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Abstract. We show that the orientable double covering space of
an indecomposable, non-orientable PD3-complex has torsion free
fundamental group.

Let X be an indecomposable PD3-complex, with fundamental group
π and orientation character w. In [6] we showed that if w 6= 1 and π is
virtually free then X is homotopy equivalent to S2×̃S1 or RP 2 × S1,
and so π ∼= Z or Z ⊕ Z/2Z. In particular, Ker(w) is torsion free. We
shall show that this remains true if w 6= 1 and π is not virtually free.
This result is surely well-known for 3-manifolds. We give a short proof
for this case in §1, which uses the “projective plane theorem” of [3]
and a result from [6]. (The fact that RP 2 does not bound provides a
further restriction here which is not yet known in general.) Our main
result is Theorem 4 in §2. By passing to Sylow subgroups of the torsion
in π, we may reduce potential counter-examples to special cases, which
are eliminated by Lemma 3. (This lemma occupies almost half of the
paper.) The arguments are similar to those of [6].

In the first two sentences of the Introduction to [6] we cited Crisp [1]
inaccurately, overlooking the qualification “orientable” in his result on
indecomposable orientable PD3-complexes. Although the discussion
of non-orientable PD3-complexes in §7 of [6] begins by referring to
the virtually free case, it would have been better to have reiterated
this restriction in the formulation of Theorem 7.4 and its corollary.
The final section gives some emendations to [6]. I would like to thank
B.Hanke for alerting me to the necessity of considering the present case.

It is convenient to use the following notation and terminology. Let
X+ be the orientable covering space, with fundamental group π+ =
Ker(w). If H ≤ π then H+ = H ∩ π+, and H is orientable if H = H+.
Let Z/2Z− denote a subgroup of order two on which w 6= 1. A graph
of groups (G,Γ) is admissible if it is reduced, all vertex groups are finite
or one-ended groups and all edge groups are nontrivial finite groups.
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1. 3-manifolds

The result is relatively easy (and no doubt well-known) in the case
of irreducible 3-manifolds, as we may use the Sphere Theorem, as
strengthened by Epstein [3].

Theorem 1. Let M be an indecomposable, non-orientable 3-manifold
with fundamental group π. If π has infinitely many ends then π ∼=
π+ o Z/2Z− and π+ is torsion free, but not free.

Proof. Let P be a maximal set of pairwise non-parallel 2-sided projec-
tive planes in M , and let P+ be the corresponding set of non-parallel
2-spheres in M+. These sets are nonempty, since M is indecomposable
and π has infinitely many ends. In particular, π ∼= π+ o Z/2Z−, since
the inclusion of a member of P splits w = w1(M) : π → Z/2Z. The
components of M+\P+ each double cover a component of M \P . Each
such component is indecomposable [3].

Suppose that M \ P has a component Y with virtually free funda-
mental group. Then the double DY is indecomposable (cf. Lemma
2.4 of [6]), non-orientable and π1(DY ) is virtually free. Moreover,
π1(DY ) ∼= Z ⊕ Z/2Z−, since the inclusion of a boundary compo-
nent of Y splits w. (See Theorems 7.1 and 7.4 of [6].) But then
DY ∼= RP 2 × S1, and so Y ∼= RP 2 × [0, 1]. This is contrary to the
hypothesis that the members of P are non-parallel. Thus the compo-
nents of M \ P are punctured aspherical 3-manifolds.

Let Γ be the graph with vertex set π0(M \ P) and edge set P , with
an edge joining contiguous components. Then π+ ∼= G ∗ F (s), where
G is a free product of PD3-groups (corresponding to the fundamental
groups of the components of M \ P), and s = β1(Γ). Hence π+ is
torsion free. �

We remark also that each component Y of M \P has an even number
of boundary components, since χ(∂Y ) is even (for any odd-dimensional
manifold Y ), by Poincaré duality. Thus the vertices of the graph Γ have
even valence.

2. PD3-complexes

Suppose now that X is an indecomposable PD3-complex, with fun-
damental group π and orientation character w. Then π is finitely pre-
sentable, and so π ∼= πG, where (G,Γ) is an admissible graph of groups.

