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1 Set theoretical background

As with much of modern mathematics, we will be using the language of set theory and the notation of logic.
Let X be a set.
We say that Y is a subset of X if every element of Y is an element of X. I will variously denote this by

Y ⊂ X, Y ⊆ X, X ⊃ Y , and X ⊇ Y . In the case that I want to indicate that Y is a proper subset of X –
that is to say, Y is a subset of X but it is not equal to X – I will use Y ( X.

We write x ∈ X or X 3 x to indicate that x is an element of the set X. We write x /∈ X to indicate that
x is not an element of X.

For P (·) some property we use {x ∈ X : P (x)} or {x ∈ X|P (x)} to indicate the set of elements x ∈ X
for which P (x) holds. Thus for x ∈ X, we have x ∈ {x ∈ X : P (x)} if and only if P (x).

There are certain operations on sets. Given A,B ⊂ X we let A ∩ B be the intersection – and thus
x ∈ A ∩ B if and only if x is an element of A and x is an element of B. We use A ∪ B for the union – so
x ∈ A∪B if and only if x is a member of at least one of the two. We use A \B to indicate the elements of A
which are not elements of B. In the case that it is understood by context that all the sets we are currently
considering are subsets of some fixed set X, we use Ac to indicate the complement of A in X – in other
words, X \A. A∆B denotes the symmetric difference of A and B, the set of points which are in one set but
not the other. Thus A∆B = (A \ B) ∪ (B \ A). We use A × B to indicate the set of all pairs (a, b) with
a ∈ A, b ∈ B. P(X), the power set of X, indicates the set of all subsets of X – thus Y ∈ P(X) if and only
if Y ⊂ X. We let BA, also written ∏

A

B,

be the collection of all functions from A to B.
A very, very special set is the empty set: ∅. It is the set which has no members. If you like, it is

the characteristically zen set. Some other special sets are: N = {1, 2, 3, ...}, the set of natural numbers;
Z = {...,−2,−1, 0, 1, 2, ...}, the set of integers; Q, the set of rational numbers; R the set of real numbers.

Given some collection {Yα : α ∈ Λ} of sets, we write⋃
α∈Λ

Yα

or ⋃
{Yα : α ∈ Λ}

to indicate the union of the Yα’s. Thus x ∈
⋃
α∈Λ Yα if and only if there is some α ∈ Λ with x ∈ Yα. A slight

variation is when we have some property P (·) which could apply to the elements of Λ and we write⋃
{Yα : α ∈ Λ, P (α)}

or ⋃
α∈Λ,P (α)

Yα

to indicate the union over all the Yα’s for which P (α) holds. The obvious variations hold on this for
intersections. Thus we use ⋂

α∈Λ

Yα

or ⋂
{Yα : α ∈ Λ}
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to indicate the set of x which are members every Yα. Given a infinite list (Yα)α∈Λ of sets, we use∏
α∈Λ

Yα

to indicate the infinite product – which formerly may be thought of as the collection of all functions f : Λ→⋃
α∈Λ Yα with f(α) ∈ Yα at every α.

Given two sets X, Y and a function
f : X → Y

between the sets, there are various set theoretical operations involved with the function f . Given A ⊂ X,
f |A indicates the function from A to Y which arises from the restriction of f to the smaller domain. Given
B ⊂ Y we use

f−1[B]

to indicate the pullback of B along f – in other words, {x ∈ X : f(x) ∈ B}. Given A ⊂ X we use f [A] to
indicate the image of A – the set of y ∈ Y for which there exists some x ∈ A with f(x) = y. Given A ⊂ X
we use χA to denote the characteristic function or indicator function of A. This is the function from X to
R which assumes the value 1 at each element of A and the value 0 on each element of Ac.

A function f : X → Y is said to be injective or one-to-one if whenever x1, x2 ∈ X with x1 6= x2 we have
f(x1) 6= f(x2) – different elements of X move to different elements of Y . The function is said to be surjective
or onto if every element of Y is the image of some point under f – in other words, for any y ∈ Y we can find
some x ∈ X with f(x) = y. The function f : X → Y is said to be a bijection or a one-to-one correspondence
if it is both an injection and a surjection. In this case of a bijection, we can define f−1 : Y → X by the
requirement that f−1(y) = x if and only if f(x) = y.

We say that two sets have the same cardinality if there is a bijection between them. Note here that the
inverse of a bijection is a bijection, and thus if A has the same cardinality as B (i.e. there exists a bijection
f : A→ B), then B has the same cardinality as A. The composition of two bijections is a bijection, and thus
if A has the same cardinality as B and B has the same cardinality as C, then A has the same cardinality as
C.

In the case of finite sets, the definition of cardinality in terms of bijections accords with our commonsense
intuitions – for instance, if I count the elements in set of “days of the week”, then I am in effect placing
that set in to a one to one correspondence with the set {1, 2, 3, 4, 5, 6, 7}. This theory of cardinality can be
extended to the realm of the infinite with unexpected consequences.

A set is said to be countable if it is either finite or it can be placed in a bijection with N, the set of natural
numbers.1. A set is said to have cardinality ℵ0 if it can be placed in a bijection with N. Typically we write
|A| to indicate the cardinality of the set A.

Lemma 1.1 If A ⊂ N, then A is countable.

Proof If A has no largest element, then we define f : N→ A by f(n) = nth element of A. 2

Corollary 1.2 If A is a set and f : A→ N is an injection, then A is countable.

Lemma 1.3 If A is a set and f : N→ A is a surjection, then A is countable.

Proof Let B be the set
{n ∈ N : ∀m < n(f(n) 6= f(m))}.

B is countable, by the last lemma, and A admits a bijection with B. 2

1But be warned: A small minority of authors only use countable to indicate a set which can be placed in a bijection with N
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Corollary 1.4 If A is countable and f : A→ B is a surjection, then B is countable.

Lemma 1.5 N× N is countable.

Proof Define
f : N× N→ N
(m,n) 7→ 2n3m.

This is injective, and then the result follows the corollary to 1.1. 2

Lemma 1.6 The countable union of countable sets is countable.

Proof Let (An)n∈N be a sequence of countable sets; the case that we have a finite sequence of countable sets
is similar,but easier. We may assume each An is non-empty, and then at each n fix a surjection πn : N→ N.
Then

f : N× N→
⋃
n∈N

An

(n,m) 7→ πn(m)

gives a surjection from N× N onto the union. Then the lemma follows from 1.3 and 1.5. 2

Lemma 1.7 Z is countable.

Proof Since there is a surjection of two disjoint copies of N onto Z, this follows from 1.6. 2

Lemma 1.8 Q is countable.

Proof Let A = Z \ {0}. Define
π : Z×A→ Q

(`,m) 7→ `

m
.

π is a surjection, and so the lemma follows from 1.3 2

Seeing this for the first time, one might be tempted to assume that all sets are countable. Remarkably,
no.

Theorem 1.9 R is uncountable.

Proof For a real number x ∈ [0, 1], let fn(x) be the nth digit in its decimal expansion. Note then that for
any sequence (an)n∈N with each

an ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
we can find a real number in the unit interval [0, 1] with fn(x) = an – except in the somewhat rare case that
the an’s eventually are all equal to 9.

Now let h : N→ R be a function. It suffices to show it is not surjective. And for that purpose it suffices
to find some x such that at every n there exists an m with fm(x) 6= fm(h(n)) – in other words to find an x
whose decimal expansion differs from each h(n) at some m.

Now define (an)n by the requirement that an = 5 if fn(h(n)) ≥ 6 and an = 6 if fn(h(n)) ≤ 5. For x with
the an’s as its decimal expansion, in other words

fn(x) = an

at every n, we have
∀n ∈ N(fn(h(n)) 6= fn(x)),

and we are done. 2
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Exercise The proof given above of 1.3 implicitly used prime factorization – to the effect that

2n3m = 2i3j

implies n = i and m = j. Try to provide a proof which does not use this theorem.

Exercise Show |R× R| = |R|.

Exercise Show that N<∞, the collection of all finite sequences from N, is countable.

Exercise Show that P(N) and NN are uncountable. (Hint: Much the same as the proof that R is uncount-
able.)

Exercise Show that P(N) and NN have the same cardinality as R. (Harder).

Theorem 1.10 If A is a set, then |A| < |P(A)|.

Proof First note that
x 7→ {x}

gives an injection from A to P(A).
Conversely, suppose f : A→ P(A) is a function. We wish to show it is not surjective. So define

B = {x : x /∈ f(x)}.

Now suppose B = f(x) some x ∈ A. Then

x ∈ f(x)⇔ x ∈ B ⇔ x /∈ f(x).

with a contradiction. 2

A somewhat more complete introduction to the theory of infinite cardinals can be found in [12].
At some point also we will need to avail ourselves of “Zorn’s lemma”.

Theorem 1.11 (Zorn’s lemma) Let X be a set equipped with a partial order ≤. Assume that whenever
A ⊂ X is linearly ordered by ≤ then it has an upper bound – i.e.

∃x ∈ X∀a ∈ A(a ≤ x).

Then X has a maximal element – i.e.

∃x ∈ X∀y ∈ X(x ≤ y ⇒ x = y).

Here a set (X,≤) is said to be a partially ordered set if: ∀a ∈ X(a ≤ a) (reflexivity); ∀a, b ∈ X((a ≤
b ∧ b ≤ a) ⇒ a = b) (antisymmetry); ∀a, b, c ∈ X((a ≤ b ∧ b ≤ c) ⇒ a ≤ c) (transitivity). If in addition we
have ∀a, b ∈ X(a ≤ b ∨ b ≤ a) then we say that (X,≤) is linearly ordered.

5



2 Review of topology, metric spaces, and compactness

On the whole these notes presuppose a first course in metric spaces. This is only a quick review, with a special
emphasis on the aspects of compactness which will be especially relevant when we come to consider C(K) in
the chapter on the Reisz representation theorem. A thorough, more complete, and far better introduction
to the subject can be found in [4] or [9]. There is a substantial degree of abstraction in first passing from
the general properties of distance in euclidean spaces to the notion of a general metric space, and then the
notion of a general topological space; this short chapter is hardly a sufficient guide.

Definition A set X equipped with a function

d : X ×X → R

is said to be a metric space if

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ d(x, z) + d(z, y).

The classic example of a metric is in fact the reals, with the euclidean metric

d(x, y) = |x− y|.

Then d(x, y) ≤ d(x, z) + d(z, y) is the triangle inequality. A somewhat more exotic example would be take
any random set X and let d(x, y) = 1 if x 6= y, = 0 otherwise.

Definition A sequence (xn)n∈N of points in a metric space (X, d) is said to be Cauchy if

∀ε > 0∃N∀n,m > N(d(xn, xm) < ε).

A sequence is said toconverge to a limit x∞ ∈ X if

∀ε > 0∃N∀n > N(d(xn, x∞) < ε).

This is often written as
xn → x∞,

and we then say that x∞ is the limit of the sequence. We say that (xn)n is convergent if it converges to some
point.

A metric space is said to be complete if every Cauchy sequence is convergent.

Lemma 2.1 A convergent sequence is Cauchy.

Theorem 2.2 Every metric space can be realized as a subspace of a complete metric space.

For instance, Q with the usual euclidean metric is not complete, but it sits inside R which is.

Definition If (X, d) is a metric space, then for ε > 0 and x ∈ X we let

Bε(x) = {y ∈ X : d(x, y) < ε}.

We then say that V ⊂ X is open if for all x ∈ V there exists ε > 0 with

Bε(x) ⊂ V.

A subset of X is closed if its complement is open.

6



Lemma 2.3 A subset A of a metric space X is closed if and only if whenever (xn)n is a convergent sequence
of points in A the limit is in A.

Definition For (X, d) and (Y, ρ) two metric spaces, we say that a function

f : X → Y

is continuous if for any open W ⊂ Y we have f−1[W ] open in X.

The connection between this definition and the customary notion of continuous function for R is made
by the following lemma:

Lemma 2.4 A function f : X → Y between the metric space (x, d) and the metric space (Y, ρ) is continuous
if and only if for all x ∈ X and δ > 0 there exists ε > 0 such that

∀x′ ∈ X(d(x, x′) < ε⇒ ρ(f(x), f(x′)) < δ).

Definition For (X, d) and (Y, ρ) two metric spaces, we say that a function

f : X → Y

is uniformly continuous if for all δ > 0 there exists ε > 0 such that

∀x, x′ ∈ X(d(x, x′) < ε⇒ ρ(f(x), f(x′)) < δ)).

In the definitions above we have various notions which are built around the concept of open set. It turns
out that this key idea admits a powerful generalization and abstraction – we can talk about “spaces” where
there is a notion of open set, but no notion of a metric.

Definition A set X equipped with a collection τ ⊂ P(X) is said to be a topological space if:

1. X, ∅ ∈ τ ;

2. τ is closed under finite intersections – U, V ∈ τ ⇒ U ∩ V ∈ τ ;

3. τ is closed under arbitrary unions – S ⊂ τ ⇒
⋃
S ∈ τ .

In this situation, we say call the elements of τ open sets.

Lemma 2.5 If (X, d) is a metric space, then the sets which are open in X (in our previous sense) form a
topology on X.

Lemma 2.6 Let X be a set and B ⊂ P(X) which is closed under finite unions and includes the empty set.
Suppose additionally that

⋃
B = X. Then the collection of all arbitrary unions from X forms a topology on

X.

Definition If B ⊂ P(X) is as above, and τ is the resulting topology, then we say that B is a basis for τ .

Lemma 2.7 Let (Xi, τi)i∈I be an indexed collection of topological spaces. Then there is a topology on∏
i∈I

Xi

with basic open sets of the form

{f ∈
∏
i∈I

Xi : f(i1) ∈ V1, f(i2) ∈ V2, ...f(iN ) ∈ VN},

where N ∈ N and each of V1, V2, ...VN are open in the respective topological spaces Xi1 , Xi2 , ..., XiN .
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Definition In the situation of the above lemma, the resulting topology is called the product topology.

Definition Let X be a topological space and C ⊂ X a subset. Then the subspace topology on C is the one
consisting of all subsets of the form C ∩ V where V is open in X.

Technically one should prove before this definition that the subspace topology is a topology, but that is
trivial to verify. Quite often people will simply view a subset of a topological space as a topological space in
its own right, without explicitly specifying that they have in mind the subspace topology.

Definition In a topological space X we say that A ⊂ X is compact if whenever

{Ui : i ∈ I}

is a collection of open sets with
A ⊂

⋃
i∈I

Ui

we have some finite F ⊂ I with
A ⊂

⋃
i∈F

Ui.

In other words, every open cover of A has a finite subcover. X is said to be a compact space if we obtain
that X is compact as a subset of itself – namely, every open cover of X has a finite subcover.

Examples 1. Any finite subset of a metric space is compact. Indeed, one should think of compactness
as a kind of topological generalization of finiteness.

2. (0, 1), the open unit interval, is not compact in R under the usual euclidean metric, even though it
does admit some finite open covers, such as {(0, 1

2 ), ( 1
4 , 1)}. Instead if we let Un = ( 1

n+2 ,
1
n ), then

{Un : n ∈ N} is an open cover without any finite subcover.

3. Let X be a metric space which is not complete. Then it is not compact. (Let (xn)n be a Cauchy
sequence which does not converge in X. Let Y be a larger metric space including X to which the
sequence converges to some point x∞. Then at each n let Un be the set of points in X which have
distance greater than 1

n from x∞.)

Definition Let X and Y be topological spaces. A function

f : X → Y

is said to be continuous if for any set U ⊂ Y which is open in Y we have

f−1[V ]

open in X.

Lemma 2.8 Let X be a compact space and f : X → R continuous. Then f is bounded.

In fact there is much more that can be said:

Theorem 2.9 The following are equivalent for a metric space X:

1. It is compact.
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2. It is complete and totally bounded – i.e. for every ε > 0 we can cover X with finitely many balls of the
form Bε(x).

3. Every sequence has a convergent subsequence – i.e. X is “sequentially compact”.

4. Every continuous function from X to R is bounded.

5. Every continuous function from X to R is bounded and attains its maximum.

Some of this beyond the scope of this brief review, and I will take the equivalence of 2 and 3 as read.
However, it might be worth briefly looking at the equivalence of 2 and 3 with 4. I will start with the
implication from 4 to 2.

First suppose that there is a Cauchy sequence (xn)n which does not converge. Appealing to 2.2, let Y
be a larger metric space in which xn → x∞. Then define

f : X → R

by

x 7→ 1
d(x, x∞)

.

The function is well defined on X since every point in X will have some positive distance from x∞. It is a
minor exercise in ε − δ-ology to verify that the function is continuous, but in rough terms it is because if
x, x′ are two points which are in X and sufficiently close to each other, relative to their distance to x∞, then
in Y the values

1
d(x, x∞)

,
1

d(x′, x∞)

will be close.
Now suppose that the metric space is not totally bounded. We obtain some ε > 0 such that no finite

number of ε balls covers X. From this we can get that the are infinitely many disjoint ε/2 balls,

Bε/2(z1), Bε/2(z2), ....

Then we let U be the union of these open balls. We define f to be 0 on the complement of U . Inside each
ball we define f separately, with

f(x) = n · d(x,X \ U)

=df n · (infz∈X\Ud(x, z)).

The function takes ever higher peaks inside the Bε/2(xn) balls, and thus has no bound. The balls in which the
function is non-zero are sufficiently spread out in the space that we only need to verify that f is continuous
on each Bε/2(zi), which is in turn routine.

For 3 implying 4, suppose f : X → R has no bound. Then at each n we can find xn with f(xn) > n.
Going to a convergent subsequence we would be able to assume that xn → x∞ for some x∞ ∈ X, but then
there would be no value for f(x∞) which would allow the function to remain continuous.

It actually takes some serious theorems to show that there are any compact spaces.

Theorem 2.10 (Tychonov’s theorem) Let (Xi, τi)i∈I be an indexed collection of compact topological spaces.
Then ∏

i∈I
Xi

is a compact space in the product topology.
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Proof Let us say that an open V ⊂
∏
i∈I Xi is subbasic if it has the form

{f : f(i) ∈ Ui}

for some single i ∈ I and open U ⊂ Xi. Note then that every basic open set is a finite intersection of subbasic
open sets.

Claim: Let
S ∪ {V1 ∩ V2 ∩ ... ∩ Vn}

be a collection of open sets for which some no finite subset covers X. Assume each Vi is subbasic. Then for
some i ≤ n no finite subset of

S ∪ {Vi}

covers X.

Proof of Claim: Suppose at each i we have some finite Si ⊂ S such that

Si ∪ {Vi}

covers X. Then
S1 ∪ S2 ∪ ... ∪ Sn ∪ {V1 ∩ V2 ∩ ...Vn}

covers X. (�Claim)

So now let S be a collection of open sets such that no finite subset covers. We may assume S consists
only of basic open sets. Then applying the above claim we can steadily turn each basic open set into a
subbasic open set.2 so that at last we obtain some S∗ with

1. ⋃
S ⊂

⋃
S∗;

2. no finite subset of S∗ of covers X;

3. S∗ consists solely of subbasic open sets.

Then at each i, we can appeal to the compactness of Xi and obtain some xi ∈ Xi such that for every
open V ⊂ X with

V ×
∏

j∈I,j 6=i

Xj

we have xi /∈ Vi. But if we let f ∈
∏
i∈I Xi be defined by

f(i) = xi

then we obtain an element of the product space not in the union of S∗, and hence not in the union of S. 2

Theorem 2.11 (Heine-Borel) The closed unit interval

[0, 1]

is compact. More generally, any subset of R is compact if and only if it is closed and bounded.
2In fact one needs a specific consequence of the axiom of choice called Zorn’s lemma to formalize this part of the proof

precisely
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In particular, if a < b are in R and we have a sequence of open intervals of the form (cn, dn) with

[a, b] ⊂
⋃
n∈N

(cn, dn),

then there is some finite N with
[a, b] ⊂

⋃
n≤N

(cn, dn).

Here we say that a subset A ⊂ R is bounded if there is some positive c with

|x| < c

all x ∈ A.

Lemma 2.12 The continuous image of a compact space is compact.

Proof If X is compact, f : X → Y continuous, let C = f [X]. Then for any open covering {Ui : i ∈ I} of C,
we can let

Vi = f−1[Ui]

at each i ∈ I. From the definition of f being continuous, each Vi is open. Since the Ui’s cover C = f [X],
the Vi’s cover X. Since X is compact, there is some finite F ⊂ I with

X ⊂
⋃
i∈F

Vi,

which entails
C ⊂

⋃
i∈F

Ui.

2

Lemma 2.13 A closed subset of a compact space is compact.

For us, the main consequences of compactness are for certain classes of function spaces. The primary
examples will be Ascoli-Arzela and Alaoglu. Both these theorems are fundamentally appeals to Tychonov’s
theorem, and can be viewed as variants of the following observations:

Definition Let (X, d) and (Y, ρ) be metric spaces. Let C(X,Y ) be the space of continuous functions from
X to Y . Define

D : C(X,Y )2 → R ∪ {∞}
D(f, g) = supz∈Xρ(f(z), g(z)).

This metric D, in the cases when it is a metric, is sometimes called the sup norm metric.

Lemma 2.14 Let (X, d) and (Y, ρ) be metric spaces. If either X or Y is compact, then D always takes
finite values and forms a metric.

Proof The characteristic properties of being a metric are clear, once we show D is finite. The finiteness of
D is clear in the case that Y is compact, since the metric on Y will be totally bounded, and hence there will
be a single c > 0 such that for all y, y′ ∈ Y we have ρ(y, y′) < c.

On the other hand, suppose X is compact. Then for any two continuous functions f, g : X → Y we have
C = f [X] ∪ g[X] compact by 2.12. But then since this set is ε-bounded for all ε > 0 we in particular have

supy,y′∈Cρ(y, y′) <∞

∴ supz∈Xρ(f(z), g(z)) <∞.
2
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Lemma 2.15 Let (X, d) and (Y, ρ) be metric spaces. Assume X is compact. If f : X → Y is continuous,
then it is uniformly continuous.

Proof Given ε > 0, we can find at each x ∈ X some δ(x) such that any two points in Bδ(x)(x) have images
within ε under f . Then at each x let Vx = Bδ(x)/2(x). The Vx’s cover X, and then by compactness there is
finite F ⊂ X with

X =
⋃
x∈F

Vx.

Taking δ = min{δ(x)/2 : x ∈ F} completes the proof. 2

Definition In the above, let C1(X,Y ) be the elements f of C(X,Y ) with

d(x, y) ≥ ρ(f(x), f(y))

all x, y ∈ X.

Theorem 2.16 If (X, d) and (Y, ρ) are both compact metric spaces, then C1(X,Y ) is compact.

Proof The first and initially surprising fact to note is that the sup norm induces the same topology on
C1(X,Y ) as the topology it induces as a subspace of∏

X

Y

in the product topology. The point here is that F ⊂ X is an ε-net – which is to say, and point in X is within
distance ε of some element of F – and f, g ∈ C(X,Y ) have ρ(f(x), g(x)) < ε for all x ∈ F , then D(f, g) ≤ 3ε.

Now the proof is completed by Tychonov’s theorem once we observe that C1(X,Y ) is a closed subspace
of
∏
X Y in the product topology. 2

It is only a slight exaggeration to say that Ascoli-Arzela and Alaoglu are corollaries of 2.16. The state-
ments of the two theorems are more specialized, but the proofs are almost identical.

Finally for the work on the Riesz representation theorem, it is important to know that in some cases
C(X,Y ) will form a complete metric space.

Theorem 2.17 Let (X, d) and (Y, ρ) be metric spaces. Suppose that X is compact and Y is complete. Then
C(X,Y ) is a complete metric space.

Proof Suppose (fn)n∈N is a sequence which is Cauchy with respect to D. Then in particular at x ∈ X the
sequence

(fn(x))n∈X

is Cauchy in Y , and hence converges to some value we will call f(x). It remains to see that

f : X → Y

is continuous.
Fix ε > 0. If we go to N with

∀n,m ≥ N(D(fn, fm) < ε)

then ρ(fN (x), f(x)) ≤ ε all x ∈ X. Then given a specific x ∈ X we can find δ > 0 such that for any
x′ ∈ Bδ(x) we have ρ(fN (x), fN (x′)) < ε, which in turn implies ρ(f(x), f(x′)) < 3ε. 2
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3 The concept of a measure

Definition For S a set we let P(S) be the set of all subsets of S. Σ ⊂ P(S) is an algebra if it is closed
under complements, unions, and intersections; it is a σ-algebra if it is closed under complements, countable
unions, and countable intersections.

Here by a countable union we mean one of the form
⋃
n∈N An and by countable intersection one of the

form
⋂
n∈N An.

Definition A set S equipped with a σ-algebra Σ is said to be a measure space if Σ ⊂ P(S) is a (non-empty)
σ-algebra. A function

µ : Σ→ R≥0 ∪ {∞}

is a measure if

1. µ(∅) = 0, and

2. µ is countably additive – given a sequence (An)n∈N of disjoint sets in Σ we have

µ(
⋃
n∈N

An) =
∑
n∈N

µ(An).

Here R≥0 refers to the non-negative reals. We require – at least at this stage – that our measures return
non-negative numbers, with the possible inclusion of positive infinity. In this definition, some sets may have
infinite measure.

Exercise (a) Show that if Σ is a non-empty σ-algebra on S then S and ∅ (the empty set) are both in Σ.
(b) Show that if µ : Σ→ R≥0 ∪{∞} is countably additive and finite (that is to say, µ(A) ∈ R all A ∈ Σ),

then µ(∅) = 0.

The very first issue which confronts us is the existence of measures. The definition is in the paragraph
above – bold and confident – but without the slightest theoretical justification that there are any non-trivial
examples.

Simply taking enough classes in calculus one might develop the intuition that Lebesgue measure has the
required property of σ-additivity. We will prove a sequence of entirely abstract lemmas which will show
that Lebesgue measure is indeed a measure in our sense. The approach in this section will be through the
Carathéodory extension theorem. Much later in the notes we will see a different approach to the existence of
measures in terms of the Riesz representation theorem for continuous functions on compact spaces. Although
the Riesz representation theorem could be used to show the existence of Lebesgue measure, the approach is
far more abstract, appealing to various ideas from Banach space theory, and the actual verifications involved
in the proof take far longer.

The proof in this section may already seem rather abstract – and in some sense, it is. Still it is an easier
first pass at the notions than the path through Riesz.

Definition Let S be a set. A function

λ : P(S)→ R≥0 ∪ {∞}

is an outer measure if λ(∅) = 0 and whenever

A ⊂
⋃
n∈N

An

13



then
λ(A) ≤

∑
n∈N

λ(An).

Lemma 3.1 Let S be a set and suppose K ⊂ P(S) is such that for every A ⊂ S there is a countable sequence
(An)n∈N with:

1. each An ∈ K;

2. A ⊂
⋃
n∈N An.

Let ρ : K → R≥0 ∪ {∞} with ρ(∅) = 0.
Then if we define

λ : P(S)→ R≥0 ∪ {∞}

by letting λ(A) equal the infinum of the set

{
∑
n∈N

ρ(An) : A ⊂
⋃
n∈N

An; eachAn ∈ K},

then λ is an outer measure.

Proof This is largely an unravelling of the definitions.
The issue is to check that if λ(Bn) = an and B ⊂

⋃
n∈N Bn, then

λ(B) ≤
∑
n∈N

λ(Bn) =
∑
n∈N

an.

However if we fix ε > 0 and if at each n we fix a covering (Bn,m)m∈N with

Bn ⊂
⋃
m∈N

Bn,m,

∑
m

ρ(Bn,m) < an + ε2−m−n−1,

then
⋃
n,m∈N Bn,m ⊃ B and ∑

n,m∈N
ρBn,m < ε+

∑
n

ρ(an).

2

Definition Given an outer measure λ : P(S) → R≥0 ∪ {∞}, we say that A ⊂ S is λ-measurable if for any
B ⊂ S we have

λ(B) = λ(B ∩A) + λ(B \A).

Here B \ A refers to the elements of B not in A. If we adopt the convention that Ac is the relative
complement of A in S – the elements of S not in A – then we could as well write this as B ∩Ac.

Theorem 3.2 (Carathéodory extension theorem, part I) Let λ be an outer measure on S and let Σ be the
collection of all λ-measurable sets. Then Σ is a σ-algebra and λ is a measure on Σ.

