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Abstract. We define a class of not necessarily linear C0-semigroups (Pt)t≥0 on Cb(E) (more
generally, on Cκ(E) := 1

κ
Cb(E), for some growth bounding continuous function κ) equipped

with the mixed topology τM
1 for a large class of topological state spaces E. In the linear case

we prove that such (Pt)t≥0 can be characterized as integral operators given by measure kernels
satisfying certain properties. We prove that the strong and weak infinitesimal generators of
such C0-semigroups coincide. As a main result we prove that transition semigroups of Markov
processes are C0-semigroups on (Cb(E), τM

1 ), if they leave Cb(E) invariant and they are
jointly weakly continuous in space and time. In particular, they are infinitesimally generated
by their generator (L,D(L)) and thus reconstructable through an Euler formula from their

strong derivative at zero in (Cb(E), τM
1 ). This solves a long standing open problem on

Markov processes. Our results apply to a large number of Markov processes given as the laws
of solutions to SDEs and SPDEs, including the stochastic 2D Navier-Stokes equations and
the stochastic fast and slow diffusion porous media equations. Furthermore, we introduce the
notion of a Markov core operator (L0, D(L0)) for the above generators (L,D(L)) and prove
that uniqueness of the Fokker-Planck-Kolmogorov equations corresponding to (L0, D(L0)) for
all Dirac initial conditions implies that (L0, D(L0)) is a Markov core operator for (L,D(L)).
As a consequence we can identify the Kolmogorov operator of a large number of SDEs on finite
and infinite dimensional state spaces as Markov core operators for the infinitesimal generators
of the C0-semigroups on

(
Cκ(E), τM

κ

)
given by their transition semigroups. Furthermore, if

each Pt is merely convex, we prove that (Pt)t≥0 gives rise to viscosity solutions to the Cauchy
problem of its associated (non linear) infinitesimal generators. We also show that value
functions of optimal control problems, both, in finite and infinite dimensions are particular
instances of convex C0-semigroups on

(
Cκ(E), τM

κ

)
.
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1. Introduction

This paper addresses a longstanding open problem in the theory of Markov processes.
The literature on Markov processes is huge. We here only refer to a selection from pio-
neering and/or fundamental books on the subject and to the references therein, as, e.g.,
[3][4][23][28][32][35][39][48][63][66][67][69]. Let us briefly recall the definition of a Markov
process: Let (E,B) be a measurable space and, for each x ∈ E, let (Ω,F , (Ft)t≥0,Px) be
a filtered probability space and X(t) : Ω → E Ft/B-measurable maps, t ≥ 0, such that
Px[X(0) = x] = 1. Then the tuple M := (Ω,F , (Ft)t≥0, (X(t))t≥0, (Px)x∈E) is called a (time-
homogeneous) Markov process with state space E, if it satisfies the Markov property, i.e., for
all x ∈ E,A ∈ B, t, s ≥ 0,

Px[X(s+ t) ∈ A|Fs] = PX(s)[X(t) ∈ A] Px-a.s.,(1.1)

where Px[ · |Fs] denotes the conditional probability of Px given Fs. Its corresponding tran-
sition semigroup of probability kernels is defined by the time marginal laws of Px under
X(t), t ≥ 0, i.e.,

pt(x, dy) := (Px ◦X(t)−1)(dy), x ∈ E, t ≥ 0.(1.2)

Usually, one also assumes some path regularity on X(t), t ≥ 0, by considering topological
state spaces E together with the corresponding Borel σ-algebra B := B(E) and assuming
that, for all x ∈ E, the map [0,∞) 3 t 7→ X(t) ∈ E is right-continuous Px-a.s.. Define for
f : E → R, bounded, B-measurable,

Ptf(x) :=

∫
E
f(y) pt(x, dy) = Ex[f(X(t))], x ∈ E, t ≥ 0,(1.3)
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where Ex denotes the expectation with respect to Px. Then the Markov property (1.1) implies
the semigroup property

Pt+sf(x) = Pt (Ps f)(x), x ∈ E, t, s ≥ 0.(1.4)

A common very natural assumption, which is fulfilled in many situations (in particular,
where Px, x ∈ E, are the laws of the solutions of a stochastic differential equation (SDE) with
respective initial data x ∈ E and where E is, say a Banach space or just Rd) is the so-called
Feller property, i.e.,

Ptf ∈ Cb(E), if f ∈ Cb(E), t ≥ 0.(1.5)

Here Cb(E) denotes the set of all bounded real-valued continuous functions on E. Let P(E)
denote the set of all probability measures an (E,B(E)). Then (1.5) means:

E 3 x→ pt(x, dy) ∈ P(E) is continuous in the weak topology(1.6)

on P(E) for all t ≥ 0.

By the assumed right continuity of sample paths and by (1.5) we also have

[0,∞) 3 t→ pt(x, dy) ∈ P(E) is right continuous in the weak topology on(1.7)

P(E) for all x ∈ E.

It is well-known that, if we consider Cb(E) with its supremum norm ‖ · ‖∞, then t 7→ Ptf
is (in general) not continuous at t = 0 for all f ∈ Cb(E), i.e., (Pt)t≥0is not a C0-semigroup on
(Cb(E), ‖ · ‖∞).

If E is metric space, then the next natural choice is the space UCb(E) of bounded uniformly
continuous functions which, when endowed with the the norm ‖ · ‖∞, is a closed subspace
of Cb(E). It turns out that the gain is very limited. It can be shown that if E is a sep-
arable Hilberts space and (Pt)t≥0 is a transiton semigroup of an E-valued Wiener process

that (Pt)t≥0 is a C0-semigroup on UCb(E), see Proposition 3.5.1 in [17]. This result can be
easily extended to a general Lévy process. However, the transition semigroup of an Ornstein-
Uhlenbeck process in E = R, while it turns out to leave the space UCb(R) invariant, is not
strongly continuous there, see Example 6.1 in [14] and Theorem 2.1 in [70]. The latter result
also implies that the transition semigroup of a general Ornstein-Uhlenbeck process with non-
zero drift is never strongly continuous on Cb(E).

Hence the theory of C0-semigroups on Banach spaces (see e.g. [56], [25]) does not apply.
If it did, Pt, t ≥ 0, would be uniquely determined by its derivative at t = 0, i.e.,

Lf :=
d

dt �t=0
Ptf = ‖ · ‖∞ − lim

t→0

1

t
(Ptf − f), f ∈ D(L),(1.8)

which defines a linear operator L : D(L) ⊂ Cb(E) → Cb(E) with D(L) being the set of all
f ∈ Cb(E) for which the limit in (1.8) exists. In this case Pt, t ≥ 0, can be recalculated from
the operator (L,D(L)), called infinitesimal generator of (Pt)t≥0, through Euler’s formula.
But as said, this is in general not possible on (Cb(E), ‖ · ‖∞).

A way out of this, which only works if E is locally compact (hence excludes, e.g., that E is
an infinite dimensional Banach space, which in turn are the typical state spaces for solutions
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X(t), t ≥ 0, to stochastic partial differential equations (SPDEs) or measure-valued Markov
processes) is to replace (1.5) by

Ptf ∈ C∞(E), if f ∈ C∞(E), t ≥ 0,(1.9)

where C∞(E) denotes the subset of all elements in Cb(E) which vanish at infinity. (Pt)t≥0,
satisfying (1.9) are called Feller semigroups in the literature, which sometimes leads to con-
fusion, since the much weaker property (1.5) is usually called Feller property and the latter
makes sense on general topological spaces (see, e.g., [59]). But, if E is locally compact and
(1.9) holds, there are a large number of examples, for which (Pt)t≥0 is a C0-semigroup on
(C∞(E), ‖ · ‖∞) and thus uniquely determined by and reconstructable from its infinitesimal
generator (L,D(L)), i.e., from its strong derivative at zero (see e.g. [25]). This is usually
expressed by the symbolic writing Pt = etL, t ≥ 0. On the other hand, condition (1.9) is very
strong and in general, of course, not fulfilled, even if E = Rd.

Another approach is to avoid the C0- (i.e., strong continuity) property and associate to
(Pt)t≥0 an operator (L,D(L)), also called generator of (Pt)t≥0, which is obtained by inverting
the resolvent of (Pt)t≥0, which in turn is given by the Laplace transform of (Pt)t≥0 (see, e.g.,
[59]). But this definition of generator uses the whole semigroup (Pt)t≥0 and is thus definitely
not an infinitesimal generator of (Pt)t≥0.

Finally, another way out is to replace Cb(E) by an Lp(E,µ)-space, p ∈ [1,∞), for some
suitable reference measure µ on (E,B(E)) (e.g., an invariant measure for (Pt)t≥0). Then
(Pt)t≥0 extends to a C0-semigroup on Lp(E,µ), which has a true infinitesimal generator
there (see, e.g., [61] and , [8, Section 4]] and also [35] for symmetrizing measures µ). Clearly,
a symmetrizing or invariant measure does not exist in general for (Pt)t≥0. In [62, Proposition
2.4], however, it was proved that a natural reference measure µ always exists so that the
transition semigroup (Pt)t≥0 of a Markov process M as above extends to a C0-semigroup on
Lp(E,µ). But this measure µ again is contructed through the resolvent of (Pt)t≥0, hence
again uses the whole semigroup (Pt)t≥0. So, the infinitesimal generator of (Pt)t≥0, extended
to a C0-semigroup on Lp(E,µ), is not really ”infinitesimal”. In addition, the analysis of this
extension of (Pt)t≥0, depends on the measure µ and statements can always be only made
µ-a.e., and the measure µ is in no sense unique.

So, concluding it can be said that it has been an open problem whether the transition
semigroup of a general Markov process M as above, which has the Feller property (1.5), is
infinitesimally generated by its strong derivative at zero in a ”suitable” topology on Cb(E).

The first main contribution of this paper concerning the above open problem is to prove that
such a ”suitable” topology is the well-known mixed topology τM

1 on Cb(E), i.e., the strongest
locally convex topology on Cb(E) which on ‖ · ‖∞-bounded subsets of Cb(E) coincides with
the topology of uniform convergence on compact subsets of E (see Section 2 and Appendix A
for details), provided (Pt)t≥0, satisfies the following very general condition (cf. (1.6) and (1.7)
above):

[0,∞)×K 3 (t, x)→ pt(x, dy) ∈ P(E) is continuous in the weak topology on(1.10)

P(E) for all compact K ⊂ E
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(see Theorem 3.3 and Proposition 3.6 below). In fact, this is true for very general state spaces
E (see Hypothesis 2.1 below). So, in such a very general case the transition semigroup of
a Markov process with right continuous sample paths is uniquely determined by its strong
derivative at zero with respect to the mixed topology τM

1 on Cb(E) and can be reconstructed
through an Euler formula (see Proposition 5.2 (f)).

We would like to mention here that for a special class of stochastic evolution equations on
a Hilbert space, similar to those in Section 4.2 below (see the fundamental book [18] for the
general theory) the strong continuity of the transition semigroups of their solutions at t = 0
in the mixed topology was first proved in [37] (and the reference therein, in particular [15]).
The latter paper was a strong motivation for proving the much more general result above and
for developing the corresponding general theory in the present paper. The necessity to relax
the norm topology on Cb(E) has been well known in the SPDE community and the prob-
lem was approached using many ad-hoc constructions, see for example [14, 15, 17, 59]. In
the aforementioned works no underlying topology making the semigroups of interest strongly
continuous was identified.

Let us summarize the single sections of this paper and at the same time present our further
main results.

Section 2 contains our setup and necessary definitions, in particular, those concerning the
mixed topology. We generalize the situation above by replacing Cb(E) by Cκ(E) := 1

κ ·Cb(E)
with corresponding weighted supremum norm ‖ · ‖κ, where κ : E → (0,∞) is a continuous
function, and consider the mixed topology τM

κ on Cκ(E).

In Section 3 we introduce a general class of C0-semigroups of operators (Pt)t≥0 on
(Cκ(E), τM

κ ) (see Definition 3.1). In case these Pt are linear, we prove that the semigroup
can be represented by a semigroup of measure kernels with certain properties and that any
such gives rise to a (linear) C0-semigroup on (Cκ(E), τM

κ ) (see Theorem 3.3), which is another
main result of this paper. The main underlying fact, why this works, is the well-known result
that the topological dual of (Cb(E), τM

1 ) coincides with the set Mb(E) of all signed Radon
measures on (E,B(E)) (see Appendix A for references and a simple proof in Remark A.10
based on the Daniell-Stone Theorem).

Section 4 is devoted to examples on finite and infinite dimensional state spaces. We start
with transition semigroups coming from a large class of SDEs on Hilbert spaces H (taking
the role of E), including, e.g., the 2D-stochastic Navier-Stokes equations as well as stochastic
(fast and slow diffusion) porous media equations (see Section 4.1). Here we consider both
the norm topology on H and (in Section 4.2) also the bw-topology on H. Furthermore,
we look at a class of SPDEs with Levy noise on Banach spaces E, more precisely SDEs
of Ornstein-Uhlenbeck (O-U) type, but driven by Levy noise (see equation (4.18)). Their
corresponding transition semigroups, called generalized Mehler semigroups, also turn out to
be C0-semigroups on (Cb(E), τM

1 ) both when E is considered with the norm topology (see
Section 4.3) and, provided E is reflexive, also with the bw-topology (see Section 4.4). The
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interesting feature of the bw-topology is that in this case Cb(E) consists of all bounded se-
quentially weakly continuous functions on E.

In Section 5.1 we define the strong and weak infinitesimal generator (L,D(L)) of a C0-
semigroup on (Cκ(E), τM

κ ) and prove that they coincide (see Theorem 5.5). Furthermore,
we show that the usual ”invariance condition” for identifying cores for (L,D(L)) also holds
in this case (see Proposition 5.3). We introduce the notions of core operators and Markov
core operators for (L,D(L)) (see Definition 5.7). Subsequently, we prove that a sufficient
condition for being a Markov core operator (L0, D(L0)) for (L,D(L)) is, that the Fokker-
Planck-Kolmogorov equation for (L0, D(L0)) has a unique solution for all Dirac measures
δx, x ∈ E (see Theorem 5.9). This is another main result of this paper, which is illustrated by
a number of applications, where we identify the Kolmogorov operator of a large class of SDEs
on Rd (see Section 5.2) or on a Hilbert space H (see Section 5.4) as a Markov core operator for
the infinitesimal generator (L,D(L)) of the C0-semigroup on (Cκ(Rd), τM

κ ) and (Cκ(H), τM
κ ),

respectively, given by the transition semigroup of the SDE’s solutions. Furthermore, in Sec-
tion 5.3 using results from [47], we identify the Kolmogorov operator of SDE (4.18), i.e., the
SDE for the O-U-process with Levy noise on a Hilbert space E, which is a pseudo-differential
operator (see equation (5.30)), as a core operator for the generator (L,D(L)) of the corre-
sponding generalized Mehler semigroup on (Cb(E), τM

1 ). These results in Sections 5.1 - 5.3
constitute the fourth main contribution of this paper.

In Section 6 we consider the case where the C0-semigroup (Pt)t≥0 on (Cκ(E), τM
κ ) consists

of convex operators. In this case we prove that (Pt)t≥0, gives rise to viscosity solutions (see
Definition 6.1) to the Cauchy problem of its associated infinitesimal generator. Moreover,
we show that every convex Markov C0-semigroup on (Cb(E), τM

κ ) gives rise to a notion of
a nonlinear Markov process under a convex expectation. This provides an analytic counter-
part to the recent investigations of G-expectations and nonlinear Markov processes, see [57].
The latter appear in the context of financial modeling in terms of a Brownian motion under
volatility uncertainty. Generalizations to uncertainty in the generators of Levy processes and
a class of Feller processes have been made in [53], [42], [20], [52]. In this context and, more
generally, in Mathematical Finance, the so-called continuity from above on Cb(E) of related
risk measures plays an important role. The main results of this section are formulated in
Theorems 6.2 and 6.4.

Section 7 contains examples from stochastic optimal control as applications of the result
in Section 6, both on finite (Section 7.1) and infinite dimensional (Section 7.2) state spaces.

2. Basic definitions and setup

In this section we recall basic definitions and some properties of the so called mixed topology
on a space of continuous functions ϕ : E → R. A very general definition of this topology was
introduced in [72] and, in the special case of the space of bounded continuous functions defined
on a completely regular topological space E, it was studied in topological measure theory as
one of the strict topologies, see [71]. In this paper we restrict our attention to a special class
of completely regular topological spaces E, but many results presented in this section, when
appropriately reformulated, hold for larger classes of spaces, or even for every completely
regular Hausdorff topological space.
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The following hypothesis about the space E is assumed to hold throughout the paper and
will not be enunciated again.

Hypothesis 2.1. The space E is a completely regular Hausdorff topological space, such that

(1) compact subsets of E are metrizable,
(2) the Borel σ-algebra B(E) is identical with the Baire σ-algebra Ba(E).
(3) a function ϕ : E → R is continuous if and only if ϕ is continuous on every compact

subset of E.

Remark 2.2.

a) Topological spaces that satisfy condition (3) are known as kf - or kR-spaces, see [38]
or [71].

b) Polish spaces satisfy all three conditions of Hypothesis 2.1.
c) Let E = F ? be the dual of a separable Banach space F endowed with its weak? topol-

ogy. Then, E is a Hausdorff topological vector space and thus completely regular, see
[38, Theorem 2.9.2]. We say that a set B ⊂ E is bw-closed if its intersection with every
weak?-compact set is weak?-closed. The corresponding topology is completely regu-
lar, and is known as the bw-topology, [22, pages 427-428] or [51, Section 2.7]. Clearly,
the bw-topology coincides with the weak?-topology on every weak?-compact set, and
therefore weak?-compactness is equivalent to bw-compactness. As a consequence, any
function E → R that is continuous on all weak?-compacts of E endowed with the weak?

topology is continuous on E endowed with the bw-topology. In fact, the bw-continuous
functions are precisely the sequentially weak?-continuous functions. Thus, part (3) of
Hypothesis 2.1 holds. Let us recall that a dual of an infinite-dimensional Banach space
endowed with its weak? topology is never a kf -space, see [54, Theorem 5.1] and [36,
Corollary 1.14]. By [24, Theorem 2.3], B (E, σ (E,F )) = Ba (E, σ (E,F )), and since
E is the countable union of weak?-compacts, we have B (E, σ (E,F )) = B (E, bw).
Hence, B (E, bw) = Ba (E, bw) and thus (2) of Hypothesis 2.1 holds. Since balls in
E equipped with the weak?-topology are metrizable, and weak?-compacts are norm-
bounded, (1) of Hypothesis 2.1 also holds. In particular, every separable reflexive
Banach space endowed with the bw-topology satisifies Hypothesis 2.1.

