk,j and xk,j+1. If {pk} exits every compact subset of
X ′, then at least one of 3 things happens on a subsequence. Either ck → ∞
or ck → 0 or {ck} is bounded. In the last case, the length of the shortest
special interval tends to 0 with k.

Suppose that ck → ∞. Now matter how we choose the input, all the
points in the interval [−2/3,−1/3] ⊂ I0 are at least 1/3 units away from all
the special points. Looking at the formula for F in equation (64), we see
that F (I0) has length at least (1/3)n+1. But then one of the sides of the
kth output has length at least ck(1/3)

n+1, a number that tends to ∞ with k.
Hence Φ(pk) exits every compact subset of Y .

Suppose that ck → 0. No matter what the input, we can find 3 points
y1, y2, y3 ∈ R, all in distinct special intervals, that are all at least 1/2n from
any of the endpoints of the special intervals. Looking at the formula for F in
equation (64), we see that there is some constant C, independent of inputs,
such that |F (yi)| < C for i = 1, 2, 3. But then the polygon corresponding to
Φ(pk) has three sides which come within Cck of the origin. But Cck tends to
0. This shows that points Φ(pk) exit every compact set of Y .

The following result finishes our proof of Theorem 15.5.

Lemma 15.10 If {ck} is bounded and the length of some special interval
tends to 0, then Φ(pk) exits every compact subset of Y .

Proof: We will suppose that Φ(pk) lies in a compact subset of Y and derive
a contradiction. After a bounded amount of scaling, we can assume that
ck = 1 for all k. Let Fk be the Schwarz–Christoffel transformation associated
to pk. Let Pk = Fk(R∪∞). By compactness, there is some D > 0 such that
the sides of Pk have length at most 1/D and the distance between any two
distinct vertices of Pk is at least D. Here D is independent of k.

Passing to a subsequence, we can assume that xk1, . . . , xkn converges to
points x∞,1, . . . , x∞,m. Here m < n because some points have coalesced. We
have associated exponents e∞,1, . . . , e∞,m, where e∞,k is the sum of the ex-
ponents of the points that coalesce to x∞,k.

Exercise 7. Prove that e∞,k ≥ −1/2. (Hint : Use the fact that the sides of
Pk have length at most 1/D, independent of k.)
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Because the integrands for Fk converge at each point of U∗, the sequence
{Fk} of maps converges to a map F∞ : U∗ → C, defined exactly as in
equation (64). Because e∞,k ≥ −1/2 and

∑
e∞,k = −2, the map F∞ extends

to be continuous on R ∪∞.
Choose an index m such that 2 or more points xk,j converge to x∞,m.

Consider the special intervals A∞ and B∞ on either side of x∞,m. There are
special intervals Ak and Bk such that Ak → A∞ and Bk → B∞. By our
choice of index m, the intervals Ak and Bk are not consecutive.

Exercise 8. Prove the following result. There is some K such that k > K
implies that Fk(Ak) contains all but D/3 of F∞(A∞). (Hint : use the finite-
ness of of all the integrals involved and the convergence of the integrands.
The same result holds for B in place of A.)

By Exercise 8, some endpoint of Fk(Ak) is within 2D/3 of some endpoint
of Fk(Bk). This contradicts the existence of D. ♠

16 Riemann Surfaces and Uniformization

The purpose of this chapter is to define the notion of a Riemann surface.
A Riemann surface is essentially a surface that is built out of pieces of C
glued together with complex analytic maps. Once we know about Riemann
surfaces, we can speak about complex analytic maps between them. We will
prove some basic results about such maps, relying on the material from the
previous 3 chapters.

Following the discussion of Riemann surfaces, we will prove the Riemann
Mapping Theorem. For another proof of this result, one that does not rely
on Theorem 15.5, see [AHL].

The Riemann Mapping Theorem is a special case of the Poincaré Uni-
formization Theorem, a result we will state without proof. A proof can be
found in [BE2]. After stating the Uniformization Theorem, we will deduce
some consequences from it.

178



16.1 Riemann Surfaces

Let S be a surface. Recall that a smooth structure on S is a maximal collec-
tion of coordinate charts which have the property that the overlap functions
are all smooth. A Riemann surface is defined in a similar way, with the word
complex analytic replacing the word smooth. That is, a Riemann surface
structure on a surface is a maximal collection of coordinate charts such that
the overlap functions are all smooth. Here are some examples:

Open Subsets of C. Any open subset of C is a Riemann surface. We
can take the coordinate chart maps to be the identity.

The Riemann Sphere. We can think of S2 as C ∪ ∞. Then U1 = C

is a neighborhood of {0} and U2 = C ∪ ∞ − {0} is a neighborhood of ∞.
The identity map is a homeomorphism from U1 to C and the map f(z) = 1/z
is a homeomorphism from U2 to C. The overlap U1 ∩U2 is C − {0} and the
overlap function is just f(z) = 1/z, a complex analytic function. We already
have a collection of (two) coordinate charts which cover S2, and we can com-
plete this collection to a maximal collection. This makes S2 into a Riemann
surface. This surface is known as the Riemann sphere.

Flat Tori. Let P be a parallelogram. If we glue the opposite sides of P
together by translations, then we produce a closed surface. We can find a
covering of S by coordinate charts whose overlap functions are translations,
i.e., maps of the form z → z +C for various choices of the constant C. Such
maps are complex analytic, and so we can make these flat tori into Riemann
surfaces in a natural way.

Hyperbolic Surfaces. Recall that a hyperbolic structure on a surface is a
maximal collection of coordinate charts into H2 such that the overlap func-
tions are all restrictions of hyperbolic isometries. If we only use orientation
preserving hyperbolic isometries, then these maps are all linear fractional
transformations. Linear fractional transformations are complex analytic, and
so a hyperbolic structure on a surface is always a Riemann surface structure.

Exercise 1. In §12.6 we discussed the notion of a Riemannian covering
space. We can similarly define a Riemann surface covering . This would be
a covering map between Riemann surfaces that is complex analytic. Given a
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covering map E : S̃ → S, prove that S̃ can be made into a Riemann surface
such that E is a Riemann surface covering.

Exercise 2. Let E(z) be the exponential function, as defined in Exercise 7
of §13.8. Prove that E is a covering map from C to C−{0}. (Hint : Use the
identities in Exercises 7-9 of §13.8 to get a handle on the geometry of E.)

Exercise 3 (Challenge). Let X be the space obtained by gluing together
two copies of the solid unit square, along all sides (see Figure 16.1). Give
X the structure of a Riemann surface (by finding local charts) so that there
is a biholomorphic map between X and the Riemann sphere. (Hint : For
the coordinate charts, the only tricky part is thinking about what to do at
the vertices and edges. Think about the Christoffel transform between the
square and the upper half plane.)

1

2

3

44

1

2

3

Figure 16.1. Gluing 2 squares

16.2 Maps Between Riemann Surfaces

Suppose S1 and S2 are two Riemann surfaces. A map f : S1 → S2 is complex
analytic in a neighborhood of p1 ∈ S1 if there are neighborhoods U1 of p1
and U2 of p2 = f(p1), together with coordinate charts fj : Uj → C such that
the map f2 ◦ f ◦ f−1

1 is complex analytic. f is complex analytic on S1 if f
is complex analytic in a sufficiently small neighborhood of every point. We
can use some of the machinery from Chapter 13 to prove nontrivial results
about maps between Riemann surfaces. This chapter contains a sampler of
these results.

Theorem 16.1 There is no nontrivial complex analytic map from a compact
Riemann surface into C.
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Proof: Suppose f : S → C is complex analytic. Since S is compact f
achieves its maximum at some point p ∈ S. Let U be a coordinate chart
about p and let g : U → C be a coordinate chart. Then h = f ◦ g−1 is a
complex analytic map from the open set g(U) into C. Moreover, h takes
its maximum value at an interior point of g(U). But a nonconstant complex
analytic map cannot have an interior maximum, according to the Maximum
Principle from §13.5. ♠

On the other hand, there are plenty of complex analytic maps from the
Riemann sphere to itself. For instance, any rational function R(z) = P (z)

Q(z)
is

a complex analytic map from the Riemann sphere to itself. Here P and Q
are polynomials. The set R−1(∞) is contained in the set of zeros of Q.

Theorem 16.2 There is no nonconstant complex analytic map from C into
a hyperbolic surface.

Proof: Let f : C → S be a complex analytic map from C to S. Let
E : H2 → S be the universal covering map. Using the lifting property for
maps we can find a lifting f̃ : C → H2 such that E ◦ f̃ = f . (We produce

f̃ by partitioning C into an infinite grid of squares, and applying the lifting
theorem one square at a time.) By construction f̃ is complex analytic. The
point is that on small neighborhoods E−1 is defined and complex analytic;
and f̃ = f ◦ E−1 on these small neighborhoods. However, we can take H2

as the open unit disk. So, f̃ is a bounded complex analytic function on C.
However, all such maps are constant. Since f̃ is constant, so is f . ♠

Any complex analytic homeomorphism from C to C is a linear map, by
Corollary 14.4. Our proof of the next result uses this fact.

Theorem 16.3 Suppose that S is a Riemann surface which has a non-
Abelian fundamental group. Then there is no complex analytic covering map
of the form E : C → S.

Proof: Suppose that E : C → S exists. Let G be the fundamental group
of S. Then G acts on C as the deck group. Each element g ∈ G acts as a
complex analytic homeomorphism of C. Hence g is a complex linear map.
Being an element of the deck group, g acts without any fixed points. There-
fore, g must be a translation. In short G is a group of translations. But any
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two translations commute and hence G is Abelian. This contradiction shows
that E does not exist. ♠

16.3 The Riemann Mapping Theorem

Let ∆ denote the open unit disk. Say that a Jordan domain is any set of the
form h(∆), where h : C → C is a homeomorphism.

Theorem 16.4 (Riemann Mapping Theorem) Let D be any Jordan do-
main. There exists a biholomorphism from ∆ to D.

Riemann gave an intuitive description of the Riemann map. Imagine
that the domain D is a uniformly conducting material, and that an electric
potential of 1 is maintained at some interior point x ∈ D and a potential of
0 is maintained on the boundary of D. The equipotential lines form loops
around x, and the electricity flowing from x out to ∂D flows along lines
perpendicular to the equipotential loops. The equipotential loops and the
flow lines form a kind of wavy coordinate system on D. The Riemann map,
if it is normalized to send 0 to x, sends the ordinary polar coordinate system
on ∆ to the wavy one.

We will give a proof of the Riemann Mapping Theorem that is based on
Theorem 15.5.

Exercise 4. Prove the following statement. For any ǫ > 0, there is an
embedded rectilinear polygon P such that every point of ∂D is within ǫ of
P , and vice versa.

We scale the picture so that ∆ ⊂ D. For each positive integer n, choose
a rectilinear polygon that is within 1/n of ∂D in the sense of Exercise 4. Let
Dn be the region bounded by this polygon. The polygon itself is ∂Dn.

Since ∆ and the upper half plane are biholomorphically equivalent, The-
orem 15.5 says that there is a biholomorphism Fn : ∆ → Dn. Composing
Fn with a Möbius transformation of ∆, we arrange that Fn(0) = 0 for all n.
The rest of the proof amounts to showing that the sequence {Fn} converges
to the desired map.

Exercise 5. Let r < 1 and let ∆(r) denote the disk of radius r centered at
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the origin. Prove that there is some constant R, depending on r but not on
n, such that |F ′

n(z)| < R for all z ∈ ∆(r). (Hint : Apply equation (61), using
a circular loop γ ⊂ ∆ that bounds ∆(r′) for some r′ > 1.)

Since D is bounded, we can pass to a subsequence so that {Fn(z)} con-
verges on a countable dense subset of points z ∈ ∆. But then, Exercise 5
guarantees that {Fn(z)} converges uniformly on each disk ∆(r). That is, for
any ǫ > 0, there is some N such that n > N implies that |Fm(z)−Fn(z)| < ǫ
for all m,n > N .

Let F = limFn. We have a converging sequence of maps, all of which
satisfy the Cauchy Integral Formula for all loops in ∆. Hence, F satisfies the
Cauchy integral as well. Hence F is holomorphic. The main thing we want
to rule out is that F is the constant map. The next lemma does this for us.

Lemma 16.5 |F ′(0)| ≥ 1.

Proof: Let Gn = F−1
n . Recall that Fn(0) = 0 and ∆ ⊂ D. Hence

Gn(∆) ⊂ ∆ and Gn(0) = 0. By Lemma 14.2, we have the inequality
|G′

n(0)| ≤ 1. ♠

Exercise 6. Imitate the proof of Lemma 16.5 to show that F ′(z) > 0 for all
z ∈ ∆.

Lemma 16.6 F is one-to-one.

Proof: Suppose that F (z1) = F (z2). Then, by Theorem 15.2, there are
disjoint open sets U1 and U2 such that F (U1) = F (U2). But then Fn(U1) and
Fn(U2) overlap for large n. This contradicts that Fn is one-to-one. ♠

Since F ′(z) never vanishes, Theorem 15.2 shows that F−1 is holomorphic.
Now we know that F is a biholomorphism from ∆ onto F (∆). Certainly
F (∆) ⊂ D. To finish the proof, we just have to show that F (∆) = D.

Choose w ∈ D. Let zn = F−1
n (w). Call w good if the sequence {zn}

remains within a compact subset of ∆. Otherwise call w bad . If w is good,
there is at least one accumulation point z ∈ ∆ of {zn}. Since Fn(zn) = w and
we have a uniform bound on |F ′

n| in a neighborhood of z, we have F (z) = w.
We just have to show that every point in D is good.
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Lemma 16.7 w is contained in the interior of a disk W ⊂ D with the
following property. For all w′ ∈ W , the hyperbolic distance between Fn(w)
and Fn(w

′) is less than 1, independent of n.

Proof: Apply Exercise 2 from Chapter 14 to the map G = F−1
n and some

open set U ⊂ D such that w ∈ U and U ⊂ Fn(∆) for all n. ♠

Note that w is good if and only if there is some K such that {zn} stays
within K hyperbolic units of 0. It therefore follows from Lemma 16.7 and the
triangle inequality that the set of good points is open. If {zn} stays with K
hyperbolic units of 0, then {z′n} stays within K +1 units of 0. Here we have
set z′n = F−1

n (w′). Similarly, it follows from Lemma 16.7 and the triangle
inequality that the set of bad points is open. Finally, 0 is good. So, the set
of good points is open, closed, and nonempty. Hence every point in D is
good. Hence f(∆) = D.

16.4 The Uniformization Theorem

Here is the Poincaré Uniformization Theorem.

Theorem 16.8 (Poincaré Uniformization) Suppose that A is a simply
connected Riemann surface. Then one of three things is true:

• A is compact, and there is a biholomorphism between A and the Rie-
mann sphere.

• A is noncompact and there is a biholomorphism between A and C.

• A is noncompact and there is a biholomorphism between A and the open
unit disk.

Note that the Poincaré Uniformization Theorem contains the Riemann
Mapping Theorem as a special case, when A is a Jordan domain. The main
difference between the two results is that, in the Uniformization Theorem, A
is not assumed to be a subset of C.
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16.5 The Small Picard Theorem

For the rest of the chapter, we deduce some nice consequences of the Uni-
formization Theorem.

Lemma 16.9 There is a complex analytic covering map from the open unit
disk to C − {0, 1}, the twice punctured plane.

Proof: The universal cover X of C −{0, 1} is a simply connected Riemann
surface. Let E : X → C−{0, 1} be the covering map. If X is compact, then
E(X) is also compact, since the image of a compact set under a continuous
map is compact. But E(X) = C − {0, 1}, which is noncompact. So, X is
noncompact. If there is a biholomorphism between X and C, then we have
a complex analytic cover C → C − {0, 1}. However, the fundamental group
of C − {0, 1} is non-Abelian. This is a contradiction. We have only one
alternative left in the Uniformization Theorem, and so there is a biholomor-
phism h between X and the open unit disk. But then E ◦ h−1 is the desired
complex analytic covering map between the open unit disk and C−{0, 1}. ♠

Remark. In the concrete setting just discussed, it is possible to prove
Lemma 16.9 directly, without appealing to the Uniformization Theorem.
This is done in [AHL].

Lemma 16.9 is the main ingredient in the proof of the the following result,
which is known as the Small Picard Theorem:

Theorem 16.10 Let f : C → C be a nonconstant analytic map. Then
either f is onto or f omits exactly one value.

Proof: We will suppose that f omits at least two values and show that f
is constant. We can scale f so that two of the omitted values are 0 and 1.
Then f : C → C −{0, 1}. We have our holomorphic covering from the open

unit disk ∆ to C − {0, 1}. But then we can find a lift f̃ : C → ∆. This
map is a bounded complex analytic function, and hence constant. Hence f
is constant as well. ♠
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16.6 Implications for Compact Surfaces

The Uniformization Theorem is stated above in terms of simply connected
Riemann surfaces, but it has nice implications for general surfaces. Here is
a the main consequence for compact surfaces.

Theorem 16.11 Let S be a compact and oriented Riemann surface.

• If S is homeomorphic to a sphere, then there is a biholomorphism be-
tween S and the Riemann sphere.

• If S is homeomorphic to the torus, then there is a biholomorphism
between S and a flat torus.

• If S is a Riemann surface of negative Euler characteristic, then there
is a biholomorphism between S and some hyperbolic surface.

Proof: The sphere case is immediate from the Uniformization Theorem.
Suppose that S is not homeomorphic to a torus. Let S̃ be the universal

cover of S. Note that S̃ is a simply connected Riemann surface. According
to the Uniformization Theorem, there is either a biholomorphism between
S̃ and C, or a biholomorphism between S̃ and ∆, the open unit disk. In
the former case, we would have a complex analytic covering map C → S.
But S has non-Abelian fundamental group, so Theorem 16.3 rules out this
possibility. Therefore, we have a complex analytic covering ∆ → S where
∆ is the unit disk. Let G be the fundamental group of S. Then G acts on
∆ as the deck group. Each element g ∈ G is a biholomorphism of ∆. In
Chapter 13 we proved that such maps are hyperbolic isometries. Hence G
acts on ∆ as a group of hyperbolic isometries. S is precisely the quotient
of the hyperbolic plane by the orbit equivalence relation: Two points are
equivalent iff there is some element of G which maps one to the other. Small
neighborhoods of points in ∆ contain unique members of equivalence classes,
and so these little disks map injectively into S. The inverse maps give local
coordinate charts into ∆, such that the overlap functions are restrictions of
hyperbolic isometries. In short, S inherits its hyperbolic structure from ∆.

Suppose that S is homeomorphic to a torus. If there is a holomorphic
covering ∆ → S then the same argument as just given shows that S is a
hyperbolic surface and the fundamental group Z2 acts on ∆ by hyperbolic
isometries. This is only possible if all the elements of Z2 fix a common point
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on the unit circle. Such maps have the following property: For any ǫ > 0
there is some point x ∈ ∆ which is moved less than ǫ (as measured in the hy-
perbolic metric). But then S would have closed and homotopically nontrivial
loop of length less than ǫ. This contradicts the fact that all sufficiently short
loops on S are homotopically trivial. The contradiction shows that there is
no holomorphic cover from ∆ to S. Only one alternative for the Uniformiza-
tion Theorem holds and so there is a holomorphic cover C → S. But now
the deck transformations are all Euclidean translations and S inherits a Eu-
clidean structure from C just as in the previous case. ♠

The above theorem is true in much more generality. For instance, suppose
that C ⊂ C is a finite set of N > 2 points. Then there is a biholomorphism
between C − C and a hyperbolic surface. The same result holds if C is a
countably infinite set of points, or the middle-third Cantor set. It is hard
to picture the universal cover of the complement of the middle-third Cantor
set, but the Uniformization Theorem says that it is just the hyperbolic plane
in disguise!
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17 Flat Cone Surfaces

In this chapter we revisit the idea of gluing polygons together to form a
surface. In a sense, we return to the question taking the most naive point
of view possible. We keep the Euclidean geometry of the component pieces
and see what we get when they are glued together. This point of view leads
to the definition of a flat cone surface.