14



Proof The closure of Σ under complements should be clear from the definitions.
Before doing closure under countable unions and intersections, let us first do finite intersections. For that

purpose, it suffices to do intersections of size two, since any finite intersection can be obtained by repeating
the operation of a single intersection finitely many times.

Suppose A1, A2 ∈ Σ and B ⊂ S. Applying our assumptions on A1 we obtain

λ(B ∩ (A1 ∩A2)c) = λ((B ∩Ac1) ∪ (B ∩Ac2)) =

λ((B ∩Ac1) ∪ (B ∩Ac2)) ∩Ac1) + λ((B ∩Ac1) ∪ (B ∩Ac2)) ∩A1) = λ(B ∩Ac1) + λ(B ∩A1 ∩Ac2).

Then applying the assumptions on A1 once more we obtain

λ(B) = λ(B ∩A1) + λ(B ∩Ac1),

and then applying assumptions on A2, this equals

λ(B ∩A1 ∩A2) + λ(B ∩A1 ∩Ac2) + λ(B ∩Ac1),

which after using λ(B ∩ (A1 ∩A2)c) = λ(B ∩Ac1) + λ(B ∩A1 ∩Ac2) from above gives

λ(B) = λ(B ∩A1 ∩A2) + λ(B ∩ (A1 ∩A2)c),

as required.
Having Σ closed under complements and finite intersections we obtain at once finite unions. Note more-

over that our definitions immediately give that λ is finitely additive on Σ, since given A,B ∈ Σ disjoint,

λ(A ∪B) = λ((A ∪B) ∩A) + λ((A ∪B) ∩Ac),

which by disjointness unravels as
λ(A) + λ(B).

It remains to show closure under countable unions and countable intersections. However, given the
previous work, this now reduces to showing closure under countable unions of disjoint sets in Σ.

Let (An)n∈N be a sequence of disjoint sets in Σ. Let A =
⋃
n∈N An. Fix B ⊂ S. Note that since λ is

monotone (in the sense, C ⊂ C ′ ⇒ λ(C) ≤ λ(C ′))) we have for any N ∈ N

λ(B ∩A) ≥ λ(B ∩
⋃
n≤N

An).

Then any easy induction on N using the disjointness of the sets gives λ(B ∩
⋃
n≤N An) =

∑
n≤N λ(B ∩An).

(For the inductive step: Use that since AN ∈ Σ we have λ(B ∩
⋃
n≤N An) = λ((B ∩

⋃
n≤N An) ∩ AN ) +

λ((B ∩
⋃
n≤N An)∩AcN ) = λ(B ∩AN ) + λ(B ∩

⋃
n≤N−1An).) On the other hand, the assumption that λ is

an outer measure give the inequality in the other way, and hence

λ(B ∩A) =
∑
n∈N

λ(B ∩An).

Finally, putting this altogether with the task at hand we have at every N

λ(B) = λ(B∩
⋃
n≤N

An)+λ(B∩(
⋃
n≤N

An)c) ≥ λ(B∩
⋃
n≤N

An)+λ(B∩(
⋃
n∈N

An)c) = (
∑
n≤N

λ(B∩An))+λ(B∩(
⋃
n∈N

An)c),

and thus taking the limit

λ(B) ≥ (
∑
n∈N

λ(B ∩An)) + λ(B ∩ (
⋃
n∈N

An)c) = λ(B ∩A) + λ(B ∩Ac);
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by λ being an outer measure we get the inequality in the other direction and are done.
The argument from the last paragraph also shows that λ is countably additive on Σ, since in the equation

λ(B ∩A) =
∑
n∈N

λ(B ∩An)

we could as well have taken B = S. 2

This is good news, but doesn’t yet solve the riddle of the existence of non-trivial measures: For all we
know at this stage, Σ might typically end up as the two element σ-algebra {∅, S}.

Theorem 3.3 (Carathéodory extension theorem, part II) Let S be a set and let Σ0 ⊂ P(S) be an algebra
and let

µ0 : Σ0 → R≥0 ∪ {∞}
have µ0(∅) = 0 and be σ-additive on its domain. (That is to say, if (An)n∈N is a sequence of disjoint sets in
Σ0 and and if

⋃
n∈N An ∈ Σ0, then µ0(

⋃
n∈N An) =

∑
n∈N µ0(An).)

Then µ0 extends to a measure on the σ-algebra generated by Σ0.

Proof Here the σ-algebra generated by Σ0 means the smallest σ-algebra containing Σ0 – it can be formally
defined as the intersection of all σ-algebras containing Σ0.

First of all we can apply the last theorem to obtain an outer measure λ, with λ(A) being set equal to the
infinum of all

∑
n∈N µ0(An) with each An ∈ Σ0 and A ⊂

⋃
n∈N An. The task which confronts us is to show

that the σ-algebra indicated in 3.2 extends Σ0 and that the measure λ extends the function µ0. These are
consequences of the next two claims.

Claim: For A ∈ Σ0 and B ⊂ S
λ(B) = λ(B ∩A) + λ(B ∩Ac).

Proof of Claim: Clearly λ(B) ≤ λ(B ∩A) + λ(B ∩Ac). For the converse direction, suppose (An)n∈N is a
sequence of sets in Σ0 with B ⊂

⋃
An∈N. Then at each n

µ0(An) = µ0(An ∩A) + µ0(An ∩Ac)

by the additivity properties of µ0. Thus

λ(B ∩A) + λ(B ∩Ac) ≤
∑
n∈N

µ0(A ∩An) +
∑
n∈N

µ0(Ac ∩An) =
∑
n∈N

µ0(An).

(Claim�)

Claim: µ0(A) = λ(A) for any A ∈ Σ0.

Proof of Claim: Suppose (An)n∈N is a sequence of sets in Σ0 with A ⊂
⋃
n∈N An. We need to show that

µ0(A) ≤
∑
n∈N

µ0(An).

After replacing each An by An \
⋃
i<nAi we may assume the sets are disjoint. But consider Bn = An ∩ A.

µ0(A) =
∑
n∈N µ0(Bn) by the σ-additivity assumption on µ0. Since σ-additivity implies finite additivity and

hence that µ0 is monotone, at each n, µ0(Bn) ≤ µ0(An). Thus

µ0(A) =
∑
n∈N

µ0(Bn) ≤
∑
n∈N

µ0(An).

(Claim�)
2
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Now we are in a position to define Lebesgue measure rigorously.

Definition B ⊂ RN is Borel if it appears in the smallest σ-algebra containing the open sets.

Of course one issue is why this is even well defined. Why should there be a unique smallest such algebra?
The answer is that we can take the intersection of all σ-algebras containing the open sets and this is easily
seen to itself be a σ-algebra.

Theorem 3.4 There is a σ-additive measure m on the Borel subsets of R with

m({x ∈ R : a < x ≤ b}) = b− a

for all a < b in R.

Proof Let us call a A ⊂ R a fingernail set if it has the form

A = (a, b] =df {x ∈ R : a < x ≤ b}

for some a < b in the extended real number line, {−∞} ∪R ∪ {+∞}. Let us take Σ0 to be the collection of
all finite unions of finger nail sets. It can be routinely checked that this is an algebra and every non-empty
element of Σ0 can be uniquely written in the form

(a1, b1] ∪ (a2, b2] ∪ ... ∪ (an, bn],

for some n ∈ N and a1 < b1 < a2 < ... < bn in the extended real number line. For A = (a1, b1] ∪ (a2, b2] ∪
... ∪ (an, bn] we define

m0(A) = (b1 − a1) + (b2 − a2) + ...(bn − an).

Claim: If
(a, b] ⊂

⋃
n∈N

(an, bn]

then m0((a, b]) ≤
∑
n∈N m0((an, bn]).

Proof of Claim: This amounts to show that if (a, b] ⊂
⋃
n∈N(an, bn] then∑

n∈N
bn − an ≥ b− a.

Suppose instead
∑
n∈N bn − an < b− a. Choose ε > 0 such that

ε+
∑
n∈N

bn − an < b− a.

Let cn = bn + 2−n−1ε. Then ⋃
n∈N

(an, cn) ⊃ [a+ ε/2, b].

Applying Heine-Borel, as found at 2.11 , we can find some N such that⋃
n≤N

(an, cn) ⊃ [a+ ε/2, b].

The next subclaim states that after possibly changing the enumeration of the sequence (an, cn)n≤N we
may assume that the intervals are consecutively arranged with overlapping end points.
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Subclaim: we may assume without loss of generality that at each i < N we have ai+1 ≤ ci.

Proof of Subclaim: First of all, since the index set is now finite, we may assume that no proper subset
Z $ {1, 2, ...N} has [a+ ε

2 , b] ⊂
⋃
n∈Z(an, cn). After possibly reordering the sequence we can assume a1 ≤ aj

all j ≤ N . Then we have a1 < a+ ε
2 and since

⋃
1<n≤N (an, cn) does not include [a+ ε

2 , b] we have c1 > a+ ε
2 .

Since c1 ∈
⋃
n≤N (an, cn) (there is another possibility, which is c1 > b, but then N = 1 and the claim is

trivialized) we have some j with aj < c1 < cj . Without loss of generality j = 2, and then we continue so on.
(�Subclaim)

Then ∑
i∈N

bi − ai ≥
∑
i≥N

ci − ai ≥ cN − aN +
∑
i<N

ai+1 − ai.

This is one of those telescoping sums where the middle terms all cancels out and we are left with∑
i≥N

ci − ai ≥ cN − a1,

which turn must equal at least b− a− ε/2, which contradicts our initial assumption of∑
i∈N

bi − ai < b− a− ε

2
.

(Claim�)

Claim: If {(an, bn] : n ∈ N} is a disjoint sequence of fingernail sets with⋃
n∈N

(an, bn] ⊂ (a, b],

then ∑
n∈N

m0((an, bn]) =
∑
n∈N

bn − an ≤ b− a.

Proof of Claim: It suffices to show that at each N ∈ N we have
∑
n≤N bn − an ≤ b− a. After reordering

we can assume that at any i ≤ j ≤ N we have ai ≤ aj . Then disjointness of the sequence gives aj+1 ≥ bj at
each j ≤ N . Note also that our assumptions imply that each ai ≥ a and bi ≤ b. Then it all unravels with∑

n≤N

bn − an ≤ bN − aN +
∑
n<N

an+1 − an

= bN − a1 ≤ b− a.

(Claim�)

Claim: m0 is σ-additive on Σ0.

Proof of Claim: Let
A = (a1, b1] ∪ (a2, b2] ∪ ...(aN , bN ]

be in Σ0. Suppose {(cn, dn] : n ∈ N} are disjoint fingernail sets with

A =
⋃
n∈N

(cn, dn].
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At each i ≤ N and n ∈ N let Bn,i = (cn, dn] ∩ (ai, bi]. The intersection of two fingernail sets is again a
fingernail set, and thus each Bn,i can be written in the form

Bn,i = (cn,i, dn,i].

The last two claims give that ∑
i≤N

dn,i − cn,i = dn − cn

and that
bi − ai =

∑
n∈N

dn,i − cn,i.

Putting this altogether we have ∑
n∈N

m0((cn, dn]) =
∑
n∈N

dn − cn

=
∑

n∈N,i≤N
dn,i − cn,i =

∑
i≤N

bi − ai = m0(A).

(Claim�)

Thus by 3.3 m0 extends to a measure m which will be defined on the σ-algebra generated by Σ0, which
is the collection of Borel subsets of R. 2

We used the fingernail sets (a, b] because they neatly generate an algebra Σ0. There would be no difference
using different kinds of intervals.

Exercise Let m be the measure from 3.4.
(i) Show that for any x ∈ R, m({x}) = 0.
(ii) Conclude that m([a, b]) = m((a, b)) = m([a, b)) = b− a.
(iii) Show that if A is a countable subset of R, then m(A) = 0.

A couple of remarks about the proof of 3.4. First of all, we have been rather stingy in our statement.
The m from theorem is only defined on the Borel sets, but the proof of 3.2 and 3.3 gives that it is defined
on a σ-algebra at least equal to the Borel sets; in fact it is a lot more, though for certain historical and
conceptual reasons I am stating 3.4 simply for the Borel sets. Another remark about the proof is that we
have only shown the theorem for one dimension, but it certainly makes sense to consider the case for higher
dimensional euclidean space. Indeed one can prove that at every N there is a measure mN on the Borel
subsets of RN such that for any rectangle of the form

A = (a1, b1]× (a2, b2]× ...(aN , bN ]

we have
mN (A) = (b1 − a1) · (b2 − a2)...(bN − aN ).

Theorem 3.5 Let N ∈ N and Σ ⊂ P(RN ) the σ-algebra of Borel subsets of N -dimensional Euclidean space.
Then there is a measure

mN : Σ→ R

such that whenever A = I1×I2×...×IN is a rectangle, each In an interval of the form (an, bn), [an, bn), (an, bn],
or [an, bn] we have

mN (A) = (b1 − a1)× (b2 − a2)× ...(bN − aN ).
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A proof of this is given in [7]. In any case, the existence of such measures in higher dimension will follow
from the one dimensional case and the section on product measures and Fubini’s theorem later in the notes.

Finally, nothing has been said about uniqueness. One might in principle be concerned whether the
measure m on the Borel sets in 3.4 has been properly defined – or whether there might be many such
measures with the indicated properties. Although I did not pause to explicitly draw out this point, the
measure indicated is unique for the reason that the measure of 3.3 is unique under modest assumptions. It
is straightforward and I will leave it as an exercise.

Definition A measure µ on a measure space (X,Σ) is σ-finite if X can be written as a countable union of
sets in Σ on which µ is finite.

Exercise Show that any measure m on R satisfying the conclusion of 3.4 is σ-finite.

Exercise (i) Let Σ0 be an algebra, µ0 : Σ0 → R≥0 ∪ {∞} σ-additive on its domain. Suppose S can be
written as a countable union of sets in Σ0 each of which has finite value under µ0. Let Σ ⊃ Σ0 be the
σ-algebra generated by Σ0 and let µ : Σ→ R≥0 ∪ {∞} be a measure.

Then for every A ∈ Σ we have

µ(A) = inf{
∑
n∈N

µ0(An) : A ⊂
⋃
n∈N

An; eachAn ∈ Σ0}.

(Hint: Write S =
⋃
n∈N Sn, each Sn ∈ Σ0, each µ0(Sn) < ∞. It suffices to consider the case that

A ⊂ Sn for some n. By comparing A with its complement Ac and applying additivity, it suffices to
show µ(A) ≤ inf{

∑
n∈N µ0(An) : A ⊂

⋃
n∈N An; eachAn ∈ Σ0} and µ(Ac) ≤ inf{

∑
n∈N µ0(An) : Ac ⊂⋃

n∈N An; eachAn ∈ Σ0}.)
(ii) Conclude that there is a unique measure satisfying 3.5.

Definition The unique measure described by the above theorem 3.5 is called the Lebesgue measure on RN .

Lemma 3.6 Let A ⊂ R be Borel. Let m be Lebesgue measure on R. Suppose m(A) <∞. Let ε > 0.
(i) Then there exists an open set O ⊂ R such that

A ⊂ O

and
m(O) < m(A) + ε.

(ii) And there exists a closed set C ⊂ R such that

C ⊂ A

and
m(A) < m(C) + ε.

Proof (i) This is a consequence of our proof of 3.4. Implicitly we appealed to the existence of an outer
measure via 3.3. This means here that for any A in the σ-algebra on which m is defined and for any ε > 0
we have some sequence of fingernail sets, (a1, b1], (a2, b2], .. with

A ⊂
⋃
n∈N

(an, bn]

and ∑
n∈N

bn − an < m(A) + ε.
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Choose δ > 0 with
∑
n∈N bn − an < m(A) + ε− δ. Let cn = bn + δ2−n. We finish with

O =
⋃
n∈N

(an, cn).

(ii) It suffices to consider the case that A ⊂ [a, b] for some a < b. Appealing to part (i), let O ⊃ [a, b]∩Ac
be open with m(O) < m([a, b] ∩Ac) + ε. Let C = [a, b] \O. 2

Formally I have just set up the Lebesgue measure on the Borel subsets of R, but the proofs of 3.2 and
3.3 suggest that perhaps it can be sensibly defined on a rather larger σ-algebra.

Definition Let m∗ be the outer measure used to define Lebesgue measure – in that

m∗(A)

equals the infinum of

{
∑
i∈N

(bi − ai) : ((ai, bi])i∈N is a sequence of fingernail sets withA ⊂
⋃
i∈N

(ai, bi]}.

A subset B ⊂ R is Lebesgue measurable if for every A ⊂ R we have m∗(A) = m∗(A ∩B) +m∗(A ∩Bc).

From theorems 3.2 and 3.3 we obtain that the Lebesgue measurable sets in R form a σ-algebra and m
extends to a measure on that σ-algebra. In a similar vein:

Exercise Show that if B ⊂ R is Lebesgue measurable then there are Borel A1, A2 ⊂ R with

A1 ⊂ B ⊂ A2

and m(A2 \A1) = 0. (Hint: This follows from the proof of 3.6.)

One may initially wonder whether the Lebesgue measurable sets are larger than the Borel.
The short answer is that not only are there more, there are vastly more. Take a version of the Cantor

set with measure zero. For instance, the standard construction where we remove the interval (1/4, 3/4) from
[0, 1], then (1/16, 3/16) from [0, 1/4] and (13/16, 15/16) from [3/4, 1], and continute, iteratively removing
the middle halves. The final result will be a closed, nowhere dense set. A routine compactness argument
shows that it is non-empty and has no isolated points. With a little bit more work we can show it is actually
homeomorphic to

∏
N{0, 1}, and hence has size 2ℵ0 .

Its Lebesgue measure is zero, since the set remaining after n many steps has measure 2−n. Any subset of
a Lebesgue measurable set of measure zero is again Lebesgue measurable, thus all its subsets are Lebesgue
measurable. Since it has 2(2ℵ0 ) many subsets, we obtain 2(2ℵ0 ) Lebesgue measurable sets. On the other hand
it can be shown (see for instance [6]) that there are only 2ℵ0 many Borel sets – and thus not every Lebesgue
measurable set is Borel.

Fine. But then of course it is natural to be curious about the other extreme. In fact, there exist subsets
of R which are not Lebesgue measurable.

Lemma 3.7 There exists a subset V ⊂ [0, 1] which is not Lebesgue measurable.

Proof For each x ∈ [0, 1] let Qx be Q + x ∩ [0, 1] – that is to say, the set of y ∈ [0, 1] such that x− y ∈ Q.
Note that Qx = Qz if and only if x− z ∈ Q.

Now let V ⊂ [0, 1] be a set which intersects each Qx exactly once. Thus for each x ∈ [0, 1] there will be
exactly one z ∈ V with x− z ∈ Q.
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I claim V is not Lebesgue measurable.
For a contradiction assume it is. Note then that for any q ∈ Q the translation V +q = {z+q : z ∈ V } has

the same Lebesgue as V . This is simply because the entire definition of Lebesgue measure was translation
invariant.

The first case is that V is null. But then
⋃
q∈Q V + q is a countable union of null sets covering [0, 1], with

a contradiction to m([0, 1]) = 1.
Alternatively, if m(V ) = ε > 0, then

⋃
q∈Q,0≤q≤1 V + q is an infinite union of disjoint sets all of measure

ε, all included in [−1, 2], with a contradiction to m([−1, 2]) = 3 <∞. 2

There is something curious about the construction of the set V above. It is created by an appeal to the
axiom of choice – we choose exactly one point from each set of the form Qx, but the final set V is not itself
presented with any easy description.

One might then ask if there is an explicit or concrete example of a set which is not Lebesgue measurable,
or alternatively whether one can prove the existence of sets which are not Lebesgue measurable without
appealing to the axiom of choice. It takes some care to make these questions mathematically precise, but
the answer to both ultimately is in the negative – see [11].

Bear in mind that there are other kinds of spaces and objects to which we might wish to assign something
like a measure.

Examples (i) For a finite set X and P(X) the set of all subsets of X, we could take the counting measure:
µ(A) = |A|, the size of A.

(ii) For {H,T}N , which could be thought of as tossing a coin with outcome either “H” (heads) or “T”
(tails), we could take the normalized counting measure:

µ(A) =
|A|
2N

.

(iii) A natural variation on (ii) is to take the infinite product of the coin tossing measure. Let∏
N
{H,T}

be the collection of all functions f : N→ {H,T}. For i1, i2, ..., iN distinct elements of N and S1, S2, ..., SN ∈
{H,T} let

µ({f ∈
∏
N

{H,T} : f(i1) = S1, f(i2) = S2, ..., f(iN ) = SN} = 2−N .

3.3 shows that µ extends to a measure on the subsets of
∏

N{H,T} which are Borel with respect to the
product topology.

(iv) Another way in which (ii) can be altered is to adjust the measure on {H,T}. We might instead
be working with a slightly biased coin, that comes down heads 7 times out of ten. Then for each f :
{1, 2, ..., N} → {H,T} we set

µ({f}) = (
7
10

)|{i:f(i)=H}| · ( 3
10

)|{i:f(i)=T}|.

Similarly we could define this lopsided measure on the space of infinite runs.
(v) Somewhat more loosely, imagine we are dealing with some experiment, such as shooting gamma rays

into a metal alloy, and X is the space of all possible outcomes to the experiment. Let f : X → R be some
function which arises from measuring some property of the outcome (in this case the heat of the metal alloy).
We could then define a measure on R by letting µ(A) be the probability that f assumes its value in A.
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We have already fought a considerable battle simply to show that interesting measures, such as Lebesgue
measure, indeed exist. From now on we will take this as a given, and consider more the abstract properties
of measures. Here there is the key notion of completion of a measure.

Definition Let (X,Σ) be a measure space and µ : Σ → R≥0 ∪ {∞} a measure. M ⊂ X is said to be
measurable with respect to µ if there are A,B ∈ Σ with A ⊂M ⊂ B and

µ(B \A) = 0.

Beware: Often authors simply write “measurable” instead of “measurable with respect to µ” when context
makes the intended measure clear.

Lemma 3.8 Let µ be a measure on the measure space (X,Σ). Then the measurable sets form a σ-algebra

Proof First suppose M is measurable as witnessed by A,B ∈ Σ, A ⊂M ⊂ B. Then Ac = X \A,Bc = X \B
are in Σ and have Ac ⊃M c ⊃ Bc. Since Ac \Bc = B \A, this witnesses M c measurable.

If (Mn)n∈N is a sequence of measurable sets, as witnessed by (An)n∈N, (Bn)n∈N, with An ⊂ Mn ⊂ Bn,
then ⋃

n∈N
An ⊂

⋃
n∈N

Mn ⊂
⋃
n∈N

Bn.

On the other hand ⋃
n∈N

Bn \
⋃
n∈N

An ⊂
⋃
n∈N

(Bn \An),

and so
⋃
n∈N Bn \

⋃
n∈N An is null, as required to witness

⋃
n∈N Mn null. 2

Definition Let µ be a measure on the measure space (X,Σ). ForM measurable, as witnessed byA ⊂M ⊂ B
with A,B ∈ Σ, µ(B \A) = 0, we let µ∗(M) = µ(A)(= µ(B)). We call µ∗ the completion of µ.

As with Lebesgue measure, we will frequently slip in to the minor logical sin of using the same symbol
for µ as its extension µ∗ to the measurable sets. A more serious issue is to check the measure is well defined.

Lemma 3.9 The completion of µ to the measurable sets is well defined.

Proof If A1 ⊂M ⊂ B1 and A2 ⊂M ⊂ B2 both witness M measurable, then

A1∆A2 ⊂M \A1 ∪M \A2 ⊂ B1 \A1 ∪B2 \A2.

and hence is null. 2

Lemma 3.10 Let µ be a measure on a measure space (X,Σ). Let Σ∗ be the σ-algebra of measurable sets.
Then the completion defined above,

µ∗ : Σ∗ → R≥0 ∪ {∞},

is a measure.

Proof Exercise. 2

Exercise For A ⊂ N let
µ(A) = |A|

in the event A is finite, and equal ∞ otherwise. Show that µ is a measure on the σ-algebra P(N).
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Exercise Let f : R→ R be non-decreasing, in the sense that

a ≤ b⇒ f(a) ≤ f(b).

Show that the image of f , f [R], is Borel.

Exercise Let ∏
N
{H,T}

be the collection of all functions f : N → {H,T}. equipped with the product topology. For ~i = i1, i2, ..., iN
distinct elements of N and ~S = S1, S2, ..., SN ∈ {H,T} let

A~i,~S = {f ∈
∏
N
{H,T} : f(i1) = S1, f(i2) = S2, ..., f(iN ) = SN}.

(i) Show that the sets of the form A~i,~S form an algebra (i.e. closed under finite unions, intersections, and
complements).

(ii) Show that

µ0({f ∈
∏
N

{H,T} : f(i1) = S1, f(i2) = S2, ..., f(iN ) = SN}) = 2−N

defines a function which is σ-additive on its domain.
(iii) Show that µ0 extends to a measure µ on the Borel subsets of

∏
N{H,T}.

(iv) At each N let AN be the set of f ∈
∏

N{H,T}

|{n < N : f(n) = H}| < N

3
.

Show that µ(AN )→ 0 as N →∞.
(v) Let A be the set of f such that there exist infinitely many N with f ∈ AN . Show that A is Borel.

Exercise Let A ⊂ R be Lebesgue measurable. Show that m(A) is the supremum of

{m(K) : K ⊂ A,K compact}.

Exercise Show that if we successively remove middle thirds from [0, 1], and then from [0, 1/3] and [2/3, 1],
and then from [1.1/9], [2/9, 1/3], [2/3, 7/9], and [8/9, 1], and so on, then the set at the end stage of this
construction has measure zero.

The resulting set is called the Cantor set, and is a source of examples and counterexamples in real analysis
– given that it is closed, nowhere dense, and without isolated points. More generally a set formed in a similar
way is often called a Cantor set.

Exercise Show that if we adjust the process by removing a middle tenths, then we again end up with a
Cantor set having measure zero.

Exercise Show that if we instead remove the middle tenth, and at the next step the middle one hundredths,
and then at the next step the middle one thousands, and so on, then we end up with a Cantor set which has
positive measure.
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4 The general notion of integration and measurable function

We will give a rigorous foundation to Lebesgue integration as well as integration on general measure spaces.
Since the notion of integration is so closely intertwined with linear notions of adding or subtracting, I will
first give the definitions of the linear operations for functions.

Definition Let X be a set and f, g : X → R. Then we define the functions f + g and f − g by

f + g : X → R,

x 7→ f(x) + g(x),

and
f − g : X → R,

x 7→ f(x)− g(x),

and
f · g : X → R,

x 7→ f(x)g(x).

Similarly, for c ∈ R we define
cf : X → R,

x 7→ cf(x)

and
c+ f : X → R,

x 7→ c+ f(x).

Definition Let (X,Σ) be a measure space equipped with a measure

µ : Σ→ R.

A function f : X → R is measurable if for any open set U ⊂ R

f−1[U ] ∈ Σ.

A function
h : X → R

is simple if we can partition X into finitely many measurable sets A1, A2, ..., An with h assuming a constant
value ai on each Ai. If µ(Ai) <∞ whenever ai 6= 0 we say that h is integrable and let∫

X

hdµ

be the sum of all µ(Ai) · ai for ai 6= 0. For B ⊂ X a measurable set, we define∫
B

hdµ

to be the sum of µ(Ai ∩B) · ai for ai 6= 0.

Exercise Show that every simple function is measurable.
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Definition For (X,Σ, µ) as above, f : X → R measurable and non-negative (f(x) ≥ 0 all x ∈ X), we let∫
X

f dµ = sup{
∫
X

h dµ : h is simple and 0 ≤ h ≤ f}.

In general given f : X → R measurable we can uniquely write f = f+ − f− where f+, f− are both
non-negative and have disjoint supports. Assuming∫

X

f+dµ,

∫
X

f−dµ

are both finite we say that f is integrable and let∫
X

fdµ =
∫
X

f+dµ−
∫
X

f−dµ.

We have implicitly used above that f+, f− will be measurable. This is easy to check. You might also
want to check that we could have instead used the definition f+ = 1

2 (|f |+ f), and f− = 1
2 (|f | − f).

