NON-SOLVABLE TORSION-FREE VIRTUALLY
SOLVABLE GROUPS
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ABSTRACT. We show that a non-solvable, torsion-free, virtually
solvable group S must have Hirsch length h(S) > 10. If A(S) < 14
then Aj is the only simple factor. If S is virtually nilpotent and
h(S) < 14 then is Fitting subgroup has nilpotency class < 3.

We shall consider here the question: What is the smallest torsion-
free virtually solvable group which is not solvable? Here “smallest”
should be interpreted as having minimal Hirsch length. Lutowski and
Szczepanski have recently shown that 15 is the smallest dimension in
which there are non-solvable Bieberbach groups, and have given two
explicit examples in this dimension, one with holonomy A; = PSL(2,5)
and another with holonomy PSL(2,7) [7]. The question remains open
for groups which are not virtually abelian. We shall show that if there
is such a group S with Hirsch length A(S) < 15 then A(S) > 10 and
the quotient of S by its solvable radical is A5 or PSL(2,7). If S is
virtually nilpotent then its Fitting subgroup has nilpotency class < 3.
Our arguments rest upon the groups in question having finite perfect
quotients which act effectively on a free abelian group of small rank.

The first section is on notation and terminology, and §2 contains five
lemmas. In §3 we define the notion of minimal TFNS group and show
that such groups have crystallographic quotients. The next section
uses knowledge of the finite subgroups of GL(k,Z) and Sp(2¢,7Z) for
k and ¢ small [4, 8] to find the relevant minimal perfect groups and
their representations. In §5 we use some commutative algebra to show
that if a torsion-free, virtually solvable group S is neither solvable nor
virtually nilpotent then h(S) > 9. In §6 we consider the commutator
pairing for nilpotent groups, and we apply the work of §6 in §7 to
minimal TFNS groups which are virtually nilpotent. Up to this point
the condition that S be torsion-free is not prominent in our arguments.
It is used in an essential way in §8, where we show that h(S) > 10,
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and limit the structure of the Fitting subgroup when S is virtually
nilpotent. The final brief section contains a few questions.

I would like to thank R. Lutowski for his advice on representations
of finite perfect groups and on the associated crystallographic groups.

1. GENERALITIES

If G is a group then G’, and (G shall denote the commutator sub-
group, and centre of GG, respectively. If J is a subgroup of G then
C(J) is the centralizer of J in G. Let G© = G and G = ™' pe
the terms of the derived series for G, and let v,G = G and 7, .1G =
|G, 7, G] be the terms of the lower central series for G. (This notation
is from [9].) Let I(G) be the isolator of G' in G, so that G/I(G) is
the maximal torsion-free abelian quotient of G. Let v/G denote the
Hirsch-Plotkin radical of G. If G is virtually polycyclic then v/G is the
unique maximal nilpotent normal subgroup of G, and is also known as
the Fitting subgroup of GG. We shall use “simple” to mean “non-abelian
and simple” throughout. B

A virtually solvable group S has a solvable radical S of finite index.
If S is not solvable then the lowest term of a composition series for S/S
is a finite simple group, and so contains a minimal simple group [1].
We shall say that S'is TFNS if it is torsion-free and not solvable, and is
minimal TFNS if it is finitely generated, torsion-free, S/S is a minimal
simple group and S has minimal Hirsch length for such groups. Thus
h(S) < 15. (Cf. [7, Definition 2.1].)

An outer action of a group H on a group G is a homomorphism
6 : H — Out(G). Such a homomorphism induces homomorphisms
from H to Aut(G/G") and Aut((G). We shall say that the action is
effective if it is a monomorphism.

A crystallographic group G is a group which is an extension ¢ of a
finite group H by a finitely generated free abelian group A, such that
the action 6 : H — Aut(A) induced by conjugation in G is effective.
The holonomy group of G is the quotient G/A. Such extensions are
classified by 6 and a cohomology class c(&) in H?(H; A?), where H acts
on A via 6. (We shall write just H?(H; A), when the action is clear.)

A Bieberbach group is a torsion-free crystallographic group. A crys-
tallographic group corresponding to an extension £ is a Bieberbach
group if and only if ¢(£) has non-zero restriction in H%(C'; A) for every
cyclic subgroup C' < H of prime order > 1 [12, Theorem 3.1].

2. SOME USEFUL LEMMAS

We have adapted the first two lemmas in this section for our needs.
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Lemma 1. [12, Theorem 2.2] Let G be a finitely generated, virtually
abelian group. Then G is a crystallographic group if and only if it has
no non-trivial finite normal subgroup. In that case /G is free abelian
and is the maximal normal abelian subgroup of G, and G has holonomy
H = G/VG. If H is not solvable then h(G) > 4.

Proof. We may assume that GG is an extension of a finite group H by a
finitely generated free abelian normal subgroup A. Then A has finite
index in v/G, and so v/G is nilpotent and has finite torsion subgroup.

Let C' = Cg(A) be the centralizer of A in G. Then G/C acts ef-
fectively on A. Since [C : A] is finite, C” is finite, by a theorem of
Schur [9, 10.1.4]. Hence if G has no non-trivial finite normal subgroup
then C' = 1 and C is free abelian. By the same reasoning, VG is
abelian and so C' = v/G is the maximal abelian normal subgroup of G.
Since G/C' acts effectively on A it acts effectively on C. Thus G is a
crystallographic group with holonomy H; = G/C.

Conversely, suppose that G is a crystallographic group with holo-
nomy H. if F'is a finite normal subgroup of G then AN F = 1, since
A is torsion-free, and so F' projects injectively to H. Moreover, since
A and F are each normal, [A,F] < ANF =1and so AF =2 Ax F.
Since the action of H on A is effective we have F' = 1.

The final observation holds since finite subgroups of GL(3,Q) are
solvable. U

In this context the Fitting subgroup v/G is also called the translation
subgroup of G.

Lemma 2. [12, Prop. 4.1] Let G be a crystallographic group with

holonomy H. If HY(G;Q) = 0 then Hom(v/G, Q)H = 1. Hence the
Q[G]-module Q ® VG has no summand Q with trivial H-action.

Proof. This follows from the exact sequence of low degree in the LHS
spectral sequence for G as an extension of H by VG, since H HG;Q) =
H?(H;Q) = 0. The second assertion is then clear. U

Let N be a nilpotent group, and let tN be its torsion subgroup. Then
N/tN is torsion-free and has a central series with torsion-free abelian
subquotients [9, 5.2.7 and 5.2.20]. Let

MN=N>--->4N =1tN
be the preimage in N of the most rapidly descending such central series.

Then 4N = I(N). Let QN* = Q® N/N' = Q ® N/4,N.