After we define flat cone surfaces, we will prove a fundamental result
about them, the combinatorial Gauss–Bonnet Theorem. The combinatorial
Gauss–Bonnet Theorem is am analogue the Gauss–Bonnet Theorem from
differential geometry; compare Theorem 12.4.

Following the proof of the combinatorial Gauss–Bonnet Theorem, we give
an application of flat cone surfaces to the study of polygonal billiards. This
is a theme that will take up both this chapter and the next. All the material
about billiards can be found, in much greater detail in [MAT].

17.1 Sectors and Euclidean Cones

A sector inR2 is the closure of one of the 2 components ofR2−ρ1−ρ2, where
ρ1 and ρ2 are two distinct rays emanating from the origin. For example, the
nonnegative quadrant is a sector. The angle of the sector is defined as the
angle between ρ1 and ρ2 as measured from inside the sector. For instance,
the angle of the nonnegative quadrant is π/2.

Two sectors in R2 can be glued together isometrically along one of their
edges. A Euclidean cone is a space obtained by gluing together, in a cyclic
pattern, a finite number of sectors. The angle of the Euclidean cone is the
sum of the angles of the sectors. The cone point is the equivalence class
of the origin(s) under the gluing. The cone point is the only point which
potentially does not have a neighborhood locally isometric to R2.

Note that two isometric Euclidean cones might have different descrip-
tions. For instance, R2 can be broken into 4 quadrants or 8 sectors of angle
π/4.

Exercise 1. Prove that two Euclidean cones are isometric if and only if
they have the same angle.

Exercise 2. Define the unit circle in a Euclidean cone to be the set of
points which are 1 unit away from the cone point. On the cone of angle 4π
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find the shortest path between every pair of points on the unit circle. This
problem breaks down into finitely many cases, depending on where the points
are located.

Exercise 3. Let C be a Euclidean cone, with cone point x. Say that a
vector field on C − x is locally constant if an isometry carrying any open set
of C − x into R2 carries the vector field to a constant vector field. Prove
that C − x has a parallel vector field in a neighborhood of x if and only if
the cone angle of C is a multiple of 2π. (Hint : Unroll C into the plane and
watch the vector field as you go once around the cone point.)

17.2 Euclidean Cone Surfaces

We defined in §3.2 what it means for a surface to be oriented—it does not
contain any Möbius bands. For ease of exposition, we only consider oriented
surfaces.

Say that a compact oriented surface Σ is a Euclidean cone surface if it
has the following two properties:

• Every point p ∈ Σ has a neighborhood which is isometric to a neigh-
borhood of the cone point in a Euclidean cone of angle θ(p).

• We have θ(p) = 2π for all but finitely many points.

The points p, where θ(p) 6= 2π, are called the cone points . The quantity

δ(p) = 2π − θ(p)

is called the angle deficit . So, there are only finitely many points with nonzero
angle deficit, and these deficits could be positive or negative.

Here are two examples:

• Let P be a convex polyhedron in R3. Then ∂P is a Euclidean cone
surface. The metric on ∂P is the intrinsic one: the distance between
two points is the length of the shortest curve which remains on ∂P and
joins the points.

• Let P1, . . . , Pn be a finite union of polygons. Suppose that these poly-
gons can be glued together, isometrically along their edges, so that the
result is a surface. Then the surface in question is a Euclidean cone
surface if it is given its intrinsic metric, i.e., the shortest path metric.
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Amazingly, every example of type 2 is also an example of type 1 provided
that the underlying surface is a sphere and all the angle deficits are positive.
This result is known as the Alexandrov Theorem. (To make this strictly true
we have to allow for the possibility that P is contained in a plane in R3.)
One interesting open problem is to determine the combinatorics of the convex
polyhedron you get, based on the intrinsic geometry of the cone surface.

17.3 The Gauss–Bonnet Theorem

Here is combinatorial version of the Gauss–Bonnet Theorem:

Theorem 17.1 If S is a compact cone surface, then

∑

p

δ(p) = 4πχ(S).

Here the sum is taken over all angle deficits.

Proof: A Euclidean triangle on a Euclidean cone surface S is a region isomet-
ric to (you guessed it) a Euclidean triangle. For instance, on the boundary of
a tetrahedron, there are 4 obvious maximal Euclidean triangles. Two trian-
gles on a cone surface intersect normally if they are either disjoint or share
a vertex or share an edge. A triangulation of S is a decomposition of S into
finitely many triangles, such that each pair of triangles intersects normally.

Exercise 4. Prove that every Euclidean cone surface has a triangulation.

Choose a triangulation of S. Let T1, . . . , TF be the list of triangles in
the triangulation. Each Ti has associated to it three angles ai, bi, ci, with
ai + bi + ci = π. The cone points are all at vertices of the triangles, and so

∑

p

δ(p) = 2πV − (
F∑

i=1

ai +
F∑

i=1

bi +
F∑

i=1

ci).

In other words, we add up all the angles and see how the total sum differs
from the expected 2πV . Given that ai + bi + ci = π, we have

∑

p

δ(p) = 2πV − πF = 2π(V − F/2) =∗ 2π(V + F − E) = 2πχ(S).
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The starred equality has the following explanation. Each triangle contributes
3/2 edges to the total number of edges. That is, E = 3F/2 = F+F/2. Hence
−F/2 = F − E. ♠

For comparison, we mention that the differential geometric version of
the Gauss–Bonnet Theorem says that the total curvature of a surface S is
2πχ(S), where χ is the Euler characteristic of S; see §3.4. One can view
the combinatorial Gauss–Bonnet Theorem as the limit of the differential
geometric version, in which all the curvature is concentrated at finitely many
points. At the same time, one can view the differential geometric version as
a limit of the combinatorial version, in which the curvature gradually diffuses
out, over larger and larger finite sets of points so that it becomes continuously
distributed.

17.4 Translation Surfaces

A Euclidean cone surface is a translation surface if all the cone angles are
integer multiples of 2π. For instance, the octagon surface discussed exten-
sively in Chapter 1 is a translation surface when the octagon is interpreted
as a regular Euclidean octagon.

Theorem 17.2 Let S be a flat cone surface, and let C be a finite list of
points in S. Then S − C admits a parallel vector field if and only if S is a
translation surface.

Proof: Suppose first that such a vector field exists. Let x1, . . . , xn be the
points of C. Let U1, . . . , Un be disk neighborhoods of x1, . . . , xn, respectively.
Since Uk−xk admits a parallel vector field, the cone angle at xk is an integer
multiple of 2π. This is Exercise 3 above.

Now we prove the converse. Choose some basepoint x ∈ Σ−C. Let v(x)
be some unit vector tangent to x. Our goal is to define a unit vector v(y)
for each point y ∈ Σ − C. Here is the construction. Let γ be any smooth
curve which joins x to y and stays in Σ − C. Say that a vector field along
γ is parallel if, in the local coordinates, the vectors are all translates of each
other. Since every point of γ has a neighborhood which is isometric to a disk
in R2, there is a unique parallel vector field along γ which agrees with v(x)
at x. We define v(y) to be the vector of this parallel vector field at y. If this
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is really well defined, then in small neighborhoods, our vector field consists
entirely of parallel vectors.

To finish our proof, we need to see that this definition is independent of
the path γ. If γ1 and γ2 are paths connecting x to y, and are homotopic
relative their endpoints, then we can produce a finite sequence of paths γ1 =
β1, . . . , βn = γ2 such that βi and βi+1 agree except in a region which is
contained in a single Euclidean disk. (You get the β curves just by doing
the homotopy a little bit at a time.) Within the Euclidean disk, you can see
that the vector field along βi must be parallel to the vector field along βi+1,
because both vector fields just consist of a bunch of parallel vectors, and the
two vector fields agree at some point in the disk. Since this is true for all i,
the two methods for defining v(y) agree.

The fundamental group π1(Σ−C) is generated by loops which travel from
x into a small neighborhood of one of the cone points, wind around the cone
point, and then come back. If γ1 and γ2 are arbitrary paths joining x to y,
then γ1 is homotopic relative to the endpoints to δ1 ∗ · · · ∗ δk ∗ γ2, where each
δi is one of the special loops just mentioned. Each loop δi starts and ends at
x. We just have to see that the parallel vector field along δi agrees with v(x)
at both ends. Everything boils down to what happens in a neighborhood of
the cone point.

By Exercise 3, we can define a parallel vector field in the neighborhood of
each point of C. Call these vector fields the “background vector fields”. The
parallel vector fields along our looks have constant length and make constant
angles with the relevant background vector field. So, the parallel vector field
along one of our loops comes exactly back to itself when the loop is done. ♠

Recall that a gluing diagram for a surface is a list of finitely many poly-
gons, together with a recipe for gluing together the sides of the polygon in
pairs.

Lemma 17.3 Suppose that S is a flat cone surface obtained from a gluing
diagram in which the two sides in each glued pair are parallel. Then S is a
translation surface.

Proof: Once we show that S is orientable, we will know that S is a cone
surface. On each polygon, we consider the standard pair of vector fields V1

and V2. Here Vj consists of vectors parallel to the basis vector ej. Given the
nature of the gluing maps, the vector fields piece together across the edges
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to give parallel vector fields V1 and V2 defined on the complement of finitely
many points.

We first show that S is orientable. If S is not orientable, then S contains
a Möbius band M . By shrinking M if necessary, we can arrange that M lies
entirely in the region where both V1 and V2 are defined. But then we can
define a continuous pair of linearly independent vector fields on a Möbius
band. This is easily seen to be impossible. Hence S is oriented.

It now follows from Lemma 17.2 that S is a translation surface. ♠

In light of Lemma 17.3, the surface obtained by gluing (with translations)
the opposite sides of a regular 2n-gon is a translation surface.

Translation Principle. Whenever we consider gluing diagrams for trans-
lation surfaces, in which more than one polygon is involved, we always think
of the polygons in the plane as being pairwise disjoint. How the polygons sit
in the plane is really not so important, in the following sense. Suppose that
P1, . . . , Pn are the polygons involved in a gluing diagram for some surface.
Suppose that Q1, . . . , Qn are new polygons, such that Qk is a translation of
Pk for all k, and the pattern of gluing for the Q’s is the same as the pattern of
gluing for the P s. Then the two resulting surfaces are canonically isometric.
The canonical isometry is obtained by piecing together the translations that
carry each Pk to Qk. We mention this rather obvious principle because it
guarantees that certain constructions, which seem based on arbitrary choices,
are actually well defined independent of these choices.

17.5 Billiards and Translation Surfaces

Let P be a Euclidean polygon. A billiard path in P is the motion taken
by an infinitesimal frictionless ball as it rolls around inside P , bouncing off
the walls according to the laws of inelastic collisions: the angle of incidence
equals the angle of reflection; see Figure 17.1 below. We make a convention
that a path stops if it lands precisely at a vertex. (The infinitesimal ball falls
into the infinitesimal pocket.)

The billiard path is periodic if it eventually repeats itself. Geometrically,
a periodic billiard path corresponds to a polygonal path Q with the following
properties:

• Q ⊂ P (that is, the solid planar region).
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• The vertices of Q are contained in the interiors of the edges of P .

• Q obeys the angle of incidence rule discussed above.

Figure 17.1. Polygonal billiards

Exercise 5. Find (with proof) all the examples of periodic billiard paths
in a square which do not have self-intersections. So, the path Q has to be
embedded.

The polygon P is called rational if all its angles are rational multiples of
π. For instance, the equilateral triangle is a rational polygon.

In this section I will explain how to associate a translation surface to a
rational polygon. This is a classical construction, attributed by some people
to A. Katok and A.N. Zemylakov. The geometry of the translation surface
encodes many of the features of billiards in the polygon.

For each edge e of P there is a reflection Re in the line through the origin
parallel to e. Like all reflections, Re has order 2. That is, Re ◦ Re is the
identity map. Let G be the group generated by the elements R1, . . . , Rn.
Here Rj stands for Rej and e1, . . . , en is the complete list of edges. If ei and
ej are parallel, then Ri = Rj. If P is a rational polygon then there is some
N such that ej is parallel to some Nth root of unity. But then G is a group
of order at most 2N . In particular, G is a finite group.

For each g ∈ G, we define a polygon

Pg = g(Pg) + Vg. (65)

Here Vg is a vector included so that all the polygons {Pg| g ∈ G} are dis-
joint. Thanks to the Translation Principle, the surface we will produce is
independent of the choices of the translation vectors.
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To form a gluing diagram, we declare that every two edges of the form

e1 = g(e) + Vg, e2 = gr(e) + Vgr, r = Re. (66)

are glued together by a translation. Here e is an arbitrary edge of P . Since
gr(e) = g(e), the edges e1 and e2 are parallel. Hence, it makes sense to glue
them by a translation. Note also that (gr)r = g. So, our instructions tell us
to glue e1 to e2 if and only if they tell us to glue e2 to e1. Let S be the space
obtained from the gluing diagram. Since the edges are glued in pairs, S is a
surface. By Lemma 17.3, S is a translation surface.

Here we work out the example where P is an isosceles triangle with small
angles 2π/8. In this case, the group G has order 16 and our surface will be
made from 16 isometric copies of P .

1

6

8

2

3
45

7

1

2

3
4 5

6

7

8

Figure 17.2. Gluing diagram for a translation surface

Figure 17.2 shows the resulting gluing diagram. We have chosen the
translations so that all the long sides have already been glued together. Also,
we have colored the triangles alternately light and dark so as to better show
the pattern. The numbers around the outside of the figure indicate the gluing
pattern for the short edges.

The gluing pattern in Figure 17.2 has an alternate description. Take two
regular Euclidean octagons and glue each side of one to the opposite side
of the other. The smaller inset picture in Figure 17.2 shows one of the two
octagons. The other octagon is splayed open, and made by gluing together
the pieces that are outside the octagon shown.
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A path γ ∈ P̂ is called straight if every point p ∈ γ has a neighborhood U
with the following property. any isometry between U and a subset ofR2 maps
γ ∩ U to a straight line segment. (For concreteness we can always take U to
be a little Euclidean ball centered at p.) There is an obvious map π : X → P .
We just forget the group element involved. This forgetting respects the way
we have done the gluing and so π is a well-defined continuous map from P̂ to
P . The map π is somewhat like a covering map, except that it is not locally
a homeomorphism around points on the edges or vertices.

Lemma 17.4 Suppose γ̂ is a straight path on P̂ which does not go through
any vertices of P̂ . Then γ = π(γ̂) is a billiard path on P .

Proof: By construction γ is a polygonal path whose only vertices are con-
tained in the interiors of edges of P . We just have to check the perfect K
condition at each vertex. You can see why this works by building a physical
model: Take a piece of paper and make a crease in it by folding it in half
(and then unfolding it.) Now draw a straight line on the paper which crosses
the crease. This straight line corresponds to a piece of γ̂ which crosses an
edge. When you fold the paper in half you see the straight line turn back at
the crease and form a perfect K. This folded path corresponds to γ. ♠

The converse is also true:

Lemma 17.5 Suppose that γ is a billiard path on P . Then there is a straight
path γ̂ on P̂ such that π(γ̂) = γ.

Proof: We use the fact that the map π is almost a covering map. Think
of γ as a parametrized path γ : R → P , with γ(0) contained in the interior
of P . We define γ̂(0) to be the corresponding interior point of (P, g), where
g ∈ G is any initial element of G we like. We can define γ̂(t) until the first
value t1 > 0 such that γ(t1) lies on an edge, say e1, of P . But then we can
define γ̂ in a neighborhood of t1 in such a way that γ̂(t1 − s) ∈ (P, g) and
γ̂(t + s) ∈ (P, e1g) for s > 0 small. If you think about the folding construc-
tion described in the previous lemma, you will see that the straight path
γ(t1 − ǫ, t1 + ǫ) projects to γ̂(t1 − ǫ, t1 + ǫ). Here ǫ is some small value which
depends on the location of γ(t1). We can define γ̂ for t > t1 until we reach
the next time t2 such that γ(t2) lies in an edge of P . Then we repeat the
above construction for parameter values in a neighborhood of t2. And so on.
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This process continues indefinitely, and defines γ̂ for all t ≥ 0. Now we go in
the other direction and define γ̂ for all t < 0. ♠

Note that γ̂ is a closed loop in P̂ if and only if γ is a periodic billiard
path. Thus, the closed straight loops in P̂ correspond, via π, to periodic
billiard paths in P .

Exercise 6. Suppose that P is the regular 7-gon. What is the Euler char-
acteristic of P̂? As a much harder problem, can you find a formula for the
Euler characteristic of P̂ as a function of the angles of P?

Exercise 7. The same construction can be made when P has some irra-
tional angles. What do you get if P is a right triangle with the two small
angles irrational multiples of π?

17.6 Special Maps on a Translation Surface

We would like to understand how straight lines move around on the polygon
P . Recall that P̂ is the translation surface made by suitably gluing together
finitely many copies of P . We are going to prove a dynamical result about
the action of certain maps on P̂ . The result we prove holds in much greater
generality, but to keep the discussion self-contained, we are going to consider
only one special map on P̂ .

Choose some direction on P̂ . Given x ∈ P̂ , let f(x) be the point you get
by starting at x and moving for one unit in the given direction. The map f is
defined except at those points x whose corresponding path hits a cone point.
This means that f is defined except on a set contained in a finite union of
line segments. When f is defined at x, a sufficiently small disk about x just
moves forward in exactly the same way that x does. This means that f is an
isometry when restricted to sufficiently small disks. On a large disk, which
cuts across the set where f is not defined, f is a piecewise isometry; it has
the effect of splitting the disk into several pieces and mapping each piece
isometrically to some place on P̂ .

Given a set S ⊂ P̂ , we define

area(S) =
n∑

i=1

area(S ∩ Pi) (67)
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Here P1, . . . , Pn are the polygons out of which P̂ is made. This definition
assumes that you know how to compute area inside the Euclidean plane. For
the kinds of complicated sets which arise in dynamical systems, one actually
needs some measure theory to give a rigorous definition. In our setting here,
we are just going to be computing the areas of sets which are obtained by
cutting a disk into finitely many pieces along straight line segments.

Exercise 8. Let ∆ be a disk. Let ∆n ⊂ ∆ denote the set of points p ∈ ∆
such that fk is well-defined on p for all k = 1, . . . , n. Note that ∆ − ∆n is
contained in a finite union of line segments. Define fn(∆) = f(∆n). Prove
that fn(∆) and ∆ have the same area. (Hint : fn(∆) is is obtained by trans-

lating small pieces of ∆n isometrically to various parts of P̂ . These pieces do
not overlap because f−1 exists and has the same properties as f .)

Theorem 17.6 Let p ∈ P̂ be any point on which f and all its iterates are
defined, and let ǫ > 0 be arbitrary. Then there is some q ∈ P̂ and some n
such that d(p, q) < ǫ and d(p, fn(q)) < ǫ.

Proof: Let ∆ be the disk of radius ǫ about p. Let D0 = ∆ and let
Dn = F n(∆). By Exercise 8, the sets D0, D1, D2, . . . all have the same

area. Since P̂ has finite area, these sets cannot all be disjoint from each
other. Hence there are two sets Da and Db, which intersect at some point
xa. We take a < b. But then Da−1 and Db−1 intersect at xa−1 = f−1(xa).
Continuing in this way, we see that D0 and Db−a intersect at some point x0.
By construction x0 lies within ǫ of p and f b−a(x0) also lies within ǫ of p. ♠

Theorem 17.6 works more generally when all we know is that f is an area
preserving map of P̂ that is defined except on a set of zero area (or, more
technically zero measure). The proof is essentially the same, but one has to
deal more carefully with the concept of area.