Throughout, we consider a continuous weight function κ : E → (0,∞), and Cκ(E) denotes
the space of continuous functions ϕ : E → R with

‖ϕ‖κ = sup
x∈E
|κ(x)ϕ(x)| <∞.

If κ ≡ 1, we use the notation Cb(E) instead of C1(E).
On Cκ(E), we consider various topologies. One of them is the norm topology τU

κ w.r.t.
‖ · ‖κ. For any compact set C ⊂ E, we define the seminorm

pκ,C(ϕ) = sup
x∈C
|κ(x)ϕ(x)| , for ϕ ∈ Cκ(E),

and we denote the locally convex topology on Cκ(E) generated by the family of seminorms
{pκ,C : C compact} by τC

κ . Note that, by virtue of our assumptions on the weight function κ,

the topology τC
κ coincides with the topology τC

1 of uniform convergence on compact subsets
of E, which is generated by the family of seminorms pC(ϕ) := supx∈C |ϕ(x)|, for ϕ ∈ Cκ(E).

We continue with the definition of the mixed topology, which is fundamental for everything
that follows. For an arbitrary sequence (Cn) of compact subsets of E and a sequence (an) of
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positive numbers with limn→∞ an = 0, we define the seminorm

pκ,(Cn),(an)(ϕ) := sup
n∈N

(
anpκ,Cn(ϕ)

)
= sup

n∈N
sup
x∈Cn

(
anκ(x)|ϕ(x)|

)
.

Definition 2.3. The locally convex topology on Cκ(E), defined by the family of seminorms{
pκ,(Cn),(an) : Cn ⊂ E compact, 0 < an → 0

}
,

is called the mixed topology, and is denoted by τM
κ .

In the language of topological measure theory, τM
κ belongs to the class of strict topologies,

see [71]. By definition,

τC
κ ⊂ τM

κ ⊂ τU
κ .

For the reader’s convenience, we collect some basic properties of the mixed topology in the
Appendices A and B. For a more detailed discussion of mixed (or strict) topologies, we refer
to [71] and [72].

We now introduce the dual objects of Cκ(E). Let Mb(E) denote the space of all signed
Radon measures µ : B(E) → R with |µ|(E) < ∞, where |µ| stands for the total variation
measure of µ. Recall that, under Hypothesis 2.1, every Baire measure is Borel, and that a
Borel measure µ : B(E)→ R with |µ|(E) <∞ is Radon1 if, for every Borel set B and every
ε > 0, there exists a compact set Cε ⊂ B such that

|µ| (B \ Cε) < ε .

A family F ⊂ Mb(E) is said to be tight if, for every ε > 0, there exists a compact Cε ⊂ E
such that

sup
µ∈F
|µ|(E \ Cε) < ε.

We denote the space of all Radon measures µ on (E,B(E)) with∫
E

|µ|(dx)

κ(x)
<∞

by Mκ(E). That is, Mκ(E) = κ · Mb(E). Let M+
κ (E) be the subset of all nonnegative

measures in Mκ(E). If µ ∈Mκ(E), then the mapping

Cκ(E) 3 ϕ 7→
∫
E
ϕdµ is norm-continuous.

Throughout, we endow Mκ(E) with the narrow topology, i.e., the weakest topology such that,
for every ϕ ∈ Cκ(E), the mapping

Mκ(E) 3 µ 7→
∫
E
ϕdµ is continuous.

By Theorem A.9, the space Mκ(E) endowed with the narrow topology is the topological dual
of
(
Cκ(E), τM

κ

)
.

In what follows, we consider (nonlinear) operators on Cκ(E), i.e., Cκ(E)→ Cκ(E). We say
that an operator T on Cκ(E) is norm-bounded if

sup
ϕ∈B
‖Tϕ‖κ <∞

1In some papers in topological measure theory this is called a tight measure.
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for all norm-bounded sets B ⊂ Cκ(E), i.e., supϕ∈B ‖ϕ‖κ < ∞. An operator on Cκ(E) is

called τM
κ -continuous if it is continuous for the mixed topology τM

κ . In the Appendix B, we
characterize norm-bounded linear operators T on Cκ(E) that are τM

κ -continuous.

3. Strongly continuous semigroups on spaces of continuous functions with
mixed topology

In this section, we introduce the notion of strongly continuous and locally equicontinuous
semigroups on

(
Cκ(E), τM

κ

)
, which we will refer to as C0-semigroups. The following definition

is a straightforward generalisation of the definition of strongly continuous and equicontinuous
semigroups of linear operators on locally convex spaces given in [73].

Definition 3.1. A family of (possibly nonlinear) operators P = (Pt)t≥0 on Cκ(E) is called a
semigroup on Cκ(E) if

(i) P0ϕ = ϕ for all ϕ ∈ Cκ(E),
(ii) PsPtϕ = Ps+tϕ for all s, t ≥ 0 and ϕ ∈ Cκ(E).

The family P is called a C0-semigroup on
(
Cκ(E), τM

κ

)
if it additionally satisfies:

(iii) The semigroup P is locally uniformly equicontinuous, i.e., for every T ≥ 0, the family
of operators (Pt)0≤t≤T is τM

κ -uniformly equicontinuous. More precisely, for every
T ≥ 0, ε > 0, and every seminorm pκ,(Kn),(an), there exists a seminorm pκ,(Cn),(bn)

and δ > 0 such that, for every 0 ≤ t ≤ T and ϕ1, ϕ2 ∈ Cκ(E),

pκ,(Kn),(an) (Ptϕ1 − Ptϕ2) < ε if pκ,(Cn),(bn)(ϕ1 − ϕ2) < δ.

(iv) The semigroup P is strongly τM
κ -right continuous, i.e., Ptϕ→ ϕ in τM

κ as t→ 0 for
every ϕ ∈ Cκ(E). More precisely, for all ϕ ∈ Cκ(E) and every seminorm pκ,(Kn),(an),

lim
t→0

pκ,(Kn),(an) (Ptϕ− ϕ) = 0.

Remark 3.2.

(i) We note that (iii) and (iv) imply that P is strongly τM
κ -continuous. Indeed, let

T > 0, ϕ ∈ Cκ(E), ε > 0, and pκ,(Kn),(an) be a seminorm. Then, by (iii), there exist a
seminorm pκ,(Cn),(bn) and δ > 0 such that, for all t ∈ [0, T ] and ϕ1, ϕ2 ∈ Cκ(E),

pκ,(Kn),(an) (Ptϕ1 − Ptϕ2) < ε if pκ,(Cn),(bn)(ϕ1 − ϕ2) < δ.

By (iv),

pκ,(Cn),(bn)

(
P|s−t|ϕ− ϕ

)
< δ.

for all s, t ∈ [0, T ] with |t − s| sufficiently small. Hence, if |t − s| is sufficiently small
and w.l.o.g. t < s, then

pκ,(Kn),(an) (Psϕ− Ptϕ) = pκ,(Kn),(an)

(
PtP|s−t|ϕ− Ptϕ

)
< ε.

As a consequence for every ϕ ∈ Cκ(E) by the continuity of Ptϕ on E we easily obtain
that for all compact C ⊂ E the map

[0,∞]× C 3 (t, x) 7→ Ptϕ(x)

is continuous.
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(ii) Now let us consider the linear case, i.e., each Pt of P is a linear operator. Then

sup
t≤T

sup
‖ϕ‖κ≤1

‖Ptϕ‖κ <∞.(3.1)

Indeed, let ϕ ∈ Cκ(E). Then by the uniform boundedness principle it suffices to show
that

sup
t≤T
‖Ptϕ‖κ <∞.

If this is not the case, there exist tn ∈ [0, T ], n ∈ N, such that

‖Ptnϕ‖κ ≥ n.(3.2)

We may assume that lim
n→∞

tn = t ∈ [0, T ]. Hence by part (i) of this Remark

τM
κ − lim

n→∞
Ptnϕ = Ptϕ,

consequently, by Proposition A.4 in the Appendix supn∈N ‖Ptnϕ‖κ < ∞, which con-
tradicts (3.2).
By the semigroup property (3.1) is equivalent to: There exist M ∈ [1,∞) and a ∈ R
such that

‖Ptϕ‖κ ≤Meat‖ϕ‖κ for all ϕ ∈ Cκ(E) and t ≥ 0.(3.3)

(The equivalence of (3.1) and (3.3) is, of course, also true in the nonlinear case.)
Furthermore, if P consists of linear operators, then (iii) is equivalent to:
For every T > 0 and every seminorm pκ,(Cn),(an), there exist a seminorm pκ,(Kn),(bn)

and CT ∈ (0,∞) such that

pκ,(Cn),(an)(Ptϕ) ≤ CT pκ,(Kn),(bn)(ϕ) for all ϕ ∈ Cκ(E) and t ∈ [0, T ].(3.4)

We have the following characterization for C0-semigroups on (Cκ(E), τM
κ ) consisting of

linear operators.

Theorem 3.3. Let P = (Pt)t≥0 be a semigroup of linear operators on Cκ(E). Then, the
following conditions are equivalent.

(a) The semigroup P is a C0-semigroup on
(
Cκ(E), τM

κ

)
.

(b) There exists a family of Borel measures {µt(x, · ) : x ∈ E, t ≥ 0} ⊂Mκ(E) such that:
(1) The map E 3 x 7→ µt(x,B) is measurable for every B ∈ B(E) and t ≥ 0.
(2) For every t ≥ 0, µt(·, dy) represents Pt, i.e.,

Ptϕ(x) =

∫
E
ϕ(y)µt(x, dy) for all ϕ ∈ Cκ(E), x ∈ E.(3.5)

(3) For every T ≥ 0,

sup
t≤T

sup
x∈E

(
κ(x)

∫
E

|µt| (x, dy)

κ(y)

)
<∞ .

(4) For every T ≥ 0 and every compact C ⊂ E, the family of measures{
κ(x) |µt| (x, dy)

κ(y)
: x ∈ C, t ∈ [0, T ]

}
is tight.
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(5) For every x ∈ E and any sequence (xn) ⊂ E with limn→∞ xn = x (in E), we
have

lim
(t,xn)→(0,x)

µt(xn, · ) = δx

in Mκ(E), where δx denotes the Dirac measure with barycenter x.

Proof. We start with the proof of the implication (b)⇒ (a). Assume that (b) is satisfied. We
have to show (iii),(iv) in Definition 3.1. In order to show that (iii) is satisfied, let T > 0. For
n ∈ N let (an) ⊂ (0,∞) and (Cn) be an increasing sequence of compact subsets of E. Let
bn := 21−n, n ∈ N. By (4), for every l ∈ N, there exists an increasing sequence (Kl,n)n∈N of
compacts in E such that

sup
t∈[0,T ]

sup
x∈Cl

(
κ(x)

∫
E\Kl,n

|µt|(x, dy)

κ(y)

)
≤ 2−2n−l for all n ∈ N.(3.6)

Define, for n ∈ N,

Kn :=
∞⋂
l=1

Kl,n.

Then, (Kn) is an increasing sequence of compacts, and, for all n ∈ N,

sup
t∈[0,T ]

sup
x∈Cl

(
κ(x)

∫
E\Kn

|µt|(x, dy)

κ(y)

)
≤ sup

t∈[0,T ]
sup
x∈Cl

( ∞∑
l=1

κ(x)

∫
E\Kl,n

|µt|(x, dy)

κ(y)

)
≤ 2−2n

(3.7)

by (3.6). Now, we are going to show (3.4). To that end, let ϕ ∈ Cκ(E). By homogeneity, we
may assume that

pκ,(Kn),(bn)(ϕ) = 1,

hence

pκ,Kn(ϕ) ≤ 2n−1 for all n ∈ N.(3.8)

Setting K0 := ∅, by (2), for all t ∈ [0, T ], we have

pκ,(Cl),(al)(Ptϕ)

≤ sup
l∈N

al sup
x∈Cl

(
κ(x)

∫
E
|ϕ|(y) |µt|(x, dy)

)
≤ sup

l∈N
al sup
x∈Cl

( ∞∑
n=1

pκ,Kn(ϕ)κ(x)

∫
Kn\Kn−1

|µt|(x, dy)

κ(y)

)
,

which, by (3.7) and (3.8), is dominated by

sup
l∈N

al

( ∞∑
n=2

2n−12−2(n−1) + sup
x∈E

∫
K1

|µt|(x, dy)

)

≤ sup
l∈N

al

(
1 + sup

t∈[0,T ]
sup
x∈E

κ(x)

∫
E

|µt|(x, dy)

κ(y)

)
=: CT ,

where, by (3), this constant is finite. Hence, by the last part of Remark 3.2 (ii), Property (iii)
follows.
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We proceed to the proof of (iv). Since by Remark 3.2 (ii) we know that (3.1) holds, by
Proposition A.4 we have to show that, for every compact K ⊂ E,

lim
t→0

pκ,K(Ptϕ− ϕ) = 0.(3.9)

Suppose this does not hold. Then, we can find a compact K ⊂ E, ε > 0, tn → 0, and
(xn) ⊂ K such that

|Ptnϕ (xn)− ϕ (xn)| ≥ ε for all n ∈ N.(3.10)

Since K is compact and metrizable, there exists some x ∈ K such that xnk → x for a
subsequence (nk). Since (3.10) also holds for this subsequence, we get a contradiction to
condition (5).
It remains to establish the implication (a)⇒ (b). If (a) holds, then (3.1) holds by Remark 3.2
(ii). Hence by Theorem B.2, there exists a family of measures {µt(x, ·) : t ≥ 0, x ∈ E} such
that (1), (2), and (3) hold. If C ⊂ E is compact, then so is [0, T ]×C ⊂ R×E, hence we can
use the same arguments as in the proof of Theorem B.2 to prove Property (4). Property (5)
is an immediate consequence of the strong continuity of P at zero. �

Remark 3.4. As just proved above, the dependence of the constant CT in (3.4) on the semi-
group Pt for t ∈ [0, T ] is only via the quantity

sup
t∈[0,T ]

sup
x∈E

κ(x)

∫
E

|µt|(x, dy)

κ(y)
,

where µt(x, dy), x ∈ E, t ≥ 0, are the representing measures for (Pt)t≥0 in (3.5).

The following proposition renders a convenient sufficient condition to check conditions (4)
and (5) in Theorem 3.3, if E is a so-called Prohorov space, whose definition we recall first
(see [6, Definition 4.7.1(i)]).

Definition 3.5. Let E be as above (i.e., as in Hypothesis 2.1). Then E is called a Prohorov
space, if every compact subset of M+

b (E) (equipped with the narrow topology) is tight.

Proposition 3.6. Let E be Prohorov. Let µt(x, ·) ∈ M+
κ (E), t ≥ 0, and x ∈ E, such that

E 3 x 7→ µt(x,B) is B(E)-measurable for all B ∈ B(E), t ≥ 0, and µ0(x, ·) = δx for all
x ∈ E. Suppose that (3) in Theorem 3.3 holds and that, for every T ∈ (0,∞) and every
compact C ⊂ E, the map

[0, T ]× C 3 (t, x) 7−→
∫
E
ϕ(y) µt(x, dy)

is continuous for every ϕ ∈ Cκ(E). Then (4) and (5) in Theorem 3.3 also hold.

Proof. Since the continuous image of a compact set is compact, by the assumptions, it follows
that {µt(x, ·) : x ∈ C, t ∈ [0, T ]} is a compact subset of M+

κ (E). Hence (4) holds, since E
is assumed to be Prohorov. Condition (5) is fulfilled since {xn : n ∈ N} ∪ {x} is compact for
every sequence (xn) ⊂ E with xn → x ∈ E. �

Remark 3.7. If E is Polish, then E is Prohorov. Likewise, if E is as in Remark 2.2(3), and
equipped with the bounded weak topology τbw, then [6, Proposition 4.7.6(i)] implies that
(E, τbw) is Prohorov.
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4. Examples for linear C0-semigroups on
(
Cκ(E), τM

κ

)
We are now going to present large classes of examples for C0-semigroups on (Cκ(E), τM

κ )
given by transition semigroups of solutions to stochastic differential equations (SDEs) on
infinite dimensional state spaces, hence including stochastic partial differential equations
(SPDEs) as their main examples. The main tool to show that such transition semigroups
are indeed C0-semigroups on (Cκ(E), τM

κ ) will be Proposition 3.6.

4.1. Transition semigroups of solutions to SDEs on Hilbert spaces of locally mono-
tone type.

The first class of examples come from SDEs in Hilbert spaces of locally monotone type,
introduced in [49]. Let us recall the necessary details from [49, Section 5.1].
Let E := H be a separable Hilbert space with inner product 〈 , 〉H and H∗ its dual. Let V
be a reflexive Banach space, such that V ⊂ H continuously and densely. Then for its dual
space V ∗ it follows that H∗ ⊂ V ∗ continuously and densely. Identifying H and H∗ via the
Riesz isomorphism we have that

V ⊂ H ⊂ V ∗

continuously and densely and if V ∗〈 , 〉V denotes the dualization between V ∗ and V (i.e.

V ∗〈z, v〉V := z(v) for z ∈ V ∗, v ∈ V ), it follows that

V ∗〈z, v〉V = 〈z, v〉H for all z ∈ H, v ∈ V.