Lemma 3. Let G be a torsion-free virtually solvable group of finite
Hirsch length and let N = v/G. Suppose that G/N is a torsion group.
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Then the homomorphism from G/N to Aut(QN®) induced by conju-
gation in G is a monomorphism and G/N is finite. If G is finitely
generated then G/I(N) is crystallographic.

Proof. Since G/N is a torsion group h(N) = h(G) < oo, and so
r = h(N) is finite. Let C be the kernel of the homomorphism from G
to Aut(QN®) =2 GL(r,Q) induced by conjugation in G. Then N < C
and C/I(N) contains N/I(N) as a central subgroup of finite index.
Conjugation by elements of C' also induces the identity on the sub-
quotients 4;N/7;41 N, for all © > 1. Hence C is nilpotent, by Baer’s
extension of a theorem of Schur [9, 14.5.1] and the fact that G is
torsion-free. Hence C' = N, by the maximality of N, and so G/N
embeds in Aut(QN). Since G/N is a torsion subgroup of GL(r, Q) it
is finite [9, 8.1.11].

This monomorphism factors through Aut(N/I(N)), and so G/N acts
effectively on N/I(N). If G is finitely generated then N/I(N) = 7',
and so G/I(N) is a crystallographic group. O

Lemma 4. Let S be a torsion-free solvable group such that h(S) is
finite. Then /S is nilpotent, and Cg(v/S) = ¢V/S.

Proof. If N is a finitely generated subgroup of v/S then h(N) < h =
h(S), and so v,41 N = 1, since S is torsion-free. It follows immediately
that v,.1v.S = 1, and so /S is nilpotent.

Let C = C’s(\/g), and suppose that v/S is a proper subgroup of
C.\/S. Since S is solvable it has a subgroup D containing C.v/S and
such that D/+/S is abelian. But then D is nilpotent, contradicting the
maximality of the Hirsch-Plotkin radical. Hence C' = Cg(v/S) < VS
and so C' = (V/S. U

In the virtually polycyclic case S/+v/S is virtually abelian [9, 15.1.6].
However, this not so for all finitely presentable solvable groups [10].

If GG is virtually polycyclic and all of its abelian subnormal subgroups
have rank < n then G/v/G is virtually abelian of rank < n [15, The-

orem 2]. Hence h(G/vVG) < h(vVG), since VG contains all abelian
subnormal subgroups. We may push this inequality a little further.

Lemma 5. Let G be a virtually polycyclic group, and let V' be a normal
subgroup of finite index which contains VG and such that V/ VG s

abelian. Let C' be the preimage in G of the centre of V/\/@l. Then
hG/VG) < h(VG/VG V' N ().

Proof. We note first that v/G = v/V, since V is a normal subgroup and
VG < V. Hence we may assume that G =V, since h(G) = h(V), and
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so G’ < VG. The preimage of \/G/\/@, in G is VG [9, 5.2.10], and so

we may pass to the quotient G/ \/@I. Hence we may also assume that
VG is abelian. We then have C' = (G < VG and /G/(G'NC) =

VG/(G' N (C), since G' N C is central. Applying [15, Theorem 2] to
G/G' N C gives the result. O

This bound is sharp. For example, if K is a totally real number field
of degree 5, then the group of integral units O has rank 4, and acts
effectively on Ok. Hence G = Ok x O is virtually torsion-free poly-Z.
The abelian normal subgroup Ok is its own centralizer in G, and so

VG = Ok and (G = 1. Hence h(G/VG) =4 < h(v/G) = 5.

3. MINIMAL TFNS GROUPS

If a virtually solvable group S is minimal TFNS then S is finite.
For otherwise there would be an epimorphism ¢ : S — Z, and Ker(¢)
would not be solvable. Since Ker(¢) is virtually solvable, it has finitely
generated subgroups which are non-solvable, but have Hirsch length
< h(S), contradicting the minimality of S. We can improve on this.

Lemma 6. Let S be a virtually solvable group such that H = S/§
is perfect. If S =1 then S™ is perfect, and if H is simple then
S /8m) = [

Proof. Let f : S — T = S/S™*Y be the natural epimorphism. Then
f induces an epimorphism from H onto T/ f(S), since f(S) is normal
in T. Since H is perfect and T is solvable it follows that f(S) = T,
and so f induces epimorphisms f* : S®) — T®) for all k > 1. Hence
T =1 and so S = S+ Thus S™ is perfect. The final assertion
is clear, since H is the only non-solvable quotient of S. 0

In particular, if .S is minimal TFNS then it has a perfect subgroup
of finite index which is also minimal TFNS. We may assume that S
is finitely generated, since some finitely generated subgroup of S must
map onto H. We may also assume that S is perfect, by Lemma 6.

Specializing further, we see that if G is a crystallographic group with
perfect holonomy H then G’ is a perfect crystallographic group, and if
H is simple then G’ also has holonomy H.

Lemma 7. Let S be a finitely generated, infinite group which is torsion-
free, virtually solvable and of finite Hirsch length. Then S has normal
subgroups V- < U < S such that S/U is crystallographic, U/V is finite,
V/I(V') has positive rank and U/V acts effectively on V/I(V).
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Proof. Since S is finitely generated, infinite and virtually solvable it
has a a normal subgroup 7' < S of finite index which is solvable and
has infinite abelianization. The quotient S/T" is finitely generated and
virtually abelian, and so has a maximal finite normal subgroup. Let
U be the preimage in S of this subgroup. Then A = /S/U has finite
index in S/U and so is finitely generated. The torsion subgroup tA is
trivial, since it is a finite normal subgroup of S/U. Since A = /S/U
and is torsion-free and virtually abelian, it is abelian. It is also its own
centralizer in S/U, and so (S/U)/A embeds in Aut(A). Hence S/U is
a crystallographic group.

Since U < S it is solvable. Let U® be the largest member of the
derived series for U such that U® /I(U®) has positive rank, and let
V be the preimage in U of the centralizer of U /I(U®W) in U/I(UM).
Then U® < V < U, and so U/V is a torsion group. Since it acts
effectively on U® /I(U®), which is a torsion-free abelian group of finite
rank, it is finite [9, 8.1.11]. Since U® is central in V and V/U® is a
torsion group, the commutator subgroup V/I(U®)/I(UW) is also a
torsion group. Thus V/I(V) is torsion-free, of positive rank, and S/V
is virtually abelian. O

If S is virtually nilpotent we may take V = U = I(v/S), by Lemma
3, and if S is virtually polycyclic but not virtually nilpotent then we
may take V = +/S (cf. [9, 15.1.6]).

Corollary 8. If S is minimal TFNS then h(S) > 4 and we may assume
that S is perfect.