Definition For (X,Σ, µ) as above, f : X → R measurable and B ∈ Σ,∫
B

fdµ =
∫
X

χB · fdµ.

Exercise We could alternatively have defined
∫
B
fdµ to be the supremum of∫
B

hdµ

for h ranging over simple functions with h ≤ f . Show this definition is equivalent to the one above.

Lemma 4.1 Let (X,Σ) be a measure space, µ a measure defined on X. Let f : X → R be a simple integrable
function. Let c ∈ R. Then ∫

X

cfdµ = c

∫
X

fdµ.

Proof Exercise. 2

Lemma 4.2 Let (X,Σ) be a measure space, µ a measure defined on X. Let f, g : X → R be simple integrable
functions with f(x) ≤ g(x) at all x. Then ∫

X

fdµ ≤
∫
X

gdµ.

Proof Exercise. 2

Lemma 4.3 Let X,Σ, µ be as above. Let f1, f2 be simple integrable functions. Then∫
X

(f1 + f2)dµ =
∫
X

f1dµ+
∫
X

f2dµ.
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Proof Suppose f1 =
∑
i≤N aiχAi

, f2 =
∑
i≤M biχBi

. Then at each i ≤ N, j ≤M let Ci,j = Ai ∩Bj .

f1 + f2 =
∑

i≤N,j≤M

(ai + bj)χi,j .

Since µ(Ai) =
∑
j≤M µ(Ci,j) and µ(Bj) =

∑
i≤N µ(Ci,j) we have∫

X

f1dµ =
∑

i≤N,j≤M

aiµ(Ci,j)

and ∫
X

f1dµ =
∑

i≤N,j≤M

bjµ(Ci,j).

Thus ∫
X

f1dµ+
∫
X

f2dµ =
∑

i≤N,j≤M

(ai + bj)µ(Ci,j),

which in turn equals
∫
X

(f1 + f2)dµ. 2

Definition Let S be a set. A partition of S is a collection {Si : i ∈ I} such that:

1. each Si ⊂ S;

2. S =
⋃
i∈I Si;

3. for i 6= j we have Si ∩ Sj = ∅.

In other words, a partition is a division of the set into disjoint subsets.

Lemma 4.4 Let X,Σ, µ be as above. Let f : X → R be integrable. Let (Ai)i∈N be a partition of X into
countably many sets in Σ. Then ∫

X

fdµ =
∑
i∈N

∫
Ai

fdµ

.

Proof Wlog f ≥ 0.
First to see that

∫
X
fdµ ≥

∑
i∈N
∫
Ai
fdµ, suppose hi ≤ f · χAi

at each i ≤ N . Then
∑
i≤N hi ≤ f and∑∫

hidµ =
∫ ∑

hidµ.
Conversely, if h ≤ f is simple, write it as

h =
∑
j≤k

ajχBj

with each aj > 0, which implies each µ(Bj) <∞ by integrability of f . Consider some ε > 0. Go to a large
enough N with

µ(
⋃
j≤k

Bj \
⋃
i>N

Ai) <
ε∑
j aj

.

Then ∑
i≤N

∫
Ai

fdµ >

∫
X

hdµ− µ(
⋃
j≤k

Bj \
⋃
i>N

Ai)
∑
j

aj >

∫
hdµ− ε.

Letting ε→ 0 finishes the proof. 2
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Lemma 4.5 Let X,Σ, µ be as above. Let f : X → R be integrable. Then for each ε > 0 we can find a set B
with µ(B) finite and

∫
X\B fdµ < ε.

Proof Wlog, f ≥ 0. At each N ∈ N let AN = {x : 1
N ≤ f(x) < 1

N−1}. (Note then that f−1([1,∞)) = A1).
The measure of each AN is finite since

∫
AN

fdµ ≥ µ(AN ) 1
N . By 4.4, we have some M with

∫S
N≥M (AN )

fdµ <
ε. 2

Lemma 4.6 Let (X,Σ) be a measure space. Let µ : Σ → R≥0 ∪ {∞} be a measure. Let f : X → R be
integrable. Then there is a sequence of simple functions, (fn)n∈N such that:

1. for a.e. x ∈ X, fn(x)→ f(x);

2. |fn(x)| < |f(x)| all x ∈ X;

3. at each n ∈ N, x ∈ X, fn(x) ≥ 0 if and only if f(x) ≥ 0.

As a word on notation, we say that something happens “a.e.” or “µ-a.e” if it is true off of some null sets
– where a null set is some set in Σ whose value under µ is zero. Thus, “for a.e. x ∈ X, fn(x)→ f(x)” means
that there is some B ∈ Σ with µ(B) = 0 and fn(x)→ f(x) all x ∈ Bc.

Proof It suffices to consider the case of f(x) ≥ 0 all x ∈ X. At each x and n let kn(x) be the largest k such
that

k

n!
≤ f(x).

Then let

fn(x) = min{kn(x)
n!

, n}.

It follows routinely from f being measurable that each kn is measurable, and then that each fn is
measurable. Since the fn’s are measurable and finite valued, they are simple. Unwinding the definitions, we
have for all n ≥ f(x) that

fn(x) ≥ f(x)− 1
n!
.

2

Lemma 4.7 Let (X,Σ, µ) and f : X → R be as in the last lemma. Let (fn)n∈N be as in the conclusion –
that is to say,

1. each fn is simple;

2. for a.e. x ∈ X, fn(x)→ f(x);

3. |fn(x)| < |f(x)| all x ∈ X;

4. at each n ∈ N, x ∈ X, fn(x) ≥ 0 if and only if f(x) ≥ 0.

Then ∫
X

fndµ→
∫
fdµ.

Remark: Please note, the point of this lemma is not to say that we can have all the indicated properties
along with

∫
fn →

∫
f . We already showed that in the proof above. The point is rather that once we have

1-4, then
∫
fn →

∫
f follows automatically.
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Proof Let the fn’s be as indicated. Again we can assume f(x) ≥ 0 at all x ∈ X. Suppose we instead have
some simple function

h =
∑
i≤N

ai · χBi

with
h(x) ≤ f(x)

all x and at all n ∫
hdµ < ε+

∫
fndµ

for some fixed positive ε. We can assume that ai 6= 0 at each i ≤ N . Then it follows that
⋃
i≤N Bi has finite

measure. We may also assume each bi ≥ 0.
We want to show that

∫
hdµ ≤ lim

∫
fndµ Let

δ =
ε

2(a1 + a2 + ...+ aN + µ(B1) + µ(B2) + ...+ µ(BN ))
.

For each n let Dn be the set of x ∈ X such that

|fn(x)− f(x)| < δ.

Here
⋃
n∈N Dn is conull, Dn ⊂ Dn+1, and each Dn is in Σ. Thus we can find some Dk such that

µ(
⋃
i≤N

Bi −Dk) < δ.

Then
h(x) ≤ (fk(x) + δ)χDk

+ (a1 + a2 + ...aN )χ(B1∪B2∪...BN )\Dk
.

Thus by 4.2 and 4.3 we have∫
X

hdµ ≤
∫
Dk∩(B1∪B2∪...BN )

(fk + δ)dµ+
∫

(B1∪B2∪...BN )\Dk

(a1 + a2 + ...aN )dµ

≤
∫
Dk∩(B1∪B2∪...BN )

fkdµ+
∫
Dk∩(B1∪B2∪...BN )

δdµ+
∫

(B1∪B2∪...BN )\Dk

(a1 + a2 + ...aN )dµ

<

∫
X

fkdµ+ δ · µ(B1 ∪B2 ∪ ...BN ) + (a1 + a2 + ...aN )µ((B1 ∪B2 ∪ ...BN ) \Dk) <
∫
fk + ε,

as required. 2

Lemma 4.8 Let (X,Σ) be a measure space, µ a measure defined on X. Let f : X → R be an integrable
function. Let c ∈ R. Then ∫

X

cfdµ = c

∫
X

fdµ.

Proof Exercise. 2

Lemma 4.9 Let X,Σ, µ be as above. Let f1, f2 be integrable functions. Then∫
X

(f1 + f2)dµ =
∫
X

f1dµ+
∫
X

f2dµ.
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Proof We want to put this into the framework of 4.7 – ideally choosing simple functions g1, g2..., h1, h2, ...
such that

1. at each x and n, |gn(x)| ≤ |f1(x)|, and

2. at each x and n, |hn(x)| ≤ |f2(x)|, and

3. gn(x)→ f1(x) for a.e. x, and

4. hn(x)→ f2(x) for a.e. x,

and then concluding that gn + hn converge to f1 + f2 with |gn(x) + hn(x)| ≤ |f1(x) + f2(x)|.
This will be fine if f1 and f2 are either both positive or both negative. The problem is that if they have

different sign – for instance, if f1(x) = −6, f2(x) = 5, and we had unluckily chosen gn(x) = −4, hn(x) = 2.
Here is the solution to that minor technical issue. Let

B1 = {x : f1(x), f2(x) ≥ 0},

B2 = {x : f1(x), f2(x) < 0},
B3 = {x : f1(x) ≥ 0, f2(x) < 0, |f1(x)| > |f2(x)|},
B4 = {x : f1(x) ≥ 0, f2(x) < 0, |f1(x)| ≤ |f2(x)|},
B5 = {x : f2(x) ≥ 0, f1(x) < 0, |f1(x)| > |f2(x)|},
B6 = {x : f2(x) ≥ 0, f1(x) < 0, |f1(x)| ≤ |f2(x)|}.

It suffices to show that on each Bi we have
∫
Bi
f1dµ+

∫
Bi
f2dµ =

∫
Bi

(f1 + f2)dµ.
The sets B1, B2 are handled by the argument given above; I will skip the details. It is Bi for i ≥ 3 which

requires more work. All these cases are much the same, and so I will simply do B3. First choose simple
hn’s with hn(x)→ f2(x) and |hn(x)| ≤ |hn+1(x)| ≤ |f2(x)| for a.e. x ∈ B3. Now choose gn on B3 such that
gn(x)→ f1(x) and |gn(x)| ≤ |gn+1(x)| ≤ |f1(x)| and |gn(x)| ≥ |hn(x)|; the last point is easily arranged since
we can always replace gn with max{gn(x), |hn(x)|}. Then we have

1. at each x and n, |gn(x)| ≤ |f1(x)|, and

2. at each x and n, |hn(x)| ≤ |f2(x)|, and

3. gn(x)→ f1(x) for a.e. x, and

4. hn(x)→ f2(x) for a.e. x, and

5. |gn(x) + hn(x)| ≤ |f1(x) + f2(x)|.

Apply 4.7 to f1 and the gn’s we get
∫
Bi
gndµ →

∫
Bi
f1dµ; to f2 and the hn’s,

∫
Bi
hndµ →

∫
Bi
f2dµ;

finally,
∫
Bi

(gn + hn)dµ →
∫
Bi

(f1 + f2)dµ and for simple functions we already know that
∫
Bi

(gn + hn)dµ =∫
Bi
gndµ+

∫
Bi
hndµ. 2

Lemma 4.10 Let C ⊂ O ⊂ R with C closed and O open. Show that there is a continuous function
f : R→ [0, 1] with f(x) = 1 at every point on C and f(x) = 0 at every point outside O.

Proof Assume C is non empty and O 6= R, or else the task is somewhat trivialized. For any set A ⊂ R let
d(x,A) = inf{|x− a| : a ∈ A} – this is a continuous function in x.

Then let

f(x) = min{1, d(x,Oc)
d(x,C)

}.

2
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Lemma 4.11 Let h be a simple function on R. Suppose h is integrable. Let ε > 0. Then there is a
continuous function

f : R→ R
such that if we let g(x) = |h(x)− f(x)| then ∫

R
gdm < ε.

(Technically, when saying h is simple we should specify the corresponding σ-algebra on R. The convention
is to default to the Borel sets – thus, we intend that there be a partition on R into finitely many Borel sets
and h is constant on each element of the partition.)

Proof It suffices to prove this in the case when h is the characteristic function of a single Borel set. But
then this follows from 3.6 and 4.10. 2

Corollary 4.12 Let h : R→ R be integrable. Let ε > 0. Then there is a continuous function

f : R→ R

such that if we let g(x) = |h(x)− f(x)| then ∫
R
gdm < ε.

Frequently we will want to integrate compositions of functions, just as in the last exercise. Here there is
some very specific notation used in this context to guide us.

Notation Given some expression involving various variables, x, y, z... and various functions, sayG(x, y, z, ...),
the expression ∫

X

G(x, y, ...)dµ(x)

indicates that we are integrating the function

x 7→ G(x, y, z, ...)

against the measure µ (and keeping y, z, ... as fixed but possibly unknown quantities).

Thus in the exercise just above, for g(x) = |f(x)− h(x)|, instead of writing∫
R
gdm < ε

we could just as easily written ∫
R

|f(x)− h(x)|dµ(x).

The definition of integration can be extended to other settings.

Definition Let (X,Σ, µ) be a measure space equipped with a measure µ; we say that a function from X to
C is measurable if the pullback of any open set in C is measurable.

For f : X → C measurable, we write f = Ref + iImf , where Ref : X → R and Imf : X → R are the real
and imaginary parts. We say that f is integrable if both these functions are integrable in our earlier sense
and let ∫

X

fdµ =
∫
X

Refdµ+ i

∫
X

Imfdµ.

In fact, it does not stop there. Given a suitable linear space B we can define integrals for suitably bounded
functions f : X → B. In general terms, if the space B allows us to form finite sums and averages, then it
makes sense to define integrals on B-valued functions.
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5 Convergence theorems

The order of presentation is following [7], but I am going to present the proofs without making any reference
to L1(µ) or the theory of Banach spaces. Eventually we will have to engage with these concepts, but not
just yet.

Lemma 5.1 Let (X,Σ) be a measure space. Let µ : Σ → R≥0 ∪ {∞} be a measure. Let (fn)n∈N be a
sequence of functions, each fn : X → R integrable. Suppose each fn ≥ 0 and

n=∞∑
n=1

∫
fndµ <∞.

Then for µ-a.e. x ∈ X,

f(x) =
∞∑
n=1

fn(x)

is well defined, and moreover ∫
fdµ =

∞∑
n=1

∫
fndµ.

Proof Let B be the set of x ∈ X such that the partial sums
∑N
n=1 fn(x) are unbounded. It is routine to

show that this set is in Σ. I claim it is null.

Claim: µ(B) = 0.

Proof of Claim: Suppose instead that µ(B) > 0. Then at each c > 0 and N ∈ N let Bc,N = {x :∑N
n=1 fn(x) > c}. Bc,N ⊂ Bc,N+1 and ⋃

N∈N
Bc,N = B.

Thus there exists an N with µ(Bc,N ) > 1
2µ(B). Then we obtain

N∑
n=1

∫
Bc,N

fndµ =
∫
Bc,N

N∑
n=1

fndµ > c
1
2
µ(B).

Since c > 0 was arbitrary, we have contradicted
∑n=∞
n=1

∫
fndµ <∞. (Claim�)

Now define f on X \ B as f(x) =
∑
fn(x) (and set f ≡ 0 on B – though in terms of calculating the

integral, the value of f on a null set is irrelevant).

Claim:
∫
X
fdµ ≥

∑∞
n=1

∫
X
fndµ.

Proof of Claim: At each N ∈ N we have∫
X

fdµ ≥
∫
X

∑
n≤N

fndµ =
∑
n≤N

∫
X

fndµ.

(Claim�)

Claim:
∫
X
fdµ ≤

∑∞
n=1

∫
X
fndµ.
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Let h ≤ f be simple. Wlog h ≥ 0. Write h as∑
i≤L

aiχAi
,

where each ai > 0. Let

CN = {x ∈ B : ∀M ≥ N |
M∑
n=1

fn(x)− f(x)| < ε

2
∑
µ(Ai)

}.

Again the CN ’s are increasing and their union is conull. Fix ε > 0.

Subclaim: There is some N with ∫
X\CN

hdµ <
ε

2
.

Proof of Subclaim: Let Dn = Cn \ (
⋃
i<nDi). Then∫

X

hdµ =
∑
n∈N

∫
Dn

hdµ

by 4.4. Since the integral is finite, we can find some N with∑
n>N

∫
Dn

hdµ <
ε

2
.

(Proof of Subclam�)

Then ∫
X

hdµ =
∫

S
i≤L Ai

hdµ <
ε

2
+
∫
CN∩(

S
i≤L Ai)

hdµ

<
ε

2
+
∫
CN∩(

S
i≤L Ai)

(
N∑
n=1

fn −
ε

2
∑
i≤L µ(Ai)

)dµ ≤ ε+
∫
CN∩(

S
i≤L Ai)

N∑
n=1

fndµ

= ε+
N∑
n=1

∫
CN∩(

S
i≤L Ai)

fndµ ≤ ε+
N∑
n=1

∫
X

fndµ

≤ ε+
∞∑
n=1

∫
X

fndµ.

Letting ε→ 0 we obtain ∫
X

hdµ ≤
∞∑
n=1

∫
X

fndµ.

Since the integral of f is defined as the supremum of the integral of the simple functions h ≤ f , this completes
the proof of the claim. (Claim�)

2

33



Theorem 5.2 Let (X,Σ) be a measure space. Let µ : Σ → R≥0 ∪ {∞} be a measure. Let (fn)n∈N be a
sequence of functions, each fn : X → R integrable. Suppose

n=∞∑
n=1

∫
|fn|dµ <∞.

Then for µ-a.e. x ∈ X,

f(x) =
∞∑
n=1

fn(x)

is well defined, and moreover ∫
fdµ =

∞∑
n=1

∫
fndµ.

Proof We have completed the special case of each fn ≥ 0 in 5.1 . Thus if let

g(x) =
∞∑
n=1

|fn(x)|

then we obtain that g is defined on a conull set, is integrable, and has
∫
gdµ =

∑
n∈N

∫
|fn|dµ. We then let

f(x) =
∑
n∈N fn(x) and have that f is well defined on all the points at which g is well defined. f will be

integrable, because its absolute value is bounded by the integrable function g.
Fix ε > 0. Appealing to 4.5 we find some measurable D with µ(D) finite and∫

X\D
gdµ <

ε

5
.

At each N let DN be the set

{x ∈ D :
∞∑
n=N

|fn(x)| < ε

5µ(D)
.

The DN ’s are increasing and their union is conull in D. Thus we may find some N with
∫
D\DN

gdµ < ε
5 .

Then at all M ≥ N we have

|
∫
X

fdµ−
M∑
n=1

∫
fndµ| = |

∫
X

fdµ−
∫ M∑

n=1

fndµ|

≤
∫
DN

|f −
M∑
n=1

fn|dµ+
∫
D\DN

|f |dµ+
∫
D\DN

|
M∑
n=1

fn|dµ+
∫
X\D

|f |dµ+
∫
X\D

|
M∑
n=1

fn|dµ

≤
∫
DN

ε

5µ(D)
dµ+

∫
D\DN

gdµ+
∫
D\DN

gdµ+
∫
X\D

gdµ+
∫
X\D

gdµ < ε.

2

Theorem 5.3 (Monotone convergence theorem) Let (X,Σ) be a measure space. Let µ : Σ→ R≥0 ∪ {∞} be
a measure. Let (fn)n∈N be sequence of functions, each fn : X → R integrable. Assume they are monotone,
in the sense that either fn ≤ fn+1 all n or fn ≥ fn+1 all n. Suppose∫

fndµ
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is bounded. Then there exists an integrable f with

fn(x)→ f(x)

for µ-a.e. x and ∫
|fn − f |dµ→ 0.

Proof Assume each fn ≤ fn+1, since the other case is symmetrical. Note then that in fact the integrals∫
fndµ

converge, since they form a bounded monotone sequence.
After possibly replacing each fn by fn − f1 we may assume the functions are all positive. Let g1 = f1

and for n > 1 let gn = fn − fn−1. Then
fN =

∑
n≤N

gn

and ∫
fNdµ =

∫ ∑
n≤N

gn =
∑
n≤N

∫
gndµ.

Now it follows from 5.2 that f is integrable and∫
fndµ =

∫ N∑
n=1

gndµ =
N∑
n=1

∫
gndµ→ f.

Since f ≥ fn at each n we have∫
|f − fn|dµ =

∫
f − fndµ =

∫
fdµ−

∫
fndµ,

as required. 2

Theorem 5.4 (Dominated convergence theorem) Let (X,Σ) be a measure space. Let µ : Σ → R≥0 ∪ {∞}
be a measure. Let (fn)n∈N be sequence of functions, each fn : X → R integrable. Suppose g : X → R is an
integrable function with |fn(x)| < g(x) all x ∈ X, n ∈ N. Suppose f : X → R is a function to which the fn’s
converge pointwise – that is to say,

fn(x)→ f(x)

all x ∈ X.
Then f is integrable and ∫

|f − fn|dµ→ 0.

Proof Fix ε > 0. Apply 4.5 to find some C with µ(C) <∞ and
∫
X\C gdµ < ε/6. At each N we can let CN

be the set of x ∈ C for which
∀n ≥ N(|f(x)− fn(x)| < ε

3µ(C)
).

The N ’s form an increasing set whose union is C, and thus we can find some large enough N with∫
C\CN

gdµ <
ε

6
.

35



Then ∫
X

|f − fN |dµ <
∫
X\C
|f − fN |dµ+

∫
CN

|f − fN |dµ+
∫
C\CN

|f − fN |dµ

<

∫
X

2gdµ+
∫
CN

ε

3µ(C)
dµ+

∫
C\CN

2gdµ

<
2
6ε

+
µ(CN )
3µ(CN )

+
2
6ε

= ε.

2

Theorem 5.5 (Fatou’s lemma) Let (X,Σ) be a measure space. Let µ : Σ→ R≥0 ∪ {∞} be a measure. Let
(fn)n∈N be sequence of functions, each fn : X → R integrable, each fn ≥ 0. Suppose that

liminfn→∞
∫
fndµ <∞.

Then for a.e. x ∈ X
liminffn(x)

exists, and ∫
liminfn→∞fn(x)dµ ≤ liminfn→∞

∫
fndµ.

Proof Let
gn(x) = inf{fm(x) : m ≥ n}.

Since gn(x) can be expressed as
limm→∞min{fn+i(x) : i ≤ m}

and min{fn+i(x) : i ≤ m} ≥ min{fn+i(x) : i ≤ m + 1} ≥ 0 we can apply monotone convergence at 5.3 to
get that each gn is integrable with ∫

gndµ = lim
∫

min{fn+i : i ≤ m}.

gn ≤ gn+1 and each
∫
gndµ is bounded by liminfn→∞

∫
fndµ, so we can apply monotone convergence once

more to get that ∫
liminfn→∞fndµ =

∫
limn→∞gndµ = limn→∞

∫
gndµ.

At each n and k ≥ n we have
gn ≤ fk,

and hence ∫
gndµ ≤ infk≥n

∫
fkdµ,

and thus ∫
liminfn→∞dµ =

∫
limn→∞gndµ

= limn→∞

∫
gndµ ≤ limn→∞infk≥n

∫
fkdµ = liminfn→∞

∫
fndµ.

2
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Theorem 5.6 (Egorov’s theorem) Let (X,Σ) be a finite measure space. Let (fn)n be a sequence of measur-
able functions which converge pointwise – that is to say there is a function f such that for all x

fn(x)→ f(x)

as n→∞. Then for any ε > 0 there is A ∈ Σ with µ(X \ A) < ε and (fn) converging uniformly to f on A
– that is to say

∀δ > 0∃N ∈ N∀n > N∀x ∈ A(|fn(x)− f(x)| < δ).

Proof At each N ∈ N and δ > 0 we can let

BN,δ = {x : ∀n,m > N(|fn(x)− fm(x)| < δ}.

For each δ and each N , BN,δ ⊂ BN+1,δ, each BN,δ is measurable, and the union⋃
N

BN,δ = X.

Thus at each k ≥ 1 we can find some Nk such that

µ(X \BNk,
1
k

) < 2−kε.

Then for
B =

⋂
k

BNk

we have µ(X \B) < ε and for all x ∈ B and all n,m > Nk

|fn(x)− fm(x)| < 1
k

∴ |fn(x)− f(x)| ≤ 1
k
.

2
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6 Radon-Nikodym and conditional expectation

One of the most important theorems in measure theory is Radon-Nikodym. It can be proved without a large
amount of background and we may as well do so now.

Definition Let X be a set and Σ ⊂ P(X) a σ-algebra.

µ : Σ→ R

is said to be a signed measure if
(a) µ(∅) = 0;
(b) if (An)n∈N is a sequence of disjoint sets in Σ, then

µ(
⋃
n∈N

An) =
∞∑
n=1

µ(An).

Note here we are assuming finiteness of the measure and in (b) above we are demanding convergence of
the series. Here in fact (a) is redundant – following from (b) and µ only taking finite values.

Lemma 6.1 If Σ is a σ-algebra on X and µ : Σ → R is a signed measure, then whenever (Bn)n∈N is a
sequence of sets in Σ

µ(
⋂
n∈N

Bn) = limN→∞µ(
⋂
n≤N

Bn).

Proof First some cosmetic rearrangement. Let Cn =
⋂
i≤nBi. So at every n we have Cn ⊃ Cn+1, but the

sequence has the same infinite intersection. Now consider the difference sets and define Dn = Cn \Cn+1; the
Dn’s are now disjoint and if we let B∞ =

⋂
i∈N Bi represent the infinite intersection we have the equalities

Cn = B∞ ∪Dn ∪Dn+1 ∪Dn+2....

at every n. Thus
µ(Cn) = µ(B∞) +

∑
m≥n

µ(Dm).

This in particular implies
∑∞
m=1 µ(Dm) is convergent and∑

m≥n

µ(Dm)→ 0

as n→∞, which is all we need to ensure µ(Cn)→ µ(B∞). 2

Theorem 6.2 (Hahn Decomposition Theorem) Let Σ be a σ-algebra on X and µ : Σ→ R a signed measure.
Then there exists A ∈ Σ such that for all B ∈ Σ, B ⊂ A

µ(B) ≥ 0

and for all C ∈ Σ, C ⊂ X \A
µ(C) ≤ 0.
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Proof Let δ be the supremum of the set {µ(A) : A ∈ Σ}. Let (Bn)n∈N be a sequence of sets in Σ with

µ(Bn)→ δ.

Then at each n let An be the algebra of sets generated by (Bi)i≤n.
Let’s pause for a moment and observe some of the properties of these An algbras. First, each is finite,

since it is generated by finitely many sets. Moreover An will have “atoms” of the form⋂
i∈S

Bi ∩
⋂

i≤n,i/∈S

Bi :

each of these atoms contains no smaller non-empty set in An and every element of An is the finite union of
such atoms. Finally note that Bn is an element of An.

At each n, let Cn be element of An with maximum value under µ. Since Bn ∈ An we have

µ(Bn) ≤ µ(Cn)

and µ(Cn)→ δ and Cn consists of the finite union of atoms in An with positive measure.

Claim: At each n, µ(
⋃
i≥n Ci) ≥ µ(Cn).

Proof of Claim: Since at any j ≥ n, Cj \
⋃
n≤i<j Ci equals the union of finitely many atoms with positive

measure. (Claim�)

Now let
A =

⋂
n∈N

⋃
i≥n

Ci.

Then by the last lemma µ(A) = limn→∞µ(
⋃
i≥n Ci) = δ.

Now note that is immediately implies δ is finite, since µ is finite and we attained the value δ with µ(A).
Since A has attained this maximum value δ we must have every B ⊂ A in Σ with µ(B) ≥ 0 (for otherwise

µ(A \B) would be greater than µ(A)). Similarly for any C ∈ Σ disjoint to A we must have µ(C) ≤ 0. 2

Theorem 6.3 (Hahn-Jordan Decomposition) Let Σ be a σ-algebra on a set X. Let µ : Σ → R be a signed
measure. Then we can find to measures µ+, µ− : Σ→ R≥0 with

(i) µ = µ+ − µ−;
(ii) µ+, µ− have disjoint support.

Proof The statement of the theorem should be quickly clarified. (i) states that for any set C ∈ Σ we have
µ(C) = µ+(C)−µ−(C). (ii) states that we can some A ∈ Σ with µ+(B) = 0 when B ⊂ X \A and µ−(B) = 0
when B ⊂ A.