(V,H, V ∗) is called a Gelfand triple. Note that since H ⊂ V ∗ continuously and densely, also
V ∗ is separable, hence so is V . Furthermore, B(V ) is generated by V ∗ and B(H) by H∗. We
also have by Kuratowski’s theorem that V ∈ B(H), H ∈ B(V ∗) and B(V ) = B(H)∩V, B(H) =
B(V ∗) ∩H.
Let W (t), t ∈ [0,∞), be a cylindrical Wiener process in a separable Hilbert space U on a
probability space (Ω,F ,P) with normal filtration Ft, t ∈ [0,∞). We consider the following
stochastic differential equation on H

(4.1) dX(t) = A(t,X(t))dt+B(t,X(t))dW (t),

where for some fixed time T > 0

A : [0, T ]× V × Ω→ V ∗; B : [0, T ]× V × Ω→ L2(U,H)

are progressively measurable, where U is another separable Hilbert space and L2(U,H) de-
notes the set of all Hilbert-Schmidt operators from U to H.
The coefficients A and B are assumed to satisfy the following conditions:

There exist constants α ∈]1,∞[, β ∈ [0,∞[, θ ∈]0,∞[, C0 ∈ R and a nonnegative adapted
process f ∈ L1([0, T ] × Ω; δt ⊗ P) such that the following conditions hold for all u, v, w ∈ V
and (t, ω) ∈ [0, T ]× Ω:

(H1) (Hemicontinuity) The map λ 7→ V ∗〈A(t, u+ λv), w〉V is continuous on R.

(H2) (Local monotonicity)

2V ∗〈A(t, u)−A(t, v), u− v〉V + ‖B(t, u)−B(t, v)‖2L2(U,H) ≤ (f(t) + ρ(v)) ‖u− v‖2H ,



14 BEN GOLDYS, MAX NENDEL, AND MICHAEL RÖCKNER

where ρ : V → [0,+∞[ is a measurable hemicontinuous function which is bounded on
bounded sets in V .

(H3) (Coercivity)

2V ∗〈A(t, v), v〉V + ‖B(t, v)‖2L2(U,H) ≤ C0‖v‖2H − θ‖v‖αV + f(t).

(H4) (Growth)

‖A(t, v)‖
α
α−1

V ∗ ≤ (f(t) + C0‖v‖αV )(1 + ‖v‖βH).

Definition 4.1. A continuous H-valued (Ft)-adapted process (X(t))t∈[0,T ] is called a solution

of (4.1), if for its dt⊗ P-equivalent class X̂ we have

X̂ ∈ Lα([0, T ]× Ω, dt⊗ P;V ) ∩ L2([0, T ]× Ω, dt⊗ P;H)

with α in (H3) and P-a.s.

X(t) = X(0) +

∫ t

0
A(s, X̄(s))ds+

∫ t

0
B(s, X̄(s))dW (s), t ∈ [0, T ],

where X̄ is any V -valued progressively measurable dt⊗ P-version of X̂.

The main existence and uniqueness for (4.1) then reads as follows (see [49, Theorem 5.1.3]).

Theorem 4.2. Suppose (H1), (H2), (H3), (H4) hold for some f ∈ Lp/2([0, T ] × Ω; dt ⊗ P)
with some p ≥ β + 2, and there exists a constant C such that

‖B(t, v)‖2L2(U,H) ≤ C(f(t) + ‖v‖2H), t ∈ [0, T ], v ∈ V ;

ρ(v) ≤ C(1 + ‖v‖αV )(1 + ‖v‖βH), v ∈ V.
Then for every X0 ∈ Lp(Ω,F0, P ;H), (4.1) has a unique solution (X(t))t∈[0,T ] such that
X(0) = X0. Furthermore, there exsists C ∈ [0,∞) such that

E

(
sup
t∈[0,T ]

‖X(t)‖pH

)
≤ C E

(
‖X0‖pH +

∫ T

0
f
p
2 (t)dt)

)
,(4.2)

where E denotes expectation w.r.t. P.
Moreover, if A(t, ·)(ω), B(t, ·)(ω) are independent of t ∈ [0, T ] and ω ∈ Ω, then the laws
P ◦X(·, x)−1, x ∈ H, of the solutions X(t, x), t ∈ [0,∞), of (4.1) started at x ∈ H, form a
time-homogeneous Markov process.

As shown in [49, Section 5.1] the above framework and Theorem 4.2 apply to a large
class of SPDEs including the stochastic heat equation (see [49, Remark 4.1.8]), the stochas-
tic p-Laplace equation (see [49, Example 4.1.9]), the stochastic slow diffusion-porous media
equation (see [49, Example 4.1.11]), the stochastic fast diffusion-porous media equation (see
[60]), both with general diffusivity, the perturbed stochastic Burgers equation (see [49, Lemma
5.1.6 (1) and Example 5.1.8]) and the stochastic 2D Navier-Stokes equation (see [49, Example
5.1.10]).

For later use we need the following:
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Lemma 4.3. Consider the situation of Theorem 4.2 and let X(t, x), t ∈ [0, T ], be the unique
solution of (4.1) with X(0, x) = x ∈ H. Assume, in addition, that there exists CB ∈ (0,∞)
such that

sup
s∈[0,T ]

‖B(s, x)−B(s, y)‖L2(U,H) ≤ CB‖x− y‖H ∀ x, y ∈ V.(4.3)

Then for all x, y ∈ H

E

[
exp(−

∫ T

0
(f(s) + ρ(X(s, y)))ds) sup

s∈[0,T ]
‖X(s, x)−X(s, y)‖2H

]
≤ e

9
2
C2
BT ‖x− y‖2H .

In particular, if xn, y ∈ H such that limn→∞ xn = y, then

sup
t∈[0,T ]

‖X(t, xn)−X(t, y)‖H −→
n→∞

0 in P-measure.

Proof. Letting

F (t) := exp(−
∫ t

0
(f(s) + ρ(X(s, y)))ds) (> 0), t ∈ [0, T ],

we have by Itô’s formula (see e.g. [49, Theorem 4.2.5]) and (H2) that ∀t ∈ [0, T ]

F (t)‖X(t, x)−X(t, y)‖2H = ‖x− y‖2

+ 2

∫ t

0
F (s)

(
V ∗〈A(s,X(s, x))−A(s,X(s, y)), X(s, x)−X(s, y)〉V

+ ‖B(s,X(s, x))−B(s,X(s, y))‖2L2(U,H)

)
ds

−
∫ t

0
F (s)

(
f(s) + ρ(X(s, y))

)
‖X(s, x)−X(s, y))‖2Hds

+

∫ t

0
F (s)〈X(s, x)−X(s, y),

(
B(s,X(s, x))−B(s,X(s, y))

)
dW (s)〉H .

Hence by (H2), the Burkholder-Davis-Gundy inequality with p = 1 and (4.3)

E

[
sup
s∈[0,t]

(
F (s)‖X(s, x)−X(s, y)‖2H

)]
≤ ‖x− y‖2H

+ 3E
[(∫ t

0
F (s)2‖B(s,X(s, x))−B(s,X(s, y))‖2L2(U,H)‖X(s, x)−X(s, y)‖2H ds

) 1
2

]
≤ ‖x− y‖2H

+ 3C2
BE

[
sup
s∈[0,t]

(
F (s)

1
2 ‖X(s, x)−X(s, y)‖H

)(∫ t

0
F (s)‖X(s, x)−X(s, y)‖2H ds

) 1
2

]

≤ ‖x− y‖2H +
1

2
E

[
sup
s∈[0,t]

(
F (s)‖X(s, x)−X(s, y)‖2H

)]

+
1

2
9C2

B

∫ t

0
E

[
sup
r∈[0,s]

(
F (r)‖X(r, x)−X(r, y)‖2H

)]
ds.
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Hence by Gronwall’s lemma ∀t ≥ 0

E

[
exp
(
−
∫ T

0
(f(s) + ρ(X(s, y)))ds

)
sup
s∈[0,t]

‖X(s, x)−X(s, y)‖2H

]
≤ ‖x− y‖2H e

9
2
C2
BT .

So, if xn → y w.r.t. ‖ · ‖H , then

sup
t∈[0,T ]

‖X(t, xn)−X(t, y)‖H −→
n→∞

0 in P-measure. �

From now on in this section we assume that A and B above do not depend on ω ∈ Ω, t ∈
[0,∞), and that (H1)-(H4) hold with some constant f ∈ [0,∞) replacing the function f .
Furthermore, we assume that (4.3) holds.

So, let us now consider the transition semigroup of the unique solution from Theorem 4.2,
i.e. for ϕ ∈ Cb(H), x ∈ H, t ≥ 0,

Ptϕ(x) : = E[ϕ(X(t, x))] =

∫
Ω
ϕ(X(t, x)(ω))P(dω)(4.4)

=

∫
ϕ(y) µt(x, dy),

where X(t, x), t ≥ 0, denotes the solution of (4.1) with initial condition X(0, x) = x ∈ H and

µt(x, dy) := (P ◦X(t, x)−1)(dy).

Claim 1.
(Pt)t≥0 is a Markov C0-semigroup on (Cb(H), τM

1 ).
Claim 2.
Let m ∈ [1,∞) and

κ(x) := (1 + ‖x‖mH)−1, x ∈ H.(4.5)

Then (Pt)t≥0 is a Markov C0-semigroup on
(
Cκ(H), τM

κ

)
.

Proof of Claim 1: Clearly, (Pt)t≥0 and µt(x, dy), t ≥ 0, x ∈ H, satisfy conditions (1), (2), (3)
in Theorem 3.3 with E := H (equipped with its norm topology) and κ = 1. To show that
also (4) and (5) hold, by Proposition 3.6 we have to show that for every compact C ⊂ H and
every ϕ ∈ Cb(H)

[0, T ]× C 3 (t, x) 7−→ Ptϕ(x) is continuous.(4.6)

So, let t, tn ∈ [0, T ] and x, xn ∈ H, n ∈ N, such that

(tn, xn) −→ (t, x) in [0, T ]×H as n→∞.

Clearly, it then follows by Lemma 4.3 that

X(tn, xn) −→ X(t, x) in P-measure,

since X(tn, x)→ X(t, x) P-a.s. Hence µtn(xn, ·) = P◦X(tn, xn)−1 −→ P◦X(t, x)−1 = µt(x, ·)
weakly as n → ∞ and (4.6) follows. Therefore, (Pt) defined in (4.4) is a C0-semigroup on
(Cb(E), τM

1 ) by Theorem 3.3, and Claim 1 is proved. �
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Proof of Claim 2: Obviously, (Pt)t≥0 satisfies (1),(2) and (for κ as in (4.5)) also (3) in Theorem
3.3, since by (4.2) (applied with p = m) for some CT ∈ (0,∞) we have

Pt

(1

κ

)
(x) ≤ CT

1

κ(x)
∀t ∈ [0, T ], x ∈ H.(4.7)

As above (4) and (5) in Theorem 3.3 follow from (4.6) above, however, to be proved for all
ϕ ∈ Cκ(H). So, let ϕ ∈ Cκ(H) and tn → t in [0, T ], xn → x in H. Then

|Ptnϕ(xn)− Ptϕ(x)|
=
∣∣E[ϕ(X(tn, xn))− ϕ(X(t, x))]

∣∣
≤ ‖ϕ‖κE

[∣∣‖X(tn, xn)‖mH − ‖X(t, x)‖mH
∣∣]

+ E
[∣∣(ϕκ)(X(tn, xn))− (ϕκ)(X(t, x))

∣∣(1 + ‖X(t, x)‖mH)
]
,

which converges to zero as n → ∞, since we already know from the proof of Claim 1 that
X(tn, xn) → X(t, x) in P-measure and since ‖X(tn, xn)‖mH , n ∈ N, are uniformly integrable
by (4.2), so that the generalized Lebesgue’s dominated convergence theorem applies. Hence
Theorem 3.3 implies Claim 2. �

4.2. Transition semigroups of mild solutions to SDEs on Hilbert spaces with
bounded weak topology.
Let H be a separable Hilbert space with inner product 〈·, ·〉H and norm | · |H . We will
denote the space H endowed with the bounded weak topology by Hbw. In this section we will
consider the following stochastic evolution equation in H:

(4.8) dX(t) = (AX(t) + F (X(t))) dt+G(X(t)) dW (t), X(0) = x ∈ H .

We assume that
- W is a cylindrical Wiener process on a separable Hilbert space U ,
- A generates a C0-semigroup Tt, t ≥ 0, on H,
- F : H → H satisfies the Lipschitz condition with a constant L:

|F (x)− F (y)|H ≤ L|x− y|H , x, y ∈ H,

- G : E → L(U,E) (:= all continuous linear operators from U to H) is strongly measurable
and satisfies the conditions

‖TtG(x)‖2L2(U,H) ≤ k(t)
(
1 + |x|2H

)
, x ∈ H,

and

‖Tt (G(x)−G(y))‖2L2(U,H) ≤ k(t)|x− y|2H , x, y ∈ H,

where k ∈ L1
loc(0,∞), k ≥ 0. In the above we use the notation ‖B‖L2(U,H) for the Hilbert-

Schmidt norm of an operator B : U → H. Under the above assumptions equation (4.8) has
a unique mild solution in H given by the formula

X(t, x) = Ttx+

∫ t

0
Tt−sF (X(s, x)) ds+

∫ t

0
Tt−sG(X(s, x)) dW (s) , t ∈ [0, T ].

Moreover, by standard arguments we find, that for all x ∈ H, T > 0

(4.9) sup
t≤T

E |X(t, x)|mH ≤ Cm(T ) (1 + |x|mH)
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and

(4.10) sup
x∈Br

E |X(t, x)− Ttx|mH ≤ Cm(T, r)K
m/2
t , t ∈ [0, T ] ,

where Br denotes the open centered ball of radius r in H and

Kt =

∫ t

0
(1 + k(s)) ds, t ≤ T .

Let Stϕ(x) := Eϕ (X(t, x)) for ϕ ∈ Cκm (H). Following the arguments from [37] we obtain
for

κm := (1 + |x|m)−1, m ≥ 2,(4.11)

that

(4.12) ‖St‖Cκm (H)→Cκm (H) ≤Mme
γmt , t ≥ 0.

By an easy modification of the proof in [37] one can prove that under the above assumptions
the semigroup (St) is a C0-semigroup in

(
Cm (H) , τM

κm

)
We will show that (S(t)) defines also

a C0-semigroup on the space
(
Cm (Hbw) , τM

κm

)
. The next proposition extends the result in

[50].

Proposition 4.4. Assume that that the semigroup Tt, t > 0, is compact in H. Then the
semigroup St, t > 0, defines a C0-semigroup on

(
Cκm (Hbw) , τM

κm

)
.

Proof. By a result in [50] we have StCb (Hbw) ⊂ Cb (Hbw) for any t > 0. Hence by (4.12) it
easily follows that St : Cκm(Hbw) ⊂ Cκm(Hbw) and that

(4.13) ‖S(t)‖Cκm (Hbw)→Cκm (Hbw) ≤Mme
γmt , t ≥ 0.

This is the only part of the proof where compactness of Tt is required.
We will show that the semigroup (St) satisfies conditions (1) - (5) in part (b) of Theorem
3.3, where µt(x, V ) = P(X(t, x) ∈ V ) for Borel sets V ⊂ H. We recall here that the Borel
σ-algebras of H and Hbw coincide and clearly, the mapping

Hbw 3 x→ µt(x, V )

is B (Hbw)-measurable for every t ≥ 0 and V ∈ B (Hbw), hence condition (1) of Theorem 3.3
holds. By (4.13) condition (2) of Theorem 3.3 is satisfied as well. Invoking (4.9) we obtain
for all x ∈ H, T > 0∫

Hbw

µt(x, dy)

κm(y)
= E (1 + |X(t, x)|m) ≤ Cm(T ) (1 + |x|mH) , t ∈ [0, T ] ,

and condition (3) of Theorem 3.3 follows. Since Br is bw-compact for every r > 0 we can use
(4.9) again to show that for every T > 0 and every r > 0 the family of measures{

κm(x)µt(x, dy)

κm(y)
: x ∈ Br, t ≤ T

}
is tight, which yields condition (4) of Theorem 3.3. It remains to prove that conditon (5) is
satisfied and it is enough to prove this condition for m = 0. Let ϕ ∈ Cb (Hbw). Let tn → 0
and xn → x weakly with supn≥1 |xn|H ≤ r for a certain r > 0. For any ε > 0 and T > 0 we
can choose R ≥ r such that

sup
x∈Br

sup
t≤T
|Ttx|H < R ,
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and

sup
x∈Br

sup
t≤T

P (|X(t, x)|H > R) < ε .

Let {fk; |f |H = 1 , k ≥ 1} be a dense set in the sphere {f ∈ H; |f |H = 1}. We recall that the
metric

ρ(x, y) =
∞∑
k=1

1

2k
|〈x− y, fk〉|

1 + |〈x− y, fk〉|
, x, y ∈ BR

defines a Polish topology identical with the weak topology on BR. We have

Stnϕ (xn) = Eϕ (X (tn, xn)) IBR (X (tn, xn)) + Eϕ (X (tn, xn)) IBcR (X (tn, xn))

= ϕ(x)EIBR (X (tn, xn)) + δ (R, tn, xn)

where

δ (R, tn, xn) = E (ϕ (X (tn, xn))− ϕ (x)) IBR (X (tn, xn))

+ Eϕ (X (tn, xn)) IBcR (X (tn, xn))

= δ1 (R, tn, xn) + δ2 (R, tn, xn)

hence

|δ (R, tn, xn)| ≤ |δ1 (R, tn, xn)|+ C‖ϕ‖∞
R

.(4.14)

Let ω be the modulus of continuity of the function ϕ on BR. Then

|δ1 (R, tn, xn)| ≤ Eω (ρ (X (tn, xn) , x)) IBR (X (tn, xn))

Setting ψ(t, x) := Ttx we obtain

ρ (X (tn, xn) , x) ≤ ρ (X (tn, xn) , ψ (tn, xn)) + ρ (ψ (tn, xn) , x) .

For every f ∈ H the function

[0, T ]×Hbw 3 (t, x)→ 〈ψ(t, x), f〉H

is continuous, hence

lim
n→∞

ρ (ψ (tn, xn) , x) = 0 .