Proof. If S is minimal TFNS then S is not solvable, since U is solvable.
Hence h(A) > 4, by Lemma 1. After replacing S by 5", if necessary,
we may assume that S is perfect, by Lemma 6. O

We shall invoke the hypotheses and notation of Lemma 7 frequently
in §5 and §8 below.

4. THE RELEVANT MINIMAL PERFECT GROUPS

A finite perfect group is minimal if all of its proper subgroups are
solvable. The minimal simple groups are PSL(2,q) for ¢ = 27 with p
a prime, ¢ = 3¢ with ¢ odd, ¢ = p a prime such that p> = —1 mod
(5), a Suzuki group Sz(2P) with p an odd prime or PSL(3,3) [13].
Every finite simple group contains a minimal simple group [1]. (This
is not entirely obvious from the definitions!) There appears to be no
corresponding determination of minimal perfect groups.
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We are interested in minimal perfect groups H which have non-trivial
homomorphisms to GL(n,Z), for some n < 14. We may in fact work
with coefficients Q, as every finite subgroup of GL(n,Q) is conjugate
into GL(n,Z). Moreover, the rational group ring Q[H] is semisimple,
which simplifies our analysis. The image of H in GL(n,Q) is again a
minimal perfect group, but may be a proper quotient of H. (When
S is virtually nilpotent and N = v/S, we may assume that H = S/N
embeds in Aut(QN?), by Lemma 3.)

There is a further simplification. The groups of interest to us which
are not subgroups of GL(10, Q) are subgroups of the symplectic group
Sp(12,Q). See §5 and Lemma 19 below.

Quite a lot can be done by hand. If p is a prime then the maximal
power of p dividing the order of a finite subgroup G < GL(n,Q) is
en(p) = Zjzol g )- In particular, ey(p) = 0if p > n + 1, while
if n < 12 then ¢,(7) < 1 and e,(5) < 2, and if 12 < n < 14 then
en(11) = e,(13) =1, €,(7) = 2 and e, (5) = 3. Moreover, if G is cyclic
and of prime power order p* > 3 then n > pF~1(p — 1), while if G is
cyclic of composite order not congruent to 2 mod (4) then n is bounded
below by the corresponding sum. In the remaining case the minimal
value of n is 1 less than this sum [5]. Thus the only prime powers of
interest to us are 2% with k < 4, 3,5, 7,9, 11 and 13.

The projective linear groups PSL(2,q) contain cyclic subgroups of
order ¢—1, and ¢+ 1, and so we may eliminate such groups with ¢ = 2*
or 3* and k > 5. The Suzuki group Sz(2F) has a cyclic subgroup of
order 2P 4+ 2° 4+ 1, where 2s = p 4+ 1, and so we may eliminate such
groups with p > 3. This leaves only A5 = PSL(2,4) = PSL(2,5),
PSL(2,7) = SL(3,2), SL(2,8), PSL(2,13), PSL(2,3%), Sz(8) and
PSL(3,3). The last four groups each have elements of order 13.

However we still need to consider extensions of such groups by solv-
able normal subgroups. At this point we shall simplify our task by using
the findings of Lutowski and Szczepanski, who show that the minimal
perfect groups with irreducible embeddings in GL(n, Q) (for n < 10)
are: As, PSL(2,7), SL(2,8), the universal central extensions SL(2,5)
and SL(2,7), and L3(2)N23, the non-split extension of PSL(2,7) by

If H is simple then all non-trivial representations are faithful. We
shall label the non-trivial Q-irreducible QQ-rational characters of the
groups of most interest to us by their degree. We shall also use the
same symbols to denote the associated Q[H]-modules.

As has three: py, ps, ps-

PSL(2,7) has four: 744, Tep, T7, T
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SL(Q, 8) also has four: @ZJ7, 1/}8, 77b21a ’QZ)27.

The other three groups are not simple, but have faithful representations
in dimensions 7 or 8.

SL(2,5) has two: mg, and 7gp.

SL(2,7) has one: &.

L3(2)N23 has two: A7, and 7.

We shall also consider faithful representations which are reducible,
but have no trivial summands. In particular, SL(2,5) has two such
representations in each of dimensions 12 and 13, given by 7s; @ pj,
where ¢ = a or b and j = 4 or 5, and p; is the representation which
factors through p;. Similarly, L3(2)N2? has four such representations
in dimension 13, but SL(2,7) has none in dimensions < 14.

In the sections below on nilpotent groups we shall need to consider
also symplectic representations. A representation p into GL(2k,Q) is
symplectic if it is conjugate into the subgroup Sp(2k, Q).

Lemma 9. Let p : F — GL(2k,Q) be an irreducible representation
of a finite group F. Then p is symplectic if and only if the trivial
representation 1 is a summand of the exterior square Nyp.

Proof. If p is symplectic then the associated skew-symmetric pairing
defines a non-zero F-linear homomorphism from A;Q" to Q. Since
Q[F] is semisimple, 1 is a summand of Agp.

Conversely, a projection from Agp onto 1 gives a skew-symmetric
pairing on A,Q". Since p is irreducible the radical of this pairing is 0,
and so the pairing is non-singular. Hence p is symplectic. U

The finite subgroups of Sp(2k, Q) are determined in [4], for 2k < 12.
In particular, all such groups with order divisible by 13 are solvable,
and the representation of L3(2)N23 in GL(8,Q) is not symplectic.

We shall need to know how the exterior squares of faithful representa-
tions of degree < 10 decompose as a sum of irreducible representations.
This is an easy exercise in comparing characters. See [11, Chapter 2].

As: Nops = ps,  Naps = paDps,  Naps = pa D ps © pe,
No2ps = 1@ ps @ ps @ 3ps, N22ps = 1D 4py @ 2p5 @ 3pe,
No2ps = 21 © 4py @ 6ps © 3ps,  Na(ps © ps) = 5ps D ps O 3pe,
Na(pa @ pe) = 3(pa ® ps © ps) and  Na(ps @ ps) = 4pa ® 3p5 © 4pe.
PSL(Q,?) /\27'6(1;21@7'6(1@7'7, A2766g21®76b®775
NoTy = 67—6a D17 D Ty and NoTg = 6T6a @D 27’7 D Tg
SL(Q, 5) /\2778a =31 D /p\4 D 3ﬁ5 D ﬁ6, and /\27T8b =61 D 4/p\4 D )/0\6-
SL(277) /\2£8 = 1@?617@2?7@?8
SL(2,8): Nothr Z by and  Agihg = 7y @ Y.
L3(2)N231 /\2)\7(1 = /\7a S¥) /\14 and /\2/\7b = )\71; S¥) /\14.
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One issue that complicates matters is that each irreducible Q[H]-
module QA may derive from several distinct Z[H]-modules. The sim-
plest examples have A = Z? H = 7Z/27 and QA = 1 & sg. There
are two actions, one with H?(H; A) = Z/2Z, realized by G =Z x_1 Z
and Z x D, and the other with H?(H; A) = 0, realized by a non-split
central extension of Dy, by Z. Thus H*(H; A) depends on more than
just the Q[H]-module QA.