We wish to adapt the results from §7 of [6] to the cases when π has
infinitely many ends and w 6= 1.
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Lemma 2. Let X be an indecomposable, non-orientable PD3-complex
with π = π1(X) ∼= πG, where (G,Γ) is an admissible graph of groups.
If π = π1(X) has nontrivial torsion then π ∼= π+ o Z/2Z−. If π has
no odd torsion then all finite vertex groups are non-orientable 2-groups
and all edge groups are Z/2Z−.

Proof. If π is virtually free the assertions follow from Theorems 7.1 and
7.4 of [6]. Thus we may assume that (G,Γ) has at least one infinite
vertex group and at least one edge.

If e is an edge of Γ and w(g) = 1 for all g ∈ Ge of prime order then
Go(e) and Gt(e) are finite [1]. Thus if Go(e) or Gt(e) is infinite then Ge =
Z/2Z−, and the inclusion of Ge into π splits w, so π ∼= π+ o Z/2Z−.

If Go(e) and Gt(e) are finite 2-groups then Nπ(Ge) is infinite, since
(G,Γ) is reduced. Hence Ge = Z/2Z− again. Since Γ is connected it
follows easily that every finite vertex group is non-orientable and every
edge group is Z/2Z−. �

Lemma 3. Let X be an indecomposable PD3-complex with π = π1(X)
∼= κoV , where κ is orientable and torsion free and V is finite, of order
2p, for some prime p. Then X is orientable.

Proof. Suppose that X is not orientable. Then we may assume that
π ∼= πG, where (G,Γ) is an admissible graph of groups with r ≥ 1 finite
vertex groups and at least one edge. Let s = β1(Γ).

Let f : π → V be a projection with kernel κ. Since f maps each finite
vertex group injectively and (G,Γ) is reduced, it follows easily that all
finite vertex groups are isomorphic to V . The edge groups must be
Z/2Z−, and if p is odd and there is an edge e with Go(e) and Gt(e) both
finite then V cannot be cyclic, for otherwise the normalizer of Ge in π
would contain a non-abelian free group. However, vertices with finite
vertex group are not necessarily connected by edges through other such
vertices, and so we cannot yet conclude that V must be dihedral.

Since X+ is the connected sum of aspherical PD3-complexes with a
PD3-complex with virtually free fundamental group, π+ = G∗F (s)∗P ,
where G is a free product of PD3-groups and P is a free product of r
copies of Z/pZ. Since P = F (t)oZ/pZ (where t = (p−1)(r−1), by a
simple virtual Euler characteristic argument), κ ∼= G ∗ F (s) ∗ F (t). Let
a ∈ π be such that a2 = 1 and w(a) = −1, and let λ ∼= κo Z/2Z− be
the subgroup generated by κ and a. Then λ is also the group of a PD3-
complex, since it has finite index in π. The involution of π+ induced
by conjugation by a maps each noncyclic indecomposable factor to a
conjugate of an isomorphic factor [4]. However, its behaviour on the
free factor F (s) may be more complicated.
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The Fox-Lyndon Jacobian matrix associated to a presentation of a
group π is a presentation matrix for the augmentation Z[π]-module
Iπ. Its rows and columns are indexed by the generators and relators,
respectively, and the element in the (i, j) position is the free derivative
of the jth relator with respect to the ith generator. Thus the rows of
the Fox-Lyndon presentation matrices for Iπ and Iλ correspond to the
generators of G, F (s), P (or F (t)) and a, while the columns correspond
to the relators for G, the action of a on G, the action of a on F (s),
the relators for P (or none), the action of a on P (or on F (t)) and
the relation a2 = 1. Let w : Z[π] → R = Z[a]/(a2 − 1) be the linear
extension of the orientation character. We may factor out the action
of π+ by tensoring with R. The images of the Jacobian matrices are
then compatibly partitioned matrices of the form