Therefore, invoking (4.10) we find that for every ε > 0

lim
n→∞

P (ρ (X (tn, xn) , x) > ε) = 0 ,

hence |δ1 (R, tn, xn)| → 0 for n→∞. Finally, again by (4.9)

lim sup
n
|S (tn)ϕ (xn)− ϕ(x)| ≤ |ϕ(x)| lim sup

n
EIBcR (X (tn, xn)) +

C‖ϕ‖∞
R

≤ 2C‖ϕ‖∞
R

,

and condition (5) of Theorem 3.3 follows by taking R→∞. �
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4.3. Generalized Mehler semigroups on Banach spaces with norm topology.
Let E be a separable Banach space and let κ = 1. Let (Tt)t≥0 be C0-semigroup of operators
on E. Furthermore, let µt, t ∈ [0,∞), be probability measures on (E,B(E)) such that:

[0,∞) 3 t 7−→ µt ∈Mb(E) is narrowly (i.e., σ(Mb(E), Cb(E))-) continuous.(4.15)

µt+s =
(
µt ◦ T−1

s

)
∗ µs t, s ∈ [0,∞).(4.16)

Define for t ∈ [0,∞), x ∈ E

Ptϕ(x) :=

∫
E
ϕ(Ttx+ y) µt(dy), ϕ ∈ Cb(E).(4.17)

Then (Pt)t≥0 is (by (4.16)) a semigroup of linear operators on Cb(E), called a ”generalized
Mehler semigroup”. In this generality such semigroups have been first introduced in [10] and
then further analyzed in [34] and many other papers (see e.g. the very recent work [2] and
the references therein). They appear as transition semigroups of Ornstein-Uhlenbeck process
with Levy noise, i.e. solutions to the following SDEs on E

dX(t) = AX(t)dt+ dY (t),(4.18)

where A is the generator of (Tt) on E and Y (t), t ≥ 0, is the underlying Levy process
corresponding to the Levy characteristics appearing in the Levy-Khintchine representation of
the exponent of the Fourier transforms of µt, t ≥ 0. We refer to [34] for details. Obviously,
(Pt) has a representation as in (3.5) with

µt(x, dy) := (δTtx ∗ µt)(dy), t ∈ [0,∞), x ∈ E.(4.19)

So, clearly conditions (1)-(3) in Theorem 3.3 hold. To show that (Pt) in (4.17) is a C0-
semigroup on (Cb(E), τM

1 ), it remains to prove that (4) and (5) hold, for which by Proposition
3.6 it suffices to show that for all ϕ ∈ Cb(E) the map

[0,∞)× E 3 (t, x) 7−→
∫
E
ϕ(Ttx+ y) µt(dy)

is continuous. So, let xn, x ∈ E, tn, t ∈ [0,∞) such that limn→∞ tn = t and limn→∞ xn = x
(w.r.t. the norm topology on E). Then we have to show that for all ϕ ∈ Cb(E)∫

E
ϕ d(δTtnxn ∗ µtn) −→

∫
E
ϕ d(δTtx ∗ µt) as n→∞.

By the Portemanteau theorem we may assume that ϕ is Lipschitz with Lipschitz constant
less or equal to one. Then we have∣∣∣ ∫

E
ϕ(Ttx+ y) µt(dy)−

∫
E
ϕ(Ttnxn + y) µtn(dy)

∣∣∣
≤
∣∣∣ ∫

E
ϕ(Ttx+ y) (µt − µtn)(dy)

∣∣∣+ ‖Ttx− Ttnxn‖E ,

which clearly converges to zero as n → ∞ by (4.15) and because (Tt) is a C0-semigroup on
E.
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4.4. Generalized Mehler semigroups on Banach spaces with bounded weak topol-
ogy.
Let κ = 1 and E be a reflexive separable Banach space (in particular, E is as in Remark 2.2
(3)). Let us now consider (E, τbw), i.e. E equipped with the bounded weak topology (see
Remark 2.2 (3)). Then, since E is separable, we have that B((E, ‖ · ‖E)) = B((E, τbw)). Let
µt, t ∈ [0,∞), be as in (iii) above, satisfying (4.16), but instead of (4.15), we assume the
weaker condition

[0,∞) 3 t −→ µt ∈Mb((E, τbw))(4.20)

is narrowly
(

i.e., σ
(
Mb((E, τbw)), Cb((E, τbw))

))
continuous.

Let (Pt) be defined as in (4.17). We want to show that again by Theorem 3.3 and Proposition
3.6 (Pt) is a C0-semigroup on Cb

(
((E, τbw)), τM

1

)
. We recall that Cb((E, τbw)) are exactly the

bounded sequentially weak∗-continuous functions on E and that each τbw-compact C ⊂ E
is metrizable (see Remark 2.2 (3)). Obviously (Pt) is a semigroup of linear operators on
Cb((E, τbw)) satisfying conditions (1)-(3) in Theorem 3.3. It remains to prove (4) and (5),
which again will follow by Proposition 3.6. So let tn → t in [0, T ], xn → x in (E, τbw) and
ϕ ∈ Cb((E, τbw)). We have to show that

lim
n→∞

Ptnϕ(xn) = Ptϕ(x).(4.21)

Let us recall the definition of the finitely based C1
b -functions, i.e.

FC1
b := {f(l1, . . . , lm) | m ∈ N, f ∈ C1

b (Rm), l1, . . . , lm ∈ E∗}.

By Theorem A.8 in the Appendix and the Hahn-Banach theorem FC1
b is dense in

Cb((E, τbw), τM
1 ). By (4.17) we have

|Ptϕ(x)− Ptnϕ(xn)|(4.22)

≤
∣∣∣∣∫
E
ϕ(Ttx+ y) (µt − µtn)(dy)

∣∣∣∣
+

∫
E
|ϕ(Ttx+ y)− ϕ(Ttnxn + y)| µtn(dy).

Clearly, since its integrand is in Cb((E, τbw)), the first integral on the r.h.s. of (4.22) converges
to zero as n→∞ by assumption (4.20). To see that this also holds for the second, let ε > 0.
Since (E, τbw) is a Skorohod space (see Remark 3.7), by (4.20) there exists a τbw-compact set
Kε ⊂ E such that

sup
t∈[0,T ]

µt(K
c
ε) < ε.(4.23)

Since Ttnxn −→n→∞ Ttx weakly, there exists a τbw-compact set C ⊂ E such that

{Ttnxn | n ∈ N} ∪ {Ttx} ⊂ C.

Furthermore, since Kε + C is τbw-compact, there exists ψ = f(l1, . . . , lm) ∈ FC1
b such that

p1,Kε+C(ϕ− ψ) < ε.(4.24)
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Clearly, we may assume that ‖ψ‖∞ ≤ ‖ϕ‖∞. Then we can estimate the second term on the
r.h.s. of (4.22) by∫

Kε

|ϕ− ψ|(Ttx+ y) µtn(dy) +

∫
Kε

|ϕ− ψ|(Ttnxn + y) µtn(dy)

+ 4‖ϕ‖∞ µtn(Kc
ε) + ‖Df‖∞ |Pm(Ttx− Ttnxn)|Rm

where Pm(z) = (l1(z), . . . , lm(z)), z ∈ E. Letting first n → ∞ and then ε → 0 by (4.23),
(4.24) we obtain (4.21).

5. Strong and Weak infinitesimal generators

5.1. Definitions and (Markov) core operators.

Definition 5.1. Let (Pt)t≥0 be a C0-semigroup on
(
Cκ(E), τM

κ

)
. Then, we define its infini-

tesimal generator L by the formula
(5.1)

Lϕ := τM
κ − lim

t→0

Ptϕ− ϕ
t

for ϕ ∈ D(L) :=

{
ψ ∈ Cκ(E) : τM

κ − lim
t→0

Ptψ − ψ
t

exists

}
.

In order to formulate the next result, we first recall that, if X is any sequentially complete
locally convex linear space, then a continuous function f : [0, T ] → X is Riemann integrable

,and the function F (t) =
∫ t

0 f(s) ds is differentiable with dF
dt = f(t) for every t ∈ (0, T ) (see

[30] for details). We also recall that, by Theorem A.6, the space
(
Cκ(E), τM

κ

)
is complete.

In the next propostion we collect some known properties of C0-semigroups of operators on
Cκ(E). Parts (b)-(e) of the Proposition were proved in a more general framework in [40],
part (a) in [1].

Proposition 5.2. Let P = (Pt)t≥0 be a C0-semigroup on
(
Cκ(E), τM

κ

)
consisting of linear

operators with generator L. Then, the following holds:

(a) The τM
κ -closure of D(L) is identical with Cκ(E).

(b) The generator L is τM
κ -closed, that is for every net (ϕα) ⊂ D(L), such that ϕα → ϕ

and Lϕα → ψ we have ϕ ∈ D(L) and Lϕ = ψ.
(c) For every ϕ ∈ D(L) we have Ptϕ ∈ D(L) and LPtϕ = PtLϕ. In particular, each

Pt : D(L)→ D(L) is continuous in the τM
κ -graph topology of L on D(L).

(d) For every ϕ ∈ D(L)

Ptϕ− ϕ =

∫ t

0
PsLϕds .

Moreover, for every ϕ ∈ Cκ(E)∫ t

0
Psϕds ∈ D(L), and Ptϕ− ϕ = L

∫ t

0
Psϕds .

(e) For every λ > ω and ϕ ∈ Cκ(E), the Riemann integral

J(λ)ϕ =

∫ ∞
0

e−λtPtϕdt,

is convergent in the topology τM
κ and J(λ) = (λ−L)−1. In particular, P is the unique

C0-semigroup on (Cκ(E), τM
κ ) of linear operators with generator L.
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(f) The Euler formula holds, i.e., for all ϕ ∈ Cκ(E)

Ptϕ = τM
κ − lim

n→∞

(n
t

(
n

t
− L)−1

)n
ϕ.

Proof. According to the remarks preceding this theorem, we only have to prove (e). But by
Remark 5.6 below this is an immediate consequence of Theorem 5.6 in [11] (attributed there
to F. Kühnemund, see [43]) �

Proposition 5.3. Let D ⊂ D(L) be a τM
κ -dense set in Cκ(E) such that PtD ⊂ D

L
for every

t > 0, where D
L

denotes the closure of D in the τM
κ -graph topology of L on D(L). Then D

is a τM
κ -core for L.

Proof. Since by Proposition 5.2 (c) each Pt is continuous in the τM
κ -graph topology of D(L),

we have that Pt(DL) ⊂ D
L
, so we may assume that D = D

L
. Now let ϕ ∈ D(L). We have to

show that ϕ ∈ D
L

= D . There exists a net (ϕα) ⊂ D such that

τM
κ − lim

α
ϕα = ϕ

We claim that for every α and t ≥ 0 ∫ t

0
Psϕα ds ∈ D .(5.2)

Indeed, this integral initially converges in (Cκ(E), τM
κ ), but again by Proposition 5.2 (c) it also

converges in D
L

= D in the τM
κ -graph topology of L on D(L). So (5.2) holds. Furthermore,

by definition of the Riemann integral in (Cκ(E), τM
κ ) we have for all t ≥ 0

τM
κ − lim

α

∫ t

0
Psϕα ds =

∫ t

0
Psϕ ds

and since by Preposition 5.2 (d)

τM
κ − lim

α
L

∫ t

0
Psϕα ds = τM

κ − lim
α

(Ptϕα − ϕα) = Ptϕ− ϕ,

we conclude that ∫ t

0
Psϕ ds ∈ D

L
= D .(5.3)

Finally, since ϕ ∈ D(L), it follows that

τM
κ − lim

t→0

1

t

∫ t

0
Psϕ ds = ϕ

and

τM
κ − lim

t→0
L

(
1

t

∫ t

0
Psϕ ds

)
= τM

κ − lim
t→0

1

t

∫ t

0
PsLϕ ds = Lϕ.

Therefore, by (5.3), ϕ ∈ D
L

= D .
�
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Definition 5.4. Let P = (Pt)t≥0 be a C0-semigroup on
(
Cκ(E), τM

κ

)
. We say that ϕ ∈

D (Lw) ⊂ Cκ(E) if and only if there exists some f ∈ Cκ(E) such that 1
t (Ptϕ − ϕ)

t→0−−→ f

weakly in
(
Cκ(E), τM

κ

)
, i.e.,

(5.4) lim
t→0

∫
E

Ptϕ(x)− ϕ(x)

t
ν(dx) =

∫
E
f(x) ν(dx)

for each ν ∈Mκ(E). In this case, we define the operator Lw by the formula

Lwϕ = f.

We say that Lw is the weak generator of the C0-semigroup P on
(
Cκ(E), τM

κ

)
with domain

D (Lw).

Theorem 5.5. Let (Pt)t≥0 be a C0-semigroup on
(
Cκ(E), τM

κ

)
consisting of linear operators.

Then,
L = Lw.

Moreoever, ϕ ∈ D(L) if and only if

(5.5) sup
t≤1

(
1

t
‖Ptϕ− ϕ‖κ

)
<∞,

(5.6) f(x) := lim
t→0

Ptϕ(x)− ϕ(x)

t
exists for all x ∈ E,

and f ∈ Cκ(E). In this case, f = Lϕ.

Proof. We start with the proof that L = Lw, which is a modification of the proof of [56, p.
43, Corollary 1.2] given for C0-semigroups in Banach spaces. If ϕ ∈ D(L), then (5.4) follows
by Theorem A.9. Hence, L ⊂ Lw. To show that Lw ⊂ L choose ϕ ∈ D (Lw). Then, by the
semigroup property, t 7→ Ptϕ is a weakly continuous differentiable curve in

(
Cκ(E), τM

κ

)
.

Hence∫
E

(
Ptϕ(x)− ϕ(x)

)
ν(dx) =

∫ t

0

∫
E
PsLwϕ(x) ν(dx) ds =

∫
E

(∫ t

0
PsLwϕ ds

)
(x) ν(dx),

where for the secound equality we used that a continuous linear functional on (Cκ(E), τM
κ )

interchanges with the Cκ(E)-valued Riemann integral. Taking ν := δx, for x ∈ E, we get, for
all x ∈ E,

Ptϕ(x)− ϕ(x) =

∫ t

0
PsLwϕ(x) ds =

(∫ t

0
PsLw ϕ ds

)
(x),(5.7)

where the last integral is the Riemann integral in
(
Cκ(E), τM

κ

)
of s 7→ PsLwϕ, which is a

continuous curve in (Cκ(E), τM
κ ), since Lwϕ ∈ Cκ(E). It follows that

τM
κ − lim

t↓0

Ptϕ− ϕ
t

= Lwϕ,

which shows that ϕ ∈ D(L) and concludes the proof that L = Lw.
Assume that (5.5) and (5.6) hold. Then, one immediately sees that (5.4) is satisfied for every
measure ν ∈ Mκ(E), hence ϕ ∈ D(Lw) = D(L) with f = Lϕ by the first part of the proof.
Conversely, assume that ϕ ∈ D(L). Then, (5.6) with f = Lϕ is obvious and, by Proposition
A.4, (5.5) holds. �
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Remark 5.6. It is very easy to check that in the linear case our C0-semigroups on (Cκ(E), τM
κ )

are special cases of the bi-continuous semigroups introduced in [43]. We also refer to [12],
[27], [41] and [45] for further developments, and furthermore to [31], where only a sequential
C0-property is required. In particular, according to the main result in [43] there is a Hille-
Yosida-type Theorem for characterizing their infinitesimal generators defined in Definition
5.1. Likewise we have a characterization for the latter through a Hille-Phillips-type Theorem
by the very nice recent paper [13] (see Theorems 3.6 and 3.15 therein).

Next we want to discuss examples of infinitesimal generators for C0-semigroups on
(Cκ(E), τM

κ ), which are given by transition semigroups of solutions to S(P)DEs, and the
relation to the Kolmogorov operators associated to the latter. In each case we shall proceed
in two steps. First, we shall prove that the respective infinitesimal generator is an extension of
the Kolmogorov operator associated to the latter. Second, we shall prove “strong uniqueness”
or at least “Markov uniqueness” for the respective Kolmogorov operator, which thus uniquely
determines the infinitesimal generator of the corresponding C0-semigroup on (Cκ, τ

M
κ ). We

start with the following definitions.

Definition 5.7. Let Pt, t ≥ 0, be a C0-semigroup on
(
Cκ(E), τM

κ

)
with infinitesimal genera-

tor (L, D(L)) and let (L0, D(L0)) be a densely defined (i.e., D(L0) is dense in
(
Cκ(E), τM

κ

)
)

linear operator on Cκ(E) such that L0 ⊂ L (i.e., D(L0) ⊂ D(L) and L0ϕ = Lϕ for all
ϕ ∈ D(L0)).

(i) The operator (L0, D(L0)) is called a core operator for (L, D(L)) if the closure of its
graph Γ(L0) = {(ϕ, L0ϕ) ∈ Cκ(E)× Cκ(E) | ϕ ∈ D(L0)} in(
Cκ(E), τM

κ

)
×
(
Cκ(E), τM

κ

)
coincides with the graph Γ(L).

(ii) Suppose that κ is bounded and that (Pt)t≥0 is Markov, i.e. Cκ(E) 3 ϕ ≥ 0 ⇒ Ptϕ ≥
0, t ≥ 0; and Pt1 = 1, t ≥ 0. The operator (L0, D(L0)) is called a Markov core
operator for (L, D(L)) if (L, D(L)) is the only operator with L0 ⊂ L, which is the
infinitesimal generator of a Markov C0-semigroup on

(
Cκ(E), τM

κ

)
.

Remark 5.8. Suppose (L0, D(L0)) is a core operator for (L, D(L)). Then (L, D(L)) is the
unique operator with L0 ⊂ L, which is the infinitesimal generator of a C0-semigroup on(
Cκ(E), τM

κ

)
. Indeed, if (L̃, D(L̃)) is another such operator, it follows that L ⊂ L̃, hence

1− L ⊂ 1− L̃. But by Proposition 5.2 (e)

Cκ(E) = (1− L̃)(D(L̃)) ⊃ (1− L)(D(L)) = Cκ(E),

hence D(L̃) = D(L), because 1 − L̃ is injective (e.g., again by Proposition 5.2 (e)). So,

(L̃, D(L̃)) = (L, D(L)) and as a consequence, if κ is bounded and (Pt)t≥0 is Markov, then
(L0, D(L0)) is also a Markov core operator for (L, D(L)).