With this clarification in mind, the proof of the theorem is an immediate consequence of 6.2: Choose A
for µ as there, and then let µ+(B) = µ(A ∩B) and µ−(B) = −µ(B \A). 2

Definition Given two measures µ, ν : Σ→ R ∪ {∞}, we say that µ is absolutely continuous with respect to
ν, written

µ << ν,

if whenever B ∈ Σ has ν(B) = 0 then µ(B) = 0.

We have dealt with the concept of measurable functions in different contexts already. So there is no
possibility of confusion, let us fix a convention for the entirely general context of σ-algebras.

Definition Let Σ be a σ-algebra on a set X. f : X → R is measurable with respect to Σ if f−1[U ] is in Σ
for any open U ⊂ R.
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Exercise Show that f : X → R is measurable with respect to Σ if for any q ∈ Q we have

f−1[(−∞, q)] ∈ Σ.

Exercise Show that if f : X → R is measurable with respect to Σ then for any Borel B ⊂ R we have
f−1[B] ∈ Σ.

Theorem 6.4 (Radon-Nikodym) Let Σ be a σ-algebra on a set X. Let µ, ν : Σ → R ∪ {∞} be σ-finite
measures with µ << ν. Then there is a measurable with respect to Σ function

f : X → R

such that for any C ∈ Σ

µ(C) =
∫
C

f(x)dν(x).

Proof We can assume µ, ν are finite measures, since otherwise we could partition the space X into a
countable collection of elements in Σ on which both are finite and it would suffice to prove the theorem on
each of these pieces.

At each q ∈ Q, q > 0, let µq = µ− q · ν; that is to say, we define µq by

µq(A) = µ(A)− qν(A).

Each of these is a signed measure on (X,Σ). Applying 6.2 we can find Aq ∈ Σ with µq(B) ≥ 0 all
B ⊂ Aq, B ∈ Σ, µq(C) ≤ 0 all C ⊂ X \Aq, C ∈ Σ.

Note that for q1 < q2 we have Aq1 \Aq2 null with respect to ν and hence after discarding some null sets
we can assume

q1 < q2 ⇒ Aq2 ⊂ Aq1 .

By the assumption of µ << ν we get
⋂
q∈Q Aq null with respect to both these measures – since otherwise we

could let A∞ =
⋂
q∈Q Aq and unwinding the definitions we would have µ(A∞) > qν(A∞) all q ∈ Q, which

would imply ν(A) = 0; and then again after possibly discarding a null set we can assume⋂
q∈Q

Aq = ∅;

so if we let
f(x) = sup{q : x ∈ Aq}

we obtain a measurable with respect to Σ function f : X → R≥0.
For q1 < q2 let Bq1,q2 = Aq1 \Aq2 .

Claim: For B ⊂ Bq1,q2 in Σ

|
∫
B

f(x)dµ(x)− µ(B)| ≤ (q2 − q1)ν(B).

Proof of Claim: We have B ⊂ Aq1
∴ µq1(B) ≥ 0

∴ µ(B) ≥ q1ν(B),

and similarly B is disjoint to Aq2 and
∴ µq2(B) ≤ 0,
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∴ µ(B) ≤ q2ν(B).

In other words, we have the inequality

q1ν(B) ≤ µ(B) ≤ q2ν(B).

Then since f(x) ranges between q1 and q2 on Bq1,q2 and hence B we obtain the parallel inequality

q1ν(B) ≤
∫
B

f(x)dν(x) ≤ q2ν(B),

and hence
|
∫
B

f(x)dµ(x)− µ(B)| ≤ (q2 − q1)ν(B),

as required. (Claim�)

This last observation is all we need. Given any C ⊂ X we can first fix ε > 0 and let

C` = C ∩B`·ε,(`+1)·ε.

Again we are implicitly using µ << ν to see that C =
⋃
`∈N C`.

|
∫
C

f(x)dν(x)− µ(C)| = |
∑
`∈N

∫
C`

f(x)dν(x)−
∑
`∈N

µ(C`)|

≤
∑
`∈N
|
∫
C`

f(x)dν(x)− ν(C`)|,

which by the above claim is bounded by ∑
`∈N

εν(C`) = εν(C).

Letting ε tend to zero we obtain
∫
C
f(x)dν(x) = ν(C). 2

The function f we arrived at in the theorem above is not necessarily unique, but it is almost unique. I
will leave at as an exercise for you to see that if f0 is another function with

µ(C) =
∫
C

f0(x)dν(x)

on any C ∈ Σ then f0 agrees with f off a ν null set. This virtual uniqueness motivates a definition: We say
that f as in the theorem is the Radon-Nikodym derivative, and is sometimes denoted by the slightly poetical
notation

dµ

dν
.

A crucial application of Radon-Nikodym is the existence of conditional expectation. At first sight the
theorem may appear abstract to the point of being ethereal. A couple of motivating examples can give a
sense of its true content.
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Examples (i) Let X be a finite set – say X = {1, 2, 3, 4, 5, 6}. Let f : X → R. For instance, f(n) = n2,
just for example. Let B be a subset of X – say B = {2, 3, 4}. If someone tells you that they are thinking of
a number chosen randomly from B, you would probably have an intuitive idea of the expectation of f on B:
You would probably take the average value of f over B:

1
3

(4 + 9 + 16) = 9
2
3
.

(ii) A little bit more abstract, let us take X to be the surface of the planet earth and f(x) the average
temperature of the location x. Using that information you would probably be able to go ahead and calculate
the average temperature at a given latitude. So in this way we could discard, as it were, some of the
information carried by f and obtain another function which records averages along the latitudes alone.

(iii) Alternatively, you may have a formula which can precisely compute the oxygen intake of a microbe
based on its size and age. In the course of an experiment perhaps only the age is known, and then the best
guess as to the oxygen intake would be your expectation given the partial information available.

Intuitively then it doesn’t seem outrageous to give a best guess or expectation of a function on the basis
of partial information. The following slick theorem justifies this rigorously. With Radon-Nikodym already
available to us, the proof is very, very short – don’t blink or you will miss it.

Theorem 6.5 Let Σ0 ⊂ Σ1 be two σ-algebras on a set X. Let µ be a measure on (X,Σ1). Assume that µ
is σ-finite with respect to Σ0 – we can partition X in to sets in Σ0 on which µ is finite. Let

f : X → R

be measurable with respect to Σ1.
Then there is a function

g : X → R

which is measurable with respect to Σ0 such that on any B ∈ Σ0∫
B

g(x)dµ(x) =
∫
B

f(x)dµ(x).

Proof First of all, we can assume f ≥ 0, since otherwise we write f = f+ − f−, f+ = 1
2 (|f | + f),

f− = 1
2 (|f | − f) and apply the result to these two non-negative functions in turn.

Now let ν be defined on (X,Σ0) by

ν(B) =
∫
B

f(x)dµ(x)

all B ∈ Σ0. Let µ0 = µ|Σ0 , the restriction of µ to the sub σ-algebra Σ0. Thus we have ν and µ0 two measures
on Σ0. Clearly

ν << µ0

since if µ(B) = 0 then certainly
∫
B
f(x)dµ(x) = 0.

Hence we can apply 6.4 and obtain g : X → R which is measurable with respect to Σ0 and has for all
B ∈ Σ0 ∫

B

f(x)dµ(x) = ν(B) =
∫
B

g(x)dµ(x),

just as needed. 2
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Definition For f, g,Σ0,Σ1, X as in the statement of the last theorem, we say that g is the conditional
expectation of f with respect to Σ0 and write

g = E(f |Σ0).

Strictly speaking there is the same grammatical flaw in this terminology which we saw in the use of the
term the Radon-Nikodym derivative. The conditional expectation is only defined up to null sets, but since
this is good enough for our purpose we indulge the definite article.

Think of E(f |Σ0) this way: This is the function whose value at a point x ∈ X only depends on which
elements of Σ0 the point lies inside; it is as if we are forbidden to access any information about x which uses
sets in Σ1 but not Σ0.

In passing we mention that 6.3 gives a transparent definition of integration against signed measures.

Definition Let Σ be a σ-algebra on a set X and let µ be a signed measure on Σ. Let µ+, µ− : Σ → R be
measures on Σ with

µ = µ+ − µ−

and µ+, µ− having disjoint supports. Then for any Σ-measurable f : X → R we let∫
fdµ =

∫
fdµ+ −

∫
fdµ−.
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7 Standard Borel spaces

The theory of measurable spaces can be developed in various levels of generality. I generally take the view
that most of the natural spaces in this context are either Polish spaces or standard Borel spaces.

Definition A topological space is Polish if it is separable and admits a compatible complete metric. We
then define the Borel sets in the space to be those appearing in the smallest σ-algebra containing the open
sets.

Examples (i) Any compact metric space forms a Polish space. For instance if we take

2N =
∏
N
{0, 1},

the countable product of the two element discrete space {0, 1}, then we have a Polish space. (For the metric,
given ~x = (x0, x1, ...), ~y = (y0, y1, ...), take d(~x, ~y) to be 2−n, where n is least with xn 6= yn.)

(ii) R and C are Polish spaces, as are all the RN ’s and CN ’s.
(iii) Any closed subset of a Polish space is Polish.
(iv) Let C([0, 1]) be the collection of continuous functions from the unit interval to R. Given f, g ∈

C([0, 1]) let d(f, g) be
supz∈[0,1]|f(z)− g(z)|.

As some of you may be aware, this metric can be shown to be complete and separable, and hence the induced
topology is Polish. (More generally, any separable Banach space is Polish in the topology induced by the
norm.)

Exercise (i) The Borel subsets of a Polish space can be characterised as the smallest collection containing
the open sets, the closed sets, and closed under the operations of countable union and countable intersection.

(ii) The Borel sets may also be characterised as the smallest collection containing the open sets, closed
under complements, and closed under countable intersections.

Note here we don’t care about the specific metric: Only that a complete compatible metric exists. We
have abstracted away the metric, and only ask that the remaining topology could have been presented as
arising from a suitable metric.

There is a bit of knack to showing sets are Borel. The next exercise is typical of the kind of reasoning
we use – breaking down a seemingly complicated set into smaller constituents of its definitions.

Exercise Let X = 2N, the collection of all functions from N to {0, 1} in the product topology.
(i) Show that for each N and r ∈ R, the collection AN,r of f ∈ X with

1
N
|{n < N : f(n) = 1}| > r

is Borel.
(ii) Similarly, for each N and r ∈ R, the collection BN,r of f ∈ X with

1
N
|{n < N : f(n) = 1}| < r

is Borel.
(iii) Show that the set of f ∈ X such that

liminfN→∞
1
N
|{n < N : f(n) = 1}| ≥ 1

2
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is Borel. (Hint:
⋂
q< 1

2 ,q∈Q
⋃
M∈N

⋂
N≥M AN,q.)

(iv) Similarly for limsup ≤ 1
2 .

(v) And thus the set of f ∈ X with

limN→∞
1
N
|{n < N : f(n) = 1}| = 1

2

is Borel.

Very frequently we are only concerned with a Polish space’s Borel structure. This prompts one further
round of abstraction.

Definition A set X equipped with a σ-algebra Σ is said to be a standard Borel space if there is some choice
of a Polish topology on X which gives rise to Σ as the corresponding collection of Borel sets.

At the end of these short definitions there is a remarkable fact whose proof is too involved to present
here.

Theorem 7.1 Any two uncountable standard Borel spaces are Borel isomorphic.

That is to say, if (X1,Σ1), (X2,Σ2) are uncountable Borel spaces, then there is a bijection

π : X1 → X2

such that for all A ⊂ X2

A ∈ Σ2 ⇔ π−1[A] ∈ Σ1.

A proof of this theorem can be found at 15.6 [6]. A key part of the proof is showing any uncountable
Polish space contains a homeomorphic copy of Cantor space.

Definition If X is a standard Borel space and Σ ⊂ P(X) the σ-algebra of Borel sets, then a Borel measure
on X is a measure in the earlier sense

µ : Σ→ R≥0 ∪ {∞}.

Again we say that M ⊂ X is measurable if there are Borel sets A,B with

A ⊂M ⊂ B,

µ(B \A) = 0.

We then let µ(M) = µ(A).

Definition A measure µ on X is said to have a point a ∈ X as an atom if µ({a}) > 0. µ is said to be a
probability measure if µ(X) = 1. A standard Borel space equipped with a Borel probability measure is called
a standard Borel probability space.

And again we have a remarkable fact:

Theorem 7.2 Any two atomless standard Borel probability spaces are isomorphic.
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In other words, if (X1,Σ1, µ1), (X2,Σ2, µ2) are atomless standard Borel probability spaces, then there is
a bijection

π : X1 → X2

sending inducing an isomorphism of (X1,Σ1) ∼= (X2,Σ2) with the additional property that for A ∈ Σ2

µ2(A) = µ1(π−1[A]).

In particular, any atomless standard Borel probability space is isomorphic to the unit interval equipped with
the (restriction of) Lebesgue measure. See 17.41 [6].

In this course I will largely concentrate on probability spaces. In the literature, almost all work on infinite
measure spaces is under the assumption of the space being σ-finite – and in this case we can partition the
space into countably many pieces of measure one. In the case of finite spaces with measure other than one,
we can rescale the measure by a constant to get the total mass back to one. Thus the loss of generality in
working with probability spaces is very minor.

Exercise (i) Show that if (X,Σ, µ) is a standard Borel probability space and (Bn)n∈N is a sequence of sets
in Σ, then

(a) µ(
⋃
n∈N Bn) = limN→∞µ(

⋃
n≤N Bn);

(b) µ(
⋂
n∈N Bn) = limN→∞µ(

⋂
n≤N Bn).

(ii) Show that (b) above might fail if we simply assume µ to be a σ-finite measure on a standard Borel
space (X,Σ).

Definition A function f : X → Y between two Polish spaces is said to be Borel if f−1[U ] is Borel for any
open U ⊂ Y .

Lemma 7.3 If f : X → Y is Borel, then for any Borel B ⊂ Y we have f−1[B] Borel.

Proof Let Σ be the collection of subsets of Y for which the pullback along f is Borel. By assumption this
contains the open sets. It is a σ-algebra, since

f−1[Y \B] = X \ f−1[B]

and
f−1[

⋂
Bn] =

⋂
f−1[Bn].

Thus it includes the Borel sets. 2

With this lemma in our tool kit we can go forward and define the concept of Borel function when there
is no topology in sight.

Definition Let X and Y be standard Borel spaces. f : X → Y is a Borel function if f−1[B] is Borel for
any Borel B ⊂ Y .

Exercise (i) Show that if X and Y are Polish spaces, then X × Y is Polish in the product topology.
(ii) For X and Y as above, and f : X → Y a Borel function, show that f is Borel as a subset of X × Y .

Lemma 7.4 f : X → R is measurable if f−1[O] is measurable for each open O ⊂ R.
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Proof Let Σ be the collection of all A ⊂ R with f−1[A] measurable. Σ includes the open sets by assumption.
Since the measurable subsets of X form a σ-algebra and

f−1[R \A] = X \ f−1[A],

f−1[
⋃
Ai] =

⋃
f−1[Ai],

f−1[
⋂
Ai] =

⋂
f−1[Ai],

we have that Σ includes the Borel sets. 2

Exercise Show that any measurable function on a standard Borel probability space agrees with a Borel
function on some conull Borel set.

This concept of measure is apparently ethereal. It involves considering the collection of all Borel subsets
and considering the behavior of the measure with respect to arbitrary sequences of Borel sets. Later in
the course we will discuss a form of the Riesz representation theorem which enables us to give a concrete
description of the collection of Borel probability measures on a compact metric space; this representation
theorem will in particular enable us to view the collection of probability measures as forming a well behaving
topological space in its own right.
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8 Borel and measurable sets and functions

It is only a slight exaggeration to describe standard Borel probability spaces as the basic object of study for
this course. Recall that this consists of a set X equipped with a σ-algebra Σ and a function

µ : Σ→ [0, 1]

such that there is a Polish topology on X giving rise to Σ as the Borel sets and µ is a measure with µ(X) = 1.
Of course people can and do study measures on more general kinds of spaces, but for practical purposes

standard Borel spaces are likely to include all the examples you will ever encounter. The situation with the
measure having mass one – µ(X) = 1 – is a bit more subtle. It is natural to consider σ-finite measures –
such as R equipped with Lebesgue measure. But even here one can partition the space into countably many
pieces each having measure one. In the case that µ(X) is a finite number other than 1, the situation is
sufficiently similar to a probability space for us to be unconcerned.

This section will discuss finer results on measurable functions on standard Borel spaces. We could spend
a lot more time here, and a lot of the results are on the edge of my own field of descriptive set theory. Instead
I will present a couple of tricks which occur over and over in certain branches of analysis. Frequently one
needs to know when a function or set is measurable. Certainly Borel sets are measurable; we will also see
that the projections of Borel sets are measurable as well.

Lemma 8.1 Let X be a Polish space, Σ its σ-algebra of Borel sets, and µ a Borel probability measure on
X. Then for A ∈ Σ we have

µ(A) = sup({µ(F ) : F ⊂ A,F closed})

= inf({µ(O) : O ⊃ A,O open}).

Proof Let d be a compatible complete metric on X. Let Σ0 be the collection consisting of all Borel sets A
satisfying the conditions above. Note that for O open and n ∈ N we can let

Fn = {x ∈ O : d(x,X \O) ≥ 1
n
},

where d(x,X \O) = inf{d(x, y) : y ∈ X \O}. Then

O =
⋃
n

Fn,

and hence µ(O) = limµ(Fn), and thus O ∈ Σ0.
Inspecting the definition and using µ(X) = 1 we have that Σ0 is closed under complements.
Finally suppose (An)n∈N is a sequence of sets in Σ0. Fix ε > 0. For each n we can find closed Fn ⊂ An

with µ(An \ Fn) < ε
2n+1 . Then we can go to some large K with µ((

⋃
n∈N An) \ (A1 ∪ A2 ∪ ...AK)) < ε

2 . It
then follows that µ((

⋃
n∈N An) \ F1 ∪ F2...Fk) < ε.

Similarly if we choose open On ⊃ An open with µ(On \An) < ε
2n , then µ((

⋃
n∈N On) \ (

⋃
n∈N An)) < ε..

2

Lemma 8.2 Let X be a Polish space, Σ its σ-algebra of Borel sets, and µ a Borel probability measure on
X. Then for A ∈ Σ we have

µ(A) = sup({µ(K) : K ⊂ A,K compact}).
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Proof Fix ε > 0. By the last lemma we may assume A is closed. Now fix (xi)i∈N dense in A and at each i
let B1

i be {y ∈ A : d(xi, y) ≤ 1}. Thus we have covered A by countably many balls of radius 1. We may find
some N1 such that µ(A \

⋃
i<N1

B1
i ) < ε

2 . Repeating we may let B2
i = {y ∈ A : d(xi, y) ≤ 1/2} and find N2

such that µ(A \
⋃
i<N2

B2
i ) < ε

4 , and that at each ` set B`i = {y ∈ A : d(xi, y) ≤ 2−`} and find N` such that
µ(A \

⋃
i<N`

B`i ) <
ε
2` . If we take

K =
⋂
`

⋃
i<N`

B`i

then K is closed and 2−`-bounded for each `, hence compact. 2

Theorem 8.3 (Lusin) Let X be a Polish space and µ a Borel probability measure on X. If

f : X → Y

is a Borel function into a Polish Y , then for any ε > 0 there is a compact K ⊂ X with f |K continuous and
µ(K) > 1− ε.

Proof Let {U` : ` ∈ N} be a countable basis for Y . At each ` apply 8.1 to find open O` ⊃ f−1[U`] with

µ(O` \ f−1[U`]) <
ε

2`
.

Then it is immediate that f is continuous on

X \ (
⋃
O` \ f−1[U`]).

The measure of this set is greater than 1− ε and so we can finish by 8.2. 2

Definition For (A, d) a metric space and B ⊂ A, the diameter of B, d(B), is the sup d(a, a′) as a, a′ range
over B.

Notation For s a sequence of length `, and a an element, saa is the sequence of length ` + 1 extending s
with final term a.

Lemma 8.4 Let X,Y be Polish and
f : X → Y

continuous. Then f [X] is measurable (with respect to any Borel probability measure µ on Y ).

Proof Fix dX and dY complete, compatible metrics on X and Y .

Claim: If C ⊂ X closed and ε > 0, then we can find (Cn)n∈N closed subsets of C such that

C ⊂
⋃
Cn

and at each n,
dX(Cn) < ε,

dY (f [Cn]) < ε.

Proof of Claim: Fix a countable basis for X. Around each x ∈ C we can find a basic open U of diameter
less than ε with f [U ] of diameter less than ε. We then let (Cn)n∈N enumerate the sets of the form

C ∩ U
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as U ranges over such basic open sets. (�Claim)

Iterating the above lemma we can find an array of closed sets

(Cs)s∈N<∞ ,

indexed by the finite sequences of natural numbers, such that
(a) C∅ = X;
(b) each

⋃
n∈N Csan = Cs;

(c) if s ∈ Nn (i.e. a sequence of length n), then

dX(Cs) < 2−n,

dY (f [Cs]) < 2−n.

At each s choose Borel Bs ⊃ f [Cs] Borel with

Bs ⊂ f [Cs]

and µ(Bs) as small as possible.

Claim Bs \
⋃
n∈N Bsan is always null.

Proof of Claim: Since
f [Cs] =

⋃
n∈N

f [Csan] ⊂
⋃
n∈N

Bsan

and we chose Bs to have minimal measure. (�Claim)

We then let A =
⋃
s∈N<∞(Bs \

⋃
nBsan). A is the countable union of null sets, and hence null.

B∅ ⊃ f [C∅] = f [X] so it suffices to show B∅ \A ⊂ f [C∅]. If y ∈ B∅ \A, then we can choose

s0 ⊂ s1 ⊂ s2...

such that each s` is of length ` and y ∈ Bs`
.

Then we may find y` ∈ f [Cs`
] since Bs`

⊂ f [Cs`
] is non-empty. Then fix corresponding x` ∈ Cs`

with
f(x`) = y`.

The diameters of the (f [Cs`
])` sets are approaching zero, so we have y` → y. Since dX(Cs`

) < 2−` we
have (x`)` Cauchy and hence there is some x with x` → x. By continuity, f(x) = y. 2

This lemma can in fact be proved even in the case when f is simply a Borel function. There are various
ways of approaching the proof of the more general result, but I will proceed by showing any Borel function
can be made continuous by an appropriate strengthening of the topology.

Lemma 8.5 Let (X, d) be a complete metric space. Then there is a compatible complete metric bounded by
1.

Proof Let d∗(x, y) = min(1, d(x, y)). 2

Theorem 8.6 Let X be a Polish space and B ⊂ X Borel. Then there is a stronger Polish topology on X
under which B becomes clopen – that is to say, both open and closed.

Here when I say one topology is stronger than another I mean it has more open sets.
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Proof The usual pattern. We want to show that the collection Σ of such sets includes the open sets, is
closed under complements and countable intersections.

First to see that it includes the open sets, let O ⊂ X be open and d a compatible complete metric on X
bounded by 1. For x, y ∈ X \O let d′(x, y) = d(x, y). For x ∈ O, y ∈ X \O, set d′(x, y) = 2. And finally for
x, y ∈ O let

d′(x, y) = min{1, d(x, y) + | 1
d(x,X \O)

− 1
d(y,X \O)

|}.

It is easily seen that if (xn)n is a d′-Cauchy sequence included in O, then it is d-Cauchy with limit inside O.
It is immediate from the structure of the definitions that Σ is closed under complements.
Finally, let (Bn)n be a sequence of sets in Σ and at each n let dn be a complete metric which gives rise

to a stronger Polish topology in which Bn is clopen. We may assume dn is bounded by 1. We can then let

d∗(x, y) =
∑

2−ndn(x, y).

It is routine to verify this is a complete metric and that the resulting topology is separable. The topology
generated by d∗ is at least as fine as each of dn’s, so each Bn becomes clopen. Thus

⋂
Bn is closed in the new

Polish topology. Going back to the second paragraph of the proof, we can find a stronger Polish topology in
which

⋂
Bn becomes clopen. 2

Corollary 8.7 Let f : X → Y be a Borel function between Polish spaces. Then there is a stronger Polish
topology on X under which f becomes continuous.

Proof Let {Un : n ∈ N} be a countable basis for the topology on Y . At each n let dn be a complete metric
on X given rise to a stronger Polish topology in which f−1[Un] is clopen. We may assume each dn is bounded
by 1, and so the topology generated by the metric

d∗(x, y) =
∑

2−ndn(x, y)

is as required. 2

Corollary 8.8 If f : X → Y is Borel, B ⊂ X Borel, then f [B] is measurable in Y with respect to any Borel
probability measure.

Proof By 8.4 and 8.7. 2

The corollary 8.8 or the next result below is sometimes called Jankov von Neumann.
There is a little bit more we can extract from the proof of 8.8 and 8.4. This extra piece turns out to be

important in certain contexts. Roughly speaking it states that we may find a measurable selector for Borel
functions – a right inverse if you will.

Theorem 8.9 Let X and Y be standard Borel spaces, µ a standard Borel probability measure on Y , f :
X → Y Borel. Then there is a measurable function ρ : f [X]→ X such that

f(ρ(y)) = y

all y ∈ f [X].

Proof Fix compatible Polish topologies on X and Y . Following 8.7 we may assume f is continuous. Going
through the proof of 8.4, it suffices to define ρ on

B∅ \
⋃
s

(Bs \
⋃
n

Bsan).
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But now for y in this set we can successively define ny0 to be least n with

y ∈ B〈n〉,

then ny1 least n with
y ∈ B〈ny

0 ,n〉,

and more generally ny`+1 to be least such

y ∈ B〈ny
0 ,n

y
1 ,...,n

y
` ,n〉.

One verifies that for each s ∈ N<∞ and ` ∈ N the set

{y ∈ f [X] : 〈ny0, n
y
1, ...n

y
` 〉 = s}

is measurable. We then let ρ(y) be the unique x in⋂
`

C〈ny
0 ,n

y
1 ,...,n

y
` 〉.

The function ρ is measurable since for any open U ⊂ X we have ρ(y) ∈ U if and only if there is some `
with

C〈ny
0 ,n

y
1 ,...,n

y
` 〉 ⊂ U.

2

Warning: There is a notorious paper from early last century where Lebesgue claimed the Borel image of a
Borel set is always Borel. This is false. The counterexamples are not obvious, but they do exist.

What is true however is a rather subtle result when all the sections are sufficiently small. Recall that a
function is countable to one if the preimage of every point in the range is finite or countably infinite.

Theorem 8.10 (Lusin Novikov) Let X and Y be standard Borel spaces. Let f : X → Y be a countable to
one Borel function. Then:

(I) f [X] is Borel;
(II) there is a countable collection of Borel functions {gn : n ∈ N} from f [X] to X, such that for all
y ∈ f [X],

{gn(y) : n ∈ N} = {x ∈ X : f(x) = y}.

The proof of this theorem, which goes far beyond the scope of our course, can be found at 18.10 [6].
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9 Summary of some important terminology

This subject is riddled with many similarly sounding definitions. In some cases similar sounding phrases can
mean the same thing, slightly different things, or even completely different things. The terminology used by
mathematicians in the area is often somewhat illogical or contradictory, and it has come about for largely
accidental reasons. However it is also a fact of life.

Here is a brief summary of some of the concepts we have considered so far.

Definition A set X equipped with a σ-algebra Σ is said to be a measure space. In this case some people
might say that a subset of X is measurable if it is in Σ – but I have tried to avoid that terminology due to
the potential confusion with the the radically different notion of µ-measurable, defined below.

A set X equipped with a σ-algebra Σ is said to be a standard Borel space if there is some choice of a
Polish topology on X which gives rise to Σ as its collection of Borel sets – in other words, Σ is the smallest
σ-algebra containing the open sets of the Polish topology on X. Here one customarily refers to the elements
of Σ as the Borel sets. Be warned that people will often refer to X as a standard Borel space without
making explicit reference to Σ; this is similar to identifying a topological space with its underlying set or
identifying a group with its set of elements – not quite literally and fastidiously correct, but natural once
you are comfortable with the concepts.