Cπ =


M1 M2 M3 0 0 0
0 0 N3 0 0 0
0 0 Tπ U4 U5 0
0 0 0 0 0 a+ 1

 ,

for Iπ ⊗R, and

Cλ =


M1 M2 M3 0 0
0 0 N3 0 0
0 0 Tλ V 0
0 0 0 0 a+ 1

 ,

for Iλ⊗wR. The bottom right 2×3 and 2×2 blocks are the Fox-Lyndon
presentation matrices for Iπ/γ ⊗w R and Iλ/γ ⊗w R, respectively, where
γ is the normal subgroup of π generated by G ∪ F (s). Since these
modules may be obtained from Iπ ⊗w R and Iλ ⊗w R by factoring out
the generators corresponding to the generators of G and F (s) (or F (t)),
the blocks Tπ and Tλ must be linearly dependent on the blocks directly
to the right. Hence we may assume that Tπ = 0 and Tλ = 0.

Let H be the R-module with presentation matrix
(
M1 M2 M3
0 0 N3

)
, the

top left corner common to Cπ and Cλ. Then

Iπ ⊗w R = H ⊕ (Iπ/γ ⊗w R)

and

Iλ ⊗w R = H ⊕ (Iλ/γ ⊗w R).

The groups P and its normal subgroup F (t) have presentations

P = 〈bi, 1 ≤ i ≤ r | bpi = 1, ∀i〉
and

F (t) = 〈xi,j, 1 ≤ i ≤ r − 1, 1 ≤ j ≤ p− 1 | 〉,
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where xi,j has image bj1b
−j
i+1 in P , for 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ p− 1.

(If p = 2 we shall write xi instead of xi,1, for1 ≤ i ≤ r − 1.)
Suppose first that p is odd. If V is abelian then it has an unique

element of order 2. Since π/γ ∼= P o Z/2Z− and is the fundamental
group of a graph of groups with vertex groups V and edge groups
Z/2Z−, we see that π/γ ∼= P × Z/2Z−, and so λ/γ ∼= F (t)× Z/2Z−.
Hence

Iπ/γ ⊗w R ∼= (R/(p, a− 1))r ⊕ Z̃
and

Iλ/γ ⊗w R ∼= Zt ⊕ Z̃,

where Z = R/(a − 1) and Z̃ = R/(a + 1). The quotient ring R/pR =
Fp[a]/(a2 − 1) is semisimple, and so p-torsion R-modules have unique
factorizations as sums of simple modules. Since Iπ ⊗w R and Iλ ⊗w R
satisfy Turaev’s criterion (and projective R-modules are Z-torsion free),
the p-torsion submodule of Iπ ⊗w R has equally many summands of
types R/(p, a− 1) and R/(p, a + 1), and similarly for Iλ ⊗w R. Since
Iλ/γ⊗wR is p-torsion free, the number of summands of types R/(p, a−1)
and R/(p, a+1) in H must also be equal. On the other hand, Iπ/γ⊗wR
has r > 0 summands of type R/(p, a−1) and none of type R/(p, a+1).
These conditions are inconsistent, and so π is not the group of a non-
orientable PD3-complex.

Otherwise V has an unique conjugacy class of elements of order 2,
and π/γ ∼= P o Z/2Z− and λ/γ ∼= F (t) o Z/2Z− have presentations

〈a, bi, 1 ≤ i ≤ r | a2 = 1, bpi = 1, abia = b−1i ∀i〉,

and

〈a, xi,j, 1 ≤ i ≤ r − 1, 1 ≤ j ≤ p− 1 | a2 = 1, axija = xi,p−j ∀i, j〉,

respectively. (In particular, λ/γ ∼= F (t/2) ∗ Z/2Z−.) In this case

Iπ/γ ⊗ wR ∼= (R/(p, a+ 1))r ⊕ Z̃

and

Iλ/γ ⊗w R ∼= Rt/2 ⊕ Z̃.
Consideration of the p-torsion submodules again shows that Iπ ⊗w R
and Iλ ⊗w R cannot both satisfy Turaev’s criterion, and hence that π
is not the group of a non-orientable PD3-complex.