Theorem 5.9. Let κ be bounded and (Pt)t≥0 be a Markov C0-semigroup on
(
Cκ(E), τM

κ

)
with

infinitesimal generator (L, D(L)) and let (L0, D(L0)) be a densely defined linear operator on
Cκ(E) such that L0 ⊂ L. Suppose that, for every x ∈ E, the Fokker-Planck-Kolmogorov
equation ∫

ϕ(y) νt(dy) =

∫
ϕ(y) δx(dy) +

∫ t

0

∫
L0 ϕ(y) νs(dy) ds, t ≥ 0, ϕ ∈ D(L0),(5.8)
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(see [9]) has a unique solution (νt)t≥0 ∈ C([0,∞), M+
κ (E)), such that νt(E) = 1 for all

t ∈ [0,∞) and such that ∫ T

0

∫
E

1

κ
dνt dt <∞, T > 0.(5.9)

Then (L0, D(L0)) is a Markov core operator for (L, D(L)), on (Cκ(E), τM
κ ).

Proof. Let (L̃, D(L̃)) be the infinitesimal generator of a Markov C0-semigroup (P̃t)t≥0 on(
Cκ(E), τM

κ

)
such that L0 ⊂ L̃. Let µ̃t(x, ·), x ∈ E, t ≥ 0, be its representing measures from

Theorem 3.3. Clearly, (µ̃t(x, ·))t≥0 ∈ C([0,∞), M+
κ (E)), µ̃t(x,E) = 1 for all t ∈ [0,∞) and

(5.9) holds with µ̃t(x, ·) replacing νt for all x ∈ E and by Theorem 5.5 (more precisely, (5.7))
it solves (5.8). Hence the assertion follows. �

Now let us start with an example on a finite-dimensional state space. In fact, the corre-
sponding SDE on Rd and the assumptions on the coefficients are the standard ones. So, in
this “generic case” our theory of C0-semigroups on

(
Cκ(E), τM

κ

)
applies and thus identifies

the corresponding Kolmogorov operator L0 with domain D(L0) = C2
b (Rd) as a Markov core

operator for the infinitesimal generator of the C0-semigroup on
(
Cκ(E), τM

κ

)
given by the

transition semigroup of the solutions to the SDE. To the best of our knowledge in this gener-
ality this is the first result confirming that the Kolmogorov operator determines the (truly)
infinitesimal generator of the said transition semigroup of the Markov process given by the
SDE’s solution. This appears to have been an open problem for many years.

5.2. Applications to SDEs on Rd.
Let E := Rd and (Ω,F ,P) be a complete probability space with normal filtration Ft, t ≥ 0,
and (Wt)t≥0 be a (standard) (Ft)-Wiener process on Rd1 . Let M(d × d1, R) denote the set
of real d× d1-matrices equipped with the Hilbert-Schmidt norm ‖ · ‖ and let

σ : Rd →M(d× d1, R),

b : Rd → Rd,

be continuous maps satisfying the following standard assumptions. There existK ∈ L1
loc([0,∞))

and C ∈ [0,∞) such that for all R ≥ 0,

2〈x− y, b(x)− b(y)〉H + ‖σ(x)− σ(y)‖2 ≤ K(R)|x− y|2, x, y ∈ Rd, |x|, |y| ≤ R,(5.10)

and

2〈x, b(x)〉H + ‖σ(x)‖2 ≤ C(1 + |x|2), for all x ∈ Rd.(5.11)

Here 〈 , 〉 denotes the Euclideam inner product on Rd and | · | the corresponding norm. Then
it is well-known (see e.g. [49, Section 3] and the references therein) that the SDE

dX(t) = b(X(t))dt+ σ(X(t))dW (t), X(0) = x ∈ Rd,(5.12)

has a unique strong solution X(t, x), t ≥ 0, such that for p ≥ 2 there exists CT,p ∈ [0,∞)
such that

E[ sup
t∈[0,T ]

|X(t, x)|p] ≤ CT,p(1 + |x|p),(5.13)
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where E denotes expectation w.r.t.P. Indeed, (5.13) is a direct consequence of (5.11) and
Itô’s formula. Let

κ(x) := (1 + |x|m)−1(5.14)

and for ϕ ∈ Cκ(Rd), t ≥ 0, x ∈ Rd,

Ptϕ(x) := EP[ϕ(X(t, x))] =

∫
ϕ(y)µt(x, dy),(5.15)

where

µt(x, dy) :=
(
P ◦X(t, x)−1

)
(dy) ∈Mκ(Rd)

(cf. (4.4)). By [49, Proposition 3.2.1] exactly the same arguments, which prove Claim 2 in
Section 4.1, imply that (Pt)t≥0 is a Markov C0-semigroup on

(
Cκ(Rd), τM

κ

)
. Let (L, D(L))

be its infinitesimal generator and let us consider the Kolmogorov operator (L0, D(L0)) cor-
responding to (5.12), defined as

L0ϕ(x) :=
1

2

d∑
i,j=1

(
σ(x)σ(x)T

)
i,j

∂

∂xi

∂

∂xj
ϕ(x) + 〈b(x),∇ϕ(x)〉H , x ∈ Rd,(5.16)

ϕ ∈ D(L0) := C2
b (Rd).

By Theorem A.8 below C2
b (Rd) is dense in

(
Cκ(Rd), τM

κ

)
. To show that

L0 ⊂ L,(5.17)

we need one more condition on b and σ, namely we additionally assume

sup
x∈Rd

|b(x)|+ ‖σ(x)‖
1 + |x|m

<∞.(5.18)

Now let us first show that (5.17). So, let ϕ ∈ C2
b (Rd). Then by Itô’s formula and (5.15) we

have for all x ∈ Rd

Ptϕ(x) = E[ϕ(X(t, x))](5.19)

= ϕ(x) +

∫ t

0
E[L0ϕ(X(s, x))] ds

= ϕ(x) +

∫ t

0

∫ d

R
L0ϕ(y)µs(x, dy) ds.

Here we note that by (5.18) for some c0 ∈ (0,∞)

|L0ϕ(x)| ≤ c0(1 + |x|m)‖ϕ‖C2
b
∀x ∈ Rd.(5.20)

So, since µs(x, dy), x ∈ Rd, s ∈ [0,∞), satisfy (3) in Theorem 3.3 by (5.13), the above use of
Fubini’s Theorem is justified and L0ϕ ∈ Cκ(Rd). (5.19) implies that for all x ∈ Rd

1

t
(Ptϕ(x)− ϕ(x)) =

1

t

∫ t

0
Ps(L0ϕ)(x) ds,(5.21)

So, by the fundamental theorem of calculus

lim
t→0

1

t
(Ptϕ(x)− ϕ(x)) = L0ϕ(x).(5.22)
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Since by (5.13), for p = m, we have

sup
t∈[0,T ]

Pt
1

κ
≤ 2CT,p

1

κ
,

(5.20) and (5.21) imply

sup
0≤t≤1

1

t
‖Ptϕ− ϕ‖κ <∞ ,(5.23)

and thus Theorem 5.5 implies (5.17).

We would like to stress at this point that at least if κ = 1, the proof of (5.17) is completely
standard (as it is also in Section 5.4 below), as far as the part (5.22) is concerned, while part
(5.23) is to be taken care of case by case.

To show that (L0, D(L0)) is a Markov core operator for (L,D(L)), we furthermore assume
that

For every K ⊂ Rd compact there exists cK ∈ (0,∞)(5.24)

such that for all ξ = (ξ1, . . . , ξd) ∈ Rd

d∑
i,j=1

(
σ(x)σ(x)T

)
i,j
ξiξj ≥ cK |ξ|2, x ∈ Rd.

Each
(
σσT

)
i,j

is locally in VMO(Rd).(5.25)

We recall that a B(Rd)-measurable function g : Rd → R belongs to the class VMO(Rd), if it
is bounded and for

O(g,R) := sup
x∈Rd

sup
r≤R
|Br(x)|−2

∫∫
y,z∈Br(x)

|g(y)− g(z)| dydz, R ∈ (0,∞),

we have

lim
R→0

O(g,R) = 0,

where Br(x) denotes the ball in Rd of radius r, centered at x ∈ Rd, and |Br(x)| its Lebesgue
measure. g belongs locally to the class VMO(Rd) if ζg ∈ VMO(Rd) for every ζ ∈ C∞0 (Rd).

Under the assumptions (5.10), (5.11), (5.18), (5.24), (5.25) on the continuous maps b and
σ above, it now follows by Proposition 5.9 and Theorem 9.3.6 in [9] that the Kolmogorov
operator (L0, D(L0)) in (5.16) corresponding to SDE (5.12) is a Markov core operator for
(L, D(L)). In this case one also says that Markov uniqueness holds for (L0, D(L0)) on(
Cκ(Rd), τM

κ

)
.

Now let us give an example on an infinitely dimensional state space, where we even have
that the Kolmogorov operator (L0, D(L0)) is a core-operator for (L, D(L)).
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5.3. Applications to generalized Mehler semigroups (or OU-processes with Levy
noise) on Hilbert spaces.
Let E be a separable Hilbert space with inner product 〈· , ·〉 and norm ‖ · ‖E and let us come
back to Section 4.3, i.e., (Pt)t≥0 is the semigroup defined in (4.17), which as shown there, is
a C0-semigroup on (Cb(E), τM

1 ), (so κ ≡ 1). In order to calculate its infinitesimal generator
(L,D(L)) explicitly on a core domain, we need some assumptions. Let λ : E → C satisfy the
following hypothesis:

(H1) λ is negative definite and Sazonov continuous with λ(0) = 0.

We refer e.g. to [34, Section 2] for the corresponding definitions. Then, as is well-known (cf.,
e.g., [55, Theorem VI. 4.10]), λ posesses a unique Levy-Khintchin representation of the form

λ(ξ) := −i〈ξ, a〉+
1

2
〈ξ,Rξ〉 −

∫
E

(
ei〈ξ,x〉 − 1− i〈ξ, x〉

1 + ‖x‖2E

)
M(dx),(5.26)

where a ∈ E,R : E → E a symmetric trace class operator and M a Levy measure on
(E,B(E)), i.e. M({0}) = 0 and

∫
E ‖x‖

2
E ∧ 1M(dx) < ∞. We note that each λ of the form

(5.26) is automatically Sazonov continuous on E. Obviously, then there exists D ∈ [0,∞)
such that

|λ(ξ)| ≤ D(1 + ‖ξ‖2E), ξ ∈ E, and λ(−ξ) = λ(ξ), ξ ∈ E,(5.27)

and the real part of λ is non-negative. Now we shall choose the measures in (4.17) in the
following way. By [34, Section 2.1] the functions

E 3 ξ 7→
∫ t

0
λ(T ∗s ξ) ds, t ≥ 0,

are also negative definite, zero for ξ = 0 and Sazonov continuous, where T ∗s denotes the
adjoint operator of Ts on E. Hence by the Minlos-Sazonov Theorem (see [68]) for each t ≥ 0
there exists a unique probability measure µt on (E,B(E)) with Fourier transform

µ̂t(ξ) := exp

(
−
∫ t

0
λ(T ∗s ξ) ds

)
, ξ ∈ E.(5.28)

(5.28) implies that

µ̂t+s(ξ) = µ̂s(ξ)µ̂t(T
∗
s ξ), ξ ∈ E′, t, s ≥ 0,

which in turn is equivalent to (4.16). Hence for such µt, Pt, t ≥ 0 defined as in (4.17), form
indeed a generalized Mehler semigroup, hence by Section 4.3 a Markov C0-semigroup on(
Cκ(E), τM

1

)
. Now we want to identify its generator (L,D(L)) on a convenient and large

enough domain which was suggested in [47]. Let us recall its definition. Let W0 be the set of
functions ϕ that have a representation of the form

ϕ(x) = f
(
〈ξ1, x〉, . . . , 〈ξm, x〉

)
, x ∈ E,(5.29)

for m ∈ N and f ∈ S(Rm,C) (i.e., the Schwartz space of complex-valued functions, ”rapidly
decreasing” at infinity as well as their derivatives). Obviously, W0 is closed under multiplica-
tion. With the notations above, let f0 : Rm → C denote the inverse Fourier transform of f ,
i.e. the function f0, such that for all y ∈ Rm

f(y) =

∫
Rm

ei〈y,v〉f0(v)dv,
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and let ν(dv) := f0(v)dv, where dv denotes Lebesgue measure on Rm. Let Πm : Rm → E be
defined by

Πm(v1, . . . , vm) := v1ξ1 + · · ·+ vmξm,

and let ν := (Πm)∗ν0, i.e., the image measure of ν0 under Πm. Then a simple computation
yields that ϕ = ν̂. Let W be the (R−)vector space, generated by the R-valued elements of
W0, i.e. those for which

f0(−v) = f0(v), v ∈ Rm.
Let us now recall one of the main results in [47], for which we need to assume the following
condition:

(H2) There exists an orthonormal basis {ξn|n ∈ N} of E, consisting of eigenvectors of the
adjoint operator A∗ of A on E.

From this it is easy to see that W is an algebra separating the points of E. Note also that
by definition of the Fréchet derivative ϕ′ of ϕ it follows that ϕ′(x) ∈ D(A∗) for all x ∈ E.

Theorem 5.10. [47, Theorem 1.1] For all real-valued ϕ = ν̂ ∈W0 and any x ∈ E define

L0ϕ(x) :=

∫
E′

(
i〈A∗ξ, x〉 − λ(ξ)

)
ei〈ξ,x〉ν(dξ) (Kolmogorov operator)(5.30)

and extend L0 by R−linearity to D(L0) := W . Suppose that (H1), (H2) hold. Then

(i) L0 maps D(L0) into Cb(E).

(ii) Ptϕ(x)− ϕ(x) =
∫ t

0 PsL0ϕ(x) ds for all ϕ ∈ D(L0), x ∈ E and t ≥ 0.

From this result if follows easily that for (L0, D(L0)) we have L0 ⊂ L. Indeed, by Theorem
5.10 and its consequence that s 7→ PsL0ϕ(x) is continuous on [0,∞) for all ϕ ∈ D(L0), x ∈ E,
we have that

d

dt �t=0
Ptϕ(x) = L0ϕ(x)

and for all t ∈ [0, 1]

1

t

∣∣Ptϕ(x)− ϕ(x)
∣∣ ≤ sup

0≤s≤1
‖PsL0ϕ‖1

(where we recall that κ ≡ 1). Hence Theorem 5.5 implies that D(L0) ⊂ D(L) and L0ϕ = Lϕ
for all ϕ ∈ D(L0), i.e.,

L0 ⊂ L.(5.31)

Now we shall prove that (L0, D(L0)) is a core operator for (L,D(L)). For this, according to
Proposition 5.3 it suffices to prove

Pt(D(L0)) ⊂ D(L0)
L
, t > 0.(5.32)

Remark 5.11. If λ, restricted to span{ξ1, · · · , ξn}, is infinitely often differentiable for all n ∈ N,
then by [47, Theorem 1.3(i)]

Pt(D(L0) ⊂ D(L0), t > 0.

Hence (5.32) holds. But this is in general not true for general λ as above.
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So, to prove (5.32) let us fix t > 0 and ϕ ∈ D(L0). Because Pt is linear, we may assume
that ϕ is of type (5.29) with f real-valued. It is easily seen that such a ϕ can be approximated
in the τM

κ -graph topology of L on D(L) by ϕn, n ∈ N, of type (5.29) with the corresponding
fn ∈ S(Rm,C) being Fourier transforms of fn,0 ∈ S(Rm,C) with compact supports. Hence we
may assume that ϕ is of the form (5.29) with compactly supported f0. Consider the following
approximation of λ (see (5.26)) for ε ∈ (0, 1)

λε(ξ) := −i〈ξ, a〉+
1

2
〈ξ,Rξ〉 −

∫
E

(
ei〈ξ,x〉 − 1− i〈ξ, x〉

1 + ‖x‖2E

)
Mε(dx),(5.33)

where

Mε(dx) := 1{ε ≤ ‖·‖E ≤ 1
ε
}M(dx).

Obviously, Mε is again a Lévy measure on (E,B(E)), and λε satisfies (H1). Let µ
(ε)
t , t ≥ 0,

be defined analogously to µt, t ≥ 0, through (5.28) with λε replacing λ, and P
(ε)
t , t ≥ 0,

correspondingly through (4.17) with µ
(ε)
t replacing µt. Let (L(ε), D(Lε)) be the infinitesimal

generator of the C0−semigroup (P
(ε)
t )t≥0 on (Cb(E), τM

1 ). Since by [47, Proposition 3.3], each
λε fulfills the condition of Remark 5.11, the latter implies

P
(ε)
t ϕ ∈ D(L0), ε ∈ (0, 1).(5.34)

Hence, if we can prove

P
(ε)
t ϕ

ε→0−−−→ Ptϕ,(5.35)

in the τM
1 -graph topology of L on D(L), we obtain that Ptϕ ∈ D(L0)

L
and (5.32) is proved.

(5.35) follows from the following two claims, under the additional condition (5.36) in Claim
1, which is, however, is always fulfilled, if λ is real-valued (see Lemma 5.12 below).
Claim 1.
Assume that

{µ(ε)
t |ε ∈ (0, 1)}(5.36)

is tight.
Let g ∈ Cb(E). Then

τM
1 − lim

ε→0
P

(ε)
t g = Ptg.

Claim 2.

τM
1 − lim

ε→0
L0P

(ε)
t ϕ = LPtϕ.