Given a measure space (X,Σ) and a measure µ on Σ, we say that A ⊂ X is µ-measurable if there are
B1, B2 ∈ Σ with B1 ⊂ A ⊂ B2 and µ(A2 \A1) = 0. Unfortunately in this situation if the measure µ is made
clear by context, some people may simply refer to the µ-measurable sets as “measurable”, but because of
the obvious potential for confusion, I have tried to avoid doing so.

In the context of Lebesgue measure mn on Rn, we say that A ⊂ Rn is Lebesgue measurable if it is
mn-measurable in the sense above.

Definition Let (X1,Σ1), (X2,Σ2) be measure spaces. A function

f : X1 → X2

is measurable if for any A ∈ Σ2 we have f−1[A] ∈ Σ1. If there is any uncertainty about which σ-algebra on
X1 we have in mind, one would refer to such an f as a Σ1-measurable function.

Given (X1,Σ1), (X2,Σ2) standard Borel,

f : X1 → X2

is Borel if for any Borel subset A of X2 we have f−1[A] Borel as a subset of X1. Thus a Borel function is a
measurable function where the measure spaces in question are standard Borel. Be warned that some authors
use Borel measurable function to refer to what I am calling a “Borel function”.

Given (X1,Σ1), (X2,Σ2) measure spaces and µ a measure on Σ1, we say that a function

f : X1 → X2

is µ-measurable if for any A ∈ Σ2 we have that f−1[A] is µ-measurable. Alas, in the strange, arbitrary world
in which we live in, some people will refer to such a function f as simply being “measurable” if context has
indicated µ – which clearly conflicts with the definition of measurable function between measure spaces I
have given above.

There are various equivalent conditions on a function being measurable, Borel, or µ-measurable.

Lemma 9.1 Let (X1,Σ1), (X2,Σ2) be standard Borel spaces. Let τ be a Polish topology on X1 which gives
rise to Σ1 as its collection of Borel sets. Let B be a basis for the topology τ . Then the following are equivalent:
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1. f is Borel;

2. f−1[V ] ∈ Σ1 for any V ∈ τ ;

3. f−1[V ] ∈ Σ1 for any V ∈ B.

Lemma 9.2 Let (X1,Σ1), (X2,Σ2) be standard Borel spaces and let µ be a measure on Σ1. Let τ be a Polish
topology on X1 which gives rise to Σ1 as its collection of Borel sets. Let B be a basis for the topology τ .
Then the following are equivalent:

1. f is µ-measurable;

2. f−1[V ] is µ-measurable for any V ∈ τ ;

3. f−1[V ] is µ-measurable for any V ∈ B.
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10 Review of Banach space theory

It goes too far beyond the scope of this course to enter into any proofs in this section. I will, however, recall
the basic material we will need for the discussion of the Riesz representation theorem and Stone-Weierstrass.

Banach spaces can be taken over either the field R or the field C. The former is conceptually simpler to
work with, but in some cases it is important to be able to find roots for polynomials, and that requires C. I
will use K to denote either R or C, depending on the circumstances.

Definition Let K be either R or C. A vector space B over K is said to be a Banach space if it is equipped
with a function

|| · || : B→ R≥0

such that:

1. ||v|| = 0 if and only if v = 0;

2. ||v + w|| ≤ ||v||+ ||w||;

3. ||cv|| = |c|||v|| for c ∈ K, v ∈ B;

4. if we define d(v, w) = ||v − w||, then d(·, ·) is a complete metric on B.

Examples 1. An example which has been lurking in the background is L1(X,µ), where (X,Σ) is a
measure space and µ : Σ→ R≥0∪{∞} is a measure. This consists of all integrable functions f : X → K
with ||f || =

∫
X
|f(x)|dµ(x). In order to make this pass item 1 from the definition of a Banach space we

identify any two functions which agree a.e. There is a non-trivial argument to show completeness of
the norm – see for instance [7] or [10].

2. A generalization of this is to the Lp spaces for p ≥ 1. Here Lp(X,µ) is the collection of functions for
which x 7→ |f(x)|p is integrable, with norm ||f || = (

∫
X
|f(x)|pdµ(x))

1
p .

Here the example of L2(X,µ) is especially important, because it forms a Hilbert space. We have an
inner product

〈f, g〉 =
∫
X

f(x)g(x)dµ.

(Here g(x) is the complex conjugate of g(x). If g(x) = a + bi, a, b ∈ R, then its complex conjugate is
a− bi.)

3. A slight variation on the above example is L∞(X,µ) – where we can think of this as corresponding to
p = ∞. This is the collection of measurable functions f : X → K with f essentially bounded – which
is to say, for some c ∈ R>0 we have |f(x)| < c for µ-a.e. x.

4. There is a discrete variation of the above spaces. Given S some set, we let `p(S) be the set of functions
f : S → K such that ∑

a∈S
|f(a)|p <∞.

Note that in particular any f ∈ `p(S) will be identically zero off of a countable set.

5. For K a compact metric space, C(K) equals the collection of continuous functions from K to K.
A continuous function on a compact space is bounded, hence we obtain a well defined non-negative
quantity if we let ||f || = sup{|f(x)| : x ∈ K}. The argument that the resulting metric is complete
on C(K) amounts to a classical theorem from real analysis that a uniformly convergent sequence of
uniformly continuous functions converges to a continuous function. (We will return to this example in
greater detail in the section on the Riesz representation theorem).
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Definition For B a Banach space, B∗, the dual of B, consists of all linear functions φ : B → K which are
bounded in the sense that

{ |φ(v)|
||v||

: v ∈ B, v 6= 0}

is bounded. We then let ||φ|| = sup{ |φ(v)|
||v|| : v ∈ B, v 6= 0}. We equip B∗ with linear operations given by

pointwise addition and scalar multiplication:

ϕ1 + ϕ2 : v 7→ ϕ1(v) + ϕ2(v),

cϕ : v 7→ c · ϕ(v).

In these operations and the indicated norm, B∗ itself becomes a Banach space.

Examples In many specific situations there are very concrete ways of viewing the dual space.

1. If B = L2(X,µ) from above, then ϕ : L2(X,µ) → R will be in the dual if and only if there is some
f ∈ L2(X,µ) such that

ϕ(g) =
∫
X

f(x)g(x)dµ(x).

2. The dual for L1(X,µ) turns out to be L∞(X,µ), in the sense that

ϕ : L1(X,µ)→ K

will be (L1(X,µ))∗ if and only if there is some f ∈ L∞(X,µ) such that

ϕ(g) =
∫
X

f(x)g(x)dµ

for all g ∈ L1(X,µ).

3. In 11§ we will see that the dual of C(K) can be identified with the signed or complex valued finite
measures on K.

Definition In general there are always two distinct topologies we can define on a Banach space, and in the
specific case that it is a dual space there is a third. For B a Banach space, we let the strong topology or norm
topology be generated by taking as our subbasic open sets those of the form {v ∈ B : ||v − w|| < ε} for some
ε > 0, w ∈ B. The weak topology is generated by subbasic open sets of the form {v ∈ B : |φ(v)− a| < ε}, for
some ε > 0, a ∈ K, φ ∈ B∗.

These two definitions can in turn be applied to B∗. We have its norm topology and we have its weak
topology, obtained by looking at all elements of B∗∗, the dual of B∗. Here however there is a third topology.

We define the weak* topology on B∗ by taking as our subbasic open sets all the sets of the form

{φ ∈ B∗ : |φ(v)− a| < ε}.

Definition Thus it is the topology on B∗ generated by the basic open sets of the form

{ϕ ∈ B∗ : ϕ(z0) ∈ V0, ϕ(z1) ∈ V1, ...ϕ(zn) ∈ Vn}

for z0, ..., zn ∈ B, V0, V1, ..., Vn open subsets of K. We say that a set is weak * open, weak* closed, or weak*
compact when it is respectively open, closed, or compact in this topology.

As a warning on notation, many people use “weak∗” or “weak star” to denote this topology.
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Exercise (Alaoglu’s theorem) The unit ball of B∗ consists of all ϕ for which

|ϕ(z)| ≤ 1

for every z ∈ B with ||z|| ≤ 1. Show that the unit ball of B∗ equipped with the weak star topology is compact.
(Hint: This space is a closed subset of ∏

z∈B,||z||≤1

[−1, 1],

the collection of all functions from the unit ball of B to [−1, 1], and so we can apply Tychonov’s theorem.
See V§3 of [3] for more details.)

The critical point of the weak* topology is that it frequently admits metrization.

Theorem 10.1 Let B be a separable Banach space. Then (B∗)1 in the weak* topology admits a complete
compatible metric.

I am not going to enter into the details of this proof, but I will describe the construction. Let {vi : i ∈ N}
be dense in B (with respect to the norm topology – that is to say, for each w ∈ B and ε > 0 there exists i
with ||vi − w|| < ε). Then we can take as our metric

d(ϕ1, ϕ2) =
∑
i∈N

min{2−i, |ϕ1(vi)− ϕ2(vi)|}.

Theorem 10.2 (The Hahn-Banach theorem) Let V be a vector space over K (K ∈ {R,C}). Let

q : V → R≥0

be a function which is sublinear in the sense that:

1. q(v + w) ≤ q(v) + q(w) all v, w ∈ V , and

2. q(cv) = cq(v) for v ∈ B, c ≥ 0.

Let V0 be a subspace of V and φ0 : V → K linear with |φ0(v)| ≤ q(v) all v ∈ V0.
Then there exists a linear function φ : V → K with φ|V0 = φ0 and |φ(v)| ≤ q(v) all v ∈ V .

See III.6 [3] or 9.4 [7].
A specific case of this theorem is in the situation that V = B is a Banach space, q(·) = || · ||, and

V0 = {cv0 : c ∈ K}, some v0 ∈ B with ||v|| = 1, and

φ0 : V0 → K,

cv0 7→ c.

Then we can apply 10.2 to φ0 and the sublinear q(v) = ||v|| to obtain φ ⊃ φ0 with φ linear, defined on all of
B, and with the bound in norm

|φ(v)| ≤ ||v||.
This in particular gives that B∗ is rich enough to separate points. For any v ∈ B,

||v|| = sup{|φ(v)| : φ ∈ B∗, ||φ|| ≤ 1}.

A further consequence of the Hahn-Banach theorem relates to the ability of B∗ to separate a point from
a closed subset.
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Theorem 10.3 Let B be a Banach space and B0 a closed subspace. Let v ∈ B with v /∈ B0.
Then there exists φ ∈ B∗ with φ(v) 6= 0 but φ(w) = 0 all w ∈ B0.

Proof We begin by defining the function

q : u 7→ d(u,B0),

where d(u,B0) equals the infinum of the set {||u− w|| : w ∈ B0}. It is routine to verify that this function is
sublinear, and since 0 ∈ B0 we have q(u) ≤ ||v||.

Now for v /∈ B0 let φ0(v) = q(v), and extend this to a linear function on K · v by φ0(cv) = cq(v). Then
we obtain φ by applying the Hahn-Banach theorem to the sublinear function q and the function

φ0 : K · v → K.

2

There is also a geometric version of Hahn-Banach which is proved using a clever choice of the sublinear
q. I will state it just for Banach spaces.

Theorem 10.4 Let B be Banach space and C ⊂ B a closed subset which is convex in the sense that for
v, w ∈ C,α ∈ [0, 1], we have αv + (1 − α)w ∈ C. Let w ∈ B \ C. Then w can be separated from C by an
element of B∗ – more precisely, there will be φ ∈ B∗, c ∈ R, ε > 0, such that for all v ∈ C

Re(φ(w)) < c < c+ ε < Re(φ(v)).

Here Re ξ refers to the real part of ξ ∈ C. See IV.3[3] for a proof. Part of the significance and usefulness
of this consequence of the Hahn-Banach theorem is that a set of the form

{v ∈ B : ||v − w0|| < ε}

will always be convex, and hence the topology on B has a basis consisting of convex open sets.
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11 The Riesz representation theorem

This section will closely follow the treatment in [10].

Definition Let (K, d) be a compact metric space. C(K,R) consists of all continuous functions

f : K → R.

For f ∈ C(K,R) we let ||f || be
supx∈K |f(x)|.

Given r ∈ R and f ∈ C(K,R) we define rf by pointwise multiplication,

(rf)(x) = r((f(x)),

and similarly for f, g ∈ C(K,R) we define f + g by pointwise addition,

(f + g)(x) = f(x) + g(x).

There is a whole train of remarks set into motion by these simple definitions.
First of all, any continuous function on a compact metric space is bounded, so we are indeed assured

that ||f || will always be a real number – the sup does not attain +∞. Given the norm we can define
ρ(f, g) = ||f − g||. It is not hard to verify this satisfies the triangle inequality, and then that ρ(·, ·) defines a
metric.

Secondly, given a sequence (fn)n in C(K,R) which is Cauchy with respect to ρ we can easily check that
(fn(x))n is Cauchy for any x and we can define f : K → R by simply letting f(x) be the limit of (fn(x))n.
By considering their being Cauchy with respect to ρ we have (fn)n converges to f not just pointwise but
also uniformly:

∀ε > 0∃N∀x ∈ K∀n > N(|f(x)− fn(x)| ≤ ε).
(Take N to be large enough such ∀n,m > N∀x ∈ K(|fn(x) − fm(x)| < ε.) It is a standard result and a
fairly routine calculation that the pointwise limit of a uniformly convergent sequence of uniformly continuous
functions is again uniformly continuous, and thus f ∈ C(K,R).

In conclusion then we have that C(K,R) is a Banach space.
And given a Banach space we can sensibly ask for its dual. The Riesz representation theorem states that

the positive elements of C(K,R) with norm 1 may be identified with the collection of probability measures
on K.

We will prove this. It is a long proof.

Definition For K a compact metric space, C(K,R)∗, the dual space, is the collection of functions

Λ : C(K,R)→ R

that are continuous and linear: Λ(f + g) = Λ(f) + Λ(g), Λ(rf) = rΛ(f). We then let ||Λ|| be

sup{f∈C(K,R):||f ||=1}|Λ(f)|.

(It is a routine exercise to verify ||Λ|| finite from Λ continuous.)
We say that f ∈ C(K,R) is positive if f(x) ≥ 0 all x ∈ K. We then write f ≤ g if g − f is positive. For

r ∈ R we write f ≤ r (respectively r ≤ f) if f(x) ≤ r (respectively r ≤ f(x)) all x ∈ K. For r ∈ R we abuse
notation and also use r to indicate the continuous function

r : K → R,

x 7→ rx.

We say that Λ ∈ C(K,R)∗ is positive if Λ(f) ≥ 0 whenever f is positive.
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Definition Let K be a compact metric space and f ∈ C(K,R). The support of f is the closure of the set
of x ∈ K with f(x) 6= 0. For C ⊂ K closed,

C ≺ f

indicates 0 ≤ f ≤ 1 and f(x) = 1 for all x ∈ C. For V ⊂ K open,

f ≺ V

indicates
{x : f(x) 6= 0} ⊂ V ;

in other words, V includes the support of f .

Lemma 11.1 If K is a compact metric space and C ⊂ V with C closed and V open, then there is a
f ∈ C(K,R) with 0 ≤ f ≤ 1 and

C ≺ f ≺ V.

Proof Assume d(C,K \ V ) = ε > 0. Let

g(x) =
1
ε
d(x,K \ V )

and
f(x) = min(g(x), 1).

2

In many cases a measure is defined by an outer measure on the open sets. For instance, with Lebesgue
measure, we have that the Lebesgue measure m(A) of a set A is equal to the infinum of m∗(U) as U ranges
over open sets including A. In this situation there is a neat test for measurability.

Lemma 11.2 Let X be a Polish space and let O(X) be the open subsets of X. Let

ρ : O(X)→ R≥0 ∪ {∞}

be a function. Let
λ : P(X)→ R≥0 ∪ {∞}

be the outer measure defined by

λ(A) = inf{
∑
n∈N

ρ(On) : {On : n ∈ N} ⊂ O(X), A ⊂
⋃
n∈N

On}.

Then B ⊂ X is λ-measurable if for every open set O we have

λ(B) ≥ λ(B ∩O) + λ(Bc ∩O).

Proof First of all, the implicit statement in the lemma that λ will define an outer measure is justified by
3.6.

The definition of λ-measurable is that for every A ⊂ X we have

λ(A) = λ(B ∩A) + λ(Bc ∩A).

It is immediate from the definition of the outer measure that we always have λ(A) ≤ λ(B ∩A) + λ(Bc ∩A),
so let us instead concentrate on showing ≥.
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But given any open set O covering A, we have

λ(O) = λ(B ∩O) + λ(Bc ∩O) ≥ λ(B ∩A) + λ(Bc ∩A).

Letting
λ(O)→ λ(A)

we finish. 2

Notation For X a topological space, K(X) denotes the collection of compact subsets of X.

Definition A topological space X is said to be locally compact if every point is included in some open set
whose closure is compact. For X a locally compact metric space,

ρ : K(X)→ R≥0

is a content if:

1. ρ(K1 ∪K2) = ρ(K1) + ρ(K2) for K1,K2 disjoint;

2. ρ(K1) ≤ ρ(K2) whenever K1 ⊂ K2.

Theorem 11.3 Let X be a locally compact Polish space. Let

ρ : K(X)→ R≥0

be a content. Then there is a measure µ on the Borel subsets of X with the properties that:

1. ρ(K) ≤ µ(K) all K ∈ K(X);

2. µ(U) ≤ ρ(K) all K ∈ K(X) and open U ⊂ K.

Proof We define an outer measure λ. As a first step to defining λ we give its precursor λ∗ on open sets.
For O ⊂ X open we let

λ∗(O) = sup{ρ(K) : K ∈ K(X),K ⊂ O}.

We then obtain an outer measure with

λ(A) = inf{λ∗(O) : O open,A ⊂ O}.

It follows from the logical structure of the definitions that λ extends λ∗. It also follows from the logical
structure of the definitions that if U is an open subset of a compact set K then

λ(U) ≤ ρ(K) ≤ λ(K).

This will mean that the measure induced by λ, as described at 3.2, will be as required once we show that
the Borel sets are all λ-measurable.

Claim: Every element of K(X) is λ-measurable.
Proof of Claim: Fix K a compact subset of X. Let O ⊂ X be open . By 11.2 it suffices to show that

λ(O) ≥ λ(O ∩K) + λ(O ∩Kc).

Note first of all, if K1 is a compact subset of O ∩Kc and K2 a compact subset of O ∩Kc
1 then they are

necessarily disjoint, and hence
λ(O) ≥ ρ(K1 ∪K2) = ρ(K1) + ρ(K2)
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by the additivity assumption on ρ. Thus for any compact K1 ⊂ O ∩Kc we have

λ(O) ≥ ρ(K1) + sup{ρ(K2) : K2 ⊂ O ∩Kc
1,K2 ∈ K(X)}

= ρ(K1) + λ(O ∩Kc
1),

which in turn at least equals ρ(K1) + λ(O ∩K), since K1 ⊂ Kc implies Kc
1 ⊃ K. In other words, we have

established that for any compact K1 ⊂ O ∩Kc,

λ(O) ≥ λ(O ∩K) + ρ(K1).

Hence,
λ(O) ≥ λ(O ∩K) + sup{ρ(K1) : K1 ⊂ O ∩Kc,K ∈ K(X)}.

But O ∩Kc is open, and thus

λ(O ∩Kc) = sup{ρ(K1) : K1 ⊂ O ∩Kc,K ∈ K(X)},

and completes the proof of the claim. (Claim�)

Having established that the compact subsets of X are all λ-measurable, it suffices by 3.2 to see that any
σ-algebra containing the compact sets contains the open sets, but this follows from the space being locally
compact. 2

Lemma 11.4 If K is a compact metric space and V1, ..., Vn are open sets with⋃
i≤n

Vi ⊃ C,

C closed, then there are continuous functions h1, ..., hn with

0 ≤ hi ≤ 1,

hi ≺ Vi,

at each i and
h1(x) + h2(x) + ...+ hn(x) = 1

at each x ∈ C.

Proof For each x ∈ C we can find an open neighborhood Ux such that

Ux ⊂ Vi

for some i. By compactness we may cover C with finitely many of these sets of the form Ux; call them
O1, O2, ..., O`. At i ≤ n we let Ci be the union of all Oj ’s with Oj ⊂ Vi; this set is a finite union of closed
sets and hence closed. Applying 11.1 we may find continuous gi with Ci ≺ gi ≺ Vi. The Ci’s cover C and
hence every x ∈ C has some i with gi(x) = 1, and so

(1− g1)(1− g2)...(1− gn)(x) = 0.

Thus if we let
h1 = g1,

h2 = (1− g1)g2,
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h3 = (1− g1)(1− g2)g3,

through to
hn = (1− g1)(1− g2)...(1− gn−1)gn

then at each j
h1 + h2 + ...+ hj = 1− (1− g1)(1− g2)...(1− gj)

yields

h1 + h2 + ...+ hj + hj+1 = 1− ((1− g1)(1− g2)...(1− gj)− (1− g1)(1− g2)...(1− gj)gj+1)

= 1− (1− g1)(1− g2)...(1− gj)(1− gj+1),

until at last
h1 + h2 + ...+ hn = 1− (1− g1)(1− g2)...(1− gn),

which by the above constantly assumes the value 1 on C. 2

Theorem 11.5 Let K be a compact metric space and suppose Λ ∈ C(K,R)∗ is positive with ||Λ|| = 1. Then
there is a Borel probability measure µ on K with

Λ(f) =
∫
f(x)dµ(x)

for any f ∈ C(K,R).

Proof For C ⊂ K closed and (fn)n∈N a sequence of elements in C(K,R) we write

fn → C

if:

1. each fn|C ≡ 1;

2. each fn has its range included in [0, 1];

3. for all ε > 0 there exists an N ∈ N such that for all n ≥ N the support of fn is included in the set
{x ∈ K : d(x,C) < ε}.

Claim 1: If fn → C then (Λ(fn))n∈N converges.

Proof of claim: Suppose the (Λ(fn))n∈N sequence is not Cauchy. In particular fix some δ > 0 such that
for all N there exists n,m ≥ N with

|Λ(fn)− Λ(fm)| > δ.

Then we may find a subsequence (fn(k))k∈N such that each

Λ(fn(k))− Λ(fn(k+1)) > δ/2

and the support of fn(k+1) is included in the set

{x ∈ K : fn(k) ≥ 1− δ

2
}.
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(Note: If we ensure that fn(k+1) < δ/2 + fn(k) then the positivity of Λ entails that the only way we can have
|Λ(fn(k))− Λ(fn(k+1))| > δ/2 is to actually have Λ(fn(k))− Λ(fn(k+1)) > δ/2.) For k < ` we then have

||fn(k) − fn(`)|| < 1 +
δ

2
,

whilst the additivity of Λ yields

Λ(fn(k))− Λ(fn(`)) =
∑
i<k−`

Λ(fn(k+i))− Λ(fn(k+i+1)) ≥
`δ

2
,

which by letting `→∞ contradicts the boundedness of the operator Λ. (Claim�)

Note then from this claim that given a fix closed C ⊂ K and two sequences

fn → C,

gn → C

we must have
lim
n→∞

Λ(fn) = lim
n→∞

Λ(gn).

This justifies a definition.

Definition For C ⊂ K closed let ρ(C) be equal to

lim
n→∞

Λ(fn)

for any fn → C.

Claim 2: If C1, C2 are disjoint closed subsets of K, then

ρ(C1 ∪ C2) = ρ(C1) + ρ(C2).

Proof of Claim: Choose U1, U2 disjoint supersets of C1, C2 respectively. Choose

fn → C1,

gn → C2,

with the support of each fn included in U1 and of each gn included in U2. It then follows that

fn + gn → C1 ∪ C2

and the additivity of Λ gives each Λ(fn + gn) = Λ(fn) + Λ(gn). (Claim�)
It is easily seen that C1 ⊂ C2 yields ρ(C1) ≤ ρ(C2). Thus we obtain that ρ is a content.

Claim 3: Let C be a closed subset of K. At each n let

Cn = {x ∈ K : d(x,C) ≤ 1
n
}.

Then ρ(Cn)→ C.
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Proof of Claim: We can choose a sequence of functions

fn → C

where
|Λ(fn)− ρ(Cn)| < 1

n
.

(Claim�)

Thus if we use 11.3 to induce a Borel probability measure µ from ρ, then we will have

µ(C) = ρ(C)

any closed C ⊂ K. There is one last garrison of resistance: We still need to show the equality of integration
by µ and application of Λ.

Claim 4: If C is closed and f positive with f(x) ≥ r on C, then

Λ(f) ≥ rµ(C).

Proof of Claim: Rescaling by and applying linearity, we may assume r = 1. Then this follows from the
definition of ρ and the fact that µ in this case must extend ρ. (Claim�)

Claim 5: For f ∈ C(K,R) with f ≥ 0, ∫
fdµ ≤ Λ(f).

Proof of Claim: Choose ε > 0 and y0 < y1 < ...yn with each yi+1 − yi < ε/2 and the range of f included
in the open interval (y0, yn). Let Ei be the set on which f(x) lies in the semi open interval (yi−1, yi]. Let
Vi ⊃ Ei be open and Ci ⊂ Ei closed with

µ(Vi \ Ci) <
ε

2nyn
,

and hence ∑
µ(Vi \ Ci)yn <

ε

2
.

Let
Ui = Vi \

⋃
j 6=i

Cj .

The Ui’s cover K so we can apply 11.4 to obtain h1, h2, ..., hn with

h1 + h2 + ...+ hn = 1,

each hj having support in Uj . Since Ui ∩ Cj = 0 for i 6= j, each hj assumes the constant value 1 on the
corresponding Cj . Letting fi = hif we have

f =
∑
i≤n

fi

∴
∑
i<n

yi+1µ(Vi+1) ≥
∫
fdµ.
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Applying this and claim 3 we obtain

Λ(f) =
∑
i<n

Λ(fi+1) ≥
∑
i<n

yiµ(Ci+1).

Thus ∫
fdµ− Λ(f) ≤ (

∑
i<n

µ(Vi+1 \ Ci+1)yi+1) + (
∑
i<n

µ(Ci+1)(yi+1 − yi)

< yn
∑
i<n

µ(Vi+1 \ Ci+1) + (
∑
i<n

µ(Ci+1))
ε

2
< ε.

(Claim�)

Claim 6: For any f ∈ C(K,R) ∫
fdµ ≤ Λ(f).

Proof of Claim:
For r a constant

Λ(r) =
∫
rdµ = r.

Thus if we choose r a sufficiently large positive real to ensure f + r ≥ 0 we can apply the last claim to obtain

Λ(f + r) ≥
∫

(f + r)dµ.

Since Λ(f + r) = Λ(f) + Λ(r) = Λ(f) + r and since
∫

(f + r)dµ =
∫
fdµ+

∫
rdµ =

∫
fdµ+ r we are done.

(Claim�)
Our victory is almost complete. Replacing f by −f we can as well obtain∫

fdµ ≥ Λ(f).

And it is done and done. 2

Corollary 11.6 If Λ ∈ C(K,R)∗ is positive, then there is a finite Borel measure µ with

Λ(f) =
∫
fdµ.

Proof Apply the last theorem to

f 7→ Λ(f)
Λ(1)

.

2

Notation For K a compact metric space, let P (K) be the probability measures on K equipped with the
topology generated by the basic open sets

{µ : s1 < µ(f1) < r1, s2 < µ(f2) < r2, ..., sn < µ(fn) < rn}

for f1, f2, ..., fn ∈ C(K,R).
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Exercise (i) Let K be a compact metric space. Let C(K, [−1, 1]) be the subspace of C(K,R) consisting
of continuous functions with norm at most one – that is to say, the range included in [1,−1] Show that if
{fi : i ∈ N} is a countable dense subset of C(K, [−1, 1]) then the function

π : P (K)→
∏
i∈N

[0, 1]

given by
(π(µ))(n) = µ(fn)

is continuous and open onto its image (i.e. π effects a homeomorphism between P (K) and π[P (K)]).
(i) Show that P (K) is a compact metrizable space.

The result also extends to signed measures, and gives a complete description of the dual. To head off any
confusion between the real valued dual and the complex dual, keep in mind that for us the dual C(K,R) is
the collection of linear, bounded, real valued functions.

Lemma 11.7 Let Λ ∈ C(K,R)∗. Then there is a positive Φ ∈ C(K,R)∗ with

Φ(f) ≥ |Λ(f)|

for all f ≥ 0.