The following information on torsion was provided by R. Lutowski.
Let G be a crystallographic group with holonomy H. If H = A; and
h(G) = 4 or 5 then G has 5-torsion. If H = PSL(2,7) and h(G) = 6 or
7,0orif H= SL(2,7) and h(G) =8, or if H = L3(2)N2? and h(G) =
or 8 then G has 7-torsion. There are examples with H = PSL(2,7) or
SL(2,8) and h(G) = 8 with no 7-torsion. (See also [3, Chapter 6] and
§8 below.)

5. S VIRTUALLY SOLVABLE BUT NOT VIRTUALLY NILPOTENT

Let S be a finitely generated, infinite group which is torsion-free,
virtually solvable and of finite Hirsch length. Then S has solvable
normal subgroups V' < U such that S/U is crystallographic, U/V is
finite, V//I(V') has positive rank and U/V" acts effectively on V/I(V'), by
Lemma 7. Hence S/V is virtually abelian, and has a free abelian normal
subgroup A of finite index. If U is nilpotent then we may assume
V = U, and then /S/U is the unique such subgroup of minimal index,
but otherwise S/V may have a non-trivial torsion normal subgroup,
and there may several such subgroups. Let W be the preimage of such
a subgroup A in S, so V < W and W/V = A.

Let A be one such free abelian normal subgroup of minimal index
in S/V. Then A = Z™, where m = h(S/V), and V® is a finitely
generated Z[A]-torsion module. The Q[A]-module M = Q@ V® is a
finite dimensional Q-vector space, and Q[A]/Ann(M) is an Artinian
ring. Let Supp(M) be the set of maximal ideals m in Q[A] which
contain Ann(M), and let M, be the submodule annihilated by a power
of m. Then M,,/mM, is a non-trivial vector space over the field K, =
Q[A]/m, for each m € Supp(M), and M = & M,,, where the summation
is over Supp(M).

The following lemma is a variation on Hall’s criterion [9, 5.2.10].

Lemma 10. Let S be a finitely generated, torsion-free group with sub-
groups U, V. W as above. Then S is virtually nilpotent if and only if U
is virtually nilpotent and Supp(M) = {e}.

Proof. 1f S is virtually nilpotent then W/I(V) is also virtually nilpo-
tent. Let Z; be an ascending central series for a nilpotent subgroup of
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finite index in W/I(V'). The intersections Z; N (V/I1(V')) give rise to a
filtration of M with subquotients annihilated by e.

Conversely, if Supp(M) = {e} then M has such a filtration. This
determines an ascending series {C; | 0 < i < n} for V such that
Co = I(V), each subquotient C;,/C; is central in W/C; and C,, = V.
Hence W/I(V') is nilpotent. Since W is torsion-free, it follows that if U
is virtually nilpotent then W is virtually nilpotent, by a mild variation
of Hall’s criterion [9, 5.2.10]. O

We shall assume for the rest of this section that S is perfect and is
minimal TFNS, and so H = S/S is a minimal simple group.

Lemma 11. Let G be a finitely generated, perfect, virtually solvable
subgroup of GL(d,Q). If d < 5 then the order of G/G divides 21°325,
and if d < 3 then S = 1.

Proof. Since G is perfect, it is a subgroup of SL(d, Q). Let m be the
lowest common denominator for the entries of a generating set for G,
and let R = Z[=]. Then G < SL(d, R). Let p > m be prime, and let
G be the kernel of the projection of G into SL(d, R/p*R). Then G/G,
is a perfect subgroup of SL(d,p), while Gy/G}41 is an elementary p-
group for all £ > 1, and NG = 1. In particular, either G; = 1,
in which case G is finite, or G; maps onto Z/pZ, and so the maximal
finite simple quotient of G has order dividing |SL(d, p)|.

Using the infinitude of primes in arithmetic progressions, we find
that if d = 5 then the highest common factor of such orders (taken
over all p > m) is 219325, If d = 3 the highest common factor is 48,
and so G has no simple quotient. Hence in this case G = 1. U

The argument extends to show that finitely generated perfect sub-
groups of GL(n,K) have maximal simple quotients of order bounded
as a function of n and K, for any algebraic number field K.

If G < GL(5,Q) and G/G is a minimal simple group then G/G = A;
(which is a subgroup of GL(4,Z)). On the other hand, PSL(2,7) <
GL(Q,6). While SL(2,8) < GL(7,Q), the arguments of Lemma 11
alone are not enough to decide whether an extension of SL(2,8) by a
solvable normal subgroup may embed in GL(6,Q).

We shall sketch an argument. If such a group G with G/G = SL(2,8)
has non-trivial image in SL(6,p) for some p > 7 then it follows from
the Aschbacher-Dynkin Theorem on subgroups of GL(n,q) that the
image is a central extension of SL(2,8). Since SL(2,8) is superperfect,
central extensions split, and so SL(2,8) < GL(6,p). If p =1 mod e,
where e = 126 is the exponent of SL(2,8) then representations of
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SL(2,8) over F, lift to representations over Q((.) of the same degree.
(This uses Theorems 9.2.7 and 9.3.6 of [14].) Since the minimal non-
trivial complex representation of SL(2,8) has degree 7 this gives a
contradiction.

Lemma 12. Ifm is fized by S and d = [Ky : Q] < 3 then m = e.

Proof. If m is fixed by S then S acts on K,,. The action is Q-linear,
and so factors through GL(d, Q). If d < 3 this group has no non-trivial
finitely generated perfect subgroups, by Lemma 11, and so the action
is trivial. Hence m = e. l

Lemma 11 gives a sharper result when S/S = PSL(2,7).

Lemma 13. If m is not fived by S then h(S) > 9. If S/S = As then
dimg Mw < 2 and [Ky : Q] < 2. If S/S = PSL(2,7) then My =

and Ky = Q. If S/S =2 SL(2,8) then S acts trivially on Supp(M).

Proof. If S/S = Ajs then each non-trivial orbit Sm of the action of S
on Supp(M) must have at least 5 members, since Sy has no nontrivial
perfect subgroup. Hence h(S) > 9. Since h(S/U) > 4 we must have
|Sm|dimg My, < 10 and so dimg M,, < 2. The largest proper subgroup
of PSL(2,7) has index 7, and so in this case each orbit has at least 7
members. If §/S 2 PSL(2,7) then h(S/U) > 6, so |Sm| dimg My, < 8
and dimg M, = 1. Similarly, the largest proper subgroup of SL(2,8)
has index 9, but h(S/U) > 8, and so there is no non-trivial orbit. [

Together these lemmas give the following theorem.