Proof of Claim 1: By [47, Corollary 3.5] for ψ ∈ D(L0) we have

lim
ε→0
‖P (ε)

t ψ − Ptψ‖1 = 0.(5.37)

Let p1,(Cn),(an) be any of the seminorms generating τM
1 on Cb(E). Then there exists a semi-

norm p1,(Kn),(bn) and C ∈ (0,∞) such that

p1,(Cn),(an)(P
(ε)
t ψ) ≤ C p1,(Kn),(bn), (ψ)



32 BEN GOLDYS, MAX NENDEL, AND MICHAEL RÖCKNER

for all ψ ∈ D(L0) and all ε ∈ [0, 1), where we set P
(0)
t := Pt. The fact that the seminorm

p1,(Cn),(an) can indeed be taken independent of ε ∈ [0, 1) is due to assumption (5.36). This
can be seen as follows:
Consider the representing measures µ

(ε)
t (x, dy), x ∈ E, t ≥ 0, of P

(ε)
t , t ≥ 0, ε ∈ [0, 1), which

are given by (see (4.19))

µ
(ε)
t (x, dy) := (δTtx ∗ µ

(ε)
t )(dy).(5.38)

But by (5.36) for every δ > 0 there exists a compact Kδ ⊂ E such that

µ
(ε)
t (Kc

δ) < δ for all ε ∈ [0, 1).

Let C ⊂ E be compact. Define

K̃δ := Kδ + TtC.

Then K̃δ is a compact subset of E and

(Kδ + TtC − Ttx)c ⊂ Kc
δ x ∈ C.

Hence, since (Kδ + TtC)c − Ttx ⊂ (Kδ + TtC − Ttx)c, we have for all x ∈ C

(δTtx ∗ µ
(ε)
t )(K̃c

δ) = µ
(ε)
t ((Kδ + TtC)c − Ttx) ≤ µ(ε)

t (Kc
δ) < δ ε ∈ [0, 1).

Therefore, by (5.38), {µ(ε)
t (x, dy)|ε ∈ [0, 1), x ∈ C} is tight. Hence exactly the same arguments

as in the proof of ”(4)⇒ (iv)” in the proof of Theorem 3.3, applied to {µ(ε)
t |ε ∈ [0, 1), x ∈ C}

(with t fixed), and Remark 3.4 imply that p1,(Kn),(bn) can be taken independent of ε ∈ [0, 1).

Hence for all ψ ∈ D(L0)

p1,(Cn),(an)

(
Ptg − P (ε)

t g
)
≤ 2Cp1,(Kn),(bn)(g − ψ) + sup

n∈N
an‖P (ε)

t ψ − Ptψ‖1.(5.39)

Since D(L0) is dense in (Cb(E), τM
1 ) by Theorem (A.8) below, (5.37) and (5.39) imply Claim

1. �
Proof of Claim 2: By Proposition 5.2(c) and (5.31), (5.34) we have for all ε ∈ (0, 1)

LPtϕ− LP (ε)
t ϕ =

(
PtL0ϕ− P (ε)

t L0ϕ
)

+ P
(ε)
t

(
L0 − L(ε)

)
ϕ+

(
L(ε) − L0

)
P

(ε)
t ϕ.(5.40)

By Claim 1 we have that as ε→ 0 the first summand converges to zero in (Cb(E), τM
1 ). For

the second summand we have

‖P (ε)
t (L0 − L(ε))ϕ)‖1 ≤ ‖(L0 − L(ε))ϕ‖1.

Defining L
(ε)
0 with domain D(L0) as in (5.30) with λε replacing λ and applying (5.31) with

L,L0 replaced by L(ε), L
(ε)
0 respectively, we obtain that for every x ∈ E

L
(ε)
0 ⊂ L

(ε)(5.41)

and hence

(L0 − L(ε))ϕ(x) =

∫
E

(λε(ξ)− λ(ξ))ei〈ξ,x〉 ν(dξ)(5.42)

=

∫
Rm

(
λε
(
Πm(v)

)
− λ
(
Πm(v))

)
ei〈Πm(v),x〉f0(v)dv.
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By [47, Lemma 3.1], λε → λ uniformly on bounded subsets of E as ε → 0, so by (5.42) and
because f0 has compact support, we obtain

lim
ε→0
‖(L0 − L(ε))ϕ‖1 = 0,

so by (3.1) and Remark 3.2 (ii) the second summand in the r.h.s. of (5.40) also converges to
zero in (Cb(E), τM

1 ).
Now let us turn to the third summand. So, let x ∈ E, ε ∈ (0, 1). Then by an elementary
calculation (see [47, (1.2)])

P
(ε)
t ϕ(x) =

∫
E
ei〈x,T

∗
t ξ〉 µ̂

(ε)
t (ξ)ν(dξ) = ν̂

(ε)
t (x),

where νεt is the image measure of µ̂
(ε)
t (ξ)ν(dξ) under T ∗t : E → E. By (H2) we know that

A∗ξj = αjξj , j ∈ N, for some αj ∈ R. Hence by Euler’s formula for T ∗t = eA
∗t we have

T ∗t ξj = etαjξj , j ∈ N. Define the diagonal m×m-matrix Dt,m by (Dt,m)i,j = δi,je
tαj .

Then, obviously, T ∗t Πm(v) = Πm

(
Dt,m(v)

)
and hence, since ν ≡ (Πm)∗(f0dv),

P
(ε)
t ϕ(x) =

∫
Rm

exp
(
i〈x,Πm(v)〉

)
gε(v)dv,(5.43)

where for v ∈ Rm

gε(v) :=
( m∏
j=1

e−tαj
)
µ̂t

(ε)
(
Πm

(
D−1
t,m

)
(v)
)
f0

(
D−1
t,m(v)

)
.

We note that

|gε| ≤
m∏
j=1

e−tαj1supp(f0◦D−1
t,m) sup

v∈Rm
|f0(v)|(5.44)

and that gε ∈ S(Rm,C) with gε(−v) = gε(v), v ∈ Rm. Hence P
(ε)
t ϕ ∈ D(L0), and by (5.41)

analogously to (5.42) we obtain(
L(ε) − L0

)
P

(ε)
t ϕ(x) =

(
L

(ε)
0 − L0

)
P

(ε)
t ϕ(x)

=

∫
E

(
λ(ξ)− λε(ξ)

)
ei〈ξ,x〉ν

(ε)
t (dξ)

=

∫
Rm

(
λ(Πm(v))

)
− λε(Πm(v))ei〈Πm(v),x〉gε(v)dv.

Hence by [47, Lemma 3.1], (5.44) and because suppf0 is compact, we obtain

lim
ε→0
‖(L(ε) − L0)P

(ε)
t ϕ‖1 = 0,

and Claim 2 is proved. �

So, we have that (L0, D(L0)) is a core operator of the infinitesimal generator (L,D(L)) of our
generalized Mehler semigroup (Pt)t≥0 defined in (4.17), if (H1), (H2) and (5.36) hold.

We are not entirely sure whether (5.36) always holds, but it does, if λ is real-valued,
according to the following:

Lemma 5.12. Suppose λ : E → R. Then (5.36) holds.
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Proof. Let ξ ∈ E. Then by assumption, (5.26) and (5.33) for all ε ∈ [0, 1)

λε(ξ) =
1

2
〈ξ,Rξ〉+

∫
E

(1− cos〈ξ, x〉)Mε(dx)

and λε(ξ) is decreasing in ε. Then for all ε ∈ [0, 1) (recalling that P
(0)
t := Pt, µ

(0)
t := µt) we

have

µ̂
(ε)
t (ξ) ≥ µ̂t(ξ) ∀ξ ∈ E.(5.45)

Since µ̂t is Sazonov continuous, for δ > 0 there exists a nonnegative definite symmetric trace
class operator Sδ on E such that

1− µ̂t(ξ) ≤ 〈Sδξ, ξ〉+ δ ∀ξ ∈ E.

(see [55, Chap. VI, Theorem 2.3]). Hence by (5.45)

1− µ̂(ε)
t (ξ) ≤ 〈Sδξ, ξ〉+ δ ∀ξ ∈ E.

Hence the assertion follows again by [[55, Chap. VI, Theorem 2.3]. �

In the above example the Kolmogorov operator (see (5.30)) was a pseudo differential operator
on E with symbol λ only dependent on ξ (not on x), i.e., constant diffusion, and linear
drift. Therefore, finally we give an example on infinite dimensional state space E, but where
the Kolmogorov operator is a partial differential operator with non-constant second order
(=diffusion) coefficients and nonlinear first order (=drift) coefficients.

5.4. Applications to SDEs on Hilbert spaces of locally monotone type.
Consider the situation of Section 4.1 (so E := H := a separable Hilbert space H which is
the pivot space of a Gelfand-triple V ⊂ H ⊂ V ∗ as defined there). Let the coefficients A
and B be independent both of ω ∈ Ω and t ∈ [0, T ] and that U = H. Assume that B
satisfies (4.3) and we assume that A can be written as a sum of two operators C and F . More
precisely, let (C,D(C)) be a self-adjoint operator on H such that −C ≥ θ0 ∈ (0,∞). Define

V := D((−C)
1
2 ), equipped with the graph norm of (−C)

1
2 , and V ∗ to be its dual. Then it

is easy to see that C extends uniquely to a continuous linear operator from V to V ∗, again
denoted by C such that for all u, v ∈ V

V ∗〈−Cu, v〉V = 〈u, v〉H .(5.46)

Furthermore, let F : H → V ∗ be B(H)/B(V ∗)-measurable such that F restricted to V
satisfies (H1)-(H4) in Section 4.1 with B ≡ 0, f constant and A replaced by F for α = 2, β ∈
[0,∞), and θ = 0.
Define

A(u) := Cu+ F (u), u ∈ V.(5.47)

Then it is easy to check that A satisfies (H1)-(H4) in Section 4.1 with θ = θ0, and α = 2, β ∈
[0,∞) and f constant. So, by Theorem 4.2, (Pt)t≥0 defined in (4.4) is a Markov C0-semigroup

on
(
Cκ(H), τM

κ

)
with κ := (1 + ‖ · ‖mH)−1 , m ∈ [1,∞), due to Claim 2 in Section 4.1. Let

(L,D(L)) be its infinitesimal generator.
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Now fix an orthonormal basis {en | n ∈ N} of H consisting of elements in D(C) and de-
fine

D(L0) := {f
(
〈e1, ·〉, . . . , 〈eN , ·〉 | N ∈ N, f ∈ C2

b (RN )
)
}.(5.48)

Define the Kolmogorov operator associated to SDE (4.1) with B as above and A as in (5.47)
with domain D(L0) as follows:

Lϕ(x) :=
1

2

∞∑
i,j=1

〈B(x)ei, B(x)ej〉
∂

∂ei

(
∂ϕ

∂ej

)
(x)(5.49)

+

∞∑
i=1

(〈x,Cei〉+ V ∗〈F (x), ei〉V )
∂ϕ

∂ei
(x), x ∈ H, ϕ ∈ D(L0).

Here ∂
∂ei

denotes partial derivative in directions ei and we note that all sums in (5.49) are in

fact finite sums, since ϕ ∈ D(L0).
Now let us prove that

L0 ⊂ L.(5.50)

For this we need one more condition, i.e. we assume:

(5.51)

The eigenbasis of (C,D(C)) above can be chosen in such a way

that x 7→ V ∗〈F (x), ei〉V is continuous on H and

sup
x∈H

|V ∗〈F (x), ei〉V |
1 + |x|mH

<∞ for some m ∈ [1,∞) and all i ∈ N.

Remark 5.13.
(i) A typical example for F : H → V ∗ above is a demicontinuous function (i.e., x 7→
V ∗〈F (x), u〉V is continuous on H for all u ∈ V ) with F (0) ∈ H, which is one sided Lips-
chitz and of at most polynomial growth.

(ii) A typical example for (C,D(C)) is the Laplace operator on an open bound domain O ⊂ Rd
with Dirichlet boundary conditions considered on L2(O).

Under condition (5.51) a straightforward application of Itô’s formula for Itô-processes in
RN , N ∈ N, yields for all ϕ ∈ D(L0) and for the solution X(t, x), t ≥ 0, x ∈ E, to (4.1) with
A and B as above:

Ptϕ(x) = E
[
ϕ(X(t, x))

]
(5.52)

= ϕ(x) +

∫ t

0
E
[
L0 ϕ(X(s, x))

]
ds(5.53)

= ϕ(x) +

∫ t

0

∫
H
L0 ϕ(y) µs(x, dy) ds,(5.54)

where

µs(x, dy) := (P ◦X(s, x)−1)(dy) ∈Mκ(Rd).

Now exactly the same arguments as in Section 5.2 prove that (5.50) holds.
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To prove that (L0, D(L0)) is a Markov core operator for (L,D(L)) on (Cκ(H), τM
κ ) we shall

again use Proposition 5.9, i.e. we have to prove uniqueness for the corresponding Fokker-
Planck-Kolmogorov equation, which is in general very difficult here, since our state space
H is infinite dimensional, and more assumptions are needed. Though there are such results
also when B depends on x (see [7]), for simplicity we shall assume that B is constant. More
preasely, we additionally assume that:

B(x) = B(∈ L2(H)(5.55)

for all x ∈ V with B = B∗, B non-negative definite with kerB = {0}, and that for the
eigenvalues αk ∈ (0,∞), k ∈ N, of B. There exists m ∈ [1,∞) such that

sup
x∈H

(1 + |x|m)−1
∞∑
k=1

α−1
k |V ∗〈F (x), ek〉V |2 <∞.(5.56)

Of course, we may assume that both (5.51) and (5.56) hold with the same m (otherwise we
take the maximum of the two). Then taking this m and κ := (1 + ‖ · ‖mH)−1, it follows by
[7, Remark 2.1 (iii) and Theorem 2.3] and by (5.50) that all assumtions in Theorem 5.9 are
fulfilled. Hence (L0, D(L0)) is a Markov core operator for (L,D(L)) on

(
Cκ(H), τM

κ

)
.

6. Convex C0-semigroups on (Cκ(E), τM
κ )

We now draw our attention to C0-semigroups on (Cκ(E), τM
κ ) consisting of convex increas-

ing operators on Cκ(E). We show that these lead to viscosity solutions to abstract differential
equations that are given in terms of their generator. We start by introducing our notion of a
viscosity solution for abstract differential equations of the form

(6.1) u′(t) = Lu(t), for all t > 0.

In the following, an operator T : Cκ(E)→ Cκ(E) is called increasing if

Tϕ1 ≤ Tϕ2 for all ϕ1, ϕ2 ∈ Cκ(E) with ϕ1 ≤ ϕ2.

We say that an operator T : Cκ(E)→ Cκ(E) is convex if

T
(
λϕ1 + (1− λ)ϕ2

)
≤ λTϕ1 + (1− λ)Tϕ2

for all λ ∈ [0, 1] and ϕ1, ϕ2 ∈ Cκ(E).

Definition 6.1. Let L : D → Cκ(E) be a nonlinear operator, defined on a nonempty set D ⊂
Cκ(E). We say that u : [0,∞)→ Cκ(E) is a D-viscosity subsolution to the abstract differential
equation (6.1) if u is continuous w.r.t. the mixed topology τM

κ and, for every t > 0, x ∈ M ,
and every differentiable function ψ : (0,∞) → Cκ(E) with ψ(t) ∈ D,

(
ψ(t)

)
(x) =

(
u(t)

)
(x),

and ψ(s) ≥ u(s) for all s > 0, (
ψ′(t)

)
(x) ≤

(
Lψ(t)

)
(x).

Analogously, u is called a D-viscosity supersolution to (6.1) if u : [0,∞)→ Cκ(E) is continu-
ous and, for every t > 0, x ∈ M , and every differentiable function ψ : (0,∞) → Cκ(E) with
ψ(t) ∈ D,

(
ψ(t)

)
(x) =

(
u(t)

)
(x), and ψ(s) ≤ u(s) for all s > 0,(

ψ′(t)
)
(x) ≥

(
Lψ(t)

)
(x).

We say that u is a D-viscosity solution to (6.1) if u is a viscosity subsolution and a viscosity
supersolution.
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Note that the previous definition does, a priori, not require the class of test functions
for a viscosity solution to be rich in any sense. Therefore, in order to obtain uniqueness in
standard settings, one has to verify on a case by case basis that the operator L is defined
on a sufficiently large set D in order to apply standard comparison methods. Concerning the
existence of D-viscosity solutions, we have the following theorem.

Theorem 6.2. Let P be a C0-semigroup on (Cκ, τ
M
κ ) consisting of convex increasing opera-

tors with generator L. Then, for every ϕ ∈ Cκ(E), the function u : [0,∞)→ Cκ(E), t 7→ Ptϕ
is a D(L)-viscosity solution to the abstract initial value problem

u′(t) = Lu(t), for all t > 0,

u(0) = ϕ.

Proof. Fix t > 0 and x ∈ E. We first show that u is a viscosity subsolution. To that end, let
ψ : (0,∞)→ Cκ(E) be a differentiable function with with ψ(t) ∈ D(L),

(
ψ(t)

)
(x) =

(
u(t)

)
(x)

and ψ(s) ≥ u(s) for all s > 0. For λ ∈ (0, 1), let ψλ := ψ
λ . Then, for h ∈ (0, 1) with h < t, the

semigroup property implies that

0 =
PhPt−hϕ− Ptϕ

h
=
Phu(t− h)− u(t)

h
≤ Phψ(t− h)− u(t)

h

≤ Phψ(t− h)− Phψ(t)

h
+
Phψ(t)− ψ(t)

h
+
ψ(t)− u(t)

h

≤
(
Ph

(
ψ(t) + ψ(t−h)−ψ(t)

h

)
− Phψ(t)

)
+
Phψ(t)− ψ(t)

h
+
ψ(t)− u(t)

h
,

where, in the last inequality, we used the convexity of the map v 7→ Ph
(
ψ(t) + v

)
− Phψ(t).

The strong continuity of the semigroup P and ψ(t) ∈ D(L) imply that

Ph

(
ψ(t) + ψ(t−h)−ψ(t)

h

)
− Phψ(t)→ −ψ′(t) and

Phψ(t)− ψ(t)

h
→ Lψ(t)

as h ↓ 0 in the mixed topology τM
κ . Using the equality

(
u(t)

)
(x) =

(
ψ(t)

)
(x), it follows that

0 ≤ −
(
ψ′(t)

)
(x) +

(
Lψ(t)

)
(x).