Proof For f ≥ 0 set Φ+(f) to be
sup{|Λ(g)| : |g| ≤ f}.

Claim: Φ+ is linear on its domain, in the sense that for f1, f2, r ≥ 0

Φ+(f1 + f2) = Φ+(f1) + Φ+(f2)

and
Φ+(rf1) = rΦ+(f1).

Proof of Claim: The preservation with respect to multiplication by positive scalars is pretty immediate.
The main issue is verifying the sups involved in finite additivity.

To see Φ+(f1 + f2) ≥ Φ+(f1) + Φ+(f2), consider some g1, g2 with |gi| ≤ fi. After possibly replacing gi
by −gi we can assume Λ(gi) ≥ 0, when |Λ(g1 + g2)| = |Λ(g1)|+ |Λ(g2)|. Conversely if |g| ≤ f1 + f2, we can
again assume without loss of generality that Λ(g) ≥ 0 and write

g = g+ − g−,

where g+, g− ≥ 0, |g| = |g+| + |g−|. Let g+
1 = min(g+, f1), g−1 = min(g−, f1), and then g+

2 = g+ − g+
1 ,

g−2 = g− − g−1 . So we have found g1, g2 with |gi| ≤ fi, g1 + g2 = g. (Claim�)

Then given any f ∈ C(K,R) we can let f+ be defined by f+(x) = f(x) if f(x) ≥ 0 and f+(x) = 0 if
f(x) < 0. Similarly we can let f− be defined by f−(x) = −f(x) if f(x) ≤ 0 and f+(x) = 0 if f(x) > 0.
Therefore we have represented f as the difference of two continuous functions:

f(x) = f+(x)− f−(x).

We let Φ(f) = Φ+(f+)− Φ+(f−).

Claim: If f = g1 − g2 with g1, g2 ≥ 0, then Φ(f) = Φ+(g1)− Φ+(g2).
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Proof of Claim: Let g(x) = min(g1(x), g2(x)). Then f+(x) = g1(x) − g(x) and f−(x) = g2(x) − g(x).
Thus by linearity of Φ+ we have

Φ(f) = Φ+(f+)− Φ+(f−)

= Φ+(g1)− Φ+(g)− (Φ+(g2)− Φ+(g)) = Φ+(g1)− Φ+(g2).

(Claim�)

From this we have we can routinely verify linearity: For instance,

Φ(f1 + f2) = Φ(f+
1 + f+

2 − f
−
1 − f

−
2 ) =

Φ+(f+
1 + f+

2 )− Φ+(f−1 + f−2 ) = Φ+(f+
1 ) + Φ+(f+

2 )− Φ+(f−1 )− Φ+(f−2 )

= Φ(f1) + Φ(f2).

Φ provides a positive element of the dual, and the very way in which it has been defined gives Φ(f) ≥ |Λ(f)|
for all f ≥ 0. 2

Theorem 11.8 If Λ ∈ C(K,R)∗ then there is a signed measure ν with

Λ(f) =
∫
fdν.

Proof Obtain Φ as in 11.7 and then let µ be as in 11.6 with

Φ(f) =
∫
fdµ.

Note then that
∫
|f |dµ < r entails Λ(f) < r and so Λ defines a bounded linear function on the continuous

functions in L1(µ). The continuous functions are dense in L1(µ) and so Λ extends uniquely to the dual of
L1(µ).

The dual of L1 is L∞ (see for instance §B [3] or 17.4.4 [7]) and so we can find φ ∈ L∞(µ) with

Λ(f) =
∫
f · φdµ.

ν defined by

ν(B) =
∫
B

φdµ

is as required. 2

There is also a version of this result for the complex dual of the continuous functions from K to C,
C(K,C): For every Λ ∈ C(K,C)∗ there is a finite complex valued measure µ with Λ(f) =

∫
fdµ. This can

be easily derived from the previous results.
Give Λ ∈ C(K,C)∗ and f : K → R continuous, we can write

Λ(f) = Λ0(f) + iΛ1(f),

where Λ0(f),Λ1(f) ∈ R. It is easily seen that Λ0,Λ1 are linear and so we obtained signed, real valued
measures µ0, µ1 with

Λ(f) =
∫
fdµ0 + i

∫
fµ1

all real valued f . By linearity of integration and Λ, the same formula holds for all complex valued continuous
functions. Thus:
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Theorem 11.9 Let K be a compact metric space. Let Λ be a continuous linear function from C(K,C) (the
continuous complex valued functions on K) to C.

Then there is a complex valued Borel measure µ with

Λ(f) =
∫
fdµ

for all continuous f : K → C.
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12 Stone-Weierstrass

As in the theorems from the last section, I will be taking the Banach spaces and vector spaces over R. There
is a parallel sequence of results for complex functions, but I do not want to clutter the path with diversions.

Definition A subset A of a vector V is said to be convex if for all a, b ∈ A and α ∈ [0, 1] we have

αa+ (1− α)b ∈ A.

c ∈ A is then said to be an extreme point of A if whenever α ∈ (0, 1), a, b ∈ A with

αa+ (1− α)b = c

we have a = b = c.

Exercise (i) Let B be a Banach space. Show that the basic open sets in the weak* topology on B∗ are all
convex.

(ii) Show that if V ⊂ B∗ is convex and weak* open, then for any φ ∈ B∗ the set

V + φ = {ψ + φ : ψ ∈ V }

is also convex and weak* open as is
−V = {−ψ : ψ ∈ V }.

Lemma 12.1 Let B be a Banach space and A ⊂ B∗ convex and and weak* open. Let φ be in the weak star
closure of A. Then for any ψ ∈ A and t ∈ (0, 1) we have

tφ+ (1− t)ψ ∈ A.

Proof Let V be a convex, weak * open neighborhood of the identity with ψ + V ⊂ A. Note that

t−1(1− t)V =df {t−1(1− t)ϕ : ϕ ∈ V }

is again an open neighborhood of 0, and so

φ− t−1(1− t)V

is an open neighborhood of φ, and thus we can find some θ ∈ A lying in this set, which amounts to

φ− θ ∈ t−1(1− t)V.

This in turn yields
tφ ∈ tθ + (1− t)V

∴ tφ+ (1− t)ψ ∈ tθ + (1− t)(ψ + V ).

Choosing some ζ ∈ V with
tφ+ (1− t)ψ = tθ + (1− t)(ψ + ζ),

we have ψ + ζ ∈ A since ψ + V ⊂ A, and then tφ + (1 − t)ψ is a convex linear combination of elements in
A, as required. 2

Theorem 12.2 (Krein-Milman) Let B be a Banach space and let A ⊂ B∗ satisfy:
(i) A non-empty;
(ii) A convex;
(iii) A compact in the weak* topology.

Then A contains an extreme point.
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Proof Let U be the collection of all convex proper subsets of A which are relatively open in the weak star
topology. The compactness of A ensures that U is closed under directed unions, and so we can apply Zorn’s
lemma to get a maximal element, V . It suffices to show A \ V consists of a singleton.

Let V be the weak star closure of V .

Claim: V 6= V .

Proof of Claim: Choose any ψ ∈ V, φ /∈ V . Let S = {s ∈ [0, 1] : sψ + (1 − s)φ ∈ V }. This set is open
in [0, 1] since s 7→ sψ + (1 − s)φ ∈ V is weak star continuous. Let s0 be the infinum of [0, 1] \ S. Then
s0ψ + (1− s0)φ is in V \ V . (Claim�)

Claim: If W is a convex subset of A, then V ∪W is a convex subset of A.

Proof of Claim: It suffices to show that if ψ ∈ V , φ ∈W , and α ∈ (0, 1), then αψ + (1− α)φ ∈ V .
Define the function

T : A→ A

ϕ 7→ αψ + (1− α)ϕ.

T is continuous, affine, injective, and has T [V ] ⊂ V by 12.1. Hence T−1[V ] is a convex open subset of A
including V , and thus by maximality of V and the last claim it must equal A. In particular T (φ) ∈ V .
(Claim�)

Now for a contradiction, assume φ0, φ1 are distinct points in A \ V . Let W0 be a convex open set
containing the first point but not the second. Then V ∪W0 is a convex set, weak star open set providing a
counterexample to the maximality of V . 2

The version of Krein-Milman presented above is rather weak. First of all, the proper conclusion of the
result is not just that A contains an extreme point, but moreover the convex closure of the extreme points
is dense in A. Secondly, the result holds in greater generality: We only really used that B∗ is a topological
vector space with a basis consisting of convex sets.

Definition For K a compact metric space and µ a signed measure, we appeal to the Jordan decomposition
of §3 above to find orthogonal, finite (positive) measures µ+, µ− with

µ = µ+ − µ−.

We then let |µ| = µ+ + µ−.

Theorem 12.3 ||µ|| = |||µ||| = |µ|(K).

Aside:Here ||µ|| refers to its norm viewed as an element of C(K,R)∗, the dual space to C(K,R). That is
to say, if we define

Λµ : C(K,R)→ R

f 7→
∫
fdµ,

then ||µ|| equals the norm of Λµ as an element of C(K,R)∗.

Proof Let A be as in the Jordan decomposition, with

µ(A ∩B) ≥ 0,

µ(Ac ∩B) ≤ 0
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all Borel B and µ+(B) = µ(B ∩A), µ−(B) = µ(B ∩Ac).
||Λµ|| ≥ |µ|(K):-
Fix ε > 0. Fixed closed sets C1, C2 with

C1 ⊂ A,

C2 ⊂ Ac,

|µ|(K \ (C1 ∪ C2)) < ε.

Fix continuous
f1, f2 : K → [0, 1]

with f1 constantly = 1 on C1, constantly = 0 on C2, f2 constantly = 1 on C2, constantly = 0 on C1. Then
let f = f1 − f2.

|Λµ(f)−
∫
C1∪C2

fdµ| = |
∫
fdµ−

∫
C1∪C2

fdµ| < 2ε,

by the assumption on the measure of C1 ∪C2 and using |f | ≤ 1. However since f |C1 ≡ 1, and f |C2 ≡ −1 we
have ∫

C1∪C2

fdµ = µ(C1)− µ(C2) = |µ|(C1 ∪ C2).

Since |Λµ(f)−
∫
C1∪C2

fdµ| < 2ε and |µ(K)− µ(C1 ∪ C2) < ε we get

|Λµ(f)| ≥ |µ|(K)− 3ε.

||Λµ|| ≤ |µ|(K):-
For the reverse inequality, we have at any f with ||f || ≤ 1 that

|Λµ(f)| = |
∫
fdµ| ≤ |

∫
A

fdµ|+ |
∫
Ac

fdµ|,

which is in turn bounded by µ+(A) + µ−(Ac) = |µ|(K). 2

Definition A ⊂ C(K,R) is an algebra if it is closed under addition (f, g ∈ A ⇒ (x 7→ f(x) + g(x)) ∈ A),
multiplication (f, g ∈ A ⇒ (x 7→ f(x)g(x)) ∈ A) , and scalar multiplication (f ∈ A, r ∈ R⇒ (x 7→ rf(x)) ∈
A).

An algebra A is said to separate points if for all x0 6= x1 in K there is some f ∈ A with

f(x0) 6= f(x1).

Theorem 12.4 (Stone-Weierstrass) Let A ⊂ C(K,R) be an algebra which is closed in the sup norm, sepa-
rates points, and contains the constant functions. Then A = C(K,R).

Proof Consider the subset A of C(K,R)∗ consisting of Λ with norm less than one having

Λ(f) = 0

all f ∈ A. By Alaoglu’s theorem, this is a compact set in the weak topology. It is clearly convex. In light of
the Hahn-Banach theorem (as found presented at 9.4.4. [7]) we will be done if we show that A only consists
of 0.

Note that if A 6= {0} then all of its extreme points would have to have norm one. So, instead, for a
contradiction, apply 12.2 to obtain some extreme Λ ∈ A, ||Λ|| = 1. Apply 11.5 to get a signed measure µ
with

Λ(f) =
∫
fdµ
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all f ∈ C(K,R). By the exercise above we have |µ|(K) = 1. Let C be the support of |µ|:

C =df K \
⋃
{U : U open , |µ|(U) = 0}.

Thus C is the minimal closed set with µ(E) = 0 all Borel E ⊂ K \ C.

Claim: C does not consist of a single point.

Proof of Claim: Otherwise suppose C = {x0}. Then for any g ∈ C(K,R)

Λ(g) = Λ(c0),

where c0 = g(x0). But c0 is inA since it is a constant function, and after all we have Λ(g) = 0 all g ∈ C(K,R).
(Claim�)

Let x0 6= x1 be in C. Since A separates points we obtain some f0 ∈ A with

f0(x0) 6= f0(x1).

Using the constant functions in A along with closure under addition we can get f1 ∈ A with

f1(x0) = 0,

f1(x1) 6= 0.

Letting f2 = (f1)2 we obtain a positive element of A with the same property. Letting

f3 =
f2

||f2||

we obtain f3 ∈ A with
f3 : K → [0, 1],

f3(x0) = 0,

f3(x1) 6= 0.

We now define a new measure, f3µ, with∫
fd(f3µ) =

∫
(f · f3)µ.

|f3µ| = f3|µ| since f3 ≥ 0. Let
α = ||f3µ||.

Claim: 0 < α < 1.

Proof of Claim: 0 < α since f3(x1) > 0. Conversely, f3(x0) = 0 so we can find f ∈ C(K,R) with

f(x0) 6= 0,

0 ≤ f ≤ 1,

0 ≤ f + f3 ≤ 1.

Then ∫
f + f3|µ| >

∫
f3|µ|
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since f takes positive values around x0 which is in the support of µ. Since
∫
f + f3|µ| ≤ 1, we are done.

(Claim�)

We have constrained f3 so it only takes values between 0 and 1, and hence 1− f3 ≥ 0, and so

||(1− f3)µ|| = |(1− f3)µ|(K) =
∫

(1− f3)|µ| = 1− α.

Then

µ = α
f3µ

||f3µ||
+ (1− α)

(1− f3)µ
||1− f3µ||

.

From Λ being an extreme point we have µ = f3µ/||f3µ||, but our assumptions on x0, x1 give us open
neighborhoods U0, U1 of x0, x1 with

|µ|(U0), |µ|(U1) 6= 0

and some constant c such that for all z ∈ U0, z
′ ∈ U1

f3(z) < c < f3(z′),

with a contradiction. 2

A similar argument holds for algebras of complex valued functions with the sup norm

d(f, g) = supx∈K |f(x)− g(x)|,

given f, g : K → C. There are however two key differences.
The first of these differences is minor. In the proof above we needed to use the Riesz representation

theorem to summon in to being the indicated measure. In the complex valued case we need the refinement
at 11.9.

The second difference is more telling. Trailing through the proof above we reached the function f1 which
separated the points x0, x1 as indicated, and from there we passed to f2 ≥ 0 which performed a similar task.
In the complex value case we cannot simply take f2 = (f1)2 since this will not necessarily be real valued.

Instead we must make an additional assumption on the algebra. We need to assume it is closed under
complex conjugation – which is to say whenever f ∈ A we also have in A the function

f̄ : x→ f(x),

mapping x to the complex conjugate of f(x). With this key adjustment we can let

f2 = f1 · f1

and continue the proof as above.

Theorem 12.5 Let K be a compact metric space and let C(K,C) be the complex valued continuous functions
on K. Let A ⊂ C(K,C) be such that:

(i) A is an algebra, in the set that f1, f2 ∈ A, α ∈ C yield

f1 + f2 ∈ A,

αf1 ∈ A;

(ii) A contains the constant complex valued functions;
(iii) A separates points;
(iv) A is closed under complex conjugation.

Then A is dense in C(K,C).
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There is an interesting corollary to Stone-Weiestrass simply from the point of view of measurable func-
tions. If X is a metric space and µ is a Borel probability measure on X, then the continuous functions are
dense in the measure theoretic Banach spaces Lp(X,µ), 1 ≤ p <∞. (This hopefully is familiar to you from
3rd year analysis.) Thus if A ⊂ C(K,R) is an algebra of functions which separates points, then A will be
dense viewed as a subset of the Banach space Lp(X,µ).
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13 Product measures

Given two measures µ and ν on X and Y , we can form a new measure µ × ν on the product space. There
are two main things we want to establish: Firstly, that this measure makes sense – it can be defined and
there is truly only one choice for how we would to do this; secondly, Fubini’s theorem: integrating over µ×ν
is the same as integrating by µ and then ν or by ν and then µ. It will be helpful in the course of the proofs
to use a couple of the basic convergence theorems. You would probably have seen them before, at least in
some form, but there is no harm in quickly recalling the proofs.

All the spaces in this section will be standard Borel. All the measures will be non-negative Borel
probability measures. The results hold in the more general context of σ-finite Borel measures, but it is
usually a routine exercise to obtain the general result from the specific ones we give below.

Notation If A ⊂ X × Y and x ∈ X, then

Ax = {y : (x, y) ∈ A}.

If y ∈ Y then
Ay = {x : (x, y) ∈ A}.

Definition If X and Y are standard Borel spaces, then we equip X × Y with the σ-algebra generated by
the rectangles of the form

A×B ⊂ X × Y

for A Borel in X and B Borel in Y .

Lemma 13.1 X × Y in this σ-algebra is a standard Borel space.

Proof Fix compatible Polish topologies for X and Y . Recall from an earlier exercise that X × Y is then
Polish in the product topology. We finish by observing that every rectangle of the form A × B as above
appears in the σ-algebra generated by the open sets in X × Y . 2

Lemma 13.2 For X,Y as above, and B ⊂ X × Y Borel,

Bx

and
By

are Borel for all x ∈ X, y ∈ Y .

Proof Observe that the set of B’s with these slices Borel forms a σ-algebra containing the open sets. 2

Lemma 13.3 Let (X,µ) and (Y, ν) be standard Borel probability spaces. If C ⊂ X × Y is Borel then

x 7→ ν(Cx)

is measurable.

Proof Actually this takes some work to prove, and I am going to skip through some of the details. (In fact,
an even stronger result is true, namely that x 7→ ν(Cx) is Borel, but that takes more trouble and would be
beyond what we need.)

This is clear for rectangles of the form A×B, A,B Borel subsets of X,Y . We obtain the result for finite
unions of rectangles by using that the finite sums of measurable functions are measurable and since every
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such union can be represented as a finite union of disjoint rectangles. From there we can obtain the result for
C a countably infinite unions of rectangles by appealing to the monotone convergence theorem. Note that
the intersections of rectangles are rectangles, and hence the intersection of two sets formed as the countable
unions of rectangles is again a countable union of rectangles.

Claim: If C ⊂ X × Y is Borel, then for any ε > 0 we can find unions D0 =
⋃
i∈N A

0
i ×B0

i and D1 =⋃
i∈N A

1
i ×B1

i with
C ⊂ D0,

X \ C ⊂ D1,

and
∫

(x 7→ ν(D0 ∩D1)x)dµ < ε.

Proof of Claim: Clearly the claim is true for C itself a rectangle of the form A × B, since we can then
take D0 = A × B, D1 = (X \ A) × Y ∪ X × (Y \ B). Clearly if the claim is true for C then it is true for
X \ C. The main battle is to show closure under countable intersections.

For this purpose, suppose the claim is true for C1, C2, C3, .... At each n choose D0
n, D

1
n as in claim, with

Cn ⊂ D0
n, X \ Cn ⊂ D1

n, ∫
(x 7→ ν(D0

n ∩D1
n)x)dµ < 2−nε.

Then ∫
(x 7→ ν(

⋃
n∈N

D0
n ∩ (

⋂
n∈N

D1
n)x))dµ < ε.

By the monotone convergence theorem we eventually get large N with∫
(x 7→ ν(

⋃
n∈N

D0
n ∩ (

⋂
n≤N

D1
n)x))dµ < ε.

Since
⋂
n≤N D

1
n can be expressed as a countable union of rectangles, we have established the claim for⋃

n∈N Cn.
Since the Borel sets in X × Y are the smallest σ-algebra containing the rectangles of the form A×B for

A ⊂ X, B ⊂ Y both Borel, we are done. (Claim�)

We can then obtain for any Borel C two sequence of decreasing sets as above, (D0
n)n, (D1

n)n, with C ⊂ D0
n,

X \ C ⊂ D1
n, ∫

(x 7→ ν((D0
n)x ∩ (D1

n)x))dµ→ 0

and hence for µ-almost every x
ν((D0

n)x ∩ (D1
n)x)→ 0.

Since
1 = ν((D0

n)x ∪ (D1
n)x) = ν((D0

n)x)− ν((D0
n)x ∩ (D1

n)x) + ν((D1
n)x)

we obtain for a.e. x
ν((D0

n)x)− (1− ν((D1
n)x))→ 0.

Since x 7→ ν(Cx) is trapped between the measurable functions x 7→ (D0
n)x and x 7→ 1− ν((D1

n)x) we obtain
that it as well will be measurable. 2

Lemma 13.4 Let (X,µ) and (Y, ν) be standard Borel probability spaces. If we define m on X × Y by

m(B) =
∫
X

(x 7→ ν(Bx))dµ

then m is a Borel probability measure on X.
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Proof The main issue is to show σ-additivity. So suppose (Bi) is a sequence of disjoint Borel subsets of
X × Y . But then at each finite N we have

m(
⋃
i<N

Bi) =
∫
X

(x 7→ ν((
⋃
i<N

Bi)x)µ

=
∑
i<N

∫
(x 7→ ν((Bi)x)µ =

∑
i<N

m(Bi).

Then the case for
⋃
I∈N Bi follows by 5.4 or 5.3 and the observation that

ν((
⋃
i∈N

Bi)x) = limn→∞ν((
⋃
i<n

Bi)x).

2

Lemma 13.5 Let (X,µ) and (Y, ν) be standard Borel probability spaces. Then for any Borel B ⊂ X × Y∫
X

(x 7→ ν(Bx))dµ =
∫
Y

(y 7→ µ(By))dν.

Proof Let us first define m as in 13.4 and then likewise m∗ by

m∗(B) =
∫
Y

(y 7→ µ(By))dν.

This likewise will give us a measure, and we easily check that m and m∗ agree on the measurable rectangles.
Since every set arising in the algebra generated by the rectangles can be written as a finite union of disjoint
rectangles, we quickly obtain that these two measures agree on this algebra.

From this it follows (e.g. 15.3.11 of [7], though it is not hard to see directly) that m = m∗. 2

Definition We let µ× ν be the measure m obtained by either

m(B) =
∫
X

(x 7→ ν(Bx))dµ

or
m(B) =

∫
Y

(y 7→ µ(By))dν.

Summarising the above:

Proposition 13.6 Let (X,µ) and (Y, ν) be standard Borel probability spaces. Then the probability measure
µ× ν on X × Y has the following properties for A,B,C Borel sets:-

(i) µ× ν(A×B) = µ(A)× ν(B);
(ii) µ× ν(C) =

∫
X

(x 7→ ν(Cx))dµ;
(iii) µ× ν(C) =

∫
Y

(y 7→ µ(Cy))dν.

Exercise Show that the conclusions (ii) and (iii) hold also if we simply assume C ⊂ X × Y is measurable.

Finally! We come to Fubini’s theorem:
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Theorem 13.7 (Fubini) Let (X,µ) and (Y, ν) be standard Borel probability spaces and let

f : X × Y → R

be a measurable non-negative function. Then∫
X×Y

fd(µ× ν) =
∫
X

(x 7→ (
∫
Y

y 7→ f(x, y)dν)dµ =
∫
Y

(y 7→ (
∫
X

x 7→ f(x, y)dµ)dν.

Proof We will traverse through a sequence of special cases, finally obtaining the result for general f .
First of all if f has the form

a · χC ,
for a ∈ R, χC the characteristic function of some measurable set, the result is presented at 13.6. Similarly
in the case that f is a finite sum of such functions, a simple function, we obtain the result by the additivity
of integration. Finally in the general case we can obtain a sequence of simple functions, (fn), with

0 ≤ fi(x) ≤ fi+1(x) ≤ f(x)

and fn(x)→ f(x) at every x. Now the result follows from 5.3. 2

I have been rather fussy in the statement of Fubini above, almost to the point of being obsessively explicit.
Usually one would just put this as∫

X×Y
fd(µ× ν) =

∫
X

∫
Y

fdνdµ =
∫
Y

∫
X

fdµdν.

We are not quite ready to state the measure disintegration theorem, but it is possible to give a sense of
its content. Suppose we have measure on X × Y . Call it m. Suppose µ is a measure on X. Now there is no
guarantee that there will be a ν on Y for which m = µ × ν. Just doesn’t necessarily hold. Even under the
additional assumption of

m(B × Y ) = ν(B)

for all Borel B ⊂ X.
However something else is true. We can find a range of measures, νx on Y , for each x ∈ X such that m

equals the integral, as it were, along µ of the various νx’s. More precisely, for A ⊂ X × Y ,

m(A) =
∫
X

(x 7→ νx(Ax))dµ.

There are some subtleties here being swept under the rug by our notation. To even make sense of this we
need to know that x 7→ ν(Ax) will always be measurable, and this in turn needs us to have some idea of
what it would mean for the function x 7→ νx to be Borel or measurable. It won’t be until we see the Riesz
representation theorem that this can be made precise.

A slightly more sophisticated version of the lemma applies to measure preserving functions. Suppose
(X,µ), (Z, λ) are standard Borel probability spaces and

f : X → Z

is measure preserving function. As a matter of notation, let Yz = {x ∈ X : f(x) = z} for any z ∈ Z. Then
our more sophisticated theorem states this: We can find a (suitably measurable) assignment z 7→ µz, where
each µz is a measure on Yz, such that

µ(A) =
∫
Z

(z 7→ µz(A ∩ Yz))dλ.

79



14 Measure disintegration

One of the most important consequences of 11.5 is ontological as much as mathematical. We have a way of
thinking of the probability measures on a standard Borel space as a standard Borel space in its own right.
Given X Polish we can find a compact metric space K which is Borel isomorphic to X, allowing us to identify
the Borel probability measures on X with P (K). From the exercise following 11.6, P (K) can itself be viewed
as a compact metric space, and in the natural indentification, P (X), the Borel probability measures on X,
can be viewed as a standard Borel space.

Lemma 14.1 Let X be a Polish space. Then the Borel sets are those appearing in the smallest collection
containing the open sets and closed under complements and countable disjoint unions.

Proof Let Σ be the smallest collection containing the open sets and closed under the operations of comple-
ments and countable disjoint union. It suffices to show that this collection of sets forms an algebra.

For any A ∈ Σ, let Σ(A) = {B ⊂ X : B ∩A ∈ Σ}.

Claim: Σ(A) is closed under complements and countable disjoint unions.

Proof of Claim: The main issue is complementation. But A \B equals X \ (X \A ∪ (A ∩B)), and hence
will be in Σ assume B ∩A is. (Claim�)

If U is open, it then follows that Σ(U) includes the open sets, and hence includes Σ. In particular, we
obtain for any B ∈ Σ that U ∩B is in Σ.

Turning things around from the point of view of B and considering the open sets, we obtain that for any
B ∈ Σ we have the open sets included in Σ(B), and hence Σ will be included in Σ(B) – which is to say, that
for any A ∈ Σ,

A ∩B ∈ Σ,

which is all we need to establish Σ as an algebra. 2

Theorem 14.2 Let K be a compact metric space. Then for any bounded Borel function, the resulting map

P (K)→ R

µ 7→
∫
f(x)dµ(x)

is Borel.

Proof It suffices to see that for any Borel set B ⊂ K

P (K)→ R

µ 7→ µ(B)

is Borel.
For any open set U ⊂ K we can find a sequence of continuous functions (fn)n∈N with 0 ≤ fn ≤ 1,

fn ≤ fn+1, fn ≺ U , and
U =

⋃
n∈N
{x : fn(x) = 1}.

It then follows that µ(U) = limn→∞
∫
fndµ. Since

µ 7→
∫
fdµ
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is continuous, and certainly Borel, for any f ∈ C(K), we indeed have µ 7→ µ(U) as a Borel function.
For the remainder of the Borel sets, it suffices in light of the last lemma to verify that the collection of

Borel sets for which µ 7→ µ(B) is closed under complements and disjoint unions.
For complements, µ(K \B) = 1− µ(B). And for disjoint unions, if (Bn)n∈N are disjoint, then

µ(
⋃
n∈N

Bn) =
∑
n∈N

µ(Bn) = limN→∞
∑
n≤N

µ(Bn).