Suppose now that p = 2. The inclusions of the edge groups split
w, by Lemma 2. In this case V ∼= (Z/2Z)2 = Z/2Z ⊕ Z/2Z− and
has two orientation reversing elements. The quotient π/γ is the group
of a finite graph of groups with all vertex groups V and edge groups
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Z/2Z−. The underlying graph is a tree, since P is a free product of
cyclic groups. Hence π/γ has a presentation

〈a, bi, 1 ≤ i ≤ r | a2 = 1, b2i = (awi)
2 = (awibi)

2 = 1, ∀i〉,
where wi = 1 and wi ∈ F (t) for 2 ≤ i ≤ r. The free subgroup F (t) has
basis {xi|1 ≤ i ≤ r − 1}, where xi has image b1bi+1 in P , and λ/γ has
a presentation

〈a, xi, 1 ≤ i ≤ r − 1 | a2 = 1, axia = xibi+1wi+1bi+1w
−1
i+1, ∀i〉.

In this case
Iπ/γ ⊗ wR ∼= (R/(2, a− 1))r ⊕ Z̃

and
Iλ/γ ⊗w R ∼= Zr−1 ⊕ Z̃.

Since R/(2, a+ 1) = R/(2, a− 1), torsion considerations do not appear
to help. If r > 1 we may instead compare the quotients by the Z-torsion
submodules, as in Lemma 7.3 of [6], since finitely generated torsion free

R-modules are direct sums of copies of R, Z and Z̃, by Theorem 74.3
of [2]. We again conclude that π is not the group of a non-orientable
PD3-complex.

The case when p = 2 and r = 1 requires a little more work. Let
N be the R-module presented by the transposed conjugate of ( 2

a−1 ).
If {e, f} is the standard basis for R2 then N = R2/R(2e+ (a+ 1)f).
The Z-torsion submodule of N is generated by the image of (a − 1)e,
and has order 2, but is not a direct summand. The quotient of N by
its Z-torsion submodule is generated by the images of e and f − e, and

is a direct sum Z ⊕ Z̃. In particular, it has no free summand. It now

follows easily that H ⊕ Z̃ ⊕ R/(2, a− 1) is not stably isomorphic to

H⊕ Z̃⊕N . Therefore Iπ and Iλ cannot both satisfy Turaev’s criterion,
and so π is not the group of a non-orientable PD3-complex. �

We may now give our main result.

Theorem 4. Let X be an indecomposable, non-orientable PD3-complex
with fundamental group π. If π has infinitely many ends then π ∼=
π+ o Z/2Z− and π+ is torsion free, but not free.

Proof. The first assertion follows from Lemma 2, since π has infinitely
many ends. Since π+ ∼= G0 ∗G1, where G0 is virtually free and G1 is a
free product of PD3-groups, there is a map f : π → J to a finite group
J , with orientable, torsion free kernel κ.

Let π ∼= πG, where (G,Γ) is an admissible graph of groups. Suppose
that there is a finite vertex group. Then there is a non-orientable finite
vertex group, Gv say. Let S(p) be a p-Sylow subgroup of Gv. Then
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f−1f(S(2)) has finite index in π, and has a graph of groups structure
in which all finite vertex groups are 2-groups, and one vertex group
is S(2). If S(2) is non-orientable then there is a g ∈ S(2) such that
g2 = 1 and w(g) = −1, by Lemma 2.

Suppose now that S(p) 6= 1, for some odd prime p. Then S ≤ G+
v ,

and so is cyclic, sinceG+
v has periodic cohomology. The Sylow subgroup

is characteristic in G+
v , unless p = 3 or 5 and G+

v = T ∗ × Z/dZ or
I∗×Z/dZ. Thus S is normalized by g, and so Gv has a non-orientable
subgroup V of order 2p, except possibly when p = 3 or 5. Consideration
of the possible involutions of T ∗ and I∗ (as in Chapter 11 of [5]) shows
that the only possible exception is if p = 3 and Gv = I∗ × Z/dZ.
If we can show that no such vertex group has a subgroup of order
2p with p odd then the case p = 5 will exclude the possibility that
G+
v
∼= I∗ × Z/dZ also, since |I∗| = 23.3.5.