Even for area preserving maps, Theorem 17.6 is a toy version of a much
stronger and more general result known as the Poincaré Recurrence Theorem.

17.7 Existence of Periodic Billiard Paths

It is a theorem of Howie Masur that every rational polygon has a periodic
billiard path. In fact, Masur gives bounds on the number of such billiard
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paths of length at most L. He proves that there are at least L2/C − C of
them, and at most CL+ C of them, for some constant C which depends on
the polygon. In some cases, it is possible to get sharper results. For instance:

Exercise 9. Prove that there is a constant C such that

lim
L→∞

N(L)/L2 = C,

where N(L) is the number of periodic billiard paths of length less than L on
the unit square. What is C?

In this section, I will sketch an elementary proof, due to Boshernitsyn,
that every rational polygon has at least one periodic billiard path. You will
see that the proof actually gives the existence of many periodic billiard paths,
but no bounds like the ones mentioned above.

We choose a direction perpendicular to one of the sides of P and let
f : P̂ → P̂ be the function considered in the previous section. Let p ∈ P̂ be
some point. We think of p as the lift of γ(0), where γ : R → P is a billiard
path which, at time 0, is travelling perpendicular to a side of P . That is,
γ is travelling parallel to V at time 0. By Theorem 17.6, there is some q
very close to p and some n so that q = β̂(0) and fn(q) = β̂(n) are very close

together, and β̂(0) is very close to γ̂(0). Here β̂(0) is a straight path in P̂
which goes through q at time 0.

If β̂(0) and γ̂(0) are sufficiently close, then these two points are on the

same polygon of P̂ . Hence β and γ are travelling in the same direction at
time 0. Likewise β is travelling in the same direction at times 0 and n. In
short, β travels perpendicular to a side of P at time 0 and also at some much
later time n. This means that β hits the same side of P twice, and both times
at right angles. But then β is periodic. Each time it hits P perpendicularly,
β just reverses itself and retraces its path. Figure 17.3 shows an example of
such a path.
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Figure 17.3. A periodic billiard path
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18 Translation Surfaces and the Veech Group

In the previous chapter we explained a construction which starts with a
rational polygon and produces a translation surface. The straight line flow
on the polygon controls the nature of billiards in the polygon. In this chapter
we will study the group of affine automorphisms of a translation surface. This
group is known as the Veech group.

It turns out that the Veech group can be interpreted as a group of sym-
metries of the hyperbolic plane. So, starting with polygonal billiards, we
get back to hyperbolic geometry. We will work out a nontrivial example of
a Veech group at the end of the chapter. I learned this particular example
from Pat Hooper, and the presentation I give is pretty close to the way he
explained it to me.

A lot of the material in this chapter can be found in various surveys of
rational billiards; see, e.g., [MAT].

18.1 Affine Automorphisms

Recall that an affine map of R2 is a map of the form x → Ax + B, where
A is a 2 × 2 invertible and orientation-preserving matrix and B is another
vector. If B = 0, then the map is linear. Note that the set of affine maps of
R2 forms a group under composition.

Suppose that Σ is a translation surface. An affine automorphism of Σ is
a homeomorphism φ : Σ → Σ such that the following hold:

• φ permutes the nontrivial cone points of Σ.

• Every ordinary point of Σ has a neighborhood in which φ is an affine
map.

The second condition needs a bit more explanation. Let p ∈ Σ be an ordinary
point. This is to say that there is a small disk ∆p about p and an isometry
Ip from ∆p to a small disk in R2. The same goes for the point q = φ(p). The
map Iq ◦ φ ◦ I−1

p is defined on the open set U = Ip(∆p) ⊂ R2 and maps it to

another open set Iq(∆q) ⊂ R2. The second condition says that this map is
the restriction of an affine map to U .

We denote the set of all affine automorphisms of Σ as A(Σ). It is easy to
see that the composition of two affine automorphisms of Σ is again an affine
automorphism. Likewise, the inverse of an affine automorphism of Σ is an
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affine automorphism of Σ. In short, A(Σ) is a group.

Exercise 1. Let A be a 2 × 2 matrix with integer entries and determi-
nant 1. Let B any vector, and let Σ be the square torus. You can think of
Σ as (R/Z)2. Let φ be the map φ([x]) = [Ax+B]. Prove that φ is an affine
automorphism of Σ. Thus, the square torus has a huge affine automorphism
group.

Exercise 2. Give an example of a translation surface which has no non-
trivial affine automorphisms.

Exercise 3 (Challenge). The affine automorphisms group of the square
torus is uncountable since it contains any translation. However, prove that
the affine automorphism group of a surface with at least one cone point is
countable. (Hint : It suffices to consider the subgroup G that preserves all
the cone points. Try to show that this subgroup is discrete, in the sense
that any element of G sufficiently close to the identity must actually be the
identity. Draw many segments connecting all the cone points, and consider
the action of an element near the identity on these many line segments.)

18.2 The Diffential Representation

Let SL2(R) denote the group of 2 × 2 matrices having real entries and de-
terminant 1. Given a group A, a representation of A into SL2(R) is a ho-
momorphism ρ : A → SL2(R). Here is one explanation for this terminology:
The elements of A might be somehow abstract, but a representation is a way
of, well, representing these elements concretely as matrices. A representa-
tion doesn’t have to be one-to-one or onto, but of course representations with
these additional properties are especially nice.

Here we explain a canonical representation ρ : A(Σ) → SL2(R). The
basic property of Σ we use is that there are canonical identifications between
any pair of tangent planes Tp(Σ) and Tq(Σ), defined as follows: By Theorem
17.2, there exists a parallel vector field on Σ−C, where C is the set of cone
points. Given p, q ∈ S − C, we can find an isometry I from a neighborhood
of p to a neighborhood of q such that I(p) = q. If we insist that I preserves
both the orientation and the parallel field, then I is unique. Moreover, I is
independent of the choice of parallel field. The differential dI isometrically
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maps Tp(Σ) to Tq(Σ). We set φpq = dI. So, in short

φpq : Tp(Σ) → Tq(Σ) (68)

is a canonical isometry. One immediate consequence of our definition is that

φpr = φqr ◦ φpq, φqp = φ−1
pq . (69)

Now, given an element f ∈ A(Σ) we choose and ordinary point p ∈ Σ,
and let q = f(p). Let dfp be the differential of f at p. This means that dfp
is a linear map from Tp(Σ) to Tq(Σ). Note that the composition

M(f, p) = φqp ◦ dfp
is a linear isomorphism from Tp(Σ) to itself. Using the isometry Ip, we can
identify Tp(Σ) with, say, the tangent plane to R2 at the origin. We let ρ(f)
be the linear transformation of R2 which corresponds to M(f, p) under the
identification.

We claim that ρ(f) is independent of the choice of point p. To see this,
we note that the map ρ(f) has the following alternate description. Using the
coordinate charts Ip and Iq discussed above, the map ρ(f) is just the linear
part of

dIq ◦ dfp ◦ dI−1
p .

The linear part of an affine map does not depend on the point. Hence ρ(f)
has the same definition independent of which point we use inside our local
coordinate chart. But the surface is connected, so ρ(f) does not depend on
the choice of point at all.

The determinant of ρ(f) measures the factor by which f increases area in
a neighborhood of any point. Since the whole surface has finite area and ρ(f)
is an automorphism, ρ(f) must have determinant 1. Hence we can interpret
ρ(f) as an element of SL2(R). The map f → ρ(f) is a homomorphism
because of the chain rule: The linear differential of a composition of maps
is just the composition of the linear differential of the invididual maps. And
composition of linear maps is the same thing as matrix multiplication in
SL2(R).

We have now constructed the representation ρ : A(Σ) → SL2(R). We
let V (Σ) = ρ(A(Σ)). The matrix group V (Σ) is sometimes called the Veech
group. Below we will work out the Veech group associated to the “dou-
ble octagon” example discussed toward the end of §17.5. Before we get to
examples, however, we need to develop a bit more of the theory.
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18.3 Hyperbolic Group Actions

Recall that H2 is the hyperbolic plane. We work in the upper half plane
model. Every element of SL2(R) acts on H2 isometrically, as a linear frac-
tional transformation; see §10.3. In particular, the Veech group V acts on
H2. The orbit of a point x ∈ H2 is defined to be the set

{g(x)| g ∈ V }.

We define an equivalence relation on points in H2 by saying that two points
are equivalent iff they lie in the same orbit.

V is said to act properly discontinuously on H2 if, for every metric ball
B ⊂ H2, the set

{g ∈ V | g(B) ∩ B 6= ∅}
is a finite set. In other words, all but finitely elements of V have such a
drastic action on H2 that they move the ball B completely off itself.

Exercise 4. Let SL2(Z) be the group of 2 × 2 integer matrices having
determinant 1. Prove that SL2(Z) acts properly discontinuously on H2.

Before we establish the main result in this section, we give one more
definition. Two groups G1, G2 ∈ SL2(R) are conjugate if there is some
g ∈ SL2(R) such that G2 = gG1g

−1.

Exercise 5. Suppose that G1 and G2 are conjugate. Prove that G1 acts
properly discontinuously on H2 if and only if G2 does.

Theorem 18.1 If V is the Veech group of a surface, then V acts properly
discontinuously on H2.

We will sketch the proof of Theorem 18.1 in the next section.
Whether or not V acts properly discontinuously, we can form the quo-

tient H2/V as follows. We define two points x, y ∈ H2 to be equivalent
if there is some g ∈ V such that g(x) = y. Then H2/V is defined to be
the set of equivalence classes of points. In the case where V acts properly
discontinuously, the quotient is particularly nice:
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Theorem 18.2 If V acts properly discontinuously on H2, then we can re-
move a countable discrete set of points T from H2 such that the quotient
(H2 − T )/V is a hyperbolic surface.

Proof: Before we start we note that all the elements of V act in an orientation-
preserving way, so that there are no reflections in V . (For the orientation-
reversing case, the statement of the result is slightly different.)

Let T be the set of points x ∈ H2 such that g(x) = x for some nontrivial
g ∈ V . The set T must be discrete in the sense that there is some ǫ > 0
such that any ball of radius ǫ contains at most one point of T . Otherwise
we could find some ball B which contained infinitely many points of T , and
we would contradict the proper discontinuity. Note that T is invariant under
V : If x ∈ T is fixed by g, then y = h(x) is fixed by hgh−1. Thus, the
quotient (H2 − T )/V makes sense. Every x ∈ H2 − T has a neighborhood
∆x such that g(∆x) ∩∆x = ∅ for any nontrivial g. To see this, let dg denote
the hyperbolic distance between g(x) and x. Since x 6∈ T , the number dg is
positive. The proper discontinuity prevents there being a sequence {gi} with
{dgi} converging to 0. Hence there is some positive lower bound to dg, which
is what we need.

Now we know that each x ∈ H2 − T has a little neighborhood which is
moved completely off itself by all of G (except the identity). This little neigh-
borhood therefore maps injectively into the quotient (H2 −T ) and serves as
a coordinate chart about x. ♠

Note that the quotientH2/V still makes sense, and actually it is obtained
from (H2−T )/V just by adding finitely many points. We define the covolume
of V to be the volume of (H2 − T )/V . The group V is said to be a lattice if
V has finite covolume. Σ is said to be a Veech surface if V is a lattice. For
instance, SL2(Z) is a lattice.

18.4 Proof of Theorem 18.1

We first take care of a trivial case of Theorem 18.1.

Exercise 6. Suppose that Σ is a translation surface with no cone points.
Prove that Σ is isometric to a flat torus.

Exercise 7. Prove Theorem 18.1 in the case when the surface has no cone
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points.

From now on, we consider the case when Σ has at least one cone point.
In this case, Σ is homeomorphic to a surface having negative Euler charac-
teristic. Let C be the set of cone points of Σ. We call a map γ : [0, 1] → Σ a
saddle connection if the follwing hold.

• γ(t) ∈ C if and only if t = 0, 1.

• The restriction of γ to (0, 1) is locally a straight line.

Exercise 8. Prove that Σ has a pair of non-parallel saddle connections that
intersect at a point of Σ− C.

Lemma 18.3 Let f be an affine automorphism of Σ. Let γ1 and γ2 be a pair
of saddle connections, as in Exercise 8. Suppose f preserves the endpoints
of γ1 and γ2, and f(γj) = γj for j = 1, 2. Then f is in the kernel of the
differential representation ρ.

Proof: The restriction of an affine map to a straight line is just a dilation.
Hence, the restriction of f to γj is just a dilation. Since f(γj) = γj, the
dilation factor must be one: the total length is preserved. So f is the identity
on γj.

Let p be an intersection point of γ1 and γ2. We know that f(p) = p. Since
γ1 and γ2 are nonparallel, we see that dfp fixes two independent directions at
p. Hence dfp is the identity. But then ρ(f) is the identity. ♠

We suppose that there is some ball B and an infinite collection {gi} ∈ V
such that gi(B) ∩ B 6= ∅. It is a general principle of compactness that there
must be elements of our set which are arbitrarily close to each other. Hence,
we can find an infinite list of distinct elements of V whose action on H2

converges to the action of the identity element.
What this means in terms of Σ is that we can find an infinite sequence

{fj} of affine automorphisms such that ρ(fi) is not the identity but ρ(fi)
converges to the identity as i → ∞. All these elements permute the set of
cone points somehow. So, by taking suitable powers of our elements, we can
assume that each fi fixes each cone point of Σ.
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Let γ1 and γ2 be the saddle connections from Exercise 8. The segment
fk(γ1) is another saddle connection that connects the same two cone points
as does γ1. For k large, fk(γ1) and γ1 nearly point in the same direction
and nearly have the same length. If they do not point in exactly the same
direction, they cannot connect the same two endpoints. The two paths start
out at the same cone point but then slowly diverge, so that one of them
misses the cone point at the other end. Figure 18.1 shows what we mean.

Figure 18.1. Nearly parallel paths

This means that fk(γ1) and γ1 point in exactly the same direction for k
large. But then fk(γ1) = γ1. The same argument shows that fk(γ2) = γ2 for
k large. But then, by the previous result, ρ(fk) is the identity for large k.
This contradiction finishes the proof.

18.5 Triangle Groups

Figure 18.2. The hyperbolic triangle of interest

Recall that a geodesic hyperbolic triangle is a triangle in H2 whose sides
are either geodesic segments, geodesic rays, or geodesics. The case of interest
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to us is the geodesic triangle with 2 ideal vertices and one other vertex having
interior angle 2π/8. Figure 18.2 shows a picture of the triangle we mean,
drawn in the disk model. This triangle is known as the (8,∞,∞) triangle.

Lemma 18.4 Let γ be any geodesic in H2. Then there is an order 2 hyper-
bolic isometry which fixes γ.

Proof: Thinking of H2 as the upper half-plane, the map z → −z fixes
the imaginary axis, which is a geodesic. We have already seen that any two
geodesics are isometric to each other. If g is an isometry taking the geodesic
γ1 to the geodesic γ2 and I is an order 2 isometry fixing γ1, then gIg−1 is the
desired order 2 isometry fixing γ2. Thus, we can start with the one reflection
desribed above and construct all the others by conjugation. ♠

The order 2 hyperbolic isometry fixing γ is called a hyperbolic reflection
in γ. Given any geodesic triangle ∆, we can form the group G(∆) ⊂ SL2(R)
as follows. We let I1, I2, I3 be hyperbolic reflections fixing the 3 sides of ∆
and then we let G(∆) be the group generated by words of even length in
I1, I2, I3. For instance, I1I2 and I1I2I1I3 all belong to G but I1I2I3 does not.
All the elements in G are orientation preserving and it turns out that we can
find matrices in SL2(R) for the elements I1I2, I2I3, and I3I1. This is enough
to show that G actually comes from a subgroup of SL2(R).

18.6 Linear and Hyperbolic Reflections

As preparation for the Veech group example we will work out, we discuss
how to convert between certain linear maps as they act on R2 and the cor-
responding linear fractional actions on H2.

Say that a linear reflection is a linear transformation T : R2 → R2

such that T (v) = v and T (w) = −w for some basis {v, w} of R2. The
corresponding linear fractional transformation acting on H2 is a hyperbolic
reflection. This can be seen by considering the special case when v = (1, 0)
and w = (0, 1): all other cases are conjugate to this one.

The map T is determined by the pair (v, w), but more than one basis
determines T . The basis (C1v, C2w) also determines T , where C1 and C2 are
any 2 nonzero constants. For this reason, it is really the pair (L1, L2) that
determines T , where L1 is the line through v and L2 is the line through w.
The map T fixes L1 pointwise and reverse L2.
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The map −T fixes L2 pointwise and reverses L1. For this reason, the
unordered pair {L1, L2} determines the pair of maps {T,−T}. The map
±T corresponds to a hyperbolic reflection, and each hyperbolic reflection
corresponds to a pair ±T of maps. In short, each hyperbolic reflection is
determined by an unordered pair {L1, L2} of lines through the origin. We
call such a pair of lines a cross .

Let us first consider the case when L1 and L2 are perpendicular. In this
case, we call {L1, L2} a plus , because the two lines look like a + symbol,
up to rotation. If we work in the disk model ∆ of the hyperbolic plane, we
can normalize so that the hyperbolic reflections corresponding to pluses all
fix some geodesic through the origin in C. Figure 18.3 shows two examples.
On the left-hand side of Figure 18.3 we show two pluses, one drawn thickly
and one drawn thinly. On the right hand side of Figure 18.3, we show the
geodesics in ∆ fixed by the corresponding hyperbolic reflections.

Figure 18.3. Euclidean and hyperbolic reflections

Exercise 9. Let θ be the smallest angle between the lines of one plus and
the lines of another. Prove that the corresponding geodesics in ∆ meet at an
angle of 2θ.

In light of Exercise 9, we can draw 3 crosses whose corresponding geodesics
in ∆ are three sides of the (8,∞,∞) triangle shown in Figure 18.2. Two of
the crosses are pluses and one is not. The crosses are drawn thickly, and the
thin lines are present for reference. The thin lines are evenly spaced in the
radial sense.
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Figure 18.4. Three special crosses

Here is why this works. Let ±T1, ±T2, and ±T3 be the (pairs of) hyper-
bolic reflections corresponding to each of the three crosses. Let Rj be the
hyperbolic reflection corresponding to ±Tj. By construction R1 and R2 each
fix one of the “Euclideanly straight” sides of the triangle in Figure 18.2.

We claim that R3 fixes the third side of the triangle in Figure 18.2. The
central point is that the third cross shares a line with each of the first two
crosses. If the signs are appropriately chosen, the element T1T3 is a parabolic
element that fixes the vertical line through the origin. From this we see that
R1R3 is a parabolic element fixing the top vertex of our triangle. This is only
possible if R3 fixes this same point. A similar argument shows that R3 fixes
the other ideal vertex of our triangle. Hence, as claimed, R3 fixes the edge
joining these vertices.

We have gone through all this trouble because we want to recognize the
(8,∞,∞) triangle group as a subgroup of the group of all affine automor-
phisms of a certain translation surface. We will work this out in the next
section.

18.7 Behold, The Double Octagon!

We will compute the Veech group of the translation surface associated to the
Euclidean isosceles triangle having small angle 2π/8. As we saw in §17.5, this
surface is obtained from a gluing diagram involving two regular Euclidean
octagons. Each side of one octagon is glued to the opposite side of the other.
Let Σ be this surface.

Theorem 18.5 V (Σ) is the even subgroup of the (8,∞,∞) reflection trian-
gle group.