Theorem 14. Let S be TFNS but not virtually nilpotent, and let H =
S/S. Then W(S) > 9. If H = PSL(2,7) then h(S) > 13, and if
H = SL(2,8) then h(S) > 15.

Proof. Since S is not virtually nilpotent there is a m # ¢ in Supp(M).
If H= As then h(S/U) > 4 and either |[Sm| > 5 or [Ky, : Q] > 4, and
so h(S) = 8. If h(S) = 8 then h(S/U) = h(U) = 4, and so S/U has an
element of order 5, and V' is abelian. Since U/V is finite, there is an
element s € S whose image in S/V has order 5. Since S is torsion-free
and V has rank 4 it follows that s must centralize V. But then the
normal closure of s in S centralizes V' also, and V is virtually nilpotent.
Thus we must have h(S) > 9 if H = A;.

Similarly, if H = PSL(2,7) then h(S/U) > 6, and if h(S/U) =6 or
7 then h(U) > 7. In this case we find that h(S) > 13.

If H = SL(2,8) then h(S/U) > 8 and either |Sm| > 9 or [K,, :
Q] > 7, by the argument following Lemma 11. Hence h(S) > 15. (The
torsion argument gives no extra leverage here.) 0
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There is an alternative argument for polycyclic groups, with a slightly
sharper result.

Lemma 15. Let S be wvirtually polycyclic. If Ky, = Q for all m €
Supp(M) then S is virtually nilpotent.

Proof. In this case we may assume that V = /S. Since S is virtually
polycyclic the eigenvalues of the action of A on Q ® V® are algebraic
integers. If K, = Q then the eigenvalues for the action on M, lie in
Q, and so must be +1. Hence the subgroup of S generated by v/S and
all squares of elements of A is nilpotent. O

Theorem 16. Let S be a virtually polycyclic group which is minimal
TFENS, but not virtually nilpotent. Then h(S) > 9. If U is a normal

subgroup which contains /'S and such that S/U is crystallographic then
h(S/U) < 6 and so the holonomy of S/U is As or PSL(2,7).

Proof. We may assume that U contains v/S as a subgroup of finite
index, since S/v/S is virtually abelian. Then h(v/S) > h(S/VS), by
Lemma 5, and so h(S) > 2h(S/U). Since S/U is perfect, h(S/U) > 4
and so h(S) > 9. If the holonomy of S/U is not A; or PSL(2,7) then
h(S/U) > 8. But then h(S) > 17, and so S is not minimal. O

6. NILPOTENT GROUPS

We shall say that a finitely generated nilpotent group N is of type
[m,n] if N/32N = Z™ and 2N /35N = Z". (Note that n < (7)), since
N/A3N is a quotient of F'(m), the free group of rank m.)

Let QN;/iy1 = Q@A N/¥i1a N, for i > 1. Automorphisms of N must
preserve the rational commutator pairing

[—, —Jo : QN AQN® — QNqy3.

This pairing has two related aspects. It is a skew-symmetric pairing
on QN and also is an epimorphism of Q-vector spaces. In the latter
context we shall use the term commutator epimorphism. Let

R(N)=A{z € QN | [z,ylo =0, Vye€ QN“b}

be the radical of the commutator pairing, and let QN = QN /R(N).
Then R(N) = Q @ (N/3N.

Lemma 17. Let N be a finitely generated nilpotent group such that
3N < A N. Suppose that a nontrivial finite perfect group H acts
effectively on N and fizes no nontrivial subspace of QN®. Then

(1) dimg QN > 4 and either R(N) = 0 or dimg R(N) > 4;
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(2) if there is a Q[H]-linear epimorphism X : Q @ % N/43N — Q
then dimg QN > 6;
(3) QNy3 is a direct summand of QN A QN.

Proof. The radical R(N) is an H-invariant subspace of QN. Since
Q[H] is a semisimple ring, R(N) has an H-invariant complement in
QN which projects isomorphically onto QNe. The complement is
non-zero, since N is not virtually abelian.

Since finite subgroups of GL(3,Q) are solvable, any H-invariant sub-
space of QN of dimension < 3 is fixed pointwise. Hence dimg QN >
4 and either R(N) = 0 or dimg R(N) > 4.

Suppose that A : Q ® 7 N/J3N — Q is a Q[H]-linear epimorphism.
The composite A o [—, —|g is then a non-zero skew-symmetric pairing.
Let R(A) be the radical of this pairing. The induced pairing on V' =
QN®/R()) is nonsingular, and so has even dimension. Since Q[H] is
semisimple and H fixes no non-trivial subspace of QN the action
of H on V is nontrivial. Hence dimg V' > 6, and either R(\) = 0 or
dimg R(A\) > 4. In particular, dimg QN® > 6.

The final assertion is clear, since Q[H] is semisimple and [—, —]g is
an epimorphism. O

Lemma 18. Let N be a finitely generated nilpotent group such that
Y3N < Ao N. Suppose that a nontrivial finite perfect group H acts effec-
tively on N and fizes no nontrivial subspace of QN®. If h(N/43N) < 9
then [m,n] = [5,4],[6,1],[6,2],[6,3] or [8,1].

Proof. The kernel of the commutator epimorphism has dimension (ZL) —
n and is H-invariant. Hence if V has type [4,n] with n = 3,4 or 5 then
this kernel has dimension < 3, and so H acts trivially on it. Let w be a
nonzero 2-form in this kernel. Since 2-forms determine skew-symmetric
pairings on the dual vector space, we may choose a basis {eq, 3, €3, €4}
for QN so that w is one of ey Aes or e;Aea+-e3/Aeq. If an automorphism
of N fixes e; A ey then it fixes the subspace of Q ® N® generated by
e; and ey. Hence we may assume that w = e; A ey + e3 A eq, and that
H does not fix any 2-dimensional subspace of QN. In this case the
skew-symmetric pairing determined by w is non-degenerate and H acts
symplectically.

If h(N/43N) < 7 then dimg QN > 4, and so dimg Q®@ Y2 N/73N <
3. Hence H acts trivially on Q ® 4,N/43N, and so N is of type [6, 1],
by (2). Similar arguments show that if N is of type [m,n] with n < 3
then m > 5+ n, and if m > 6 then m > 8.

Thus we are left with only types [5,4], [6,1], [6,2], [6,3] and [8,1]. O



14 JONATHAN A. HILLMAN

We shall show below that [5,4] and [6,3] are not possible. (In fact we
shall see that there is no minimal TFNS group S with A(S) < 10.)