2

Recall that a Borel isomorphism f : X → Y between Polish spaces X and Y is a bijection which exactly
preserves Borel structure: B ⊂ X is Borel if and only if f [B] = {f(x) : x ∈ B} is Borel.

Corollary 14.3 Let K1,K2 be compact metric spaces. Let

f : K1 → K2

be a Borel isomorphism. Then f induces a Borel isomorphism

f∗ : P (K1)→ P (K2)

via
(f∗(µ))(B) = µ(f−1[B]).

Proof Let (fi)i∈N be a countable dense subset of C(K2, [−1, 1]), the elements of C(K2) with sup norm at
most one. Any ν ∈ P (K2) is canonically determined by its behavior on these elements, as discussed in the
exercises following the proof of 11.5, and so we only need to show that

f̂ : P (K1)→
∏
i∈N

[−1, , 1]

given by
(f̂(µ))(n) = (f∗(µ))(fn)

is Borel. However if we let hn = fn ◦ f then

µ 7→
∫
hndµ =

∫
fndf

∗(µ)

is Borel by the theorem above. 2

Thus we have for any standard Borel space X a canonical standard Borel structure on P (X), the collection
of all Borel probability measures on X: Apply 7.1 to find some compact metric K which admits a Borel
bijection with X, and then take the Borel structure on P (K). The key point here is given by the above
lemma: The resulting Borel structure on P (X) is unaffected by the circumstances surrounding our choice of
K.

Theorem 14.4 Let (X,µ) be a standard Borel probability space. Let

f : X → Y

be Borel with ν = f∗[µ] in P (Y ) defined by

ν(B) = µ(f−1[B]).
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Then there is a Borel function
Y → P (X)

y 7→ µy

with
µ(A) =

∫
µy(A)dν(y)

for any Borel A ⊂ X.

Proof The proof is comparatively trivial in the case that X is countable, so assume instead it is uncountable,
and then by 7.1 we may assume X equals Cantor space, 2N. We let (Cn)n∈N enumerate the clopen subset of
2N. For each C ∈ {Cn : n ∈ N} we let

νC(B) = ν(C ∩ f−1(B),

to obtain a positive measure on Y . Note that

νC∪C′(B) = νC(B) + νC′(B)

for C,C ′ disjoint.
Each such νC is clearly absolutely continuous with respect to ν, and so we can apply 6.4 to find Borel

functions (fC)C clopen with ∫
B

fC(y)dν(y) = νC(B).3

Claim: For (Ai)i≤k disjoint clopen sets
fS

i Ai
=
∑
i

fAi

almost everywhere.

Proof of Claim: For any Borel B we have∫
B

fS
i Ai

(y)dν(y) = νS
i Ai

(B)

=
∑
i

νAi
(B) =

∑∫
B

fAi
(y)dν

=
∫
B

∑
fAi

(y)dν.

Thus it is impossible to find a non-null Borel set B on which either fS
i Ai

<
∑
i fAi

or fS
i Ai

>
∑
i fAi

, as
required. (Claim�)

Thus for a conull set of y we can define

µ∗y : {Cn : n ∈ N} → [0, 1]

Cn 7→ fCn
(y)

3You may object. Literally as stated at 6.4, we only obtain measurable functions. But every measurable function is Borel
on a conull Borel set and we will suffer no harm if we simply adjust them off of the countable union of all the conull subsets
involved.
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which will be finitely additive in the natural sense. This uniquely extends to a linear function

µy : C(2N)→ R

since every continuous function on Cantor space can be approximated in the sup norm by a continuous
function with only finitely many values.

I will leave as an exercise the tedious computations and untangling of the definitions necessary to verify

y 7→ µy

Borel.4

Then we have that
C 7→

∫
µy(C)dν(y)

agrees with µ on the clopen sets, and using that they are both measures we have for every Borel A

µ(A) =
∫
µy(A)dν(y).

2

4But please do see me if you do not feel completely clear about what is going on.
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15 Haar measure

Definition A topological space G equipped with the group operations of multiplication

G×G→ G

(g, h) 7→ gh

and inverse
G→ G

g 7→ g−1

is said to be a topological group if both these operations are continuous. We say that it is a lcsc group if in
addition as a topological space it is Hausdorff, separable, and locally compact.

It follows from the Urysohn metrizability criteria, as can be found in say [4], that any lcsc group admits
a compatible metric, and from there the locally compactness gives that it admits a complete compatible
metric.

Definition For G a lcsc, σ-finite measure µ defined on its Borel subsets is said to be a left Haar measure if
it is not constantly zero and for any Borel B ⊂ G and g ∈ G we have

µ(B) = µ(g ·B),

where here g · B =df {gh : h ∈ B} is the left translation of B by g. Similarly a non-trivial σ-finite measure
on the Borel sets of G is said to be a right Haar measure if it is invariant under right translation.

We will show the existence of Haar measures for lcsc groups. The proof will be organized around the
notion of content from §11. Recall that K(X) denotes the compact subsets of a topological space X.

Theorem 15.1 Let G be a lcsc group. Then there is a content

ρ : K(G)→ R≥0

with the properties that ρ(K) 6= 0 for some K ∈ K(G) and that for any g ∈ G,K ∈ K(G)

ρ(K) = ρ(g ·K).

Proof Notation: For B1, B2 ⊂ G we let B1 : B2 be the smallest natural number n ∈ N, if it exists, such
that there are g1, g2, ..., gn ∈ G with

B1 ⊂
⋃
i≤n

gi ·B2.

If no such finite n exists we let B1 : B2 =∞.

Note here that for any such B1, B2 and g ∈ G, the structure of the definition gives

B1 : B2 = g ·B1 : B2.

Claim: If O is an open non-empty subset of G and K is a compact subset of G, then

K : O <∞.
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Proof of Claim: We may assume that O contains the identity. Then at each g ∈ K we have g ∈ g · O.
Thus

K ⊂
⋃
g∈K

g ·O,

and the claim follows by the compactness of K. (Claim�)
Let W be an open subsets of 1G, the identity for G, whose closure is compact. Let A = W be its closure.

Notation: For O ⊂ G an open neighborhood of the identity we let

λO : K(G)→ R≥0

K 7→ K : O
A : O

.

We then let D(O) = {λU : U ⊂ O open,1G ∈ U} for any open non-empty set O.

Note that any non-empty open O has λO(A) = 1 and λO(K) ≤ K : A for any K ∈ K(G). We then let

C =
∏

K∈K(G)

[0,K : A],

equipped with the product topology derived by viewing each closed interval [0,K : A] as a topological space
in the usual euclidean topology. Thus every λO can be viewed as an element of C and every D(O) ⊂ C.

Claim: ⋂
{D(O) : O ⊂ G,Oopen,1G ∈ O}

is non-empty.

Proof of Claim: Here D(O) refers to the closure in C.
By Tychonov’s theorem we know that C is compact, and thus it suffices to show that for any finite

collection F of open neighborhoods of the identity we have⋂
O∈F
D(O) 6= ∅.

However this follows since
⋂
O∈F D(O) ⊃ D(

⋂
F O). (Claim�)

Claim: If K1,K2 are disjoint open sets then there exists an open neighborhood of the identity O such that
for all ρ ∈ D(O)

ρ(K1 ∪K2) = ρ(K1) + ρ(K2).

Proof of Claim:
Subclaim: There exists an open neighborhood O of 1G such that

O−1OK1 ∩K2 = ∅.

Proof of subclaim: At each g ∈ K1 we can by the continuity of the group operations choose an open Ug
containing 1G and open Wg containing g such that

UgWg ∩K2 = ∅.

(Here UgWg =df {h1h2 : h1 ∈ Ug, h2 ∈ Wg}.) At each g ∈ K1 fix an open neighborhood Og of 1G with
O−1
g Og ⊂ Ug. Now compactness enables us to choose a finite F ⊂ K1 such that

K1 ⊂
⋃
g∈F

Wg.
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Then we take O =
⋂
g∈F Og. (�Proof of subclaim)

Now for any open non-empty U ⊂ O we have that if g ∈ G and

h1, h2 ∈ g · U

then h−1
1 h2 ∈ U−1U ⊂ O−1O. Hence, g · U cannot simultaneously have non-empty intersection with both

K1 and K2. It follows then from the definition of λU that

λU (K1 ∪K2) = λU (K1) + λ(K2).

(Claim�)
Now consider the following conditions for K1,K2 ∈ K(X) and g ∈ G:

1. ρ(K1) + ρ(K2) = ρ(K1 ∪K2) when K1 ∩K2 = ∅;

2. ρ(K1) ≤ ρ(K2) when K1 ⊂ K2;

3. ρ(K1) = ρ(g ·K1).;

4. ρ(A) = 1.

These are all closed conditions on the functions ρ ∈ C. The second, third, and fourth are satisfied by
any λU for U open. The first is satisfied by any λU for U a subset of a sufficiently small open set. Thus any

ρ ∈
⋂
{D(O) : O ⊂ G,Oopen}

is as required to complete the proof of the theorem. 2

Corollary 15.2 Any lcsc topological group admits a left Haar measure and a right Haar measure.

Proof It suffices to do the case of left Haar measure. Applying 15.1 we obtain a left invariant non-trivial
content. Then applying 11.3 we obtain a measure which is induced from the outer measure derived from the
content, which then by the structure of the definitions will be left invariant. 2

Examples 1. For (R,+), the additive group of the reals, a Haar measure is given by Lebesgue measure.
Here there is no need to distinguish left Haar measure from right Haar measure, since the notions
coincide in virtue of the group being abelian.

2. In higher dimensions the higher dimensional Lebesgue measures again provide a Haar measure. In
(Rn,+) the nth dimensional Lebesgue measure mn serves as a Haar measure.

3. For (R>0, ·). the multiplicative group of the positive reals, the expression is more complicated. One
way to describe a Haar measure is by

µ(A) =
∫
A

1
t
dm(t),

where m is the Lebesgue measure.

4. For GLn(R), the invertible n by n matrices with real valued entries, one obtains a Haar measure by

µ(A) =
∫
A

det(M)dmn2(M),

where mn2 is the measure on Mn,n(R), the full set of all n by n matrices with real valued entries,
obtained under the natural isomorphism between Mn,n(R) and Rn2

which we can equip with Lebesgue
measure.
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5. In the case of discrete groups, a Haar measure is given simply by the counting measure. So for Γ a
discrete countable group, we let

µ(A) = |A|,

the cardinality of A, for any A ⊂ Γ.

6. A version of this holds for products of finite groups. So given (Γn)n∈N a sequence of finite groups, we
can view them all as discrete groups, and then let

Γ =
∏
n∈N

Γn

be the resulting group equipped with the product topology. Then given a basic open set,

U = {f ∈ Γ : f(1) ∈ A1, f(2) ∈ A2, ..., f(n) ∈ An},

for A1, ...An subsets of Γ1, ...Γn, we let

µ(U) =
|A1| · |A2|.... · |An|
|Γ1| · |Γ2|... · |Γn|

.

Then it follows from the extension theorems established in the earliest chapters that µ extends uniquely
to a Borel probability measure on Γ, and it is relative straightforward to see that this measure must
be both left and right invariant.

Exercise Let µ be a left Haar measure on a lcsc group Γ. Show that if K is compact then µ(K) is finite.

There are further theorems regarding uniqueness.

Theorem 15.3 Let Γ be a lcsc group and U a non-empty open subset of Γ with compact closure. Then for
any α > 0 there is a unique left Haar measure with µ(U) = α, and similarly there is a unique right Haar
measure which assigns the value α to U .

Theorem 15.4 Let Γ be a compact lcsc group. Then any left Haar measure is a right Haar measure.

Definition A lcsc group G is unimodular if it has a left Haar measure which is also a right Haar measure.

So the last theorem states that the compact groups are unimodular, and clearly the abelian groups are
unimodular. However there are many examples of lcsc groups which are not unimodular, and one can even
find nilpotent lcsc groups which are not unimodular.

Exercise Let Γ be the group of 2 by 2 matrices of the form[
x y
0 x−1

]
where x, y ∈ R, x 6= 0. Show that Γ is not unimodular.
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16 Ergodic theory

16.1 Examples and the notion of recurrence

Definition Let (X,µ) be a standard Borel probability space and let T : X → X be a measurable trans-
formation. We say that T is measure preserving if µ(T−1[A]) = µ(A) for every measurable A ⊂ X. A
measurable set A ⊂ X is said to be T -invariant if

T−1[A] = A.

We then say that the system (X,µ, T ) is ergodic if every invariant measurable set is either null or conull.

Examples 1. Let X = 2N = {0, 1}N, equipped with the product topology and the product measure: Given
a cylinder set A = {f : f(1) = S1, f(2) = S2, ...f(N) = SN} we let µ(A) = 2−N ; there is a unique Borel
measure extending µ to the collection of Borel sets. Then let T be the one sided shift:

(T (f))(n) = f(n+ 1).

This is almost immediately seen to be measure preserving. For ergodicity, we let A ⊂ X be a measurable set
of measure between ε and 1 − ε, some ε > 0. We can find finite sequences of cylinder sets, A1, ..., AN such
that

µ(A∆(
⋃
i≤N

Ai)) < ε2

At some large n we get
T−n(

⋃
i≤N

Ai)

independent, in the sense of measure theory, from
⋃
i≤N Ai. Thus

µ(T−n(
⋃
i≤N

Ai) \
⋃
i≤N

Ai) ≥ ε2,

∴ µ(T−n(A) \A) > 0.

2. Let X = R/Z, with the quotient topology and Lebesgue measure, λ. Let

T : x 7→ x+
√

2 mod 1.

It is easily seen that T acts by isometries. Since
√

2 is irrational, the orbit of a point x,

{T `(x) : ` ∈ Z},

is always infinite.
There are various proofs of ergodicity, though none of them are immediately obvious.
I am going to give one argument using Hilbert space theory. Let H be the Hilbert space of all measurable,

square integrable functions from (X,λ) to C. For each ` ∈ Z let

π` : x 7→ e2`πix = cos(2`πx) + isin(2`πx).

It is a routine calculation to see that 〈π`, πk〉 = 0 for ` 6= k, and so we certainly have an orthonormal set. In
fact this forms an orthonormal basis.5 One way to see this is to apply Stone-Weierstrass at 12.5 to conclude

5Here and elsewhere I am blurring over the distinction between a measurable function and its equivalence class in the
corresponding Hilbert space L2(X,µ).
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that the finite linear combinations of these functions are dense in C(X,C), and then it is standard that
C(X,C) is dense in H.

So now suppose A ⊂ X is a measurable, invariant set. Let χA be the characteristic function of this set.
χA ∈ H and so we can find coefficients (c`)`∈Z such that

χA(x) =
∑
`∈Z

c`π`(x)

almost everywhere.

χA ◦ T = T

by invariance, whilst
π` ◦ T = e2`πi

√
2π`,

which unwinds to give us ∑
`∈Z

c`π`(x) =
∑
`∈Z

e2`πi
√

2c`π`(x)

almost everywhere. Since {π` : ` ∈ Z} is an orthonormal basis, we obtain c` = e2`πi
√

2c` at every `, which
entails c` = 0 all ` 6= 0, yielding χA constant almost everywhere. Just as required.

Notation We say that T is an m.p.t. on (X,u) if it is a measurable, measure preserving function from X
to X.

Lemma 16.1 (Poincare recurrence lemma) Let (X,µ) be a standard Borel probability space. Let T be an
m.p.t. on (X,µ). Let A ⊂ X be measurable and non-null.

Then for almost every x ∈ A there exists some n > 0 with

Tn(x) ∈ A.

Proof Suppose otherwise, and let An be the set of x for which

Tn(x) ∈ A

but at all k > n
T k(x) /∈ A.

Note that A0 = {x ∈ A : ∀n > 0Tn(x) /∈ A}, which we are assuming to be positive.

An = T−n[A] ∩
⋂
k>n

(X \ T−k[A]),

and so is certainly measurable.
T−1[An] = An+1,

so they all have the same measure as A0, and for k 6= n we have An ∩Ak empty.
Thus (An)n∈N is an infinite sequence of disjoint measurable sets, all with the same non-zero measure,

contradicting finiteness of µ. 2

There is a peculiar consequence of this simple lemma. Suppose I start with a two chambered tank of gas.
I pump all the air out of one of the chambers, and then remove the partition between the two chambers.
Intuitively we expect the air inside the chamber to rapidly spread out equally between the two chambers.
Indeed the second law of thermodynamics essentially predicts a mixing up and a diffusion of the air.
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However, at the most basic level, we have a dynamical system. The particles are moving around through
time, and although the event of all the air being in one of the two chambers and none in the other is
fantastically implausible and unlikely, it is possible. The Poincare recurrence lemma predicts that with
enough time this event must reoccur.

Take another model which is a bit more mathematical. I have two urns, one blue, one red. I start with
100 ping pong balls all in the red urn. Every five seconds we toss a coin for each ball. If the coin toss for
that ball comes up heads, then we move it to the other urn. If it was in a blue urn and we tossed heads, it
switches to the red urn. If in the red urn and we tossed for it a head, it moves to the blue urn. If we toss a
tail, then it stays foot.

Intuitively we expect a mixing. After the first five seconds, we would expect about half the balls to
immediately move across to the blue urn having received a head in their toss. Perhaps after a while we
would imagine relatively stable populations, clustered around 50 balls in each. Again this is exactly the
prediction of the second law of thermodynamics.

But, but, but, Poincare tells us something else. If we wait long enough, the event of all the balls being in
the red urn and none in the blue is not only possible but inevitable. If we wait long enough, it will happen
– again and again and again.

There is an extended discussion of this example in §2.3 of [8]. He points out that the expected return,
the period in purgatory while we wait for the red to fill completely and the blue to clear out, is far, far longer
than the likely age of the universe. The second law of thermodynamics may be literally false, but as a rule
of thumb it holds fairly true.

16.2 The ergodic theorem and Hilbert space techniques

On to further topics.
I am going to base the rest of the discussion around Hilbert space techniques. Ultimately I want to work

towards the investigation of general ergodic actions of countable groups and make the connection between
this kind of ergodic theory and certain results in percolation theory.

To speed up the journey ahead, I am going to confine the discussion to invertible m.p.t’s. Many of the
results below hold in a more general setting and that more general setting is considered important to ergodic
theorists, but we will be working under simplifying assumptions. The goal is to see the main ideas simply
rather than the best possible results in all their glory and complexity.

A quick review of some basic ideas from Hilbert space. Probably you know these already but you can
find them discussed in any reasonably advanced book on linear algebra. Much of it is in §9.2 of [7]. The first
chapter of [3] gives a pretty thorough account.

From here on I will be taking the Hilbert spaces over C rather than R. Most of the time this makes only
a nominal difference, but later on it will be important to have things framed in this way: By working over
C we ensure full access to all potential eigenvalues.

Definition Let H be a Hilbert space and H0 a closed subspace. We then let H⊥0 be the collection of f ∈ H
for which

∀g ∈ H0(〈f, g〉 = 0).

It is then a standard fact that every f ∈ H can be resolved uniquely into the form

f = f0 + f1

where f0 ∈ H0 and f1 ∈ H⊥0 . We can then define

P : H → H0

by letting Pf = f0, where f0 is as above. P is called the orthogonal projection to H0.
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Lemma 16.2 Let H be a Hilbert space and H0 a closed subspace Then:
(i) the orthogonal projection P : H → H0 is a linear contraction;
(ii) (H⊥0 )⊥ = H0.

Recall that in a Hilbert space we can define the Hilbert space norm from the inner product:

||f || = (〈f, f〉) 1
2 .

Lemma 16.3 (Cauchy-Schwarz) For H a Hilbert space and f, g ∈ H

|〈f, g〉| ≤ ||f ||||g||.

Moreover, equality only occurs when f and g are scalar multiples of one another.

Definition For H a Hilbert space and U : H → H bounded linear operator, we define

U∗ : H → H

by the formula
〈U∗f, g〉 = 〈f, Ug〉.

(It is a standard fact that this U∗ is well defined and is itself a bounded linear operator.)
We say that U is unitary if it is onto and for all f, g ∈ H

〈Uf,Ug〉 = 〈f, g〉.

Note then that U will also be one to one (||Uf || = ||f || all f ∈ H) and hence invertible.

Lemma 16.4 If U : H → H is unitary, then U∗ = U−1.

Definition Let (X,µ) be a standard Borel probability space and T : X → X an invertible m.p.t. We then
define

UT : L2(X,µ)→ L2(X,µ)

by
UT (f)(x) = f(T (x)).

Lemma 16.5 For T as above, UT is a unitary operator.

So much for the basics. Now for some true grit.

Lemma 16.6 Let H be a Hilbert space and

U : H → H

unitary. Let H0 = {f ∈ H : Uf = f}, the closed subspace of U -invariant vectors. Let

P : H → H0

be the orthogonal projection.
Then for each f ∈ H

1
n

n−1∑
k=0

Ukf → Pf.
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Proof Let
H1 = {g − Ug : g ∈ H}.

It is routinely verified that this is a closed subspace of H.

Claim: H⊥1 = H0.

Proof of Claim: First consider f ∈ H⊥1 . We have

〈f, f − Uf〉 = 0

∴ 〈f, f〉 = 〈f, Uf〉.

Since ||Uf || = ||f || it follows from Cauchy-Schwarz that f and Uf are scalar multiples and from there we
quickly obtain their equality.

Conversely, suppose f ∈ H0. Using U unitary we see for g ∈ H

〈f, g − Ug〉 = 〈f, g〉 − 〈f, Ug〉

= 〈f, g〉 − 〈f, Ug〉 = 〈f, g〉 − 〈U∗f, g〉

= 〈f, g〉 − 〈U−1f, g〉 = 0

since f = Uf = U−1f . (Claim�)

Note that this claim does not yet license us to draw the conclusion that H1 = H⊥0 . That would only be
true if we knew H1 to be closed. Instead we are in a position to conclude only that H1 = H⊥0 , where H1 is
the closure of H1 in the topology provided by the Hilbert space norm.

Claim: For f ∈ H1,
1
n

n−1∑
k=0

Ukf → 0.

Proof of Claim: Fix ε > 0. Choose f̄ ∈ H1, f̄ = g − Ug, with ||f − f̄ || < ε/2. Then find some N with

2||g||
N

<
ε

2

and hence

|| 1
n

n−1∑
k=0

Ukf̄ || = || 1
n

(g − Ung)|| ≤ 1
n

(||g||+ ||Ung||) =≤ 1
n

(||g||+ ||g||) < ε

2
.

all n > N . Then

|| 1
n

n−1∑
k=0

Ukf || ≤ || 1
n

n−1∑
k=0

Uk(f − f̄)||+ || 1
n

(g − Ung)||

≤ 1
n

n−1∑
k=0

||f − f̄ ||+ ε

2
< ε

for all n > N . (Claim�)
For a general f ∈ H, write

f = f0 + f1,
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where f0 = Pf ∈ H0 and f1 ∈ H1 = H⊥0 .

1
n

n−1∑
k=0

Ukf =
1
n

n−1∑
k=0

Ukf0 +
1
n

n−1∑
k=0

Ukf1

= f0 +
1
n

n−1∑
k=0

Ukf1 → f0.

2

Definition A n m.p.t T : X → X is said to be invertible if it is one-to-one, onto, and its inverse is also an
m.p.t.

It actually follows from Lusin Novikov at 8.10 that a one-to-one m.p.t on a standard Borel probability
space will necessarily be invertible. I will not use this particular fact.

Theorem 16.7 (The von Neumann ergodic theorem) Let (X,µ) be a standard Borel probability space and
T : X → X an invertible m.p.t. Let f ∈ L2(X,µ). Then there is f̄ ∈ L2(X,µ) with

limn→∞||
1
n

n−1∑
k=0

f ◦ T k − f̄ ||2 → 0.

Proof Let UT be the induced unitary operator on L2(X,µ):

(UT (g))(x) = g(T (x)).

Then the last theorem gives us some f̄ = Pf with

1
n

n−1∑
k=0

Ukf → Pf

∴
1
n

n−1∑
k=0

Ukf − Pf → 0

in L2(X,µ). 2

There are many minor variations of this result. It is not relevant for us to trek through them all in detail.
Let me at least mention passingly that the assumption of T being invertible can be dropped – though in
that case the corresponding UT might not be unitary and we need to prove a version of 16.6 suitable for U
being a linear contraction. In the case that T is invertible we can actually obtain convergence of the partial
sums

1
2n+ 1

k=n∑
k=−n

f ◦ T k

in L2(X,µ).

Lemma 16.8 Let (X,µ) be a standard Borel probability space and T : X → X an invertible, ergodic, m.p.t.
Let f̄ ∈ L2(X,µ) be T -invariant. Then f̄ is constant almost everywhere.
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Proof It suffices to show that for every Borel set, f̄−1[B] is either null or conull. But this is a direct
consequence of ergodicity. 2

Now we have a crucial consequence of the von Neumann ergodic theorem.

Corollary 16.9 Let (X,µ) be a standard Borel probability space and T : X → X an invertible. ergodic,
m.p.t. Let f ∈ L2(X,µ). Let α =

∫
fdµ. Then∫

| 1
n

n−1∑
k=0

f ◦ T k − α|dµ→ 0.

Proof First let us take the f̄ from the von Neumann ergodic theorem. Let

fn =
1
n

n−1∑
k=0

f ◦ T k.

Claim: f̄ is T -invariant.

Proof of Claim: First note that

||fn − fn ◦ T ||2 = (〈 1
n

(f − f ◦ T k+1),
1
n

(f − f ◦ T k+1)〉) 1
2

≤
√

2
n
||f ||2 → 0.

Thus since fn → f̄ and UT is an isometry,
f̄ = UT f̄ .

(Claim�)

Claim:
∫

(fn − f̄)dµ→ 0.

Proof of Claim: For any g ∈ L2(X,µ) we have

〈fn − f, g〉 → 0

by Cauchy-Schwarz. In particular,
〈fn − f̄ , 1〉 → 0,

which is exactly the same as saying
∫

(fn − f̄)dµ→ 0. (Claim�)

Now each
∫
fndµ =

∫
fdµ, and the constant function f̄ has no choice but to be equal to

∫
fdµ a.e. 2

Here there is a famous slogan: If T is ergodic, then “a.e. the time mean of f equals the space mean of
f .” The time mean here refers to starting at a point x and taking the averages

1
n

n−1∑
k=0

f(T k(x)),

sampling through iterations under the map. The space mean of course refers to the integral of f . This
identity is one of the most fundamental in ergodic theory, with perennial applications. Before presenting the
proof of this result we need a curious technical lemma.

94



Lemma 16.10 Let T be an m.p.t. on a standard Borel probability space (X,µ). Let f ∈ L1(X,µ) and let
B be the set of x ∈ X for which

supn
n∑
k=0

f ◦ T k(x)

is greater than 0.
Then ∫

B

fdµ ≥ 0.

Proof We consider the proof just for the special case of T being invertible.
Let B1 be the set of x for which f(x) > 0, and then at n > 1 let Bn+1 be the set of x for which

m∑
k=0

f(T k(x)) ≤ 0

all m < n but
n∑
k=0

f(T k(x)) > 0.

It suffices to show that at any n we have ∫
B1∪B2∪...∪Bn

fdµ ≥ 0.

Note that T [B`] ⊂
⋃
m<`Bm and then T k[B`] ⊂

⋃
m≤`−k Bm.

Claim: For m ≤ n, i < j < m we have

T i[Bm] ∩ T j [Bm] = ∅.

Proof of Claim: Otherwise choose x, y ∈ Bm with T i(x) = T j(y). Then since T is one to one, we obtain
T j−i(y) = x. But x ∈ Bm and by the remarks above we have T j−i ∈ B` for some ` < m, contradicting
disjointness of the sets B1, B2, ..... (Claim�)

We let B′n = Bn and recursively define

B′m = Bm \
⋃
`>m

⋃
k≤`−m

T k[B′`].

Thus
{T k[B′`] : ` ≤ n, k < `}

gives a disjoint covering of B1 ∪ ... ∪Bn. Moreover∫
B′m∪T [B′m]∪...∪Tm−1[B′m]

fdµ

=
∫
B′m

m−1∑
k=0

f ◦ T kdµ > 0,

as required. 2
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The proof given above does not work in the case T non-invertible. For one thing, it is easy to come up with
examples where, for instance, T [B3] and T 2[B3] are not disjoint. For another, there might be measurable
sets where µ(T [B]) 6= µ(B), and hence the very last equation of the proof above might not hold true.