The (8,∞,∞) triangle group is the group generated by the three hy-
perbolic reflections R1, R2, R3 considered in the previous section. The even
subgroup consists of elements made from composing an even number of these
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elements. The even subgroup has index 2 in the whole group. The point is
that every element of the reflection triangle group is either odd or even.

We will sketch a proof of Theorem 18.5. To make things work well, we
define an anti-affine automorphism to be a homeomorphism of Σ which is
locally anti-affine, meaning that the map locally has the form x → L(x)+C,
where L is an orientation-reversing linear map and C is some constant vector.
The linear reflections considered in the previous section are of this form.

Let Â(Σ) be the group of these maps, and let V̂ = ρ(Â), where ρ is the

differential representation as above. We will show that V̂ coincides with the
group Ĝ generated by the reflections in the sides of the (8,∞,∞) triangle.

The odd elements of Â are orientation reversing and the even elements are
orientation preserving. So, the Veech group corresponds to the images of the
even elements.

Figure 18.5. The first cross

Figure 18.5 shows the octagons involved in the gluing diagram for Σ.
Again, each side of the left octagon is glued to the opposite side of the right
octagon by a translation. Simultaneous reflection in the vertical sides of
Σ induces an element T1 of Â. The differential of this map, evaluated at
the center of the first octagon, fixes the vertical line through the center and
reverses the horizontal line. The element ±dT1 therefore corresponds to the
first plus in Figure 18.4. Hence ρ(±T1) = R1. Figure 18.6 does for R2 with
Figure 18.5 does for R1. Here we take T2 to be simultaneous reflection in the
diagonals of positive slope.

Figure 18.6. The second cross
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So far we have used fairly trivial symmetries of our surface. Now we
have to do something nontrivial to see the anti-affine automorphism that
corresponds to the third cross. Figure 18.7 shows the cross {L1, L2} we are
aiming for, drawn on one of the octagons. The auxilliary line L3 will be
explained momentarily.

2

L

LL

3

1

Figure 18.7. The third cross

We will produce an automorphism g : Σ → Σ such that g fixes L2 point-
wise and g(L1) = L3 in a length-preserving and height-reversing way. That
is, g maps the top vertex of L1 to the bottom vertex of L3 and vice versa.
At the same time, the map T2 fixes L2 pointwise and maps L3 to L1 in a
length-preserving way and height-preserving way. But then the composition
T3 = T2 ◦ g fixes L2 pointwise and reverses L1. By construction, the maps
±T3 correspond to our third cross. We set R3 = ρ(±T3), and we have the
desired map.

A
C

D
B

B
A

C

D

Figure 18.8. Cylinder decomposition
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Now we turn our attention to the construction of the map g. Figure 18.8
shows a decomposition of Σ into 4 cylinders, labelled A, B, C, D. Remem-
ber, each side of the left cylinder is glued to the opposite side of the right
cylinder. Thus, for instance, the two A pieces on the left and right glue
together to make the A cylinder. The A and B cylinders are isometric to
each other and the C and D cylinders are isometric to each other. Here is
the miracle that makes everything work.

Exercise 10. Prove that the A and C cylinders are similar to each other.
Hence, all 4 cylinders are similar to each other.

For starters, we have g do the same thing on each octagon. Figure 18.9
shows how g acts on one of the octagons. g maps the points labelled x to
the points labelled y, in the manner suggested by the arrows. These points
are at the midpoints of the relevant edges.

x

x

y

y

Figure 18.9. Action of the automorphism

Assume for the moment that there really is a locally affine automorphism
of Σ that has this action. That is, assume that g really exists. By construc-
tion g fixes L1 pointwise and g maps L1 to L3 in a length-preserving and
height-reversing way. The point is that L1 connects the two x points and L3

connects the two y points as shown in Figure 18.9.
It only remains to show that g actually exists. First of all, we define g in

a neighborhood of the “centerline” L2. We start extending g outward until
it is defined on the A cylinder. The lines connecting the x points to the y
points glue together to form the central loops of the A and B cylinders. By
construction g shifts these central loops half way around. Hence g extends
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to be the identity on the boundary of the A cylinder. Even though g is the
identity on the boundary of the A cylinder, g is not the identity on A: it is
what is called a Dehn twist . The same discussion works for the B cylinder.

Now we consider the C cylinder. So far, g is defined on one boundary
component of the C cylinder, and g is the identity on this boundary compo-
nent. Because the A and C cylinders are similar, g extends to all of the C
cylinder in such a way as to be the identity on both boundary components.
The action of g on the C cylinder is the same, up to scaling, as the action
of g on the A cylinder. A similar thing works for the D cylinder. So, all in
all, g is a Dehn twist of each of the 4 cylinders, and the 4 separate maps fit
together seamlessly because g is the identity on every boundary component
of every cylinder. This establishes the existence of g.

Now we know that V̂ (Σ) contains the (8,∞,∞) reflection triangle group.
Hence, the Veech group V (Σ) contains the even subgroup of the (8,∞,∞)

reflection triangle group. To finish our proof, we will show that V̂ (Σ) is pre-
cisely the reflection triangle group. Let Y denote the (8,∞,∞) triangle. Let

Ĝ be the group generated by hyperbolic reflections in the sides of Y .

Exercise 11 (Challenge). Suppose that Γ is a group acting properly dis-

continuously on H2 and Ĝ ⊂ Γ. Prove that either Γ = Ĝ or else Γ is the
group generated by the reflections in the sides of the geodesic triangle ob-
tained by bisecting the Y in half.

If V̂ does not equal Ĝ, then Σ has an extra isometric symmetry which
fixes the centers of the octagons. (This corresponds to the extra element,
reflection in the bisector of Y .) But the octagons do not have any line of
symmetry between the two drawn in our figures above. Hence, this extra
symmetry does not exist. Hence V̂ (Σ) = Ĝ. This is what we wanted to
prove.

Exercise 12 (Challenge). Do all the same things as above for the transla-
tion surface associated to the isosceles triangle having small angles π/n for
n = 4, 6, 8, . . ..
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19 Continued Fractions

The purpose of this chapter is to describe continued fractions and their con-
nection to hyperbolic geometry. One motivating factor for including a chap-
ter on continued fractions (besides their obvious beauty) is that it gives us
a nice way to introduce the modular group. The modular group makes its
appearance several times in subsequent chapters. See the book [DAV] for an
excellent treatment.

19.1 The Gauss Map

Given any x ∈ (0, 1) we define

γ(x) = (1/x)− floor(1/x). (70)

Here, floor(y) is the greatest integer less than or equal to y. The Gauss map
has a nice geometric interpretation, as shown in Figure 19.1. We start with
a 1 × x rectangle, and remove as many x × x squares as we can. Then we
take the left over (shaded) rectangle and turn it 90 degrees. The resulting
rectangle is proportional to a 1 × γ(x) rectangle. Starting with x0 = x, we
can form the sequence x0, x1, x2, . . . where xk+1 = γ(xk). This sequence is
defined until we reach an index k for which xk = 0. Once xk = 0, the point
xk+1 is not defined.

1

x

Figure 19.1. Cutting down a rectangle

Exercise 1. Prove that the sequence {xk} terminates at a finite index if and
only if x0 is rational.

Consider the rational case. We have a sequence x0, . . . , xn, where xn = 0.
We define

ak+1 = floor(1/xk); k = 0, . . . , n− 1. (71)

The numbers ak also have a geometric interpretation. Referring to Figure
19.1, where x = xk, the number ak+1 tells us the number of squares we can
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remove before we are left with the shaded rectangle. In Figure 19.1, ak+1 = 2.
Figure 19.2 shows a more extended example. Starting with x0 = 7/24, we
have the following.

• a1 = floor(24/7) = 3.

• x1 = 24/7− 3 = 3/7.

• a2 = floor(7/3) = 2.

• x2 = (7/3)− 2 = 1/3.

• a3 = floor(3) = 3.

• x3 = 0.

In Figure 19.2 we can read off the sequence (a1, a2, a3) = (3, 2, 3) by looking
at the number of squares of each size in the picture. The overall rectangle is
1× x0.

Figure 19.2. A 7/24 by 1 rectangle cut into squares

19.2 Continued Fractions

Again, sticking to the rational case, we can get an expression for x0 in terms
of a1, . . . , an. In general, we have

xk+1 =
1

xk

− ak+1,

which leads to

xk =
1

ak+1 + xk+1

. (72)
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But then we can say that

x0 =
1

a1 + x1

=
1

a1 +
1

a2 + x2

=
1

a1 +
1

a2 +
1

a3 + x3

· · · . (73)

We introduce the notation

α1 =
1

a1
, α2 =

1

a1 +
1

a2

, α3 =
1

a1 +
1

a2 +
1

a3

· · · . (74)

In making these definitions, we are chopping off the xk in each expression in
equation (73). The value of αk depends on k, but x0 = αn because xn = 0.

Cosidering the example from the previous section, we have

α1 =
1

3
, α2 =

1

3 +
1

2

=
2

7
, α3 = x0 =

7

24
.

We say that two rational numbers p1/q1 and p2/q2 are Farey related if

det

[
p1 p2
q1 q2

]
= p1q2 − p2q1 = ±1. (75)

In this case, we write p1/q2 ∼ p2/q2. For instance 1/3 ∼ 2/7 and 2/7 ∼ 7/24.
This is no accident.

Exercise 2. Starting with any rational x0 ∈ (0, 1) we get a sequence {αk}
as above. Prove that αk ∼ αk+1 for all k.

Exerxise 3. Consider the sequence of differences βk = αk+1 − αk. Prove
that the signs of βk alternate. Thus, the sequence α1, α2, α3, . . . alternately
over-approximates and under-approximates x0 = αn.

Exercise 4. Prove that the denominator of αk+1 is greater than the de-
nominator of αk for all k. In particular, the α-sequence does not repeat.
With a little bit of extra effort, you can show that the sequence of denomi-
nators grows at least exponentially.
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19.3 The Farey Graph

Now we will switch gears and discuss an object in hyperbolic geometry. Let
H2 denote the upper half-plane model of the hyperbolic plane. We form a
geodesic graph G in H2 as follows. The vertices of the graph are the rational
points in R∪∞, the ideal boundary of H2. The point ∞ counts as rational,
and is considered to be the fraction 1/0. The edges of the graph are geodesics
joining Farey related rationals. For instance, the vertices

0 =
0

1
, 1 =

1

1
, ∞ =

0

1

are the vertices of an ideal triangle T0 whose boundary lies in G.
Let Γ = SL2(Z) denote the group of integer 2× 2 matrices acting on H2

by linear fractional transformations. As usual, Γ also acts on R ∪ ∞. The
group Γ is known as the modular group.

Technical Remark. Before we launch into a discussion about Γ, there
is one technical point we need to clear up. The matrices A and −A give rise
to the same linear fractional transformation, so sometimes people introduce
the notation PSL2(Z) to denote the quotient group SL2(Z)/±, in which
each element is an equivalence class consisting of {A,−A}. This irritating
distinction really plays no role in our discussions, but you should keep in
mind that a matrix is really not quite the same thing as a linear fractional
transformation, due to the redundancy just mentioned. Nonetheless matrices
represent linear transformations.

Exercise 4. Let g ∈ Γ be some element. Suppose r1 ∼ r2. Prove that
g(r1) ∼ g(r2). In particular, g is a symmetry of G.

Now we know that Γ acts as a group of symmetries of G. We can say more.
Suppose e is an edge of G, connecting p1/q1 to p2/q2. The matrix

[
p1 p2
q1 q2

]−1

carries e to the edge connecting 0 = 0/1 to ∞ = 1/0. We call this latter edge
our favorite. In other words, we can find a symmetry of G that carries any
edge we like to our favorite edge. Since Γ is a group, we can find an element
of Γ carrying any one edge e1 of G to any other edge e2. We just compose the
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element that carries e1 to our favorite edge with the inverse of the element
that carries e2 to our favorite edge. In short Γ acts transitively on the edges
of G.

Exercise 5. Prove that no two edges of G cross each other.

We have exhibited an ideal triangle T0 whose boundary lies in G. Our fa-
vorite edge is an edge of this triangle. It is also an edge of the ideal triangle
T1 with vertices

0

1
,

1

0
,

−1

1
.

The boundary of this triangle lies in G as well. Thus, our favorite edge
is flanked by two ideal triangles whose boundaries lie in G. But then, by
symmetry, this holds for every edge of G. Starting out from T0 and moving
outward in a tree-like manner, we recognize that G is the set of edges of a
triangulation of H2 by ideal triangles. Figure 19.3 shows a finite portion of
G. The vertical line on the left is our favorite line. The vertical line on the
right connects 1 to ∞.

Figure 19.3. A portion of the Farey graph

19.4 Structure of the Modular Group

The Farey graph gives a good way to understand the structure of the modular
group. Since it is built out of ideal triangles, the Farey graph has 3-fold

219



symmetry built into it. The matrix
[

0 1
−1 1

]

represents the order 3 linear fractional transformation A ∈ Γ that permutes
the vertices of the ideal triangle T0 discussed above. More precisely, A has
the action

0 → 1 → ∞ → 0.

The Farey graph also has 2-fold symmetry. The matrix
[

0 1
−1 0

]

represents the order 2 linear fractional transformation B ∈ Γ that has the
action

0 → ∞, 1 → −1.

The element B is a rotation about the “midpoint” of the edge of the Farey
graph that joins 0 to∞. Put another way, B swaps the triangle T0 = (0, 1,∞)
with the adjacent triangle T ′ = (0,−1,∞).

Exercise 6. Prove that the element BAB rotates the triangle T ′ with ver-
tices (0,−1,∞).

Exercise 7. Some finite string of letters, just using A and B, is called
reduced if the strings AAA and BB do not occur in it. We make this defi-
nition because the hyperbolic isometries A3 and B2 are the identity. Prove
that any element of the modular group has the form w(A,B) where w is
a reduced word. (Hint : Show, just using A’s and B’s, that you can move
your favorite edge to any other edge in two ways. This is exactly what the
modular group can do.)

Exercise 8. Let w(A,B) be some nontrivial reduced work. Prove that
w(A,B) is a nontrivial element of the modular group.

19.5 Continued Fractions and the Farey Graph

Let’s go back to continued fractions and see how they fit in with the Farey
graph. Let x0 ∈ (0, 1) be a rational number. We have the sequence of
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approximations α1, . . . , αn = x0 as in equation (74). It is convenient to also
define

α−1 = ∞, α−0 = 0; (76)

If we consider the larger sequence α−1, . . . , αn, the statements of Exercises 2
and 3 remain true. In particular, we have a path P (x0) in the Farey graph
that connects ∞ to x0, obtained by connecting ∞ to 0 to α1, etc. The
example given above does not produce such a nice picture, so we will give
some other examples.

Let x0 = 5/8. This gives us

a1 = · · · = a5 = 1

and

α1 = 1, α2 =
1

2
, α3 =

2

3
, α4 =

3

5
, α5 = x0 =

5

8
.

Figure 19.4: The Farey path associated to 5/8

Taking x0 = 5/7 gives

a1 = 1, a2 = 2, a3 = 2.

and

α1 = 1, α2 =
2

3
, α3 =

5

7
.
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There are three things we would like to point out about these pictures.
First, they make a zig-zag pattern. This always happens, thanks to Exercises
3 and 4 above. Exercise 3 says that the path cannot backtrack on itself, and
then Exercise 4 forces the back-and-forth behavior.

Second, we can read off the numbers a1, . . . , an by looking at the “amount
of turning” the path makes at each vertex. In Figure 19.4, our path turns
“one click” at α0, then “two clicks” at α1, then “two clicks” at α2. This
corresponds to the sequence (1, 2, 2). Similarly, the path in Figure 19.3 turns
“one click” at each vertex, and this corresponds to the sequence (1, 1, 1, 1, 1).

Figure 19.4. The Farey path associated to 5/7

Exercise 9. Prove that the observation about the turns holds for any ratio-
nal x0 ∈ (0, 1).

Third, the diameter of the kth arc in our path is less than 1/k(k−1). This is
a terrible estimate, but it will serve our purposes below. To understand this
estimate, note that the kth arc connects αk−1 = pk−1/qk−1 to αk = pk/qk,
and αk−1 ∼ αk. The diameter of the kth arc is

|αk−1 − αk| =
∣∣∣pk−1

qk−1

− pk
qk

∣∣∣ =∗ 1

qk−1qk
≤ 1

k(k − 1)
.

The starred equation comes from the fact that αk−1 and αk are Farey related.
The last inequality comes from Exercise 4. As we mentioned in Exercise 4,
the denominators of the α-sequence grow at least exponentially. So, actually,
the arcs in our path shrink exponentially fast.
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19.6 The Irrational Case

So far, we have concentrated on the case when x0 is rational. If x0 is irra-
tional, then we produce an infinite sequence {αk} of rational numbers that
approximate x. From what we have said above, we have

x ∈ [αk, αk+1] or x ∈ [αk+1, αk] (77)

for each index k, with the choice depending on the parity of k, and also

lim
k→∞

|αk − αk+1| = 0. (78)

Therefore,
x0 = lim

k→∞
αk. (79)

The corresponding infinite path in the Farey graph starts at ∞ and zig-zags
downward forever, limiting on x.

The nicest possible example is probably

x0 =

√
5− 1

2
= 1/φ,

where φ is the golden ratio. In this case, ak = 1 for all k and αk is always
ratio of two consecutive Fibonacci numbers. The path in this case starts out
as in Figure 19.3 and continues the pattern forever. Taking some liberties
with the notation, we can write

1

φ
=

1

1 +
1

1 +
1

1 + · · ·
Since φ = 1 + (1/φ) we can equally well write

φ = 1 +
1

1 +
1

1 +
1

1 + · · ·

(80)

The {ak} sequence is known as the continued fraction expansion of x0. In
case x0 > 1, we pad the sequence with floor(x0). So, 1/φ has continued frac-
tion expansion 1, 1, 1, . . . and φ has continued fraction expansion 1, 1, 1, 1 . . .
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Exercise 10. Find the continued fraction expansion of
√
k for k = 2, 3, 5, 7.

The subject of continued fractions is a vast one. Here are a few basic
facts:

• An irrational number x0 ∈ (0, 1) is the root of an integer quadratic
equation ax2 + bx + c = 0 if and only if it has a continued fraction
expansion that is eventually periodic. [DAV] has a proof.

• The famous number e has continued fraction expansion

2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10 · · ·

• The continued fraction expansion of π is not known.

In spite of having a huge literature, the subject of continued fractions abounds
with unsolved problems. For instance, it is unknown whether the {ak} se-
quence for the cube root of 2 is unbounded. In fact, this is unknown for any
root of an integer polynomial equation that is neither quadratic irrational
nor rational.
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20 Teichmüller Space and Moduli Space

The purpose of this chapter is to introduce the notions of the Teichmüller
space and the moduli space of a closed surface. I will also discuss the mapping
class group, which is the group of symmetries of Teichmüller space. The
theory of these objects is vast and deep. My purpose is just to introduce
the basic objects in an intuitive way. I learned most of the material here (at
least in the negative Euler characteristic case) from [THU]. The book [RAT]
has a careful treatment from a similar point of view. There are a number
of more advanced works devoted entirely to the topics introduced here. For
instance, see [GAR] and [FMA].

First we will deal with the case of tori, and then we will deal with negative
Euler characteristic case.

20.1 Parallelograms

Say that a marked parallelogram is a parallelogram P with a distinguished
vertex v, a distinguished first side e1, and a distinguished second side e2. The
sides e1 and e2 should meet at v, as in Figure 20.1. We say that two marked
parallelograms P1 and P2 are equivalent if there is an orientation-preserving
similarity, i.e., a translation followed by a dilation followed by a rotation,
that maps P1 to P2 and preserves all the markings.