In order to show that u is a viscosity supersolution, let ψ : (0,∞) → Cκ(E) differentiable
with ψ(t) ∈ D(L),

(
ψ(t)

)
(x) =

(
u(t)

)
(x) and ψ(s) ≤ u(s) for all s > 0. Again, using the

semigroup property, we find that, for all h ∈ (0, 1) with h < t,

0 =
Ptϕ− PhPt−hϕ

h
=
u(t)− Phu(t− h)

h
≤ u(t)− Phψ(t− h)

h

=
u(t)− ψ(t)

h
+
ψ(t)− Phψ(t)

h
+
Phψ(t)− Phψ(t− h)

h

≤ u(t)− ψ(t)

h
+
ψ(t)− Phψ(t)

h
+

(
Ph

(
ψ(t− h) + ψ(t)−ψ(t−h)

h

)
− Phψ(t− h)

)
,

where, in the last step, we used the convexity of the map v 7→ Ph
(
ψ(t−h) + v

)
−Phψ(t−h).

Again, the strong continuity of the semigroup P and ψt ∈ D(L) imply that

ψ(t)− Phψ(t)

h
→ −Lψ(t) and Ph

(
ψ(t− h) + ψ(t)−ψ(t−h)

h

)
− Phψ(t− h)→ ψ′(t)

as h ↓ 0 in the mixed topology τM
κ . Since

(
u(t)

)
(x) =

(
ψ(t)

)
(x), we find that

0 ≤ −
(
Lψ(t)

)
(x) +

(
ψ′(t)

)
(x),
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and the proof is complete. �

Finally, we derive a stochastic representation for P using convex expectations. For a
measurable space (Ω,F), we denote the space of all bounded F-measurable functions (random
variables) Ω→ R by Bb(Ω,F). For two bounded random variables X,Y ∈ Bb(Ω,F) we write
X ≤ Y if X(ω) ≤ Y (ω) for all ω ∈ Ω. For a constant m ∈ R, we do not distinguish between
m and the constant function taking that value.

Definition 6.3. Let (Ω,F) be a measurable space. A functional E : Bb(Ω,F)→ R is called a
convex expectation if, for all X,Y ∈ Bb(Ω,F) and λ ∈ [0, 1],

(i) E(X) ≤ E(Y ) if X ≤ Y ,
(ii) E(m) = m for all constants m ∈ R,
(iii) E

(
λX + (1− λ)Y

)
≤ λE(X) + (1− λ)E(Y ).

We say that (Ω,F , E) is a convex expectation space if there exists a set of probability measures
P on (Ω,F) and a function α : P → [0,∞) such that

E(X) = sup
P∈P

EP(X)− α(P) for all X ∈ Bb(Ω,F),

where EP(·) denotes the expectation w.r.t. to the probability measure P.

The following theorem is a consequence of [19, Theorem 5.6] and the fact that the τM
κ -

continuity of Pt implies the so-called continuity from above or Daniell continuity of Pt, for
t ≥ 0.

Theorem 6.4. Assume that E is a Polish space, κ ≡ 1, and P is a C0-semigroup of increasing
convex operators with Ptm = m for all t ≥ 0 and m ∈ R. Then, there exists a quadruple
(Ω,F , (Ex)x∈E , (X(t))t≥0) such that

(i) X(t) : Ω→ E is F-B-measurable for all t ≥ 0,
(ii) (Ω,F , Ex) is a convex expectation space with Ex(ϕ(X(0))) = ϕ(x) for all x ∈ E and

ϕ ∈ Cb(E),
(iii) For all 0 ≤ s < t, n ∈ N, 0 ≤ t1 < . . . < tn ≤ s and ψ ∈ Cb(En+1),

(6.2) Ex
(
ψ(X(t1), . . . , X(tn), X(t))

)
= Ex

((
Pt−sψ(X(t1), . . . , X(tn), · )

)
(X(s))

)
.

In particular,

(6.3)
(
Ptϕ

)
(x) = Ex(ϕ(X(t))).

for all t ≥ 0, x ∈ E, and ϕ ∈ Cb(E).

Let E be a Polish space. The quadruple (Ω,F , (Ex)x∈E , (X(t))t≥0) can be seen as a nonlin-
ear version of a Markov process. As an illustration, we consider the case, where the semigroup
P and thus Ex is linear for all x ∈ E, and choose ψ(x, y) = ϕ(x)1B(y), for x, y ∈ E, with
ϕ ∈ Cb(E) and B ∈ Bn, where Bn denotes the product σ-algebra of the Borel σ-algebra B.
Then, Ex = EPx is the expectation w.r.t. a probability measure Px on (Ω,F) for all x ∈ E.
Using the continuity from above and Dynkin’s lemma, Equation (6.2) reads as

EPx
(
ϕ(X(t))1B(X(t1), . . . , X(tn))

)
= EPx

[(
Pt−sϕ

)
(X(s))1B(X(t1), . . . , X(tn))

]
,

which is equivalent to the Markov property

(6.4) EPx
(
ϕ(X(t))|Fs

)
=
(
Pt−su

)(
X(s)

)
Px-a.s.,

where Fs := σ
(
{X(u) | 0 ≤ u ≤ s}

)
. On the other hand, if Ex = EPx , the Markov property

(6.4) implies Property (iii) from Theorem 6.4.
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7. Examples: value functions of optimal control problems

7.1. A finite-dimensional setting. In this section, we show that value functions of a large
class of optimal control problems are examples of nonlinear C0-semigroups. We illustrate this
by means of a simple controlled dynamics in Rd, with d ∈ N where the contol acts on the
drift of a diffusion process. However, with similar techniques also other classes of controlled
diffusions fall into our setup. Throughout, let W = (W (t))t≥0 be a Brownian Motion on
a complete filtered probability space

(
Ω,F , (Ft)t≥0,P

)
satisfying the usual assumptions and

σ > 0. For m ∈ N, we consider a fixed nonempty set A ⊂ Rm of controls with 0 ∈ A and
define the the set of admissible controls A as the set of all progressively measurable processes
α : Ω× [0, T ]→ A with

E
(∫ t

0
|α(s)|ds

)
<∞.

For a fixed measurable function b : Ω × Rd × A → Rd, an admissible control α ∈ A, and an
initial value x ∈ Rd, we consider the controlled dynamics

(7.1) dXα(t, x) = b
(
Xα(t, x), α(t)

)
dt+ σdW (t), for t ≥ 0, Xα(0, x) = x.

We assume that the drift term b satisfies the following Lipschitz and growth conditions: there
exists a constant C ≥ 0 such that

b(x, 0) = 0, P-a.s., for all x ∈ Rd,

|b(x1, a)− b(x2, a)| ≤ C|x− y|, P-a.s., for all x1, x2 ∈ Rd and a ∈ A,

|b(x, a)| ≤ C
(
1 + |x|+ |a|

)
, P-a.s., for all x ∈ Rd and a ∈ A.

Under these assumptions, by standard SDE theory, for each initial value x ∈ Rd and every
admissible control α ∈ A, there exists a unique strong solution (Xα(t, x))t≥0 to the controlled
SDE (7.1).

We consider the weight function κ ≡ 1 and a running cost function g : A → [0,∞) with
g(0) = 0 and

g∗(y) := sup
a∈A

(
|a|y − g(a)

)
<∞

for all y ≥ 0. For ϕ ∈ Cb(Rd), we consider the value function

V (t, x;ϕ) := sup
α∈A

E
(
ϕ
(
Xα(t, x)

)
−
∫ t

0
g
(
α(s)

)
ds

)
,

and we define
(
Ptϕ

)
(x) := V (t, x;ϕ) for all t ≥ 0 and x ∈ Rd. We first show that Pt : Cb(Rd)→

Cb(Rd) is well-defined with ‖Ptϕ‖∞ ≤ ‖ϕ‖∞ for all ϕ ∈ Cb(Rd). Using the Lipschitz condition
of b together with Gronwall’s lemma, we obtain the a priori estimate

E
(∣∣Xα(t, x1)−Xα(t, x2)

∣∣) ≤ eCt|x1 − x2|

for all t ≥ 0, x1, x2 ∈ Rd, and α ∈ A. This shows that the value function V is continuous in
the x-variable. Moreover, ‖V (t, · , ϕ)‖∞ ≤ ‖ϕ‖∞ for all ϕ ∈ Cb(Rd),since g(0) = 0. Since the
value function V satisfies the dynamic programming principle, cf. Pham [58] or Fabbri et al.
[29], the family P = (Pt)t≥0 is a semigroup.

Using the linear growth of b together with Gronwall’s lemma,

(7.2) E
(∣∣Xα(t, x)− x

∣∣)+ |x| ≤ eCt
(
|x|+ σ

√
t+ Ct+

∫ t

0
C|α(s)|ds

)
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for all t ≥ 0, x ∈ Rd, and α ∈ A. Let ε > 0, ϕ ∈ Cb(Rd), and t ≥ 0. Then, for every r ≥ 0,
there exists some δ > 0 such that

|ϕ(y)− ϕ(x)| < ε

2
for all x, y ∈ Rd with |x| ≤ r and |x− y| < δ.

Hence, for all x ∈ Rd with |x| ≤ r, Equation 7.2 implies that

V (t, x;ϕ)− ϕ(x) ≤ ε

2
+ 2‖ϕ‖∞E

(
1{|Xα(t,x)−x|>δ}

)
− E

(∫ t

0
g
(
α(s)

)
ds

)
≤ ε

2
+

2‖ϕ‖∞
δ

E
(
|Xα(t, x)− x|

)
− E

(∫ t

0
g
(
α(s)

)
ds

)
≤ ε

2
+ (eCt − 1)|x|+ eCt(Ct+ σ

√
t) + tg∗

(
2‖ϕ‖∞
δ CeCt

)
.

On the other hand, for all x ∈ Rd with |x| ≤ r,

ϕ(x)− V (t, x;ϕ) ≤ ε

2
+ 2‖ϕ‖∞E(1{|σW (t)|>δ}) ≤

ε

2
+

2‖ϕ‖∞
δ

σ
√
t.

We thus see, that Ptϕ→ ϕ uniformly on compact sets.
Now, let R ≥ 0, ε > 0, and ϕ1, ϕ2 ∈ Cb(Rd) with ‖ϕi‖∞ ≤ R, for i = 1, 2, and

sup
|y|≤r
|ϕ1(y)− ϕ2(y)| < ε

3
for sufficiently large r > 0.

We observe that, for ϕ ∈ Cb(Rd) with ‖ϕ‖∞ ≤ R, t ≥ 0, x ∈ Rd, and α ∈ A with

(7.3) V (t, x;ϕ) ≤ ε

3
+ E

(
ϕ
(
Xα(t, x)

)
−
∫ t

0
g
(
α(s)

)
ds

)
,

it follows that

(7.4) E
(∫ t

0
|α(s)|ds

)
≤ tg∗(1) + E

(∫ t

0
g
(
α(s)

))
≤ ε

3
+ tg∗(1) + 2R

Let T, c ≥ 0. Then, for t ∈ [0, T ], x ∈ Rd with |x| ≤ c, and α ∈ A satisfying Equation (7.3)
for ϕ = ϕ1.

V (t, x;ϕ1)− V (t, x;ϕ2) ≤ 2ε

3
+ 2RE

(
1{|Xα(t,x)|>r}

)
≤ 2ε

3
+

2R

r
E
(∣∣Xα(t, x)

∣∣)
≤ 2ε

3
+

2R

r
eCT

(ε
3

+ 2R+ c+ σ
√
T + T

(
C + g∗(1)

))
,

where, in the last step, we used Equation (7.2) and Equation (7.4). Choosing r > 0 sufficiently
large, a symmetry argument yields that

sup
|x|≤c

∣∣V (t, x;ϕ1)− V (t, x;ϕ2)
∣∣ < ε for all t ∈ [0, T ].

With similar arguments together with Itô’s formula, one finds that the generator L of P on
C2
b (E) is given by

(Lϕ)(x) =
σ2

2
∂xxϕ(x) + sup

a∈A

(
b(x, a)∂xϕ(x)− g(a)

)
.
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By Theorem 6.2, we thus obtain that (t, x) 7→ V (t, x;ϕ) =
(
Ptϕ

)
(x) is a C2

b (Rd)-viscosity
solution to the HJB equation

∂tv(t, x) =
σ2

2
∂xxϕ(x) + sup

a∈A

(
b(x, a)∂xϕ(x)− g(a)

)
, v(0, x) = ϕ(x).

7.2. An infinite-dimensional example with linear growth. In this section, we consider
a similar setup as in the previous subsection in a separable Hilbert space H with orthonormal
base (ek)k∈N ⊂ H, endowed with the bw-topology. Throughout, let W = (W (t))t≥0 be a
Brownian Motion with trace class covariance operator Σ: H → H on a complete filtered
probability space

(
Ω,F , (Ft)t∈[0,T ],P

)
satisfying the usual assumptions. For p ∈ (1, 2], we

define the the set of admissible controls A as the set of all progressively measurable processes
α : Ω× [0, T ]→ U with

E
(∫ t

0
|αs|pHds

)
<∞.

For every admissible control α ∈ A and every initial value x ∈ H, we consider the controlled
dynamics

(7.5) Xα(t, x) = x+

∫ t

0
α(s)ds+W (t) for all t ≥ 0.

We consider the weight function κ(x) := (1 + |x|H)−1, for x ∈ H, and a running cost function
g : H → [0,∞) with g(0) = 0 and

g∗p(y) := sup
a∈H

(
|a|pHy − g(a)

)
<∞

for all y ≥ 0. This implies that, for all q ∈ [1, p] and y ∈≥ 0,

g∗q(y) := sup
a∈H

(
|a|qHy − g(a)

)
<∞.

For ϕ ∈ Cκ(Hbw), we consider the value function

V (t, x;ϕ) := sup
α∈A

E
(
ϕ
(
Xα(t, x)

)
−
∫ t

0
g
(
α(s)

)
ds

)
,

and we define
(
Ptϕ

)
(x) := V (t, x;ϕ) for all t ≥ 0 and x ∈ H. We first show that Pt : Cκ(Hbw)→

Cκ(Hbw) is well-defined. Let ϕ ∈ Cb(Hbw) such that,there exists a constant L ≥ 0 and some
n ∈ N with

(7.6) |ϕ(x)− ϕ(y)| ≤ L
n∑
i=1

|〈x− y, ei〉| for all x, y ∈ H.

Then, for all t ≥ 0 and x, y ∈ H

|V (t, x;ϕ)− V (t, y;ϕ)| ≤ L
n∑
i=1

|〈x− y, ei〉|.

Moreover, for all q ∈ [1, p],

E
(∣∣Xx,α

t

∣∣p
H

)1/q ≤ |x|H + ‖Σ‖tr
√
t+ E

(∫ t

0
|α(s)|qHds

)1/q
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for all t ≥ 0, x ∈ H, and α ∈ A. Using this estimate, we find that, for t ≥ 0, x ∈ H, and
ϕ ∈ Cκ(Hbw),

V (t, x;ϕ) ≤ ‖ϕ‖κ
(

1 + E
(∣∣Xα(t, x)

∣∣
H

))
− E

(∫ t

0
g
(
α(s)

)
ds

)
≤ ‖ϕ‖κ

(
1 + |x|H + ‖Σ‖tr

√
t
)

+ tg∗1
(
‖ϕ‖κ

)
.

Moreover, for all t ≥ 0, x ∈ H, and ϕ ∈ Cκ(Hbw),

V (t, x;ϕ) ≥ −‖ϕ‖κ
(
1 + |x|H + ‖Σ‖tr

√
t
)
,

which shows that

‖Ptϕ‖κ ≤
(
‖ϕ‖κ + g∗

(
‖ϕ‖κ

))(
1 + t+ ‖Σ‖tr

√
t
)
.

Now, let R ≥ 0, ε > 0, and ϕ1, ϕ2 ∈ Cκ(Hbw) with ‖ϕi‖κ ≤ R, for i = 1, 2, and

sup
|y|H≤r

|ϕ1(y)− ϕ2(y)| < ε

3
for sufficiently large r ≥ 1.

We observe that, for ϕ ∈ Cκ(Hbw) with ‖ϕ‖κ ≤ R, t ≥ 0, x ∈ Rd, and α ∈ A with

(7.7) V (t, x;ϕ) ≤ ε

3
+ E

(
ϕ
(
Xα(t, x)

)
−
∫ t

0
g
(
α(s)

)
ds

)
,

it follows that

E
(∫ t

0
g
(
α(s)

))
≤ ε

3
+ 4R

((
1 + |x|H + 2‖Σ‖tr

√
t
)p

+ E
(∫ t

0
|α(s)|pds

))
,

which implies that

(7.8) E
(∫ t

0
|α(s)|pds

)
≤ ε

3
+ 4R

(
1 + |x|H + ‖Σ‖tr

√
t
)p

+ tg∗p(1 + 4R)

Let T, c ≥ 0. Then, for t ∈ [0, T ], x ∈ H with |x|H ≤ c, and α ∈ A satisfying Equation (7.7)
for ϕ = ϕ1.

V (t, x;ϕ1)− V (t, x;ϕ2) ≤ 2ε

3
+ 2RE

((
1 + |Xα(t, x)|

)
1{|Xα(t,x)|>r}

)
≤ 2ε

3
+

4R

rp−1
E
(∣∣Xα(t, x)

∣∣p)
≤ 2ε

3
+

16(1 +R)

rp−1

(ε
3

+
(
1 + c+ ‖Σ‖tr

√
T
)p

+ Tg∗(1 + 4R)
)
,

where, in the last step, we used Equation (7.8). Choosing r > 0 sufficiently large, a symmetry
argument yields that

sup
|x|H≤c

∣∣V (t, x;ϕ1)− V (t, x;ϕ2)
∣∣ < ε for all t ∈ [0, T ].

Since the value function V satisfies the dynamic programming principle, cf. Fabbri et al. [29],
the family P = (Pt)t≥0 is a semigroup.

Let ε > 0, ϕ ∈ Cb(Hbw) with (7.6) with L ≥ 0 and n ∈ N, and t ≥ 0. Then, for all x ∈ H,

V (t, x;ϕ)− ϕ(x) ≤ L‖Σ‖tr
√
t+ E

(∫ t

0
L|α(s)| − g

(
α(s)ds

))
≤ L‖Σ‖tr

√
t+ tg∗(L)→ 0 as t→ 0.