7. S VIRTUALLY NILPOTENT

In this section we shall assume that S is virtually nilpotent, but not
virtually abelian, and that S is perfect, h(S) < 14 and H = S/V/S is
a minimal perfect group. However we do not assume here that H is
simple, and we do not need the notation of Lemma 7, as we may take
V =U = I(+/S), by Lemma 3. Our goal is to limit the possibilities for
H and for the type of N = /S. The fact that S is torsion-free is used
only through Lemma 3, to show that H embeds in Aut(QN).

We shall play off the Q[H]-module structures of QN and QNy/3 =
Q ® 42N /43N against each other. The key conditions are

(1) dimg N + dimg QN3 < h(S) < 14 and dimg Noyz > 1;
(2) QNy3 is a Q[H]-summand of AyQN;
(3) Q is not a Q[H]-summand of QN by Lemmas 2 and 3;
(4) if Q is a Q[H]-summand of QNy/3 then QN has a symplectic

summand, by Lemma 9.

Let [m,n] be the type of N. Then m +n < h(S) < 14 and n > 0,
by (1). If Q is a Q[H]-summand of QNy/3 then QN =V, @ V;, where
V1 supports a nonsingular skew-symmetric pairing, with even rank r.
Since finite subgroups of Sp(4, Q) are solvable, r > 6, and since H acts
effectively on Vj, either Vj = 0 or m —r = dimg Vp > 4. In the latter
case m > 10. There is always such a summand Q if n < 3.

On the other hand, the fact that A5 acts effectively on F'(4)/~3(F(4))
shows that QN need not have a symplectic summand.

Lemma 19. If H = S/v/S is not a subgroup of GL(10,Q) then it is a
subgroup of Sp(12,Q).

Proof. We must have 11 < m < 13, and so n < 3. Hence QN3 is a
trivial H-module. Let A : QNy/3 — Q be an epimorphism. Then H
preserves the non-zero skew-symmetric pairing w = X o [—, —|g, and
QN =~ R(w)® V, where the induced pairing on V is non-singular,
and so has even dimension. If R(w) = 0 then m = 12 and H is a
subgroup of Sp(12,Q), since QN is a faithful H-module. Otherwise
r = dimg R(w) > 4 and d = dimg V = 6 or 8, since QN has no trivial
summands. Let mg and 7y be the projections of H into GL(r,Q) and
Sp(d,Q), respectively. Then Kr = Ker(ng) and Ky = Ker(my,) = 1
are each subgroups of H , the solvable radical of H, and KrN Ky = 1.
Since d < 8 and 7wy (H) is perfect, my(H) is either Ay, PSL(2,7) or

SL(2,5) [4]. In the first two cases Ky = H, and so K < Ky. Hence mg

3
4
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is injective. Otherwise, m, maps Kg injectively to Z/27Z, the solvable
radical of SL(2,5). Hence H = SL(2,5) and 7y is injective. Since
r < 10 and d < 12, this proves the lemma. 0

The only groups with representations satisfying conditions (1)—(4)
above are H = As, PSL(2,7), SL(2,5), SL(2,7) or L3(2)N23. In
particular, this observation together with Theorem 14 shows that there
is no virtually solvable, minimal TFNS group S with S/S = SL(2,38)
and h(S) < 14.

Consideration of the decompositions of QN and QN3 as Q[H]-
modules shows that the remaining possibilities for [m,n] and H are:

m =4 and n=06. Only H = As.

m =>5and n =4 or 6. Only As.

m=6and n=1or 2. Only PSL(2,7).

m =6 and n =4 or 5. Only As.

m =6 and n =6. As or PSL(2,7).

m==6and n=7or 8 Only PSL(2,7).

m =Tand n=6. Only PSL(2,7).

m="Tand n="7. PSL(2,7) or L3(2)N23.

m=8and n=1. As, SL(2,5) or SL(2,7).

m =8 and n =2 or 3. Only SL(2,5).

m=38and n=4or 5. Asor SL(2,5).

m =38 and n=06. A;, PSL(2,7) or SL(2,5).

m =9 and n =4 or 5. Only As.

m =10 and n = 1. Only A5 and QN = p; @ ps.

m = 10 and n = 4. Only As.

m=12and n=1or 2. A5, PSL(2,7) or SL(2,5).

m=13 and n = 1. A5, PSL(2,7) or SL(2,5).

Parallel arguments apply further down the Q-lower central series,
since conjugation in S induces actions of H = S/ V'S on each of the
subquotients 4;N/4;41N, and there are natural epimorphisms from
@Nab & QNi/i+1 to QN2'+1/'£+27 for all ¢ 2 1 [9, 525]

Theorem 20. If S is minimal TFNS, virtually nilpotent and h(S) < 14
then either 3,7/S = 1, or S/V/S = As, [m,n] = [8,1], h(35V'S) = 5
and 34,3/S = Z. In either case, V/S is metabelian.

Proof. Let N = +/S have type [m,n] and let H = S/N.

If 43N = 1 then I(N) is central in N, and so N is metabelian.
If 73N # 1 then QN3,, must be a summand of QN ® QNyy3, of
rank < 14 — m — n. Checking the possibilities, we see that either
H = Ay and [m,n] = [4,6], [5,4], [5,5], [6,4], [6,6], [8,1], [8,4] or [9,4],
or H= PSL(2,7) and [m,n| = [6, 1], [6,2] or [6,6].
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If 44N =1 then N is metabelian, since G” < 4G for any group G.
If 94N # 1 then QN4/5 must be a summand of QN* ® QN34. Since
h(S) < 14 we must have H = Aj, [m,n] = [8,1], QN3/u = ps and
QNy5 = 1. Hence h(53VS) = 5 and 44v/S = Z. Closer inspection
shows that since 49 N/43N is cyclic, [(N) < 45N = 1, and so N is
again metabelian. 0

8. TORSION IN THE CRYSTALLOGRAPHIC QUOTIENTS

In this section we shall use the fact that the crystallographic quo-
tients of our groups often have “large” finite subgroups to reduce the
list of unsettled cases further.

Lemma 21. Let S be a finitely generated, perfect, torsion-free group
with a normal subgroup N such that H = S/N is finite and I(N) = Z™.
If S/I(N) has an element of prime order p > n whose image in H
normally generates H then I(N) < (S.

Proof. Let s € S be an element whose image in S/I(N) has order p.
Then s normalizes I(N). Since the subgroup generated by I(N) and
s is torsion-free and p > n, this is only possible if s centralizes I(N).
Since I(N) is normal in S, the normal closure of s centralizes I(N),
and so I(N) < ¢S. O

With this lemma we may exclude the cases with H = As, and
(m,n] = [5,4], [8,4] or [9,4] (for which p = 5), and those with H =
PSL(2,7) and [m,n] = [6,6] or [7,6] (for which p = 7). Hence
H3v/S = 1 in all cases excepting when H = A; and [m,n] = [4,6],
6,4], [6,5], [6,6] or[8,1], or H = PSL(2,7) and [m,n] = [6,1] or [6,2].
Similarly, if H = PSL(2,7) and [m,n] = [6, 6] then 43v/S # 1.