Figure 20.1. A marked parallelogram

We think of P as a subset of C. If we have a marked parallelogram, we
can translate it so that v = 0 and e1 points from 0 to 1. Then e2 points from
0 to some z ∈ C −R. We only consider “half” of the possibilities, the case
when z ∈ H2, considered as the upper half plane of C.

Exercise 1. Prove that z(P1) = z(P2) if and only if P1 and P2 are equivalent.
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We can also reverse the process. Given z ∈ H2, we can form a marked
parallelogram P such that z(P ) = z. We simply choose the parallelogram
with vertices (0, 1, z, 1+ z) and mark it in the obvious way. In short, we can
say that there is a natural bijection between the set T of marked parallelo-
grams and H2, the upper half plane. We can even take this one step further.
H2 has its usual hyperbolic metric, and we can transfer this metric onto
T . That is, the distance between P1 and P2 is defined to be the hyperbolic
distance between z(P1) and z(P2).

20.2 Flat Tori

In §6.3 we discussed the surface one gets by gluing the opposite sides of
a parallelogram. Such a surface is known as a flat torus . One thing we
did not discuss in §6.3 is the effect of changing the shape of the underlying
parallelogram, i.e., the topic of the previous section. When we consider the
idea of doing the construction in §6.3 for all possible parallelograms we are
led to the notions of Teichmüller space and moduli space. So, the idea is to
unite the discussion in §6.3 with the discussion in the previous section.

Say that a flat torus is a surface T that is locally Euclidean and also
homeomorphic to a torus. Recall that the universal cover of T is R2 and the
fundamental group of T is Z2.

Definition 20.1. Say that a marked flat torus is a flat torus, together with
a distinguished pair of elements γ1, γ2 ∈ π1(T ) which generate π1(T ). We
say that two marked tori T1 and T2 are equivalent if there is an orientation-
preserving similarity that carries T1 to T2 and induces a map on the funda-
mental groups that carries the one distinguished generating set to the other.

Given a marked flat torus T , we can produce a marked parallelogram, as
follows: We think of π1(T, v) as the deck group, acting on R2 by translations.
We then consider the parallelogram P with vertices

0, γ1(0), γ2(0), γ1(0) + γ2(0). (81)

The distinguished vertex is 0, and the kth distinguished edge points from 0
to γk(0). We insist that the marking of P is positively oriented So, again, we
weed out redundancy by only considering half the possibilities. We can also
reverse the process. If we start with a marked parallelogram P , as in Figure
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20.1, we can glue the opposite sides of P . The glued-up sides are loops which
represent γ1 and γ2.

Exercise 2. Prove that two marked tori are equivalent if and only if the
corresponding marked parallelograms are equivalent.

Now we will redo the same construction from another point of view. Let
Σ denote our favorite flat torus, say, the one obtained by identifying the op-
posite sides of a square.

Definition 20.2. A marked flat torus is a triple (Σ, T, φ), where T is a
flat torus and φ : Σ → T is an orientation-preserving homeomorphism. We
say that two triples (Σ, T1, φ1) and (Σ, T2, φ1) are equivalent if there is an
orientation-preserving similarity f : T1 → T2 such that f ◦ φ1 and φ2 are
homotopic maps.

We can convert between the one notion of marked torus and the other.
To go from Definition 20.2 to Definition 20.1, we first choose a distinguished
pair of elements of π1(Σ): We let γ1 denote the loop that is the glued-up
horizontal edge, and we let γ2 be the loop that is the glued-up vertical edge.
Then φ∗(γ1) and φ∗(γ2) are the distinguished elements of π1(T ). To go from
Definition 20.1 to Definition 20.2, we recall that our original notion of a
marked torus gives us a description of the torus as a glued-up parallelogram
P . We just map the unit square to P by an affine map in such a way that the
gluings are respected, and then we interpret this map as a map from Σ to our
torus. This produces a triple (Σ, T, φ), where φ is not just a homeomorphism
but actually locally affine.

Exercise 3. Prove that our conversion between the two notions of marked
tori respects the equivalence relations. That is, the two notions are really
the same notion.

Since all the notions we have discussed are the same, we think of T as the
space of marked tori in the second sense. That is, we work with equivalence
classes of triples (Σ, T, φ). We have a canonical identification of T with H2,
the hyperbolic plane. With this interpretation, T is known as the Teichmüller
space of (marked) flat structures on the torus.
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20.3 The Modular Group Again

Now we are going to bring the modular group into the picture. We discussed
this group in §19.3 and §19.4. First of all, we can interpret our favorite flat
torus Σ as the quotient R2/Z2. This observation is important in what we
do next.

Let G = SL2(Z) denote the group of integer 2 × 2 matrices of deter-
minant 1, the modular group. Any g ∈ G acts on R2 as an orientation
preserving linear transformation, and g(Z2) = Z2. This means that g in-
duces an orientation-preserving homeomorphism g : Σ → Σ. We give this
homeomorphism the same name as the linear transformation which induces
it.

Given a triple (Σ, T, φ), we define the new triple (Σ, T, φ ◦ g−1). That is,
we keep the same surface T , but we change φ : Σ → T to the map given by
the composition Σ → Σ → T , with the first arrow given by g−1. We use g−1

in place of the more obvious choice of g for technical reasons that we will
explain momentarily.

Exercise 4. Prove that (Σ, T1, φ1) and (Σ, T2, φ2) are equivalent if and only
if (Σ, T1, φ1 ◦ g) and (Σ, T2, φ2 ◦ g) are equivalent.

The group G acts on the space T in the sense that

g1(g2(x)) = (g1 ◦ g2)(x), (82)

for all g1, g2 ∈ G and all x ∈ T . Here g1 ◦ g2 means “first do g2 and then
do g1”. To see this, let x be a point represented by the triple (Σ, T, φ). We
compute

g1(g2(x)) = g1(Σ, T, φ ◦ g−1
2 )(Σ, T, φ ◦ g−1

2 ◦ g−1
1 )

= (Σ, T, φ ◦ (g1 ◦ g2)−1) = (g1 ◦ g2)(x).
From this calculation, you can see why we used the inverse: it makes the
compositions come out the right way.

We have an explicit identification of T with H2, and we can see how a
particular matrix

g =

[
a b
c d

]
(83)

acts on T in these coordinates. Let x = (Σ, T, φ) as above. We put T in
the best possible position, so that T is obtained by gluing the opposite sides
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of the parallelogram (0, 1, z, 1 + z), and so that φ is induced by the linear
transformation carrying (1, 0) to (1, 0) and (0, 1) to (x, y). Here z = x + iy.
When we lift φ to the universal covers of Σ and T , respectively, we get the
same linear transformation. In other words, the linear transformation

φ̂ =

[
1 x
0 y

]
(84)

induces the homeomorphism φ. The linear transformation

φ̂ ◦ g−1 =

[
d− cx −b+ ax
−cy ay

]
(85)

induces the homeomorphism φ ◦ g−1.
To figure out the point g(x) we just have to compute the shape of the

marked parallelogram g(T0), where T0 is the unit square whose distinguished
point is the origin, whose first distinguished edge is 1 ≡ (1, 0), and whose
second distinguished edge is i ≡ (0, 1). Here we are listing both the coordi-

nates in C and in R2. We compute that φ̂ maps the first and second edges,
respectively, to cz − d and az − b. So, if x ∈ T corresponds to z ∈ H2, then
g(z) corresponds to

az − b

cz − d
. (86)

Except for the minus signs, this is the usual linear fractional action of g on
H2.

20.4 Moduli Space

The quotient M = T /G is known as moduli space. To interpret this quotient
in terms of tori, we (temporarily) let M′ denote the set of equivalence classes
of flat tori. Here we say that two flat tori are equivalent if there is an
orientation-preserving similarity carrying one to the other. We are going
to construct a natural bijection between M and M′. Once we have this
bijection, we can forget about M′ and simply realize that M is the space of
equivalence classes of flat tori.

There is an obvious map from T to M′. Given a triple (Σ, T, φ), we
simply consider the torus T alone. It is a tautology that this map respects
the notions of equivalence on both T and M′. The action of G on T has no
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effect on the underlying torus—only the map is changed—so actually we get
a map from M to M′.

At the same time, there is a map from M′ to M. Given a flat torus T ,
we arbitrarily choose a homeomorphism φ : Σ → T , and we consider the
image of the triple (Σ, T, φ) ∈ M. To see that this map is independent of
choices, consider the two triples (Σ, T, φ1) and (Σ, T, φ2). The map φ−1

2 ◦ φ1

is an orientation-preserving homeomorphism of Σ. We claim that this map is
homotopic to some linear homeomorphism of Σ, given by g ∈ G. Assuming
this claim for the moment, we see that (Σ, T, φ2) = g(Σ, T, φ1) for some
g ∈ G. That is, both choices lead to the same point in M.

Assuming our claim, we see that there is a natural bijection between M
and M′, so we may identify M as the space of equivalence classes of flat tori.
The space M is known as moduli space.

It is worth pointing out that we just considered M′ as a set, but we might
have put a metric on M′ in some way. Any reasonable choice would make
our bijection between M and M′ a homeomorphism. We will refrain from
doing this here, because below we will actually do it for surfaces of negative
Euler characteristic.

Our only piece of unfinished business is to show that γ = φ−1
2 ◦ φ1 is

homotopic to the action of some g ∈ SL2(Z). Note that γ acts on the funda-
mental group π1(Σ). Since γ is an orientation-preserving homeomorphism, γ
has the same action on π1(Σ) as does some g ∈ SL2(Z). So, replacing γ by
γ ◦ g−1, we can assume that γ acts as the identity on π1(Σ). Our task now
is to show that γ is homotopic to the identity map.

A formal proof of this fact is a bit tedious, but we will sketch the idea.
Let e1 and e2 be the usual horizontal and vertical loops on Σ. Since γ(e1) is
homotopic to e1, we first adjust γ so that it is the identity on e1. Next, we
adjust γ so that it is the identity on e1∪ e2. But now we can cut Σ open and
interpret γ as a continuous map from the unit square to itself which is the
identity on the boundary. The following exercise finishes the proof.

Exercise 5. Prove that a continuous map from the unit square to itself,
which is the identity on the boundary, is homotopic to the identity map.

There is an important lesson to take away from this section. The space
M has a more direct and simple definition than the space T . However, it
was useful to define T first and then realize M as a quotient of T . We hope
that this lesson motivates the definition of the Teichmüller space of surfaces
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having a fixed negative Euler characteristic.

20.5 Teichmüller Space

We would like to make all the same constructions that we made above in
the negative Euler characteristic case, but there is one fine point we want to
iron out. Above, we considered flat tori and similarities between them, and
below we will consider hyperbolic surfaces and isometries between. Given
any flat torus, we can always rescale the metric so that it has unit area. If
we only work with unit area tori, then the natural maps between them are
(orientation-preserving) isometries. The point here is that an area-preserving
and orientation preserving similarity is an isometry. So, we might have redone
the whole theory above using unit area tori and isometries. This point of
view is more natural in the negative Euler characteristic case, because two
hyperbolic surfaces with the same topology always have the same area; see
Theorem 12.4.

Now we are ready to go. We will fix a number g ≥ 2, the genus of the
surfaces we consider. Recall that the genus g of a surface S satisfies the
equation

χ(S) = 2− 2g. (87)

Here χ is the Euler characteristic, as discussed in §3.4. Thus, a torus has
genus 1, and the octagon surface has genus 2. In general, a genus g surface is
a “g-holed torus” that is locally isometric to H2, the hyperbolic plane. We
are going to build T g, the Teichmüller space of genus g hyperbolic surfaces.

We first fix our favorite surface of genus g, and call it Σ. Unlike in
the torus case, a “favorite” does not immediately jump out. My personal
favorite is the one obtained by gluing together the opposite sides of a regular
hyperbolic 4g-gon. In any case, we look at triples of the form (Σ,M, φ), where
M is a hyperbolic surface of genus g and φ : Σ → M is a homeomorphism.
We say that two triples (Σ,M1, φ1) and (Σ,M2, φ2) are equivalent if there is
an isometry f : M1 → M2 such that f ◦ φ1 and φ2 are homotopic maps.

When we worked out the case of the torus, we had a natural way of
putting coordinates on the space T . The point is that T is really just H2 in
disguise. This time, it is not so obvious what to do. So, we will first make
T g into a metric space. The idea behind the next definition is to make sense
of surfaces being nearby to each other without quite being the same. We say
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that a homeomorphism f : M1 → M2 is a (1 + ǫ)-isometry if the inequality

1− ǫ ≤ d2(x2, y2)

d1(x1, y2)
≤ 1 + ǫ (88)

holds for all quadruples x1, y1, x2, y2 with x1, y1 ∈ M1 and x2 = f(x1) and
y2 = f(y1). The functions d1 and d2 are the metrics on M1 and M2, respec-
tively.

Define the distance between 2 triples (Σ,M1, φ1) and (Σ,M2, φ2) to be
the infimal ǫ with the property that there is a (1+ ǫ) isometry f : M1 → M2

such that f ◦ φ1 and φ2 are homotopic maps.

Exercise 6. Prove that the equivalence relation we have defined respects
the distance we have defined. Hence, the distance between two equivalence
classes makes sense. This is how we make T g into a metric space.

In the case of the torus, there was a perfectly canonical metric on T ,
namely the hyperbolic metric. In the higher genus case, the metric we have
defined is pretty good but not perfectly canonical. There are a number of
canonical metrics on T g. The two most commonly used are the Teichmüller
metric and the Weil–Petersson metric. One vexing thing is that these two
common metrics are pretty different from each other. So, while there are
several nice ways to view T g, there does not seem to be one best way. What
is best depends upon the context.

20.6 The Mapping Class Group

When we worked with our favorite flat torus Σ, the one based on the unit
square, we saw that SL2(Z) arose naturally as the group of locally linear
and orientation-preserving homeomorphisms of Σ. For a hyperbolic surface,
it is not immediately obvious that there is a similarly natural group of home-
omorphisms. However, it turns out that there is such a group.

Above, we sketched a proof that any orientation-preserving homeomor-
phism of the flat square torus Σ is homotopic to the action of an element
of SL2(Z). In fact, we can equally well say that SL2(Z) is the quotient
of the group of orientation-preserving similarities of Σ, modulo homotopy.
That is, two such homeomorphisms are equivalent, and considered the same,
if they are homotopic. This is a definition that carries over immediately to
the higher genus case.
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We fix some initial hyperbolic surface Σ of genus g. The mapping class
group is defined as the group of equivalence classes of homeomorphisms of
Σ, where two homeomorphisms are equivalent if they are homotopic. The
group is often denoted MCGg. It is a kind of generalization of SL2(Z). The
definition of the mapping class group depends only mildly on the choice of
Σ. Any other choice would lead to an isomorphic group.

Exercise 7. The mapping class group is certainly well defined as a set.
Prove that it is well defined as a group, that is, the group law respects the
equivalence classes.

People have focused quite a bit of attention on the mapping class group
in recent years. There are many open problems about this group. One of the
most well-known open problems is as follows. For each genus g, does there
exist some n = ng and a one-to-one homomorphism φ : MCGg → GLn(C)?
Here GLn(C) is the group of complex valued n× n matrices having nonzero
determinant. Or, more briefly, is the mapping class group linear? . Subgroups
of GLn(C) are called linear.

The group MCGg acts on T g. The homeomorphism g : Σ → Σ acts on
the triple (M,Σ, φ) by sending it to the triple (M,Σ, φ ◦ g−1). From the way
we have defined the mapping class group, this action respects the equivalence
relation used to define T g.

Exercise 8. Recall that we defined a metric on T g above. Prove that
each element of MCGg acts as an isometry on T g.

Now that we have definedMCGg and T g, we defineMg to be the quotient
space.

Mg = T g/MCGg. (89)

The space Mg is known as the moduli space of genus g hyperbolic surfaces.
As in the torus case, we could take the alternate route and define Mg as

the set of hyperbolic surfaces of genus g equipped with a metric like the one
defined above for T g. That is, the distance between two hyperbolic surfaces
is the infimal ǫ such that there is a (1 + ǫ) isometry between them.

233



21 Topology of Teichmüller Space

We defined the Teichmüller space T g in the previous chapter. In the case
of the torus, the Teichmüller space is just a copy of H2; in particular, it is
homeomorphic to R2. Here will sketch a well-known proof, mainly through
a series of exercises, that T g is homeomorphic to R6g−6.

This beautiful result sets up a picture that is in some ways very similar
to the one for the torus. We have the mapping class group MCGg acting
isometrically on a space that is homeomorphic to R6g−g (but having a funny
metric on it). All the complexity in the topology of the moduli space Mg

comes from the operation of taking the quotient of a topologically trivial
space by the action of a complicated group. This is exactly what happens
for the torus, except that the space M and the group SL2(Z) are not so
complicated.

21.1 Pairs of Pants

A pair of pants is a hyperbolic surface-with-boundary that is obtained by
taking two identical copies of a right-angled hexagon and gluing 3 of the sides.
Figures 21.1 and 21.2 show this. These kinds of gluings were considered in
detail in Chapter 12.

Figure 21.1. Hexagon gluing

Exercise 1. Let l1, l2, l3 be three positive numbers. Prove that there is a
right-angled hexagon whose “odd” sides have lengths l1, l2, l3. Prove that
this hexagon is unique up to an isometry.
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Figure 21.2. A pair of pants

A pair of pants is homeomorphic to a sphere with 3 holes. The bound-
aries are totally geodesic in the sense that every point on the boundary has a
neighborhood that is isometric to a half-disk in H2. By half-disk , we mean
the portion of a disk that lies to one side of a diameter.

Exercise 2. Suppose that M is a surface with boundary whose interior
is locally isometric to H2 and whose boundary is totally geodesic. Suppose
also that M is homeomorphic to a sphere with 3 holes. Prove that M is a
pair of pants, in the sense that M can be built by gluing together 2 hexagons
in the manner described above. (Hint : Consider the 3 geodesics arcs ob-
tained by connecting the 3 boundary components, in pairwise fashion, by
shortest curves. Cut M open along these curves and watch M fall apart into
two right-angled hexagons. Use Exercise 1 to show that these hexagons are
copies of each other.)

Exercise 3. Let l1, l2, l3 be three positive real numbers. Prove that there
exists a unique pair of pants, up to isometry, whose boundaries have lengths
l1, l2, l3, respectively.

To avoid confusion, we will shorten pair of pants to pant .

21.2 Pants Decompositions

We say that a pants decomposition of a hyperbolic surface is a realization of
that surface as a finite union of pants, glued together along their boundaries.
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In this section we will prove that every hyperbolic surface has a pants de-
composition. Actually, we will prove that any hyperbolic surface has many
such.

Suppose that M is a hyperbolic surface and γ is a closed loop on M .
Recall that H2 is the universal cover of M and that M = H2/Γ, where Γ
is the deck group. Let γ̃ denote a lift of γ to H2. Since γ is a closed loop,
there must be some nontrivial element g ∈ Γ such that g(γ) = γ. According
to the classification of isometries of the hyperbolic plane, g is either elliptic,
hyperbolic, or parabolic. Since M is a compact surface, there is some ǫ > 0
such that every ǫ ball on M is embedded. This means that g moves every
point of H2 by at least ǫ. But this means that g is hyperbolic; see §10.9. In
particular, g has two fixed points on ∂H2.

From this picture, we see that γ̂ has two accumulation points on ∂H2,
namely the fixed points of g. There is a unique geodesic β̃ connecting the
two fixed points of g. This geodesic is the axis of g. The quotient β = β̃/g
is called the geodesic representative of γ. Intuitively, if we think of γ as
a rubber band that has been perhaps stretched out of its natural position,
then β represents the curve assumed when the rubber band snaps back into
position. The following exercise justifies this point of view.