OPERATOR SEMIGROUPS IN MIXED TOPOLOGIES 43

Moreover, for all x ∈ H,

ϕ(x)− V (t, x;ϕ) ≤ L‖Σ‖tr
√
t.

In particular, since the bounded finitely based Lipschitz functions are dense in Cκ(Hbw), it
follows that Ptϕ→ ϕ uniformly on compacts for all ϕ ∈ Cκ(Hbw).

By Itô’s formula and Theorem 6.2, we obtain that (t, x) 7→ V (t, x;ϕ) =
(
Ptϕ

)
(x) is a

C2
b (Hbw)-viscosity solution to the HJB equation

∂tv(t, x) =
σ2

2
∂xxϕ(x) + sup

a∈A

(〈
a, ∂xϕ(x)

〉
− g(a)

)
, v(0, x) = ϕ(x).

Appendix A. Some facts on the mixed topology

In this section we collect some general properties of the mixed topology that was introduced
in Section 2 in a special case suitable for our purposes.

We recall the definition of the mixed topology τM . We closely follow [72], where a more
general situation is studied.
Let X be a linear space, endowed with two topologies τ1 and τ2, with corresponding bases
U (τ1) and U (τ2) of neighbourhoods of zero. We assume that

(
X, τ1

)
and

(
X, τ2

)
are Haus-

dorff topological vector spaces with τ1 ⊂ τ2. For a sequence γ =
(
U1
n

)
⊂ U (τ1), and any

U2 ∈ U (τ2), we define a set

U
(
γ, U2

)
=
∞⋃
n=1

n∑
k=1

(
U1
k ∩ kU2

)
.

Then, the family {
U
(
γ, U2

)
: γ =

(
U1
n

)
⊂ U

(
τ1
)
, U2 ∈ U

(
τ2
)}

defines a basis of neighbourhoods of zero for a locally convex topology denoted τM =
τM

(
τ1, τ2

)
making (X, τM ) a Hausdorff topological vector space. The topology τM is known

as the mixed topology In the present paper, we use this definition only in the case, where
X = Cκ(E) with E a completely regular topological Hausdorff space, τ1 = τC

κ and τ2 = τU
κ ,

cf. Section 2 for the notations. We list some basic properties of the mixed topology in this
case.

Lemma A.1. ([72], Theorem 3.1.1) The mixed topology τM
κ := τ

(
τC
κ , τ

U
κ

)
is identical with

the topology τM
κ defined in Section 2 via the family of seminorms pκ,(Cn),(an).

Proof. For κ ≡ 1, this lemma has been proved in [72]. The case of arbitrary κ is an easy
modification of the proof in [72]. �

Let us recall that a subset of a locally convex space is bounded if it is absorbed by every
neighbourhood of zero.

Proposition A.2.

(a) ([72, Section 2.2]) The topology τM
κ is the strongest locally convex topology on Cκ(E)

that coincides with τC
κ on bounded sets of τU

κ .
(b) ([72, Corollary on p. 56]) A set B ⊂ Cκ(E) is bounded in the topology τM

κ if and only
if it is bounded in the topology τU

κ .
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(c) ([72, Corollary 2.2.4]) The topology τM
κ can be defined as the weakest topology τ on

Cκ(E) such that for every locally convex space F and every linear operator T : Cκ(E)→
F , T is τ -continuous if and only if T is τC

κ -continuous on τU
κ -bounded sets.

Another equivalent definition of the mixed topology τM
κ is given by the following construc-

tion. Let W0(E) denote the family of weights consisting of all bounded functions w : E →
[0,∞) such that, for every ε > 0, the set {x ∈ E : κ(x)w(x) ≥ ε} is compact. For every weight
w ∈ W0(E) we define the seminorm

pκ,w(ϕ) = sup
x∈E
|w(x)κ(x)ϕ(x)| for all ϕ ∈ Cκ(E).

Proposition A.3. ([71, Theorem 10.6]) The locally convex topology on Cκ(E) defined by the
family of seminorms {pκ,w : w ∈ W0(E)} is identical with the topology τM

κ .

The following result is a special case of Theorem 10.6 in [72]. Since in our case the proof is
simple, we include it fot the reader’s convenience.

Proposition A.4. A sequence (ϕn) ⊂ Cκ(E) is τM
κ -convergent to ϕ ∈ Cκ(E) if and only if

sup
n≥1
‖ϕn‖κ <∞ and lim

n→∞
ϕn = ϕ in the topology τC

κ .

Proof. We note that if

τM
κ − lim

n→∞
ϕn = 0 ,(A.1)

and supn ‖ϕ‖κ = ∞, then there exist xn ∈ E, n ∈ N, such that κ(xn)ϕn(xn) ≥ n. Choosing
Cn := {xn}, an = 1

n , we have pκ,(Cn),(an)(ϕn) ≥ 1 for all n ∈ N, contradicting (A.1). Hence
the assertion follows from Lemma A.1 and Proposition A.2 (a). �

Lemma A.5. For each weight κ, the mapping

Iκ : Cb(E)→ Cκ(E), Iκϕ = κ−1ϕ,

is a linear homeomorphism of
(
Cb(E), τ

(i)
1

)
onto

(
Cκ(E), τ

(i)
κ

)
for all three topologies τU

1 , τC
1 , τ

M
1

and τU
κ , τ

C
κ , τ

M
κ , respectively.

Proof. The proof is obvious for τC
κ and τU

κ . By Proposition A.2(c), it is enough to check
continuity of Iκ and I−1

κ on balls of Cb(E) and Cκ(E) respectively. But this follows from
Proposition A.2(a). �

Theorem A.6. ([65, Theorem 7.1]) If Hypothesis 2.1 holds, then the space
(
Cκ(E), τM

κ

)
is

complete.

Theorem A.7. A set B ⊂ Cκ(E) is relatively τM
κ -compact if and only if the following two

conditions hold:

(1)
sup
ϕ∈B
‖ϕ‖κ <∞ ,

(2) B is equicontinuous on every compact subset of E.

Proof. Assume that (1) and (2) hold. By (1) and Proposition A.2(a), it is enough to prove
that B is relatively τC

κ -compact but this follows immediately from (1), (2), and an appropriate
version of Ascoli’s theorem, see, e.g., [26, Theorem 8.2.11]. The converse statement is obvious.

�
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Theorem A.8. ([33, Theorem 11]) Suppose that A ⊂ Cκ(E) is an algebra that separates
the points of E, and that, for each x ∈ E, there exists a ∈ A with a(x) 6= 0. Then A is
τM
κ -dense in Cκ(E).

Proof. For κ = 1, the theorem was proved in [33]. For general κ, it follows from Lemma
A.5. �

Theorem A.9. The space Mκ(E) is the topological dual space of
(
Cκ(E), τM

κ

)
. Moreover, if

M ⊂Mκ(E) such that the set of measures
{
κ−1µ; µ ∈M

}
is tight and bounded in variation

norm, then M considered as a set of functions on Cκ(E) is τM
κ -equicontinuous.

Proof. If κ = 1 then by [46] (see also [33]) the dual space of
(
C1(E), τM

1

)
is identified as the

space of Baire measures of finite variation on E for any completely regular space E. In this
paper Borel and Baire σ-algebras on E coincide, hence the first claim follows. For the proof
of the second part of the assertion see [16, p. 136, Proposition 3.6] . For arbitrary κ the proof
follows from Lemma A.5. �

Remark A.10. We note that if, in addition, to Hypothesis 2.1 we assume that our underlying
space E is Radon, i.e. every finite measure on (E,B(E)) is tight, which is the case in all
examples in this paper, then the first assertion of Theorem A.9 is a trivial consequence of
the Daniell-Stone Theorem (see e.g. [21]). Indeed, again by Lemma A.5 we may assume that

κ = 1. Obviously, each µ ∈ Mb(E) is in the topological dual
(
Cb(E), τM

1

)′
of
(
Cb(E), τM

1

)
.

To prove the converse we first note that it is well-known that every element ` of the latter can

be written as a difference ` = `+ − `−, with `+, `− ∈
(
Cb(E), τM

1

)′
and both are nonnegative

on nonnegative elements in Cb(E) (see e.g. [44]). Hence we may assume that ` itself has this
property. Since Cb(E) is a Stone vector lattice, which by assumption (2) in Hypothesis 2.1
generates B(E), we only have to show the Daniell continuity, because then ` is represented
by a unique finite nonnegative measure µ, which, since E is a Radon space, is in Mb(E). But
if ϕn ∈ Cb(E), ϕn ≥ 0, n ∈ N, such that ϕn ↓ 0 pointwise on E, then by Proposition A.4 and
Dini’s Theorem, we conclude that

τM
1 − lim

n→∞
fn = 0 ,

hence lim
n→∞

`(fn) = 0, and Daniell continuity holds.

Theorem A.11. ([33, Corollary on p. 119]) Let M ⊂ Mκ(E) such that κ−1M is tight and
bounded in variation norm. Then, M is narrowly relatively compact in Mκ(E).

Appendix B. Continuous operators for the mixed topology

The aim of this section is to characterise norm-bounded linear operators T : Cκ(E) →
Cκ(E) that are τM

κ -continuous, i.e., continuous in the topology τM
κ .

Proposition B.1. ([16, p. 8, Corollary 1.7]) Let F be a locally convex space, and let T be
an arbitrary family of linear mappings T : Cκ(E) → F . The family T is τM

κ -equicontinuous
if and only if the family

T |B :=
{
T |B : T ∈ T

}
is τC

κ -equicontinuous for every norm-bounded set B ⊂ Cκ(E).

Proof. The result follows immediately from Lemma A.1 and [16, Corollary 1.7]. �
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Theorem B.2. Let T : Cκ(E) → Cκ(E) be a norm-bounded linear operator. Then, the
following conditions are equivalent.

(i) T is τM
κ -continuous.

(ii) There exists a family {µ(x, · ) : x ∈ E} ⊂Mκ(E) such that
(a) for every ϕ ∈ Cκ(E),

Tϕ(x) =

∫
E
ϕ(y)µ(x, dy),

(b) the mapping E 3 x 7→ µ(x,B) is measurable for every Borel set B ⊂ E,
(c)

(B.1) sup
x∈E

(
κ(x)

∫
E

|µ|(x, dy)

κ(y)

)
<∞,

and for every ε > 0 and every compact set K1 ⊂ E, there exists another compact
K2 ⊂ E such that

(B.2) sup
x∈K1

(
κ(x)

∫
E\K2

|µ|(x, dy)

κ(y)

)
< ε

Proof. We first prove the theorem for the case κ ≡ 1.
(i) ⇒ (ii): Assume (i). We start by showing (a). By Proposition B.1, for every x ∈ E, the
functional lx(ϕ) = Tϕ(x) is continuous in the topology τM

1 . Therefore, by Theorem A.9, there
exists a measure µ(x, · ) ∈M1(E) such that

lx(ϕ) = Tϕ(x) =

∫
E
ϕ(y)µ(x, dy),

which proves (a).
In order to prove (b), let U ⊂ E be open. Let R∞ denote the Polish space of infinite sequences
of real numbers. Since the Baire σ-algebra Ba(E) is identical with the Borel σ-algebra B(E),
by [5, Lemma 6.3.3], there exists an open set V ⊂ R∞ and a continuous function f : E → R∞
such that U = f−1(V ). Without loss of generality, we may assume that the measures µ(x, · )
are non-negative. Since R∞ is a Polish space, there exists a sequence (ϕn) ⊂ Cb (R∞) such
that 0 ≤ ϕn ≤ 1 and limn→∞ ϕn(z) = IV (z). By the dominated convergence theorem,

µ(x, U) =

∫
R∞

IU (y)µ(x, dy) =

∫
R∞

IV (f(y))µ(x, dy)

= lim
n→∞

∫
f−1(V )

ϕn(f(y))µ(x, dy)

= lim
n→∞

T (ϕn ◦ f) (x) for all x ∈ E.

Hence, the function x → µ(x, U) is Borel measurable as a pointwise limit of continuous
functions. Finally, the measurability of the function µ( · , B) for any Borel set B ⊂ E follows
from Dynkin’s lemma.
Next, we prove (c). Invoking the lattice properties of Cb(E) and Mb(E), we have

sup
0≤ϕ≤1

|lx(ϕ)| = |µ|(x , · ).
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Therefore,

sup
x∈E

∫
E
|µ|(x, dy) = sup

0≤ϕ≤1
sup
x∈E
|Tϕ(x)|,

which shows that (B.1) holds.
Let K1 ⊂ E be compact. Since T is τM

1 -continuous, for every ε > 0 there exists a τM
1 -

neighbourhood of zero such that, for ϕ ∈ U , we have pK1(Tϕ) < ε. For x ∈ E, we have
Tϕ(x) = lx(ϕ) and

pK1(Tϕ) = sup
x∈K1

|lx(ϕ)| .

Therefore, the family {µ(x, · ) : x ∈ K1} is equicontinuous on U . Now, (B.2) follows from [65,
Theorem 5.1].
(ii) ⇒ (i): If (ii) holds, then

sup
x∈E
|Tϕ(x)| <∞.

By Proposition A.2, the operator T is τM
1 -continuous if and only if it is τC

1 -continuous on
every ball Br = {ϕ ∈ Cb(E) : ‖ϕ‖∞ ≤ r} with r ≥ 0. For ε > 0 and a compact C ⊂ E, let
U := {ϕ ∈ Br : pC(ϕ) < ε}. Let the compact K ⊂ E be chosen in such a way that

sup
x∈C
|µ| (x,E \K) <

ε

2
(1 + r)−1.

Then,

sup
x∈K

(∫
E
|ϕ(y)| |µ|(x, dy)

)
≤
∫
K
|ϕ(y)| |µ|(x, dy) +

ε

2
.

Let

U1 =

{
ϕ ∈ Br : sup

y∈K
|ϕ(y)| < ε

2M

}
,

where M := 1 + supx∈E |µ|(x,E). Then, for every ϕ ∈ U1,

sup
x∈K

∫
E
|ϕ(y)||µ|(x, dy) <

ε

2M
M +

1

2
ε = ε.

This shows that Tϕ ∈ U , for every ϕ ∈ U1, and concludes the proof for κ ≡ 1.
For general κ, observe that, if (ii) holds, then

I−1
κ TIκϕ(x) = κ(x)

∫
E
ϕ(y)

µ(x, dy)

κ(y)

is τM
1 -τM

1 -continuous on Cb(E) by the first part of the proof. Hence, by Lemma A.5, T is
τM
κ -τM

κ -continuous on Cκ(E). The converse implication follows by a similar argument. �

Corollary B.3. Assume that a linear operator T : Cκ(E) → Cκ(E) is τM
κ -τM

κ -continuous.
Then T is positive if and only its representing measures µ(x, · ) are a non-negative for every
x ∈ E.

It follows from Theorem B.2 that every norm-bounded τM
κ -τM

κ -continuous linear operator
on Cκ(E) can be extended to a linear operator from κ−1Bb(E) to κ−1Bb(E), where Bb(E)
refers to the space of all bounded Borel measurable functions.
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(1994) edition.

[64] H. H. Schaefer. Topological vector spaces. The Macmillan Co., New York; Collier-Macmillan Ltd., London,
1966.

[65] F. D. Sentilles. Bounded continuous functions on a completely regular space. Trans. Amer. Math. Soc.,
168:311–336, 1972.

[66] M. Sharpe. General theory of Markov processes, volume 133 of Pure and Applied Mathematics. Academic
Press, Inc., Boston, MA, 1988.

[67] D. W. Stroock. An introduction to Markov processes, volume 230 of Graduate Texts in Mathematics.
Springer, Heidelberg, second edition, 2014.

[68] N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan. Probability distributions on Banach spaces,
volume 14 of Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht,
1987. Translated from the Russian and with a preface by Wojbor A. Woyczynski.

[69] J. A. van Casteren. Markov processes, Feller semigroups and evolution equations, volume 12 of Series on
Concrete and Applicable Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.

[70] J. M. A. M. van Neerven and J. Zabczyk. Norm discontinuity of Ornstein-Uhlenbeck semigroups.
Semigroup Forum, 59(3):389–403, 1999.

[71] R. F. Wheeler. A survey of Baire measures and strict topologies. Exposition. Math., 1(2):97–190, 1983.
[72] A. Wiweger. Linear spaces with mixed topology. Studia Math., 20:47–68, 1961.
[73] K. Yosida. Functional analysis. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the

sixth (1980) edition.

School of Mathematics and Statistics, The University of Sydney, Sydney 2006, Australia
Email address: beniamin.goldys@sydney.edu.au

Center for Mathematical Economics, Bielefeld University, 33615 Bielefeld, Germany
Email address: max.nendel@uni-bielefeld.de

Faculty of Mathematics, Bielefeld University, 33615 Bielefeld, Germany
and Academy of Mathematics and Systems Science, CAS, Beijing, China
Email address: roeckner@math.uni-bielefeld.de


	1. Introduction
	2. Basic definitions and setup
	3. Strongly continuous semigroups on spaces of continuous functions with mixed topology
	4. Examples for linear C0-semigroups on (C(E),M)
	4.1. Transition semigroups of solutions to SDEs on Hilbert spaces of locally monotone type
	4.2. Transition semigroups of mild solutions to SDEs on Hilbert spaces with bounded weak topology
	4.3. Generalized Mehler semigroups on Banach spaces with norm topology
	4.4. Generalized Mehler semigroups on Banach spaces with bounded weak topology

	5. Strong and Weak infinitesimal generators
	5.1. Definitions and (Markov) core operators
	5.2. Applications to SDEs on Rd
	5.3. Applications to generalized Mehler semigroups (or OU-processes with Levy noise) on Hilbert spaces
	5.4. Applications to SDEs on Hilbert spaces of locally monotone type

	6. Convex C0-semigroups on (C(E), M)
	7. Examples: value functions of optimal control problems
	7.1. A finite-dimensional setting
	7.2. An infinite-dimensional example with linear growth

	Appendix A. Some facts on the mixed topology
	Appendix B. Continuous operators for the mixed topology
	References