Let H be a finite group which acts effectively on an abelian group A
and let G be an extension of H by A corresponding to £ € H?(H; A).
If J < H has order relatively prime to that of H*(H;A) then the
restriction to J of ¢(§) is 0, and so the restricted extension splits. If
J is non-abelian it then follows that no extension of G by an abelian
normal subgroup of rank < 3 can be torsion-free.

Lemma 22. Let G be a crystallographic group with translation sub-
group A and holonomy H. Suppose that the Sylow p-subgroup of H
15 a cyclic subgroup C' which is properly contained in its normalizer
Ny (C) and acts without fixed points on A. Then G has a subgroup
isomorphic to Ny (C).

Proof. Let D = Ny (C)/C. Then H'(D; H(C; A)) = 0, since H'(C; A)

is a finite p-group and the order of D is prime to p. Since C' is cyclic



NON-SOLVABLE TORSION-FREE VIRTUALLY SOLVABLE GROUPS 17

and acts on A without fixed points, H*(C; A) = H°(C; A) = 0. The
LHS Spectral sequence gives H*(Ng(C); A) = 0, and so the projection
of G onto H splits over the subgroup Ny (C). O

Now suppose that S is minimal TFNS and has a metabelian nor-
mal subgroup N such that G = S/I(N) is crystallographic with holo-
nomy H = S/N, and that H has a cyclic Sylow p-subgroup C' which
is properly contained in its normalizer Ng(C'), for some prime p. If
h(S/I(N)) = p — 1 then elements of H of order p act without fixed
points. The preimage in S of a finite subgroup F' < G is a Bieberbach
group with holonomy F'.

The Sylow 5-subgroups of A; are cyclic and have normalizer Dyy. No
5-dimensional Bieberbach group has holonomy Dsq [2], and so there are
no torsion-free extensions of Dy, by an abelian group of rank 5. Taking
into account Theorem 14, we may conclude that h(S) > 10.

If S is virtually nilpotent, N = /S, H = A; and h(N/I(N)) = 8
then QN = p, @ ps. Let C be a a Sylow 5-subgroup of As. As
a Z[C]-module N/I(N) is a direct sum L @ L', where L and L’ are
irreducible and of rank 4 as abelian groups. Hence they are each either
the augmentation ideal in Z[C] or its Z-linear dual. In either case, C
acts on N/I(N) without fixed points, and so Do < S/I(N). Therefore
we cannot have h(I(N)) < 5. Hence we may also exclude the cases
with S/v/'S = A; and m = 8, excepting perhaps when h(S) = 14
and [m,n] = [8,1] or [8,6]. However the case [m,n] = [8,1] follows
on first using the theorem to show that S = S/ 45v/S has a subgroup
isomorphic to Dy.

If G is crystallographic, h(G) = 6, H = As and H*(H; A) = Z/5Z
then the projection onto H splits over a subgroup isomorphic to Aj.
However this gives us nothing new, as A4 is the holonomy of a 4-
dimensional Bieberbach group.

The faithful 8-dimensional representations of SL(2,5) each restrict
to fixed-point free representations of the Sylow 5-subgroup, and so
corresponding crystallographic groups each have subgroups isomorphic
to the normalizer of this subgroup, which is metacyclic of order 20.
(This is the Borel subgroup of SL(2,5).) This is not the holonomy
group of a 6-dimensional Bieberbach group [2], and so we may exclude
the cases with S/v/S = SL(2,5) and m = 8. Similarly for the faithful
12-dimensional representations of SL(2,5), and for the 12-dimensional
representations of As with character 3ps.

If S/+/S = SL(2,5) and N = /S is of type [13,1] then QN =
T8 @ ps, for some ¢ = a or b, and SL(2,5) acts symplectically. Hence
h(¢N) = 6. Let N be the quotient of N/¢N by its torsion subgroup.
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Then QN 22 7g;, and so SL(2, 5) acts effectively on N. As before, S/¢N
must have a subgroup isomorphic to the Borel subgroup of SL(2,5).
Since S' is torsion-free, we may exclude this case also.

The lemma also applies when h(S/I(N)) =6, H = PSL(2,7) and
p = 7, with D = Mz, the metacyclic group of order 21. (This is
the image of the Borel subgroup of SL(2,7).) R. Lutowski has used
CARAT to verify that M;3 is not the group of any 8-dimensional
Bieberbach group [6]. This shall enable us to substantially reduce the
role of PSL(2,7) in answering our question.

Theorem 23. Let S be a torsion-free virtually nilpotent group such that
S/VS = PSL(2,7), h(S/I(v/S) =6, and 733/S = 1. Then h(S) > 15.

Proof. The group S/I(+/S) has a subgroup L = M3, by Lemma 22.
Since L acts effectively on [ (\/§ ) and S is torsion-free, the preimage

in S of L is a Bieberbach group. Since M7 3 is not the group of any
8-dimensional Bieberbach group, h(W) > 9, and so h(S) > 15. O

In particular, if S/v/S = PSL(2,7) then [m,n] # [6,1], [6,2], [6,6],
6,7], or [6,8]. An argument parallel to the one above for the case with
H = A and h(S/I(\/S)) = 8 shows that we may extend Theorem
23 to exclude the cases with S/v/S = PSL(2,7) and [m,n] = [12,1],
[12,2] or [13,1]. (If N = /S and m = 12 then QN = 74 @ 7¢; for
some 7,5 € {a,b}. If m = 13 then QN = 74, @ 77 for some k = a or b
and then (N = Z® and h(S/(N) = 6.)

Theorem 23 may be extended to the case when S is not virtually
nilpotent, provided that (in the notation of Lemma 7) the normal sub-
group V is abelian. We shall use the result of Lutowski [6] again,
together with the simpler observation that 9 is the smallest dimension
of a Bieberbach group with holonomy cyclic of order 21 [5].

Theorem 24. Let S be a minimal TFNS group, and suppose that S
has normal subgroups V- < U < S such that S/U is crystallographic,
with h(S/U) = 6 and holonomy PSL(2,7), U/V s a finite solvable
group and V is abelian. Then h(V) > 9 and h(S) > 14.