Exercise 4. Prove that γ and β are homotopic.

The curve γ is called simple if γ has no self-intersections. If γ is simple,
then no two lifts of γ to the universal cover intersect. If β the geodesic
representative is not simple, then two lifts β̃1 and β̃2 in H2 cross each other.
But then the endpoints of β̃1 separate the endpoints of β̃2 on ∂H2. But then
we can find corresponding lifts γ̃1 and γ̃2 of γ whose (ideal) endpoints have
the same property. This forces these lifts to cross, which means that γ does
have a self-intersection. Figure 21.3 shows the situation.
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Figure 21.3. Intersecting curves

So, if γ is simple, then so is β. A similar argument proves the following
generalization: if {γi} is a finite list of pairwise disjoint simple loops, then so
is {βi}, the list of geodesic representatives.

The process of replacing a simple loop by its geodesic representative is
a magical one. You might imagine that the geodesic replacements could
somehow crash into themselves or to each other, even though the original
curves do not. But, as we just explained, this is not the case. So, if we want
to find a pants decomposition of a hyperbolic surface M , all we have to do
is find simple loops that divide M into 3-holed spheres. Then we replace
all these loops with their geodesic representatives, and we have our pants
decomposition.

Now we can give the intuitive idea behind the main result of this chapter.
We start by choosing our favorite pants decomposition of our favorite surface
Σ. Let S ⊂ Σ denote the set of curves of this decomposition. By definition
Σ − S is a union of 3-holed spheres. A point of T g is an equivalence class
of triple (Σ,M, φ). We define a pants decomposition on M by taking the
geodesic representatives of the curves in the set φ(S) ⊂ M .

Exercise 5. Prove that there will be exactly 2g − 2 pants in the decompo-
sition, with 3g − 3 boundary curves.

We get 3g − 3 real numbers by considering the lengths of the boundary
curves in the pants decomposition. Each curve is contained in 2 pants. We get

237



an additional 3g−3 numbers by considering how two pants are glued together
along their common boundary. These other 3g−3 numbers are usually called
the twist parameters . Our construction respects the equivalence relation on
triples and gives a well-defined map. We from T g to R6g−6. will see that this
map is a homeomorphism.

21.3 Special Maps and Triples

In this section we prepare for our main construction. First, we choose our
favorite kind of pant. This is the pant obtained by gluing together two
identical regular hexagons. Each pant, including our favorite, has two special
points on each boundary component. These are the points which are images
of hexagon vertices; see Figure 21.2 above.

We (re)choose our favorite surface Σ so that it made from gluing together
3g − 3 of our favorite kind of pants. We insist that the pants are glued
in such a way that the marked points are matched up. This still doesn’t
determine the surface exactly, but we just pick one from amongst the various
possibilities.

Let P (l1, l2, l3) denote the pant having boundary lengths l1, l2, l3. We
choose some reasonable homeomorphism from our favorite pant P0 to P (l1, l2, l3).
The best way to to this is to choose a homeomorphism from the regular right-
angled hexagon to a hexagon with side lengths lk/2 that sends vertices to
vertices, and then to double this map, so to speak.

More generally, given a 6-tuple (l1, l2, l3, θ1, θ2, θ3), we choose a map from
P0 to P (l1, l2, l3) which agrees with our original map above, but which makes
a twist of θk/2 (say) clockwise in a small neighborhood of the kth boundary
component. This new map is obtained from the original one by giving a kind
of twist. The new map is very similar to the Dehn twists we discussed in
§18.7. We call such a map special and denote it by µ(l1, l2, l3, θ1, θ2, θ3).

Given a triple (Σ,M, φ), we get a pants decomposition of M , as described
above. We call the triple special if the following hold:

• The restriction of φ to each pant of Σ is one of our special maps.

• If the restriction of φ to some pant P is the map

µ(l1, l2, l3, θ1, θ2, θ3),
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then the restriction of φ to the pant P ′ that meets P along the kth
boundary of P is µ(. . . lk . . . , . . . , θk, . . .). The other 4 coordinates can
be different.

Here we sketch the proof that any triple is equivalent to a special triple.
We warn the reader that a formal construction is filled with many details that
we are not including. We hope that this sketch is sufficient for the interested
reader to give a careful proof. [RAT] has all the details.

Lemma 21.1 Any triple is equivalent to a special triple.

Proof (sketch). Starting with the triple (Σ,M, φ1), we make a homotopy
between φ1 and a homeomorphism φ2 : Σ → M that maps the set S of
geodesics to the set of geodesics on the natural pants decomposition of M .
Next, we make a homotopy between φ2 and a map φ3 : Σ → M that agrees
with a special map outside a small neighborhood of S, the only place where
we do not have control over φ2. This map agrees with the special map on
the outside of 3g − 3 small annuli.

Each annulus on Σ is divided in half. The two halves of an annulus are
subsets of the two different pants that glue together along a common bound-
ary component. The center curve of the annulus is the common boundary
component. We have a foliation of each annulus by circles that are, in a
sense, parallel to the center curve. We have a similar picture for the corre-
sponding annulus on M . We just adjust φ3 so that it twists these circles “at
a constant rate”, evenly dividing the total twist between the two halves, so
to speak. The final map φ4 is homotopic to the original one, and is special
on each pant. Thus (Σ,M, φ4) is equivalent to the original triple (Σ,M, φ1).
♠

21.4 The End of the Proof

Now we construct our map from T g toR
6g−6. We start with a triple (Σ,M, φ)

representing a point in T g. By Lemma 21.1, it suffices to consider a special
triple. However, for special triples, we can assign a pair (l, θ) to each geodesic
in the set S ⊂ Σ of pants boundaries. This gives us the map from T g to
R6g−6. Call this map Φ.

The map Φ is surjective, essentially thanks to Exercise 3. We can build
pants with any boundary lengths we like, and then we can glue them together
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with as much twisting as we like. The map Φ is injective because the coordi-
nates on S give us complete instructions for how to assemble the surface M
and the map φ : Σ → M . Hence Φ is a bijection between T g and R6g−6.

The map Φ−1 is continuous. If we have special maps corresponding to
nearly identical parameters, the corresponding pants are nearly isometric to
each other, and the twisting is nearly the same. This allows us to build a
map between the two surfaces that is nearly an isometry and in the correct
homotopy class.

Showing that Φ is continuous is the most tedious part of the argument.
Here we explain the proof. Let (M,Σj , φj) for j = 1, 2 be two very nearby
special triples. Suppose that f : M1 → M2 is a (1 + ǫ)-isometry.

If ǫ is small, the map f carries each pant on M1 to a 3-holed sphere on M2

whose boundaries are very nearly geodesics. The process of replacing each
near geodesic by an actual geodesic shortens the curve. Hence, the pants
boundaries on M2 are at most (1 + ǫ) times as long as their counterparts on
M1 and vice versa. Hence, the length parameters {lk} labelling each curve
in S are about the same for each triple.

Exercise 6. Let P1 be a pant on M1, and let P2 be the corresponding
pant on M2. Prove that f(∂P1) is contained in an ǫ′-neighborhood of P2,
where ǫ′ → 0 with ǫ. (Hint : Lift the picture to the universal cover, and show
that a curve that nearly minimizes length in H2 must be close to an actual
geodesic.)

Exercise 7. Each pant on M1 decomposes into two identical right-angled
hexagons. Let H be such a hexagon. Prove that f(H) is within ǫ′ of one
of the corresponding hexagons on M2. Here ǫ′ → 0 as ǫ → 0. (Hint : By
Exercise 5, f maps the pant boundaries to curves that are very close to their
geodesic representatives. This takes care of half the sides of H. Next, f maps
each other side s of H to a curve that nearly realizes the distance between
two components of a pant on M2. Prove that this forces f(s) to be near the
true minimizer.)

Each pant boundary β on M1 has 4 special points. Two of these points
come from one pant incident to β and the other two come from the other
pant incident to β. We call these collections of points special quads .

Exercise 8. Let Q denote one of the special quads. Prove f(Q) is within ǫ′
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of the corresponding special quad on M2. Here ǫ′ → 0 as ǫ → 0.

For M1, the parameter θ/(2π) on each curve of S can be deduced from
the distances between the points of the relevant special quads. We now
conclude from Exercise 8 that the θ parameters for M1 are close mod 2π to
the corresponding θ parameters for M2.

Finally, if the θ parameter for M1 differs by nearly an integer from the
corresponding θ parameter forM2, then we can find an γ onM1, crossing over
the image of the offending boundary component, such that f(γ) twists more
times around and is considerably longer, as shown in Figure 21.4. Figure
21.4 shows the case when θ = 0 for M1 but θ = 1 for M2.

Figure 21.4. Integer twist

All in all, we have shown (modulo some details) that the map Φ is a
homeomorphism from T g to R6g−6.
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22 The Banach–Tarski Theorem

The purpose of this chapter is to prove the Banach–Tarski Theorem. My
account is somewhat similar to the one given in [WAG]. At first, the Banach–
Tarski Theorem does not look too much like a result about surfaces, but in
some sense it is a result about rotations of the sphere. The proof I give also
brings in the modular group in an essential way.

22.1 The Result

We say that A,B ⊂ R3 are equivalent if there are finite partitions into
disjoint pieces,

A = A1 ∪ · · · ∪ An, B = B1 ∪ · · · ∪ Bn,

and isometries I1, . . . , In such that Ij(Aj) = Bj for all j. In this case, we
write A ∼ B. When A ∼ B it means, informally, that one can cut A into n
pieces, like a puzzle, and reassemble those pieces into B. The implied map
A → B is, by definition, a piecewise isometric map.

Exercise 1. Prove that ∼ is an equivalence relation.

The Banach–Tarski Theorem requires the Axiom of Choice. See [DEV]
for a discussion of this axiom. Here is the precise version that is needed.

Real Axiom of Choice (RAC). Let {Xα} be a disjoint union of sub-
sets of R3. Then there exists a set S ⊂ ⋃

Xα such that S contains exactly
one element of Xα for each α.

The RAC might seem obvious, or at least harmless. What the Banach–
Tarski Theorem shows is that a highly counterintuitive result comes as a
consequence of assuming that the RAC is true.

Say that A is a good set if A is bounded and A contains a ball.

Theorem 22.1 (Banach–Tarski) Assume the RAC If A and B are arbi-
trary good sets, then A ∼ B.

In light of the fact that ∼ is an equivalence relation, it suffices to prove
the Banach–Tarski Theorem in the case that A is a ball of radius 1.
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What makes this theorem amazing is that A could be a tiny ball and
B could be an enormous ball. At first you might think that this result
contradicts such physical properties as “conservation of mass”. The usual
reply to this objection is that the pieces needed to make the puzzle are so
complicated that they do not have mass. Another reply is that we are not
talking about physical objects that are made out of atoms.

22.2 The Schroeder–Bernstein Theorem

The Schroeder–Bernstein Theorem says the following. If there are injective
maps from A into B and from B into A, then there is a bijection between
A and B. This result works for any sets and any maps. (Any book on set
theory has this result, but you can extract the general proof from the proof
of the next result.)

In case A and B are subsets of R3 and the injections are piecewise iso-
metric maps, then the bijection manufactured by the proof is also piecewise
isometric. To formalize this situation, we write A ≺ B if A ∼ B′ for some
subset B′ ⊂ B. This is another way of saying that there is a piecewise
isometric injection from A into B.

Lemma 22.2 If A ≺ B and B ≺ A, then A ∼ B.

Proof: We have injective and piecewise isometric maps f : A → B and
g : B → A. Say that an n-chain is a sequence of the form xn → · · · → x0 ∈ A,
where

• xk ∈ A if k > 0 is even. In this case f(xk) = xk−1

• xk ∈ B if k is odd. In this case g(xk) = xk−1.

For each a ∈ A, let n(a) denote the length of the longest n-chain that ends in
a = x0. It might be that n(a) = ∞. Let An = {a ∈ A| n(a) = n}. Swapping
the roles of A and B, define Bn similarly.

Now observe the following:

• f(Ak) = Bk+1 for k = 0, 2, 4, . . ..

• g−1(Ak) = Bk−1 for k = 1, 3, 5.

• f(A∞) = B∞.
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The restriction of f to

A′ = A0 ∪ A2 ∪ · · · ∪ A∞

is an injective piecewise isometry and the restriction of g−1 to

A′′ = A− A′ = A1 ∪ A3 ∪ A5...

is also an injective piecewise isometry. (Note that A′′ does not include A∞.)
Define h(a) = f(a) if a ∈ A′ and h(a) = g−1(a) if a ∈ A′′. By construction

f(A′) ∩ g−1(A′′) = ∅.

Hence h is an injection. Also,

B = f(A′) ∪ g−1(A′′).

Hence h is a surjection. Hence h is a bijection. By construction h is a piece-
wise isometric map. ♠

22.3 The Doubling Theorem

We write B ≻ A if there is a partition B = B1 ∪ . . . ∪ Bn and isome-
tries I1, . . . , In such that A ⊂ ⋃

Ij(Bj). In other words, we can break
B into finitely many pieces and use these pieces to cover A. The sets
I1(B1), . . . , In(Bn) need not be disjoint from each other.

Here is a result that sounds simpler (but not really much less surprising)
than the Banach–Tarski Theorem.

Theorem 22.3 (Doubling) Assume the RAC Then there exist 3 disjoint
unit balls A,B1, B2 such that A ≻ B, where B = B1 ∪ B2.

Now we will reduce the Banach–Tarski Theorem to the Doubling Theo-
rem.

Lemma 22.4 If B ≻ A, then A ≺ B.

Proof: Assume B ≻ A. Define
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• A1 = A ∩ I1(B1).

• A2 = A ∩ I2(B2)− A1.

• A3 = A ∩ I3(B3)− A1 − A2, etc.

Then A = A1 ∪ · · · ∪ An is a partition. Let B′
j = I−1

j Aj and let B′ =
⋃
B′

j.
Then B′

1 ∪ · · · ∪B′
n is a partition of B′. By construction A ∼ B′ ⊂ B. Hence

A ≺ B. ♠

Let Br denote the unit ball of radius r centered at the origin.
We will assume the RAC and the Doubling Theorem. We claim that

Br ∼ Bs for any r, s > 0. By scaling, we can assume that 1 = r < s. Clearly,
B1 ≺ Bs. In light of the lemmas in the previous section, it suffices to prove
that B1 ≻ Bs. There is some n such that Bs can be covered by 2n translates
of B1. Iterating the Doubling Theorem n times, we see that B1 is equivalent
to 2n disjoint translates of B1. But then B1 ≻ Bs. This proves what we
want. Now we know that Br ∼ Bs for all r, s > 0.

We have already mentioned that it suffices to prove the Banach–Tarski
Theorem when B = B1, the unit ball. But Br ⊂ A ⊂ Bs for some pair of
balls Br and Bs. Since Br ∼ Bs and A ⊂ Bs, we have Br ≻ A. This implies
that A ≺ Br. But Br ≺ A. Hence A ∼ Br. But Br ∼ B1. Hence A ∼ B1.
This finishes the reduction of the Banach–Tarski Theorem to the Doubling
Theorem.

22.4 Depleted Balls

We are left to prove the Doubling Theorem. The Doubling Theorem is about
as simple as can be, but unfortunately some technical complications arise
when we try to prove the Doubling Theorem directly. The way around these
complications is to prove a related result instead.

Say that a depleted ball is a set of the form B−X, where B is a unit ball
and X is a countable union of lines through the center of B.

Exercise 2. Prove that any unit ball can be covered by 3 isometric im-
ages of any depleted ball.

Theorem 22.5 (Depleted Ball) Assume the RAC Then there exists a de-
pleted ball Σ and a partition Σ = Σ1 ∪ Σ2 ∪ Σ3 such that the following hold:
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• Σi and Σj are isometric for all pairs i, j.

• Σ3 ≻ Σ1 ∪ Σ2.

Lemma 22.6 Assume the RAC Then there are 9 disjoint depleted balls A,
B1, . . . , B8 such that A ∼ B where B = B1 ∪ · · · ∪ B8.

Proof: Iterating the conclusion of the Depleted Ball Theorem, we see that
Σ1 ≻ Y , where Y is any finite union of isometric copies of Σ1. Our lemma
follows almost immediate from this. ♠

Exercise 3. Deduce the Doubling Theorem from the last lemma.

To finish the proof of the Banach–Tarski Theorem, we just have to prove
the Depleted Ball Theorem.

22.5 The Depleted Ball Theorem

Proving the Depleted Ball Theorem is the most interesting part of the proof
of the Banach–Tarski Theorem. The rest is really just “window dressing”.
This is the part of the proof that brings in the modular group.

Consider the countable group

Γ = 〈A,B|A3 = B2 = identity〉.

In other words, Γ is the group of all words in A and B subject to the relations
that A3 and B2 are the identity word.

Exercise 4. Prove that Γ is isomorphic, as a group, to the modular group
discussed in §19.3 and §19.4. (Hint : Put together Exercises 7 and 8 in §19.4.)

We have a partition Γ = Γ1 ∪ Γ2 ∪ Γ3, where

• Γ1 consists of those words starting with A.

• Γ2 consists of those words starting with A2.

• Γ3 consists of the empty word and also those words starting with B.
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We have the following structure:

AΓk = Γk+1, Γ1 ∪ Γ2 ⊂ BΓ3.

Indices are taken mod 3 for the first equation. These two algebraic facts are
quite close to the conclusion of the Depleted Ball Theorem. The trick is to
convert the algebra into geometry. Let B denote the unit ball in R3, and let
SO(3) denote the group of rotations of B. Below we will prove the following
technical lemma.

Lemma 22.7 There exists an injective homomorphism ρ : Γ → SO(3).

We choose our injective homomorphism, and we identify A and B with
their images under ρ. So, A is an order 3 rotation of B and B is an order 2
rotation of B. In general, we identify elements of Γ with their images under
ρ.

A nontrivial element of SO(3) is a rotation about some line through the
origin. We say that a line in R3 is bad if it is the line fixed by some element
of Γ. Since Γ is a countable group, there are only countably many bad lines.
Let X denote the union of these bad lines, and let Σ = B −X. Then Σ is a
depleted ball. Moreover, the group Γ acts freely on Σ in the following sense.
If γ(p) = p for some γ ∈ Γ and some p ∈ Σ, then γ is the identity element.

We have an equivalence relation on Σ. We write p1 ∼ p2 if and only if
p1 = γ(p2) for some γ ∈ Γ. The fact that Γ is a group implies easily that ∼
is an equivalence relation. This gives us an uncountable partition

Σ =
⋃

Σα

into the equivalence classes. By the RAC, we can find a new set S ⊂ Σ such
that S has one member in common with each Sα.

Lemma 22.8 Let γ1, γ2 ∈ Γ be distinct elements. Then γ1(S) ∩ γ2(S) = ∅.

Proof: We argue by contradiction. Suppose that p ∈ γ1(S) ∩ γ2(S). We
have γ−1

j (p) ∈ S for j = 1, 2. But γ−1
1 (p) and γ−1

2 (p) are in the same Γ

orbit. Since S intersects each Γ orbit exactly once, we have γ−1
1 (p) = γ−1

2 (p).
But then γ2γ

−1
1 (p) = p. Since Γ acts freely on Σ, we have γ2γ

−1
1 = identity.

Hence γ1 = γ2. This is a contradiction. ♠
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Lemma 22.9
Σ =

⋃

γ∈Γ
γ(S).

Proof: Choose p ∈ Σ. By construction, there is some q ∈ S such that p ∼ q.
This means that p = γ(q) for some γ ∈ Γ. Hence p ∈ γ(S). ♠

Now define
Σk = Γk(S) :=

⋃

γ∈Γk

(S).