The subgroup f−1f(V ) has finite index in π, and is again the group
of a non-orientable PD3-complex. We now pass to an indecomposable
factor whose group has V as one of its finite vertex groups. This factor
is a non-orientable PD3-complex with fundamental group κo V . But
this contradicts Lemma 3.

If S(2)+ 6= 1 (i.e., if G+
v is a nontrivial 2-group) it has periodic

cohomology, and so has an unique central involution. Hence Gv has
a finite index subgroup V ∼= Z/2Z × Z/2Z−. As before, passage to
f−1f(V ) leads to a contradiction, by Lemma 3.

Therefore all vertex groups are one-ended, and so π+ is torsion free
but not free. �

We expect that if π = πG, where (G,Γ) is an admissible graph of
groups, then all vertices of Γ have even valence. In the manifold case
this follows from Poincaré duality. If v is a vertex of Γ then G+

v is a
PD3-group. Let Ev be the set of edges abutting on v. Is (Gv, {Ge : e ∈
Ev}) a PD3-group pair? Can Turaev’s splitting theorem be adapted
to this situation? It remains possible that every indecomposable, non-
orientable PD3-complex is homotopy equivalent to a 3-manifold.

We conclude by restating Corollary 7.5 of [6], which is an immediate
consequence of [1] and Theorem 4.

Corollary 5. Let X be a PD3-complex and g ∈ π = π1(X) a nontrivial
element of finite order. If Cπ(g) is infinite then g is an orientation-
reversing involution and Cπ(g) = 〈g〉 × Z. �

Are there any examples other than RP 2×S1 of indecomposable PD3-
complexes whose groups have an involution with infinite centralizer?
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3. emendations of earlier work

We take this opportunity to make some emendations to [6], in par-
ticular, to the results (in §7) relating to the non-orientable case.

In Theorem 3.1, DC∗ should be defined byDCq = HomZ[π](C3−q,Z[π]),
for all q.

In the proof of Theorem 5.2, the third sentence of the first paragraph
should be “If 4 divides |Ge| then Ge has a central involution, which is
also central in V = Go(e) and W = Gt(e), since these groups have
cohomological period 4. (See the remarks preceding Lemma 2.1.)”

In the third paragraph, d should be k, say, as it is NOT the d of
the statement, and the final sentence should be “Since the odd-order
subgroup of Ge is central in W its normalizer in V must be abelian.
Hence either k = 3 and V = B × Z/dZ with B = T ∗1 or I∗ and
(d, |B|) = 1 or k = 1, by Lemma 5.1.”

Minor improvements have been made to the next two statements.

Lemma (7.3). Let X be an indecomposable PD3-complex with π =
π1(X) ∼= F (r)oG, where G is finite. If π has an orientation reversing
element g of finite order then G has order 2m, for some odd m. Hence
π has an orientation reversing involution. �

In the first paragraph of the proof of Lemma 7.3 we may and should
also reduce to the case when G is abelian, of order a multiple of 4. (See
the penultimate paragraph of Theorem 4 above.) The rest of the proof
then goes through as written.

Theorem (7.4). Let X be an indecomposable, non-orientable PD3-
complex with π = π1(X) virtually free. If π has an orientation reversing
involution then X ' S1 ×RP 2. �

As the statement of Theorem 7.4 now assumes that π is virtually
free, the first sentence of the proof should be deleted. In the final
sentence of the second paragraph of the proof, the vertex groups must
all be D2p, by the normalizer condition and Crisp’s Theorem (and so
ε = −1, later in the proof). In the presentation, ai should be a (no
subscript). The argument otherwise needs no change.

Corollary 7.5 only follows from Theorem 7.4 if π is virtually free, but
holds in general by Corollary 5 above. (In fact, Crisp’s original result
already implies that Cπ(g) ∼= 〈g〉×Z or 〈g〉 ×D∞, since every element
of the maximal finite normal subgroup of a group with two ends has
infinite centralizer.)

Finally, some typos:
Statement of Theorem 5.2: “Z2Z” should be “Z/2Z”.
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Second paragraph of §6: b1 should be bn in the last relator of the
presentation.
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