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Abstract

We produce in an explicit form free generators of the affine W-algebra of type
A associated with a nilpotent matrix whose Jordan blocks are of the same size.
This includes the principal nilpotent case and we thus recover the quantum Miura
transformation of Fateev and Lukyanov.

1 Main results

Let g be a reductive Lie algebra over C equipped with a symmetric invariant bilinear form
k and let f be a nilpotent element of g. The corresponding affine W-algebra W*(g, f) is
defined by the generalized quantized Drinfeld-Sokolov reduction; see [5], [7] and [8].

In this note we take g = gly. The Jordan type of a nilpotent element f € gl is a
partition of N. We will work with the elements f corresponding to partitions of the form
(I™) so that the associated Young diagram is the n x [ rectangle with nl/ = N. Our main
result is an explicit construction of free generators of the W-algebra W*(g, f). Moreover,
we calculate the images of these generators with respect to the Miura transformation. In
particular, if f is the principal nilpotent (i.e., n = 1) we thus reproduce the description
of the W-algebra due to Fateev and Lukyanov [4]. The results can be regarded as ‘affine
analogues’ of the construction of the corresponding finite W-algebras originated in [2], [10]
and extended to arbitrary nilpotent elements f in [3].

To describe the results in more detail, identify g with the tensor product of gl; and g,
via the isomorphism gl; ® gl,, — g defined by

€ij X €pg > €(i—1)n+r, (j—1)n+s> (11)

where the e;; denote the standard basis elements of the corresponding general linear Lie
algebras. Set

-1
fi= Zez’Jrlz’ € gl
i=1



and
-1 n

F=H®L =Y eintji-nnsj €0

i=1 j=1

where [, € gl, is the identity matrix. The matrix f is a nilpotent element of g of Jordan

type ({"). Let
gl = @(g[l>P

PEZL

be the standard principal grading of gl;, obtained by defining the degree of ¢;; to be equal
to j —1. Set

alico = @(g[l>p and glico = @(g[l)p'

p<0 p<0

The isomorphism (1.1) then induces the Z-grading on g,

g= @gpa Op = (g[l)p ® g[n’

PEZ

which is a good grading for f in the sense of [7]. We also set

b=Pom=0l®0, ad m=Pg, =0l S0l (1.2)

p<0 p<0

For any k € C, we let k be any symmetric invariant bilinear form on g such that
k(z,y) = ktr(zy) for x,y €sly C gly. (1.3)
For elements x,y € b set
ky(z,y) = k(z,y) + %trg(adx ady) — %trElo po(ad x ady),

where py denotes the restriction of the operator to go. Then k; defines a symmetric
invariant bilinear form on b.
Ezrample 1.1. Let
k 1
k(z,y) = N trg(adzady) = k (tr(zy) — N tr(z) tr(y)), x,y € g.

Then for ¢ > ¢’ and j > j’ we have

K;b(ei@'/ & epq7 ejj’ & ers)

1 1
= 5”/(Sjjl ((k’ + TLZ) (5ij5p85qr - E(Spq(srs) — ’I’L(SZ ‘(5p55q7’ — ﬁ(qu(srs))

with N = nl, as before. O



Let b = b[t,t7] @ C1 be the Kac-Moody affinization of b with respect to the cocycle
Ky, and let V0 (b) be the universal affine vertex algebra associated with b and x, [6]:

Ver(b) = U(B) ®ueect) C,

where C is regarded as the one-dimensional representation of b[t] ® C1 on which b[t] acts
trivially and 1 acts as 1. Note that by the Poincaré-Birkhoff-Witt theorem, V**(b) is
isomorphic to U(b[t!]¢t!) as a vector space.

Due to [8, 9], the W-algebra W*(g, f) can be realized as a vertex subalgebra of V"> (b).
Our aim is to give explicit description of the generators of W*(g, f) inside V*»(b). We
will use the identification

ghcolt™ )t @ g, = B[]

defined by
€jil—m] ® €pq = €(j—1)ntp, (i-1)n+q[—M], m =1,

for 1 <i<j<land 1< p,qg<n, where we write x[r] = zt" for any r € Z.