The previous two results show that Σ = Σ1 ∪Σ2 ∪Σ3 is a partition of Σ. At
the same time

A(Σk) = Σk+1, B(Σ3) = BΓ3(S) ⊃ (Γ1 ∪ Γ2)(S) = Σ1 ∪ Σ2.

The first part of this equation shows that Σi and Σj are isometric for all i, j.
The second part shows that Σ1 ∪ Σ2 is isometric to a subset of Σ3. Hence
Σ3 ≻ (Σ1 ∪ Σ2). This proves the Depleted Ball Theorem.

22.6 The Injective Homomorphism

The last piece of unfinished business is to produce an injective homomorphism
ρ : Γ → SO(3). Let φ : S2 → C ∪∞ be stereographic projection, as in §9.5
and §14.3. We say that two points z, w ∈ C ∪∞ are partner points if

w = −1/z. (90)

In particular, 0 and ∞ are partner points.

Exercise 5. Prove that φ maps antipodal points on S2 to partner points.

Exercise 6. Let T1 and T2 be two linear fractional transformations, both of
which fix two distinct points z, w ∈ C. Suppose also that the differentials
dT1 and dT2 are the same map at z. Prove that T1 = T2.

Lemma 22.10 Suppose that α is an order 3 linear fractional transformation
that fixes two partner points z and −1/z in C. Then the map φ−1 ◦ α ◦ φ is
an isometric rotation of S2.
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Proof: Let α be as in Lemma 22.10. We know by Exercise 5 that the map
α′ = φ−1 ◦ α ◦ φ fixes two antipodal points and has order 3. We can find
an isometry I ′ of S2 that has order 3 and fixes these same two points. Let
I = φ ◦ I ′ ◦ φ−1. By Lemma 14.6, the map I is a linear fractional transfor-
mation. Note that I and α fix the same two points and dI and dα have the
same action at either point. Hence I = α, by Exercise 6. Hence I ′ = α′, as
desired. This completes the proof. ♠

Let SL2(C) denote the group of 2 × 2 matrices, with complex entries,
having determinant 1. As in Chapter 10, these matrices represent linear
fractional transformations.

Exercise 7. Let z, w ∈ C − {0} be distinct points. Prove that there exists
an element Tz,w of SL2(C) that represents a linear fractional transformation
that carries 0 to z and ∞ to w.

The matrix

β =

[
i 0
0 −i

]

represents the linear fractional transformation that has order 2 rotation about
0 and ∞. The matrix

αz,w = Tz,w ◦
[
ω 0
0 ω5

]
◦ T−1

z,w, ω = exp(πi/3),

represents an order 3 linear fractional transformation that fixes z and w. The
entries of αz,w are polynomials in z and w.

Once we pick z ∈ C − {0}, we define a homomorphism ρz : Γ → SL2(C)
by the rule

ρz(A) = αz,w, w = 1/z, ρz(B) = β.

Note that ρz(β) doesn’t depend on z. Now we define ρ : Γ → SO(3) by the
rule

ρ = φ−1 ◦ ρz ◦ φ,
where φ is stereographic projection. Lemma 22.10 guarantees that ρ(A) is
an isometric rotation, and this is obvious for ρ(B). Note that ρ is injective
if and only if ρz is injective. So, at this point, we can forget about ρ entirely
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and just worry about choosing z so that ρz is injective. This is a problem
entirely about linear fractional transformations.

Given any γ ∈ Γ, let S(γ) ⊂ C denote those z ∈ C−{0} such that ρz(γ)
is not the identity matrix. Setting z = x + iy, we see that the coordinates
of w = 1/z are rational functions of x and y. Therefore, the entries of ρz(γ)
are rational functions of x and y. Any rational function of x and y either
vanishes identically or vanishes on a nowhere dense set. In particular, S(γ)
is either empty or else an open dense set.

Exercise 8. The Baire Category Theorem (for the plane) says that the in-
tersection of a countable collection of open dense subsets of C is nonempty.
Prove this result.

Suppose for the moment that S(γ) is nonempty for all nontrivial γ ∈ Γ.
Then, by the Baire Category Theorem, the intersection

⋂

γ

S(γ)

is nonempty. Choosing any z in this intersection leads to an injective ρz. So,
to finish our proof, we just have to show that S(γ) is always nonempty.

We will fix γ and show that S(γ) is nonempty. Recall that the element
αz,w is defined for all pair of distinct z, w ∈ C. Accordingly, we can define
the homomorphism ρz,w by sending A to αz,w and B to β. This lets us
speak about the matrix entries of ρz,w(γ). These are polynomials on the two
complex variables z and w. Let Fij be one of these polynomials.

Lemma 22.11 Fij is nontrivial for some i, j.

Proof: Here is the crucial observation. We can choose (z, w) so that the im-
age ρ(Γ) is conjugate to the hyperbolic modular group discussed in §19.3 and
§20.3. For this choice of (z, w), the matrix ρz,w(γ) is not the identity. The
point is that the corresponding element in the modular group does some-
thing nontrivial to the hyperbolic plane. Hence, the matrix coefficients of
this matrix, as functions of z and w, cannot be constant. ♠

We let F = Fij for the indices guaranteed by the previous result. Let

R∆ = {(z,−1/z)| z ∈ C − {0}}.
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We really only care about the restriction of F to R∆, because the other points
in C2 do not correspond to homomorphisms from Γ into SO(3).

Intuitively, what makes the next lemma work is that R∆ is a “big” subset
of C2. An algebraic geometer would say that R∆ is Zariski dense, and that
would be the end of the proof, but we will work out what we need from
scratch. For the interested reader, most books on algebraic geometry will
have a discussion of Zariski Density. See, for instance, [KEN].

Lemma 22.12 F is nonconstant on R∆.

Proof: This is a general result about polynomials inC2 and does not depend
on the specific structure of F . We will suppose that F is constant in R∆ and
derive a contradiction. Consider the following rational map on C2:

θ(z1, z2) =
(
z1 + 1/z2, i(z1 − 1/z2)

)
.

By construction θ(R∆) is open in R2. The function θ ◦ F ◦ θ−1 is a rational
function on C2 that is constant on an open subset of R2. (A rational func-
tion is the ratio of two polynomials.) This forces θ ◦ F ◦ θ−1 to be globally
constant. But then F is globally constant as well. This contradiction com-
pletes the proof. ♠

Since F is not constant on R∆, the matrix ρz(γ) cannot be constant on all
of R∆. Hence S(γ) is nonempty. This completes the last piece of unfinished
business. There is an injective homomorphism ρ : Γ → SO(3).
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23 Dehn’s Dissection Theorem

We saw in §8.5 that any two polygons of the same area are dissection equiva-
lent to each other. The purpose of this chapter is to prove Dehn’s Dissection
Theorem, which shows that the analogous result in 3 dimensions is false.

23.1 The Result

A polyhedron is a solid body whose boundary is a finite union of polygons,
called faces . We require that any two faces are either disjoint or share a
common edge or share a common vertex. Finally, we require that any edge
common to two faces is not common to any other face.

A dissection of a polyhedron P is a description of P as a finite union of
smaller polyhedra,

P = P1 ∪ · · · ∪ Pn, (91)

such that the smaller polyhedra have pairwise disjoint interiors. Note that
there is not an additional assumption, say, that the smaller polyhedra meet
face to face.

Two polyhedra P and Q are scissors congruent if there are dissections
P = P1∪· · ·∪Pn and Q = Q1∪· · ·∪Qn such that each Pk is isometric to Qk.
Sometimes, one requires that all the isometries are orientation-preserving,
but in fact and two shapes that are scissors congruent via general isometries
are also scissors congruent via orientation preserving isometries. (This little
fact isn’t something that is important for our purposes.)

In 1900, David Hilbert posed 23 problems, now known as the Hilbert
Problems . Hilbert’s Third Problem asks if every two polyhedra of the same
volume are scissors congruent to each other. (Hilbert conjectured that the
answer was no.) The Hilbert Problems have inspired a huge amount of
mathematics since 1900, but the third one was solved in 1901, by Max Dehn.
In 1901, Dehn proved the following result.

Theorem 23.1 The cube and the regular tetrahedron (of the same volume)
are not scissors congruent.

Exercise 1. Say that a prism is a polyhedron with 5 faces, two of which
are parallel. So, a prism has a triangular cross-section. Prove that any two
prisms of the same volume are scissors congruent. (Hint : After some effort
you can boil this down to the the polygon dissection theorem.)
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23.2 Dihedral Angles

The dihedral angle is an angle we attach to an edge of a polyhedron. To
define this angle, we rotate the polyhedron so that the edge in question is
vertical, and then we look directly down on the polyhedron. The two faces
containing our edge appear as line segments, and the dihedral angle is the
angle between these line segments. We will measure dihedral angles in such
a way that a right angle has measure 1/4. All the dihedral angles of a cube
are 1/4.

All edges of a regular tetrahedron have the same dihedral angle. We are
going to prove that this common angle is irrational. Geometrically, this is the
same as saying that one cannot fit finitely many tetrahedra precisely around
an edge, even if these tetrahedra are permitted to wrap around more than
once before closing back up.

We will place our tetrahedron in space so that one edge is vertical. Rather
than work in R3, it is useful to work in C×R, where C is the complex plane.
This is a nice way to distinguish the vertical direction. Consider the complex
number

ω =
1

3
+

2
√
2

3
i. (92)

Note that |ω| = 1. Let T0 be the tetrahedron with vertices

(1, 0), (ω, 0),
(
0,

1√
3

)
,

(
0,

−1√
3

)
.

Exercise 2. Check that T0 is a regular tetrahedron.

Consider the new tetrahedron Tn, with vertices

(ωn, 0), (ωn+1, 0),
(
0,

1√
3

)
,

(
0,

−1√
3

)
.

The tetrahedra T0, T1, T2, . . . are just rotated copies of T0. We are rotating
about the vertical axis. Notice that Tn+1 and Tn share a face for every n. To
say that the dihedral angle is irrational is the same as saying that the list
T0, T1, T2, . . . is infinite. This is the same as saying that there is no n such
that ωn = 1.

In the next section, we will rule out the possibility that ωn = 1 for
any positive integer n. This means that T0, T1, T2 . . . really is an infinite
list. Hence, the common dihedral angle associated to the edges of a regular
tetrahedron is irrational.
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23.3 Irrationality Proof

The point of this section is to prove the following result: The complex number

ω =
1

3
+

2
√
2

3
i (93)

does not satisfy the equation ωn = 1 for any positive integer n.

Exercise 3. Check that ωn 6= 1 for n = 1, 2, 3, 4, 5, 6. Also check that
ω2 = (2/3)ω − 1.

In light of Exercise 2, we just have to check the case n ≥ 7. Let G(ω) be
the set of numbers of the form a + bω, where a and b are integers. This set
is discrete: every disk intersects only finitely many elements of G(ω). The
point here is that ω is not real. So, considered as vectors in the plane, 1 and
ω are linearly independent over the reals.

Let n ≥ 7 be the smallest value such that (supposedly) ωn = 1. Let Z[ω]
denote the set of numbers of the form

a1ω + a2ω
2 + · · ·+ anω

n (94)

where a1, . . . , an are integers. Z[ω] has the nice property that

(ωa − ωb)c ∈ Z[ω] (95)

for any positive integers a, b, c. This comes from the fact that ωn = 1. There
are at least 7 powers of ω crowded on the unit circle, so at least 2 of them
must be closer than 1 unit apart. But that means we can find integers a and
b such that |z| < 1, where z = ωa − ωb. The numbers z, z2, z3 . . . all belong
to Z[ω], and these numbers are distinct because |zn+1| = |z||zn| < |zn|. So,
Z[ω] is not discrete.

Using Exercise 3, we get

ω3 = ω × ω2 = ω × ((2/3)ω − 1) = (2/3)ω2 − ω = (5/9)ω − (2/3),

and similarly for higher powers of ω. In general,

3n(a1ω + · · ·+ anω
n) = integer + integer× ω. (96)

for any choice of integers a1, . . . , an. But then Z[ω] is contained in a scaled-
down copy of G(ω) and hence is discrete. But Z[ω] is not discrete, and we
have a contradiction.
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23.4 Rational Vector Spaces

Let R = {r1, . . . , rn} be a finite list of real numbers. Let V be the set of all
numbers of the form

a0 + a1r1 + · · ·+ aNrN , a0, a1, · · · , aN ∈ Q.

V is a finite dimensional Q-vector space.
We declare two elements v1, v2 ∈ V to be equivalent if v1 − v2 ∈ Q. In

this case we write v1 ∼ v2. Let [v] denote the set of all elements of V that
are equivalent to v. Let W denote the set of equivalence classes of V . The
two operations are given by

[v] + [w] = [v + w], r[v] = [rv].

The 0-element is given by [0].

Exercise 4. Prove that these definitions make sense, and turn W into
another finite-dimensional Q-vector space.

Let v1, . . . , vm be a basis for V , and let w1, . . . , wn be a basis for W . The
tensor product V ⊗W is the Q-vector space of formal linear combinations

∑

i,j

aij(vi ⊗ wj), aij ∈ Q (97)

Here vi ⊗wj is just a formal symbol, but in a compatible way the symbol ⊗
defines a bilinear map from V ×W into V ⊗W :

(∑
aivi

)
⊗
(∑

bjwj

)
=

∑
aibj(vi ⊗ wj). (98)

The m× n elements {1(vi ⊗ wj)} serve as as a basis for V ⊗W .
Here is a basic property of V ⊗ W . If v ∈ V is nonzero and w ∈ W is

nonzero, then v⊗w is nonzero. One sees this simply by writing v and w out
in a basis and considering equation (98). At least one product aibj will be
nonzero. In particular

6⊗ δ 6= 0, (99)

where δ is the dijedral angle of the regular tetrahedron, and R is chosen so
as to contain δ.
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23.5 Dehn’s Invariant

Let R = {r1, . . . , rN} be a finite list of real numbers, and let V and W be
the two examples of vector spaces given in Examples 1 and 2 above. Once
again, V is the set of all numbers of the form

a0 + a1r1 + · · ·+ anrN , a0, . . . , aN ∈ Q,

and W is the set of equivalence classes in V .
Suppose that X is a polyhedron. Let λ1, . . . , λk denote the side lengths

of all the edges of X. Let θ1, . . . , θk be the dihedral angles, listed in the same
order. We say that X is adapted to R if

λ1, . . . , λk, θ1, . . . , θk ∈ R. (100)

If X is adapted to R, we define the Dehn invariant as

〈X〉 =
k∑

i=1

(λi ⊗ [θi]) ∈ V ⊗W. (101)

The operation ⊗ is as in equation (97), and the addition makes sense because
V ⊗W is a vector space.

Suppose now that P and Q are a cube and a regular tetrahedron having
the same volume. Assume R is chosen large enough so that P and Q are
both adapted to R. Let λP and λQ denote the side lengths of P and Q,
respectively. Let δP and δQ denote the respective dihedral angles. We have
[δP ] = [1/4] = [0], because 1/4 is rational. On the other hand, we have
already seen that δQ is irrational. Hence [δQ] 6= [0]. This gives us

〈P 〉 = 12λP ⊗ [δP ] = [0], 〈Q〉 = 6λQ ⊗ [δQ] 6= [0]. (102)

In particular,
〈P 〉 6= 〈Q〉. (103)

To prove Dehn’s Theorem, our strategy is to show that the Dehn invariant
is the same for two polyhedra that are scissors congruent. The result in the
next section is the key step in this argument.
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23.6 Clean Dissections

Say that a clean dissection of a polyhedron X is a dissection X = X1 ∪
· · · ∪XN , where each pair of polyhedra are either disjoint or share precisely
a lower-dimensional face. Let R be as above.

Lemma 23.2 Suppose that X = X1 ∪ · · · ∪XN is a clean dissection and all
polyhedra are adapted to R. Then 〈X〉 = 〈X1〉+ · · ·+ 〈XN〉.

Proof: We will let Y stand for a typical polyhedron on our list. Say that a
flag is a pair (e, Y ), where e is an edge of Y . Then

〈X1〉+ · · ·+ 〈XN〉 = S =
∑

f∈F
λ(f)⊗ θ′(f).

Here F is the set of all flags and λ(f) and θ′(f) are the length and dihedral
angle associated to the flag f .

We classify the flag (e, Y ) as one of three types:

• Type-1. e does not lie on the boundary of P .

• Type-2. e lies in the boundary of P , but not in an edge.

• Type-3. e lies in an edge of P .

We can write S = S1 + S2 + S3, where Sj is the sum over flags of Type j.
Call two flags (e, Y ) and (e′, Y ′) strongly equivalent iff e = e′. Given a

Type-1 edge e, let θ1, . . . , θm denote the dijedral angles associated to the flags
involving e. From the clean dissection property, these polyhedra fit exactly
around e, so that (with our special units) θ1 + · · ·+ θm = 1. Hence

∑
λ(e)⊗ [θj] = λ(e)⊗

∑
[θj] = λ(e)⊗ [1] = 0.

Summing over all Type-1 equivalence classes, we find that S1 = 0. A similar
argument shows that S2 = 0. In this case θ1 + · · ·+ θk = 1/2.

Now we show that S3 = 〈X〉. Define a weak equivalence class as follows.
(e, P ) and (e′, P ′) are weakly equivalent iff e and e′ lie in the same edge of
X. The set of weak equivalence classes is bijective with the set of edges of
X. Let e be some edge of X, with length and dihedral angle λ and θ. Let
e1, . . . , em be the different edges that appear in weak equivalence class named

257



by e. With the obvious notation λ = λ1 + · · ·+ λk. Let θj1, . . . , θjmj
denote

the dihedral angles associated to the strong equivalence class involving ej.
We have θj1+ · · · θjmj

= θ. Summing over the weak equivalence class, we get

∑

jk

λj ⊗ [θjk] =
∑

j

λj ⊗ [θ] = λ(e)⊗ [θ(e)].

Summing over all weak equivalence classes, we get S3 = 〈X〉, as desired. ♠

23.7 The Proof

Let P be a cube, and let Q be a tetrahedron. We will suppose that we have
a scissors congruence between P = P1 ∪ · · · ∪ Pn and Q = Q1 ∪ · · · ∪Qn.

We first produce new dissections of P and Q that are clean. Here is the
construction. Let Π1, . . . ,Πk denote the union of all the planes obtained by
extending the faces of any polyhedron in the above dissection of P . Say that
a chunk is the closure of a component of R − ⋃

Πj. Then we have clean
dissections

Pi = Pi1 ∪ · · · ∪ Pini
(104)

of each Pi into chunks, and also the clean dissection

P =
⋃

Pij (105)

of P into chunks. We make all the same definitions for Q. The dissections in
equation (105) for P and Q might not define a scissors congruence, but we
don’t care.

Let R denote the finite list of lengths and dihedral angles that arise in
any of the polyhedra appearing in our constructions involving P and Q. Let
V ⊗W be the vector space defined as in the previous sections, relative to R.
Computing the Dehn invariants in V ⊗W , we have

〈P 〉 =
∑

〈Pij〉 =
∑

〈Pi〉 =
∑

〈Qi〉 =
∑

〈Qij〉 = 〈Q〉. (106)

The first equality is obtained by applying Lemma 23.2 to the dissection in
equation (105). The second equality is obtained by applying Lemma 23.2 to
each dissection in equation (104) and adding the results. The middle equal-
ity comes from the obvious isometric invariance of the Dehn invariant. The
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last two equalities have the same explanations as the first two. In short,
〈P 〉 = 〈Q〉. This contradicts our computation that 〈P 〉 6= 〈Q〉. The only way
out of the contradiction is that the cube and the tetrahedron are not scissors
congruent.