Proof. We may assume without loss of generality that S is perfect.
Suppose that h = h(V) < 9. The group S/U has a subgroup isomorphic
to M7 3, by Lemma 22. Let W be the preimage of this subgroup in
S. Then W/V is a finite solvable group. It acts effectively on V,
for otherwise some element of W with non-trivial image in U would
centralize V. But any such element must map non-trivially to the
simple quotient PSL(2,7), and it would follow that V' must be central
in S. In particular, S would be virtually nilpotent, and the action of
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the holonomy on V would be trivial. Hence U = V = Z or Z2, since
h(S/U) = 6 and S/U has holonomy PSL(2,7). But no extension of
a finite nonabelian group by Z or Z? is torsion-free. Hence we may
assume that W/V embeds in GL(8,Q).

Finite subgroups of GL(8,Q) have order dividing 2'°35.7. Since
W/V maps onto My 3 it has order 3*7¢, where 1 < k < 5 and (g,21) =
1. Since W/V is solvable it has a Hall {3, 7}-subgroup K, of order 3*7
9, 9.1.7]. The Sylow 7-subgroup Syl;K is normal in K, since 1 is the
only divisor of 3¥ which is congruent to 1 mod (7). Since K/Syl;K is
a 3-group it has cyclic subgroups of order 3, and the preimage in K of
such a subgroup is a subgroup M of order 21.

Since M is finite it preserves a lattice L < V, and so W has a
finitely generated subgroup which is an extension of M by L = Z". If
W were torsion-free then this subgroup would be a Bieberbach group
of dimension h < 8, and with holonomy of order 21. But there are no
such Bieberbach groups. Hence we must have h(V) > 9. O

Theorems 14 and 16 leave open the possibility of a minimal TFNS
group S which is not virtually nilpotent, and with S/S = PSL(2,7),
h(V) =8 and h(I(V)) = 1. We shall exclude this possibility now. If S
is such a group then it has a subgroup W which contains V' as a normal
subgroup of index 21, and M = W/V acts effectively on V/I(V'). Since
h(I(V)) = 1, the group V is nilpotent, and M preserves the commu-
tator epimorphism. Hence M acts symplectically. Finite subgroups of
Sp(4,Q) do not have order divisible by 7, and so h(V/(V) = 6. Since
M acts effectively on Q ® V/(V it cannot be cyclic of order 21, and
so is metacyclic. It then follows from Lemma 22 that the projection
of W/({V onto M splits, and so W contains a subgroup which is an
extension of M by an abelian group of rank 2. This contradicts the
assumption that S is torsion-free.

Every 8-dimensional crystallographic group with holonomy SL(2,7)
is a semidirect product Z® xy SL(2,7), for some effective action 6 [3,
page 295], and so we may exclude the case with S/v/S = SL(2,7)
and [m,n] = [8,1]. Similarly, the cohomology classes corresponding to
extensions of L3(2)N23 by Z® which are crystallographic have order < 2
3, page 298]. Hence such extensions split over subgroups of L3(2)N23
of odd order, Since My 3 is such a subgroup, and is not the holonomy
of a 7-dimensional Bieberbach group, we may exclude the case with
S/V/'S =2 L3(2)N2? and [m,n] = [7,7].

In the light of the above arguments we find that h(S) > 10, and if
S is not virtually nilpotent then S/ S = As. If S is virtually nilpotent
then the list of possibilities for [m,n] and H reduces to
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)

[m,n] = [4,6]. H= A; and Qv/S3/4 = py or 0.
[m,n] =[5,6]. H= As.

[m,n] = [6,4]. H= As and QVv/S3/4 = py or 0.
[m,n] =[6,5]. H= As.

[m,n] = [6,6]. H= A; and Qv/Ss/, =2 or 1.
[m,n] =[7,7]. H= PSL(2,7).

[m,n] =[8,6]. H= As.

[m,n] =[8,6]. H= PSL(2,7).

[m,n| =19,5]. H= As.

[m,n] = [10,1]. H = A5 and QN 2 ps5 @ ps.
[m,n] =[10,4]. H = As.

[m,n] = [12,1]. H = A5, QN® = ps @ pg and Q\/§3/4 =1or0.
[m,n] =[12,2]. H= A5 and QN = ps & ps.
[m,n] =[13,1]. H = As.

In particular, if h(S 4 then H = S//S = A;, and 735v/S = 1 in
all cases except for [m,n] = [4, 6], [6,4], [6,6] or [12.1].

We cannot exclude type [4, 6] by arguments involving just the lower
central series. Let {w, z,y, z} be a basis for F'(4), and define endomor-
phisms ¢ and 7 by o(w) = w™!, o(x) = way, oly) =y~ 1, o(z) = yz
and 7(w) = 271, 7(x) = zyz, 7(y) = 27! and 7(2) = (wwy)~!. These
are automorphisms, since 02 = 73 = (07)®> = 1, and define a monomor-
phism 6 : A5 — Aut(F(4)), with rational abelianization p, in GL(4, Q).
Let S be an extension of As by N = F(4)/v3F(4), with action . Then
V'S = F(4)/vsF(4) is of type [4,6].

If «: H— Aut(N) is a homomorphism then the semidirect prod-
uct N x, H is a basepoint for the set of extensions of H by N with
outer action corresponding to «;, and so determines a natural bijection
from H?(H;(N) to the set of such extensions. The restriction of an
extension ¢ to a subgroup J < H splits if and only if the corresponding
cohomology class c(€) restricts to 0 in H2(J;(N). (This is not clear
if the outer action does not factor though Aut(N)!)

We may apply this observation to S and to J = Ay < As. Since
H?(As;¢V/S) has order 5 [3, page 273] and (|A4|,5) = 1, the preimage
of J in S is a semidirect product, and so S has torsion. Taking into
account the Jacobi identities, we see that QF (4)3/4 = ps®2p5 D ps, and
so F(4) has a canonical #-invariant subgroup K such that v,F'(4) <
K < vF(4) and h(F(4)/K) = 14. A similar argument then shows
that any extension of As by F(4)/K with outer action induced by 6
must have 2-torsion. However we do not know whether such arguments
apply to other virtually nilpotent groups S with v/S of type [4,6].

~—
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9. SOME QUESTIONS

1) Is there a minimal TFNS group which is an extension of a crystal-
lographic group by Z? In particular, does every perfect 12-dimensional
crystallographic group with holonomy As have either Dy or A4 as a
subgroup?

2) If H is the holonomy group of an n-dimensional infranilmanifold
is it also the holonomy group of a flat n-manifold? This is so if n < 4,
by inspection of the known groups. In general, H is the holonomy of a
crystallographic group in dimension < n, by Lemma 3.

(The converse fails for n = 4, since Ay is the holonomy group of a
flat 4-manifold, but not of any other 4-dimensional infranilmanifold.)
3) If S is a minimal TFNS group must it be virtually polycyclic?

4) If S is a minimal TFNS group must it be perfect?
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