I will sketch the ideas behind a proof which does not assume T is invertible.
We first let An be the set of x where there is some m ≤ n for which

∑m−1
k=0 f ◦ T kdµ > 0. At each n we

let fn be f · χAn
(so that fn equals f on An and zero outside An). Again, it suffices to show each

∫
fndµ

greater than zero. By T being measure preserving, we have at each N∫
fndµ =

1
N

∫ N−1∑
k=0

fn ◦ T kdµ.

The next tricky point is that for some arbitrary x ∈ X we can look at the sequence of values

fn(x), fn(T (x)), fn(T 2(x)), ....fn(TN−1(x)).

Thinking of N >> n and imagining that most of the time T i(x) ∈ An, we can find ii < i2 < i3 < ... < ip < N
such that between each successive term there are at most n many non-zero values and between any of the
successive markers we have

i`+1−1∑
k=i`

fn(T k(x)) ≥ 0.

Then it is not hard to calculate that∫
fndµ =

1
N

∫ N−1∑
k=0

fn ◦ T kdµ

≥ −n
N

∫
||f ||1dµ,

which tends to zero as N heads towards infinity.

Corollary 16.11 Let (X,µ) and T as above. Let f ∈ L1(X,µ) be real valued. Then∫
{x:supn

1
n

Pn−1
k=0 f(Tk(x))>α}

fdµ ≥ αµ({x : supn
1
n

n−1∑
k=0

f(T k(x)) > α}),

∫
{x:infn

1
n

Pn−1
k=0 f(Tk(x))<α}

fdµ ≤ αµ({x : infn
1
n

n−1∑
k=0

f(T k(x)) < α}),

for α ∈ R.

Proof We only need to convince ourselves of the first equation, since the first implies the second after we
replace f by −f . But here if we let

g = f − α

then the first equation amounts to∫
{x:supn

1
n

Pn−1
k=0 g(T

k(x))>0}
gdµ ≥ 0µ({x : supn

1
n

n−1∑
k=0

g(T k(x)) > 0}) = 0,

and follows from the last lemma. 2
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Theorem 16.12 (The pointwise ergodic theorem) Let (X,µ) be a standard Borel probability space. Let
f ∈ L1(X,µ) and let T be an ergodic m.p.t. Then at almost every x

1
n

n−1∑
k=0

f(T k(x))→
∫
fdµ.

Proof It suffices to prove this for f real valued and positive. After linearity extends the result to complex
valued functions.

First let us show that almost everywhere this limit exists. For a contradiction suppose there is α < β
with

limsup
1
n

n−1∑
k=0

f(T k(x)) > β,

liminf
1
n

n−1∑
k=0

f(T k(x)) < α,

on a non-null set of x. By ergodicity we obtain this to be true at almost every x. This in particular gives
that at every x

supn
n−1∑
k=0

f(T k(x)) > β

and

infn
n−1∑
k=0

f(T k(x)) < α.

Applying 16.11 we obtain
∫
fdµ ≥ β and then

∫
fdµ ≤ α, with a contradiction.

So we obtain some fixed α ∈ R with

1
n

n−1∑
k=0

f ◦ T k(x)→ α

for almost all x ∈ X.

Claim: For each ε > 0 ∫
fdµ− α < ε.

Proof of Claim: Let g : X → R be a positive, measurable, bounded function with∫
|f − g|dµ < ε

and
g ≤ f.

Let β ∈ R>0 be an upper bound on g.
(i) By the argument from the first part of this theorem, we can find some γ ∈ R such that for almost all

x ∈ X
1
n

n−1∑
k=0

g ◦ T k(x)→ γ.
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(ii) Now appealing to the boundedness of g, we have have at each n

1
n

n−1∑
k=0

g ◦ T k < β.

Thus by dominated convergence, as at 5.4 above, we have∫
1
n

n−1∑
k=0

g(T k(x))dµ(x)→
∫
γdµ = γ.

Since T is measure preserving, we have at each n∫
1
n

n−1∑
k=0

g(T k(x))dµ(x) =
∫
g(x)dµ(x),

and hence
γ =

∫
gdµ.

(Aside: Since g is bounded and µ is finite, we have g ∈ L2(X,µ), so we could have also established this last
point by appealing to 16.7.)

(iii) Since g ≤ f we have at each n∫
1
n

n−1∑
k=0

g ◦ T kdµ ≤
∫

1
n

n−1∑
k=0

f ◦ T kdµ,

and hence

γ =
∫

limn→∞
1
n

n−1∑
k=0

g ◦ T kdµ ≤
∫

limn→∞
1
n

n−1∑
k=0

f ◦ T kdµ = α.

(iv) Since ∫
fdµ−

∫
gdµ < ε,

or equivalently, ∫
gdµ+ ε >

∫
fdµ,

we obtain from (ii) that

γ + ε >

∫
fdµ,

and then from (iii) that

α+ ε >

∫
fdµ,

as required. (Claim�)
Quantifying over all ε > 0 we obtain

α ≥
∫
f.
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On the other hand, since at each n

0 ≤
∫

1
n

n−1∑
k=0

f ◦ T k =
∫
fdµ

we have

α =
∫

limn→∞
1
n

n−1∑
k=0

f ◦ T kdµ ≤ limsupn→∞

∫
1
n

n−1∑
k=0

f ◦ T kdµ =
∫
fdµ,

thereby completing the proof of the theorem. 2

16.3 Mixing properties

Definition Let T be an m.p.t. on a standard Borel probability space (X,µ). T is said to be mixing if for
all measurable A, B

µ(T−n[A] ∩B)→ µ(A)µ(B)
as n→∞.

So the example we had of this before was the Bernoulli shift. For S a finite set and X = SN with the
product of the counting measure, we let T (f) be the resulting of shifting one place further along:

T (f)(n) = f(n+ 1).

We observed back in in the start of §16.1 that the finite boolean combinations of cylinder sets are dense in
the measure algebra and for A and B arising in this class we have µ(T−n[A]∩B) actually equal to µ(A)µ(B)
for all sufficiently large n.

Mixing is sometimes also called strong mixing to distinguish it from weak mixing, below.

Definition Let T be an invertible m.p.t. on a standard Borel probability space (X,µ). Let H be the Hilbert
space of square integrable functions from X to C. We then define the corresponding unitary operator

UT : H → H

by
UT (f)(x) = f(T (x)).

Thus f is an eigenvector for UT if there is some α ∈ C with

f(T (x)) = αf(x)

for almost every x.
We say that T is discrete spectrum if H is spanned by the eigenvectors for UT .

Again we had an example in §16.1. We let T act on R/Z by some kind of irrational rotation: For instance

T (x) = x+
√

2 mod1.

There are many equivalent definitions of weak mixing. I will take one.

Definition Let T be an m.p.t. on a standard Borel probability space (X,µ). T is said to be weak mixing
if the induced transformation T × T : X ×X → X ×X

(x, y) 7→ (T (x), T (y))

is ergodic with respect to the product measure µ× µ.

Weak mixing also has a Hilbert space characterization: T is weak mixing if and only if the corresponding
operator UT has no eigenvectors other than the constant functions. (This is not trivial to prove. See [8] for
a proof.)
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16.4 The ergodic decomposition theorem

It turns out that some kind of rationale can be provided for studying only ergodic transformations: Every
transformation can be written as a direct integral of ergodic transformations.

For simplicity let us assume T is an invertible m.p.t. on a standard Borel probability space (X,µ).
Consider the measure algebra (M,d) consisting of measurable subsets of X with

d(A,B) = µ(A∆B).

It is a standard fact that this is a separable metric space (after we take the customary step of identifying
sets which agree a.e.).

Let M0 be those elements of M which are invariant under T . Let {An : n ∈ N} be a countable dense
subset of M0. We then define

π : X → 2N

by
π(x)(n) = 1

if x ∈ An, and = 0 if x /∈ An.
At each y ∈ 2N we let Xy = π−1[{y}], the set of x with π(x) = y. It follows immediately from the

definitions that each Xy is T -invariant. Following the measure disintegration theorem we can find measure
ν on 2N and at each y a µy concentrating Xy with

µ =
∫
µydν(y).

It is easily verified that T must act in a measure preserving manner on almost every (Xy, µy), or we could
stitch together the counterexamples, choosing say Ay ⊂ Xy with µy(T−1[Ay]) > µy(Ay) on a non-null set of
y, and take A = {x : x ∈ Xπ(x)} to get a measurable set with T−1[A] having a greater measure than A.6

A similar argument serves to show ergodicity. If for some non-null set of y we have T not ergodic on
(Xy, µy), then we could fix an k ∈ N and a non-null set C of y for which there is some By ⊂ Xy with measure
between ( 1

k , 1−
1
k ). We let B be the set of {x : x ∈ Bπ(x)} and then it is easily checked that for any n

d(An, B) = µ(An∆B) >
1
k
µ(C),

contradicting density of {An : n ∈ N} in the subalgebra of invariant measurable sets.

6There are in fact some subtle points here. We need to know that y 7→ Ay is suitably measurable for the corresponding
definition of A to provide a measurable set. I will ignore these details.
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17 Amenability

17.1 Hyperfiniteness and amenability

The main context of the last section was the following: We have a measure preserving transformation

T : (X,µ)→ (X,µ)

on a standard Borel probability space (X,µ). Initially we made no assumption about invertibility, but after
a while it was convenient to assume that T is one to one and onto, and then T−1 will itself be an m.p.t.
Note then that if we let M(X,µ) be the space of measurable subsets of X with the metric

d(A,B) = µ(A∆B)

and the identification of sets with A∆B null, then T can be viewed as acting by automorphisms on this
space. In fact we have an action of the group Z, either on the space X or this derived space of measurable
subsets:

` · x = T `(x);

` ·A = T `[A].

So this is something like a representation of the group Z. The slightly subtle point is that it is preserving
structure not at the level of X, which in its own right comes with no topological or algebraic structure, but
at the level of the measurable subsets.

In this section I want to look at the ergodic theory of general groups. Our new context will be this: Γ is
some countable group. (X,µ) is a standard Borel probability space equipped with an action by Γ. For each
γ ∈ Γ the resulting function

γ · (·) : X → X,

x 7→ γ · x
will be an m.p.t. There are many different directions we could lead to. The notes below should be viewed
as a short introduction to one of the topics in this area.

I am going to structure the discussion around the idea of hyperfiniteness. One comparison between action
of Z and more complicated groups such as F2, the free group on two generators, is that the former give rise to
hyperfinite orbit equivalence relations. We will prove that free, measure preserving actions of F2 on standard
Borel probability spaces are never hyperfinite, and this in turn can be used to give an application to the
theory of percolation, in the sense understood by probabilists.

Definition An equivalence relation E on a standard Borel probability space is Borel if it is Borel as a subset
of X×X. It is finite if every equivalence class is finite. It is countable if every equivalence class is countable.
It is hyperfinite if it can be represented as an increasing union of finite Borel equivalence relations – that is
to say there are equivalence relations (Ei)i∈N such that:

(i) Ei ⊂ Ei+1;
(ii) each Ei is Borel and finite;
(iii) E =

⋃
i∈N Ei.

Exercise Let Γ be a countable group acting on a standard Borel space by Borel automorphisms – which is
to say, for each γ ∈ Γ

x 7→ g · x
is a Borel function. Show that the induced orbit equivalence relation

EΓ = {(x, γ · x) : x ∈ X, γ ∈ Γ}

is Borel.
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Example Recall the example of an irrational rotation. X = R/Z. We let T act by

T (x) =
√

2 + xmod 1.

T is a homeomorphism of X to itself, and we obtain an action of Z with

` · x = T `(x).

First of all, the equivalence relation is countable, since every equivalence class,

[x] = {T `(x) : ` ∈ Z},

is obviously countable. As for showing it Borel, note that at each ` the set

R` = {(x, T `(x)) : x ∈ R/Z}

is closed, and the induced equivalence relation is then

E =
⋃
`∈Z

R`,

and hence Fσ.
Finally, the equivalence relation is in fact also hyperfinite. At each n let Un be the open interval (0, 1

n ).
I have chosen these so they are decreasing and ⋂

n∈N
Un = ∅.

We then set xEnT `(x) if either
(i) ` = 0; or
(ii) ` > 0 and x, T (x), T 2(x), ...T `(x) are all outside Un; or
(ii) ` < 0 and x, T−1(x), T−2(x), ...T `(x) are all outside Un.

In fact something much more general is true:

Lemma 17.1 Let Z act by Borel automorphisms on a standard Borel space X. Then the resulting orbit
equivalence relation is hyperfinite.

The proof is not deep, but there are some minor technical issues I do not want to get caught up making
completely precise. The first step is to apply 8.6 simultaneously to all the Borel sets of the form T `1 [V1] ∩
T `2 [V2]∩ ...∩T `n [Vn] where V1, ..., Vn are open. This will give a stronger Polish topology in which T acts by
homeomorphisms.

Now if we are really, really lucky, the resulting orbits, [x] = {T `(x) : ` ∈ Z}, will all be dense and so will
each of the forward orbits,

{T `(x) : ` ≥ 0},

and the backwards orbits,
{T `(x) : ` ≤ 0}.

Then the proof is much the same as in the example above – I simply choose the open sets with the properties
indicated there.

A more complicated case is when the orbits are dense, but not necessarily in both directions. Then we
choose for each x some basic open Wx so that [x] has a last or first moment when it meets that open set.
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With some care we can do this so that xEy ⇒ Xx = Wy and if we let s(x) be that special last or first point,
then

x 7→ s(x)

is not only Z-invariant but Borel. We then let xEky if x = y or for some i, j ∈ {−k,−k + 1, ..., 0, 1, ...k} we
have T j(x) = s(x), T i(y) = s(x) = s(y).

In general there is no guarantee, of course, that the orbits will be dense. The argument for in this more
typical case involves decomposing X into Borel subsets on which all points have the same closure and working
on each of these components separately. Suffice to say there are technicalities, but they idea is not deep.

It is not presently understood which countable groups give rise to hyperfinite equivalence relations7. One
of the deepest theorems in this entire area was proved in 2005:

Theorem 17.2 (Gao-Jackson) Let Γ be a countable abelian group acting by Borel automorphisms on a
standard Borel probability space X. Then the resulting orbit equivalence relation EΓ is hyperfinite.

Their long proof is still yet to be published.

Definition F2 = 〈a, b〉 is the free group on generators a and b. An element of F2 consists of reduced words
in the letters {a, a−1, b, b−1} – where reduced means there should be no adjacent appearances of a and a−1

or b and b−1. We multiply elements of F2 by concatenating and then reducing.

For instance let σ = ab2a−1 and τ = ab3aba−1. (The usual notational shortcut: I write ab2a−1 instead
of abba−1.) We multiply by

στ = ab5aba−1.

Technically speaking, the identity of F2 is the empty string. We usually denote this by e – as against lyrically
just leaving an empty space and hoping it is recognized for its role as the identity of the group.

Definition For Γ a countable group, we let `1(Γ) be the space of functions

f : Γ→ R

with ∑
σ∈Γ

|f(σ)| <∞.

For f ∈ `1(Γ) we let
||f || =

∑
σ∈Γ

|f(σ)|.

We let Γ act on `1(Γ) by
σ · f(τ) = f(σ−1τ).

We then say that the group Γ is amenable if for any finite F ⊂ Γ and ε > 0 there is some f ∈ `1(Γ) with

||f || = 1

and
||f − σ · f || < ε

all σ ∈ F .
7BUT be warned. There is a weaker use of the term hyperfinite under which the answer is understood. Some authors take

hyperfinite to mean, in effect, hyperfinite on a conull set. In this weaker sense, Connes, Feldman, and Weiss, showed that
every countable amenable group gives rise to a hyperfinite equivalence relation when it acts measurably on a standard Borel
probability space
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At the present this will probably seem a rather technical definition. It turns out there are many equivalent
formulations of amenability – the definition I have chosen above is neither the best nor the most common,
but simply the most convenient for the proofs that lie ahead. For instance amenability is equivalent to the
existence of a finitely additive Γ-invariant function

m : P (Γ)→ [0, 1]

with m(Γ) = 1. Amenability is also equivalent to the following remarkable property: Whenever Γ acts
continuously on a compact metric space, there is a Γ-invariant probability measure. It would take us far
to far afield to enter in to the proof that this property characterizes amenability, but it would probably be
helpful to see that this property holds in the case of Z.

Theorem 17.3 Let K be a compact metric space and suppose Z acts continuously on K. Then there is a
Z-invariant probability measure on K.

Proof Recall from §11 that we use P (K) to denote the Borel probability measures on K in the induced
weak star topology, and that in this topology it forms a compact metrizable space.

Begin with any ν ∈ P (K). Let

µN =
1
N

∑
0≤`≤N−1

` · ν,

where ` · ν is defined by ∫
fd` · ν =

∫
f(` · x)dν(x).

Now appealing to the compactness of P (K) we can find a measure µ which is a convergence point of a
subsequence of (µn)n∈N. For any k ∈ Z and f ∈ C(K < R) we have∫

fd(µ− k · µN ) <
2k
N
||f ||,

and thus for all ε > 0, all k ∈ Z there exists an N such that for all m > N and f with ||f || ≤ 1 we have

|
∫
fdµm −

∫
fd(k · µm)| ≤ ε.

This is a weak star closed condition in the display, and hence we must have for µ that for all ε > 0, all k ∈ Z,
and f all with ||f || ≤ 1 we have

|
∫
fdµ−

∫
fd(k · µ)| ≤ ε.

This actually gives that for all f ∈ C(K,R) and all k ∈ Z∫
fdµ =

∫
fd(k · µ),

which amounts to Z-invariance of µ. 2

One can also characterize amenability in terms of the existence of left invariant element in the dual of
`∞(G) or in terms of almost invariant unit vectors in the regular representation8 of G on `2(G).

On it goes. Like I said, the choice I have taken here for defining amenability is technical but convenient
to our goals. A discussion of these other characterizations, many of which require subtle ideas from Banach
space theory to be proved, can be found in [5],

8I.e. induced by the shift in the same way we induced an action of G on `1(G) above
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Lemma 17.4 F2 is not amenable.

Proof For u ∈ {a, a−1, b, b−1} we let Au be the reduced words beginning with u. For g ∈ `1(Γ) we define
gu by

gu(σ) = g(σ)

if σ ∈ Au, and gu(σ) = 0 otherwise.
Thus f is the sum of fa, fa−1 , fb, fb−1 , as well as its value on e. Note moreover that if w 6= u−1,

w, u ∈ {a, a−1, b, b−1}, then
w ·Au ⊂ Aw.

We will take as our F the set {a, a−1, b, b−1} and as our ε the value 1
4 . Let f ∈ `1(Γ) with ||f || = 1. We

will show there is some σ ∈ F with
||f − σ · f || ≥ 1

4
.

First choose u ∈ F with
||fu + fu−1 || ≤ 1

2
.

For σ /∈ Au−1 we have u · σ ∈ Au and (u · f)(u · σ) = f(σ). This yields

||(u · f)u|| ≥ ||f − fu−1 ||.

Similarly
||(u−1 · f)u−1 || ≥ ||f − fu||.

One of ||(u · f)u|| and ||(u−1 · f)u−1 || is therefore at least 3
4 given

||fu + fu−1 || = ||fu||+ ||fu−1 || ≤ 1
2
.

This gives either

||u · f − f || ≥ 1
4

or
||u−1 · f − f || ≥ 1

4
.

2

Lemma 17.5 Z is amenable.

Proof Let
An = {−n,−n+ 1, ..., 0, 1, ..., n− 1, n}.

For ` ∈ Z and A ⊂ Z we let ` ·A = {`+ k : k ∈ A}. It is then easily seen that

|An∆` ·An|
|An|

→ 0

as n→∞. Thus if we let
fn =

1
|An|

χAn

then each ||fn|| = 1 and
||fn` · fn|| → 0

as n→∞. Thus given any finite F ⊂ Z and ε > 0 we have

||fn` · fn|| < ε

all ` ∈ F and n sufficiently large. 2
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Theorem 17.6 Let F2 act freely and by Borel automorphisms on a standard Borel probability space (X,µ).
Then the resulting orbit equivalence relation

EF2 = {(x, σ · x) : σ ∈ F2}

is not hyperfinite.

Proof Suppose instead for a contradiction

EF2 =
⋃
i∈N

Ei

where the Ei’s are finite Borel equivalence relations with Ei ⊂ Ei+1. Then at each i ∈ N, x ∈ X we let

fi,x(σ) =
1

|[x]Ei |

if xEiσ−1 · x, and = 0 otherwise. (Here |[x]Ei
| denotes the number of points Ei-equivalent to x.) Let

fi(σ) =
∫
fi,x(σ)dµ.

Since the action is free we obtain each
fi,x ∈ `1(F2)

with ||fi,x|| = 1. Interchanging integration with summation yields

||f || =
∑
σ∈F2

∫
fi,x(σ)dµ

=
∫ ∑

σ∈F2

fi,x(σ)dµ

=
∫
||fi,x||dµ = 1.

Claim: For each σ ∈ F2

limi→∞||fi − σ · fi|| → 0.

Proof of Claim: Let Ai = {x : xEiσ · x}. Since
⋃
i∈N Ei = EF2 we obtain

µ(Ai)→∞

as i→∞. Moreover if x ∈ Ai then
fi,σ·x(σ−1τ) = fi,x(τ)

for any τ ∈ F2. Thus ∫
σ·Ai

σ · fi,x(τ)dµ =
∫
σ·Ai

fi,x(σ−1τ)dµ

=
∫
Ai

fi,x(τ)dµ,
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since σ acts in a measure preserving manner. Thus

||f − σ · f || =
∑
τ∈F2

(|
∫
fi,x(τ)dµ−

∫
fi,x(σ−1τ)dµ|)

≤
∑
τ∈F2

(|
∫
Ai

fi,x(τ)dµ−
∫
σ·Ai

fi,x(σ−1τ)dµ|) +
∑
τ∈F2

(
∫
X\Ai

fi,x(τ)dµ+
∫
X\σ·Ai

fi,x(σ−1τ)dµ

= (
∫
X\Ai

∑
τ∈F2

fi,x(τ)dµ+
∫
X\σ·Ai

∑
τ∈F2

fi,x(σ−1τ)dµ

= µ(X \Ai) + µ(X \ σ ·Ai.

Since σ acts in a measure preserving manner, this in turn equals

2µ(X \Ai),

which goes to 0 as i→∞. (Claim�)

But now for any finite F ⊂ F2 and ε > 0 we will have at all sufficiently large i

∀σ ∈ F (||fi − σ · fi|| < ε),

with a contradiction to non-amenability of F2. 2

All we used about F2 is its non-amenability. Thus the proof shows:

Theorem 17.7 Let Γ be a non-amenable group acting freely and by measure preserving transformations on
a standard Borel probability space (X,µ). Then the resulting orbit equivalence relation is not hyperfinite.

As a corollary to this theorem we obtain another proof that Z is amenable.

17.2 An application to percolation

Let G = (V,E) be an infinite connected graph. Imagine we have some random process which will reduce the
graph, leaving some edges in while erasing many others. Let p be a real number between 0 and 1. At each
edge c ∈ E we suppose our random process independently gives the edge p chance of remaining in the graph.
Roll the dice and conduct the experiment, and at the end, after all these edges have had their chance, we
will be left with a subgraph of G, and we can ask various kinds of qualitative questions: Whether there is
an infinite connected component9, and if so, how many.

This is called a percolation problem. Certain kinds of probabilists and physicists are interested in which
kinds of graphs will have a p < 1 for which the resulting experiment is certain to leave us with at least one
infinite component. We can use the ideas from the last subsection to show that with the Cayley graph of F2

there is a p < 1 for which the above experiment is almost certain to lead to an infinite component.
Here is a purely mathematical way to formulate the problem.

Definition Let G = (V,E) be a countable graph. Let X(G) be the space of all functions from E to (0, 1),

E(0,1) =
∏
E

(0, 1),

9Recall: If H = (W,F ) is a graph and w ∈ W , the connected component of w is the set of all v ∈ W for which there is a
path w0 = w,w1, ..., wn = v with each {wi, wi+1} ∈ F
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equipped with the product topology and the infinite product of Lebesgue measure on (0, 1). (Note that
X(G) is a standard Borel probability space.) For each f ∈ X(G) and p ∈ [0, 1] we let Gf,p = (V,Ef,p),
where V is as before but

Ef,p = {c ∈ E : f(c) > p}.

So from the experiment f and the probability p we have obtained a randomly presented subgraph of G.
We then let pc(G) be the least q ∈ [0, 1] such for a non-null set of f ∈ X(G) we have an infinite connected

component in Gf,p whenever p ∈ (0, 1) has p > q.

There is something rather devious in the way I have phrased the definition. If there is no p ∈ (0, 1) for
which there is a non-zero chance of Gf,p having an infinite component, then pc gets set to the default value
of 1.

Definition Let Γ be a countable group and S a generating set – which is to say that every element of Γ can
eventually be obtained by multiplying together elements of S and their inverses. We then let the induced
Cayley graph, G(Γ, S) be the graph with vertex set Γ and an edge running between σ and τ if for some
s ∈ S ∪ S−1 we have

σs = τ.

We let Γ act on G(Γ, S) by
γ · σ = γσ,

γ · {σ, σs} = {γσ, γσs}.

Exercise Let G = (V,E) be the Cayley graph of Z with the generating set S = {1}. Show that pc(G) = 1.

Theorem 17.8 Let F2 = 〈a, b〉 and take as our generating set S = {a, b}. Then

pc(G(F2, S)) < 1.

Proof Write G(F2, S) = G = (V,E). Hence
V = F2

and E is the set of all
{σ, σu},

where σ ∈ F2, u ∈ {a, a−1, b, b−1}. At every p ∈ (0, 1) the set

Ap = {f ∈ X(G) : Gf,p has an infinite component}.

Claim: Each Ap is Borel.

Proof of Claim: Fix p. Given γ, τ ∈ F2 we let

Bγ,τ = {f : γ, τ connected inGf,p}.

This set is Borel, since there is a unique loopless path

γ, γu1, γu1u2, ..., τ

from γ to τ , and then f ∈ Bγ,τ if and only if f assumes a value greater than p at each of the needed edges.
Thus if we (τn)n∈N enumerate the free group, and set

Cγ =
⋂
m∈N

⋃
n>m

Bγ,τn
,
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then Cγ is seen to be Borel. Note that Cγ is the collection of f ’s for which γ has an infinite component in
Gf,p.

Finally
Ap =

⋃
γ∈F2

Cγ .

(Claim�)

Let us assume for a contradiction that Ap is null.
We let F2 act on X(G) by pivoting through its action on the Cayley graph. Given f ∈ X(G) and σ ∈ F2

we define σ · f by
σ · f({τ, τu}) = f({σ−1τ, σ−1τu}).

It is easily checked that the action of F2 on X(G) is measure preserving and each Ap is F2-invariant – in the
sense that γ ·Ap = Ap for all γ ∈ F2.

Let
Y =

⋃
n∈N

(X(G) \A1− 1
n

).

This is a conull, Borel, F2-invariant subset of X(G). Hence it is a standard Borel probability space on which
F2 acts by measure preserving transformations. It is then an easy exercise to check that for any σ ∈ F2,
σ 6= e, the collection of f ∈ Y for which σ · f 6= f is again non-null.

Finally we then come to

X = {f ∈ Y : ∀γ ∈ F2(γ 6= e⇒ γ · f 6= f)},

a standard Borel probability space on which F2 acts freely.
We let En be the set of (f, γ · f) such that e is connected to γ in Gf,1− 1

n
. Digesting the definition,

this comes out the same as asking γ−1 be connected to e in Gγ·f,1− 1
n

, and we see that this defines a Borel
equivalence relation. The finiteness of the components on the various Gf,1− 1

n
entails that each En is finite.

For each τ ∈ F2, u ∈ {a, a−1, b, b−1} and f ∈ X we have

{τ, τu} ∈ A1− 1
n

all sufficiently large n.
Hence on X

EF2 =
⋃
n∈N

En,

contradicting 17.6. 2
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