Exercise 5. Consider all the unit area platonic solids. Which are scissors
congruent to which?
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24 The Cauchy Rigidity Theorem

The purpose of this chapter is to prove the Cauchy Rigidity Theorem for
strictly convex polyhedra. One can find another proof in the book [AIZ]
As the authors point out therein, Cauchy’s original proof was flawed, and a
correct proof from comes from a letter from I.J. Schoenberg to K. Zaremba.

The proof is half geometrical and half combinatorial. The geometrical
half of the proof I give is very similar to what Aigner and Ziegler do, except
that I spell out some of the intermediate steps in more detail. The combina-
torial half can be done in many ways, and I give an argument based on the
combinatorial Gauss–Bonnet Theorem; see §17.3.

24.1 The Main Result

A polyhedron is a solid body whose boundary is a finite union of polygons,
called faces . A polyhedron P is called strictly convex if, for each face f of P ,
there is a half-space Πf such P ⊂ Πf and P ∩ ∂Πf = f . The boundary ∂Πf

is the plane extending f . The cube is a classic example of a strictly convex
polyhedron.

Say that two polyhedra P and P ′ are flexes of each other if there is a
homeomorphism from ∂P to ∂P ′ which is an isometry when restricted to each
face. In other words, there is a combinatorics-respecting bijection between
the faces of P and the faces of P ′ such that corresponding faces are isometric
to each other. Making the same definition for polygons, we observe that any
pair of rhombuses, having unit side length, are flexes of each other. The
Cauchy Rigidity Theorem rules out this behavior in 3 dimensions, at least
for strictly convex polyhedra.

Theorem 24.1 (Cauchy) Let P and P ′ be two strictly convex polyhedra.
If P and P ′ are flexes of each other then P and P ′ are isometric.

Exercise 1. Show by example that the Cauchy Rigidity Theorem is false
when the convexity assumption is dropped.

Amazingly, Robert Connelly discovered examples of continuous families
of polyhedra, in which every two are flexes of each other. In other words,
Connelly’s examples actually flex in a literal sense.
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24.2 The Dual Graph

There is a nice graph that lies on the surface of P , called the dual graph. We
place one new vertex per face of P , and join two vertices by an edge if and
only if the corresponding faces share an edge.

There is a nice geometric way to picture the dual graph. Let S denote a
set of points, one per interior face of P . Just to be definite, we choose the
center of mass of each face of P . Then, let P ∗ denote the convex polygon
whose vertex set is S. Formally, we can say that P ∗ is the convex hull of S,
namely the intersection of all closed and convex subsets of R3 that contain
S. The dual graph is exactly the union of edges and vertices of P ∗.

Exercise 2. When P is a platonic solid, P ∗ is also a platonic solid. The
construction pairs up the cube with the octahedron, the dodecahedron with
the icosahedron, and the tetrahedron with itself, or, rather, a slightly smaller
tetrahedron. Try to draw pictures of these cases.

To get perhaps the nicest picture of the dual graph, we surround P ∗ by a
large sphere and then project the dual graph onto the surface of the sphere
by a radial projection from some point in the interior of P ∗. Finally, we
identify this large sphere with S2, the unit sphere. This gives us a graph Γ
on S2, all of whose edges are arcs of circles. Each component of S2 − Γ is
a polygon whose boundary is made from circular arcs. The important thing
for us is just that each component is homeomorphic to a disk.

There is a natural correspondence between the edges of the polygon and
the edges of the dual graph. When we draw the dual graph directly on P ,
each edge of the dual graph crosses one edge of P , and vice versa. So, if
we have some kind of labelling of the edges of P , we can transfer it in the
obvious way to a labelling of the edges of the dual graph Γ, which we think
about in its final incarnation, as a graph on S2.

24.3 Outline of the Proof

Each edge e of P has a partner edge e′ of P ′. Let θ(e) be the dihedral angle of
P at e, and let θ(e′) be the corresponding dihedral angle of P ′ at e′. (Recall
that the dihedral angle is the angle made by the planes incident to the edge.)
We label the edge e by (+), (−), or (0) according as to whether the sign of
θ(e)− θ(e′) is positive, negative, or zero.
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We transfer our labelling to the dual graph, Γ ⊂ S2. Each component C
of S2 − Γ is bounded by a circuit in Γ. We get a cyclically ordered list L(C)
of members of {+,−, 0} by reading the labels of this circle, say, in clockwise
order.

We call L = L(C) bad if, after we delete all the 0’s from L, we have a
nonempty list that changes from + to − at most once as we cycle through
it. Otherwise, we call L good . For instance (+0 + − − −00+) is a bad list,
and (+ +−−−+−) is a good list.

Below we will prove two results. The first is geometrical and the second
is combinatorial.

Lemma 24.2 For any component C of S2 − Γ, the list L(C) is good.

Lemma 24.3 Let Γ be a graph on S2 such that each component of S2 − Γ
is an embedded topological disk. Suppose that the edges of Γ are labelled
nontrivially by elements of {+,−, 0}. Then there is at least one component
C of S2 − Γ such that L(C) is a bad list.

Our two lemmas contradict each other unless the labelling of Γ is com-
pletely trivial. But then θ(e) = θ(e′) for all edges e of P . But this easily
implies that P and P ′ are isometric.

Exercise 3. Build half an octahedron by taping together 4 cardboard equi-
lateral triangles about a vertex. The portion of Γ corresponding to these
faces is a quadrilateral. Physically flex the object and observe that the only
possible nontrivial labelling is (+−+−) or, of course, (− +−+). Compare
this with Exercise 5 from Chapter 9.

Exercise 4. Without looking at the long-winded proof below, prove Lemma
24.3 for the cube.

Exercises 3 and 4 combine to prove Cauchy’s Theorem for P and P ′, when
P is a regular octahedron.

Exercise 5. Imitating Exercises 3 and 4, Give a proof of Cauchy’s The-
orem for the regular icosahedron.
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24.4 Proof of Lemma 24.3

Let P be a polygon whose edges are labelled (+) and (−). We say that P has
a good labelling if the list of labels around its edges is good; that is, there at
least 2 sign changes from (+) to (−). A quadrilateral with a good labelling
must be labelled (+,−,+,−), up to cyclic ordering.

Figure 24.1. Adding edges and vertices

Figure 24.1 shows examples of how one can divide a polygon with a good
labelling into quadrilaterals with good labellings. In the subdivision process,
you are allowed to add both edges and vertices.

Exercise 6. Prove Lemma 24.4 below.

Lemma 24.4 Suppose that P is a polygon with a good labelling. Let Pv

denote the vertex set of P . We can partition P into alternately labelled
quadrilaterals, extending the labelling on P , such that the following is true:

• Let w be a vertex of a quadrtilateral that lies in the interior of P . Then
w is a vertex of at least 4 quadrilaterals.

• Let w be a vertex of a quadrilateral that lies in ∂P − Pv. Then w is a
vertex of 2 quadrilaterals.

First we prove Lemma 24.3 in the special case that all labels of Γ are
nonzero. By Lemma 24.4, we can partition each component of S2 − Γ into
alternately labelled quadrilaterals. These partitions fit together to partition
S2 itself into alternately labelled quadrilaterals. Now we make 3 observations.

• Each quadrilateral vertex in the interior of a component of S2 − Γ is a
vertex of 4 quadrilaterals.
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• Each vertex in the interior of an edge is a vertex of exactly 4 quadri-
laterals, two coming from each side.

• Each vertex of Γ is a vertex of at least 3 quadrilaterals, by the valence
condition. However, the edges emanating from a vertex must alternate
in sign, given that our quadrilaterals are all alternately labelled. Hence,
each vertex of Γ is a vertex of at least 4 quadrilaterals.

In short, every quadrilateral vertex is the vertex of at least 4 quadrilaterals.
Now we build a Euclidean cone surface based on our partition. We glue

together unit squares using the combinatorial pattern given by our quadrilat-
erals. Call the resulting surface Σ. By construction, the cone angle of Σ is at
least 2π at each quadrilateral vertex. The remaining points of Σ are locally
Euclidean. Hence, the total combinatorial curvature of Σ is nonpositive. But
Σ is homeomorphic to S2. This contradicts the combinatorial Gauss–Bonnet
Theorem.

Now consider the general case, where there are possibly edges labelled
with a zero. Our proof goes by induction on the number Z of edges that
have the zero label. We already treated the case when Z = 0. In general,
suppose that e is an edge labelled 0. There are two cases.

In the first case, suppose that the closed edge E is embedded. We can
form a new graph Γe in S2 by collapsing e to a point and dragging all the
edges of Γ incident to e to this new point; see Figure 24.3.

d

a

b

e

d

c

b

a
c

Figure 24.2. Collapsing an edge

Our operation only changes the two components of S2 − Γ that share
e. These components remain topological disks: we are just shrinking one of
their edges to a point. Moreover, since e is labelled 0, the lists associated to
each of these two components remain good. In short Γe satisfies the same
hypotheses as Γ but has one fewer edge labelled 0.
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e

Figure 24.3. Replacing the inner part of the graph with a disk

In the other case, e is a loop in S2. Note that e divides S2 into two disks.
At least one of these disks—say the outer one, as in Figure 24.3—contains
some edges of Γ. Pick such a disk, and then erase the portion of Γ contained
in the other disk – the inner disk in Figure 24.3. Finally, erase e. Figure
24.4 shows this operation. The result is a smaller graph that satisfies the
hypotheses of Lemma 24.3 but the Z value has decreased by one.

24.5 Proof of Lemma 24.2

Say that a spherical arm is a connected polygonal arc contained in the bound-
ary of a convex spherical polygon. Thus, a spherical arm is made from a finite
union of arcs of great circles, meeting end to end. We insist that the two
endpoints of the spherical arm are distinct, so that the spherical arm does
not make a complete circuit around the spherical polygon. Given the notion
of convexity discussed in Chapter 9, a spherical arm is necessarily contained
in a hemisphere.

Suppose that A(0) and A(1) are spherical arms, each consisting of n
geodesic segments. Let A1(k), . . . , An(k) be the geodesic segments comprising
A(k), taken in order. Let a1(k), . . . , an(k) be the vertices of A(k). Finally,
let θj(k) be the interior angle of A(k) at aj(k). The choice of interior angle
makes sense, thanks to convexity.
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Figure 24.4. A spherical arm of length 4

Below we will prove Cauchy’s Arm Lemma:

Lemma 24.5 (Cauchy’s Arm Lemma) Assume that θj(0) ≤ θj(1) for all
j, with strict inequality for at least one index. Then

d(a0(0), an(0)) < d(a0(1), an(1)).

Here d denotes spherical distance.

Before proving Cauchy’s Arm Lemma, let’s use it to prove Lemma 24.2.
Let v be a vertex of a strictly convex polyhedron. Let Σ be a small sphere
centered at v. The intersection ∂P∩Σ is a convex spherical polygon. Dilating
the picture, we think of this polygon as existing on S2, the unit sphere.

We can make this construction for partner vertices v and v′ on P and P ′,
respectively. This produces two convex spherical polygons C and C ′. The
lengths of the edges of C are the same as the lengths of the corresponding
edges of C ′. We label the vertices of C as in Cauchy’s Arm Lemma from
the previous chapter, depending on the comparison between the two internal
angles at the vertices.

If our list of labels is not good, we can find a chord of C so that all the
(+) labels occur on one side and all the (−) labels occur on the other. This
is shown in Figure 24.5. Let p and q be the endpoints of this chord. Let C1

denote one of the arcs of C connecting p to q, and let C2 denote the other.
Let C ′

1 and C ′
2 be the corresponding chords on C ′.
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Figure 24.5. Dividing the polygon in half

Applying Cauchy’s Arm Lemma to C1 and C ′
1, we conclude that

‖p− q‖ > ‖p′ − q′‖.

Applying the Arm Lemma to C2 and C ′
2, we get the opposite inequality. This

is a contradiction.

24.6 Euclidean Intuition Does Not Work

The proof of Cauchy’s Arm Lemma is actually rather difficult, though the
result seems obvious based on Euclidean intuition.

Cauchy’s mistake was that he assumed a result from Euclidean geometry
that is false in the spherical case. In this section, I’ll highlight the difference
between the Euclidean and spherical cases. My reason for doing this is to
justify the difficulty it takes to actually prove Cauchy’s Arm Lemma.

Consider a Euclidean version of the main construction. We say that a
Euclidean arm is a connected arc of a convex Euclidean polygon. Suppose
that A(0) is a Euclidean arm. We can make a polygonal arc A(t), for t > 0
by increasing the last angle of A(0). Call this angle θ(t). We keep everything
else fixed. One should picture a person flexing his finger; Figure 24.5 shows
the situation.
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Figure 24.6. Flexing a Euclidean arm.

Exercise 7. Prove that A(t) is a Euclidean arm provided that θ(t) < π.
That is, the process of opening up one of the angles cannot destroy convexity.

Exercise 8. Show, by example, that the conclusion of Exercise 7 is no
longer true in the spherical case.

The natural approach to proving Cauchy’s Arm Lemma is to simply open
up one of the arms a bit at a time, showing that the distance between the
endpoints keeps increasing. Unfortunately, in the spherical case, the object
can cease to be an arm at some point because one can lose the convexity.

24.7 Proof of Cauchy’s Arm Lemma

Let’s analyze the problem of flexing a spherical arm. Let B(t) be a spherical
arm for all 0 ≤ t < s. Let b0, . . . , bn−1, bn(t) be the points of B(t). Only
the last point changes. Let B1, . . . , Bn−1, Bn(t) be the segments of B(t). We
suppose that the angle θ(t) at bn−1 increases as t → s, but that θ(s) < π.

Lemma 24.6 Whether or not B(s) is a spherical arm, B(s) lies in some
open hemisphere.

Proof: Suppose not. Let B̂n(t) be the great circle extending Bn(t), and let
H(t) denote the open hemisphere containing B(t) − Bn(t) for t small. By
Exercise 4 of Chapter 9, and continuity, H(t) contains B(t) − Bn(t) for all
t < s. But H(s) cannot contain B(s)− Bn(s), because then we could move
B(s) by a tiny amount so that it lies in H(s).
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Figure 24.7. An arm and a great circle

The only possibility is that there is some vertex bj(s) contained in B̂n(s).
Here j ≤ n− 2. Let γ be the geodesic joining bn−1 to bj. The angle between
γ and Bn(t) is bounded away from both 0 and π. The endpoints of γ are
not antipodal because they are vertices of a spherical arm. Therefore, γ is
the unique geodesic connecting its endpoints. But, the condition bj ∈ B̂n(s)

forces γ ⊂ B̂n(s). This is a contradiction. ♠

We keep going with the same set-up as in the previous lemma.

Lemma 24.7 If B(s) is not a spherical arm, then b0, b1, and bn(s) lie on
the same arc of a great semicircle, with b1 between b0 and bn(s).

Proof: From the previous result, we know that B(t) lies in some open
hemisphere for all t ≤ s. Since B(s) is not a spherical arm, there are 3 points
β0, β1, β2 ∈ B(s), not all on the same edge of B(s) but all lying on the same
geodesic segment β. These 3 points cannot lie in any spherical arm, so one
of the points, say β0, must lie in Bn(s)− bn−1.

For the same reason as in the previous lemma, β does not lie in the great
circle B̂n(s). At the same time, β cannot be transverse to B(s) at any βj.
Otherwise, by stability, we would have a similar triple of points for all t
sufficiently close to s.

Suppose β0 is an interior point of Bn(s). Since β 6∈ B̂n(s), the segment β
is transverse to B(s) at β0. This is a contradiction. Hence β0 = Bn(s).

The points β1 and β2 both lie on the spherical arm A = B(s)−Bn(s). If
β1 and β2 do not lie on the same edge of A, then β is transverse to A at both
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β1 and β2. This is a contradiction. Hence β1 and β2 lie on the same edge of
A. Since A ⊂ B(s), we see that β1 and β2 lie on the same side, say, the jth
side, of B(s).

If j > 1 then we have the topological picture shown (for j = 2) in Figure
24.8. This picture is implied by the fact that B(s) − Bn(s) is a spherical
arm. But then there is a geodesic nearby β, through bn(s), which intersects
B(s) transversely at the two other intersection points. The same stability
argument as above gives us a contradiction.

β

B2

bn

Figure 24.8. The limiting shape

Now we know that b0 and b1 and bn(s) lie on the same great circle. Since
all these points lie in an open hemisphere, all these points lie in the interior
of some great semicircle. Finally, observe that the geodesic connecting b0 to
b2 crosses the geodesic connecting b1 to bn(t) for all t < s. Taking a limit, as
t → s, establishes that b1 lies between b0 and bn(s). ♠

Finally, we prove Cauchy’s Arm Lemma. The proof goes by induction on
n. In the case where n = 2, the result follows from Exercise 5 of Chapter
9. Consider the special case when θj(0) = θj(1) for some j. Then we can
produce a new spherical arm B by replacing Aj ∪Aj+1 by the single geodesic
segment connecting aj to aj+1. Here we are just cutting off a corner. The
spherical arms B(0) and B(1) satisfy the same hypotheses as do A(0) and
A(1), and our basic move has not changed the endpoints. Hence, by induction
d(a0(0), an(0)) < d(a0(1), an(1)).

For t ∈ [0, 1], let θn−1(t) be the angle that linearly interpolates between
θn−1(0) and θn−1(1). Let B(t) denote the polygonal curve that is the same as
A(0), except that we move An so that the angle between An and An−1 is θ(t).
Let Bj(t) be the jth segment of B(t), and let bj(t) be the jth vertex. We
have set things up so that Bj(t) = Aj(0) for j = 1, . . . , n−1 and bj(t) = aj(0)
for j = 1, . . . , n− 1. Only the last segment moves.
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Suppose that B(1) is a spherical arm. Only one angle of B(1) differs from
A(1). At the same time, the last angle of B(1) is the same as the last angle
of A(1). Thus, we may apply the special case we have already considered,
twice, to get the following chain of inequalities:

d(a0(0), an(0)) < d(b0(0), bn(0)) < d(a0(1), an(1)).

Now we come to the hard part of the proof. Suppose that B(1) is not a
spherical arm. By Exercise 8 above, this case really can happen. If B(1) is
not a spherical arm, then there is some s such that B(t) is a spherical arm
for all t < s, but B(s) is not a spherical arm. By Lemma 24.7, the points
b0(s), b1(s), bn(s) lie on the same great half-circle, with b0(s) between b1(s)
and bn(s). Therefore

d(b1(s), bn(s)) = d(b0(s), b1(s)) + d(d0(s), bn(s)). (107)

We have
d(a0(1), an(1)) ≥1

d(a1(1), an(1))− d(a0(1), a1(1)) ≥2

lim
t→s

d(a1(t), an(t))− d(a0(1), a1(1)) =
3

lim
t→s

d(a1(t), an(t))− d(a0(t), a1(t)) =
4

d(a1(s), an(s))− d(a0(s), a1(s))) =
5 d(a0(s), an(s)).

The first inequality is the triangle inequality. The second inequality is the
induction step applied to the spherical arm obtained from B(t) by chopping
off the first segment B1(t). The third equality comes from the fact that b0(t)
and b1(t) are independent of t. The fourth equality is continuity. The fifth
equality is equation (107).

On the other hand, choosing any u ∈ (0, s), we have

d(a0(s), an(s))

= lim
t→s

d(a0(t), an(t)) ≥1

d(a0(u), an(u)) >

d(a0(0), an(0).

The first inequality comes from the special case (some angles equal) applied
to B(u) and B(u). The last inequality comes from the special case appied
to B(u) and B(0). Our last two equations combine to give the statement in
Cauchy’s Arm Lemma. This completes the proof.
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