By analogy with [3, Sec. 12], consider the tensor algebra T(gl, o[t™']t™") of the vector
space gl; o[t™']t" and let M, denote the matrix algebra with the basis formed by the
matrix units e;;, 1 <4, j < n. Define the algebra homomorphism

T :T(gl ot ) = M, @ UGB tY, 20 T(a Z ei; @ Tis(

i,7=1

by setting
Tij(x) =z @eji € gl ot Tt @gl, = bt ]t

for x € gy <o[t™']t"!. By definition, for any z,y € T(gl; o[t ']t™") we have

= Tr(@)Toily) = Y _(x @ er)y @ ej).

Let us equip the tensor product space T(g; <o[t ']t 7!)®C 7] with an associative algebra
structure in such a way that the natural embeddings

T(gr<olt™1t7") = T(grcot ) ®@Clr]  and  Clr] < T(gr<olt™Jt™") ® C[7]
are algebra homomorphisms and the generator 7 satisfies the relations

[7,2[-m]] = ma[-m — 1] for ze€g,<0 and m e Z.



Furthermore, the tensor product space U(b[¢t~!]t7!) ® C[r] will also be considered as an
associative algebra in a similar way. We will extend T to the algebra homomorphism

T T(gi<olt™ ") ® Clr] = M, @ U(b[t"']t™") @ C[7]

by setting 7;;(uS) = T;;(u)S for u € T(g, o[t ']t7) and any polynomial S € C[r].
Set a =k +n(l — 1) and consider the matrix

[T + e [—1] —1 0 0
ea1[—1] aT + exo[—1] —1 0
B —
er—11[—1] e1_o2[—1] e aTH e 1[—1] -1
ern[—1] era]—1] at +ey[—1]

with entries in T(gl; o[t 7']t™") ® C[7]. Its column-determinant cdet B is defined as the
usual alternating sum of the products of the entries taken in the order determined by the
column numbers of the entries." So cdet B is an element of T(gl; ,o[t7']t™") ® C[r] and we
can write

Cdet B) Z W(T) (aT)™"

for certain coefficients W'i(;) which are elements of U(b[t7!]t7!), and we can also regard
them as elements of V"t (b). The following is our main result.

Theorem 1.2. All coefficients W( belong to the W-algebra W*"(g, f). Moreover, the V-

algebra W*"(g, f) C V*e(b) is freely generated by the elements W( with 1 < 4,5 < n and
r=1,2,...,1.

Set [ = (gl;)o ® gl, C gly. Then the projection b — [ induces the vertex algebra
homomorphism V**(b) — V**(I), which restricts to the map

W*(g, f) = V= (D),

called the (quantum) Miura transformation. This is an injective vertex algebra homo-

morphism. The following formula for the images of the elements I/Vl(j) under the Miura

transformation is an immediate consequence of Theorem 1.2.

Theorem 1.3. We have

i1/ W(T _r:,ﬁj<(0‘7‘|‘611[_1])"'(a7—+e”[_1])>'

Tt is easy to verify that cdet B coincides with the row-determinant of B defined in a similar way.
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Note that the principal W-algebra of type A corresponds to the case n = 1. The
elements W) are defined via the expansion of cdet B,

!
cdet B = Z W (ar)t.

r=0

By applying the Miura transformation we recover the formula of Fateev and Lukyanov [4].

Corollary 1.4. The principal W-algebra W*(g, f) is freely generated by the elements
W, WO, Moreover, we have

> v (ar) ™ = (ar +e1[-1]) ... (a7 + en[-1]).

r=0

Example 1.5. Take n =1 = 2 so that N = 4. We have
cdet B = (1) + (e11[—1] + e2a[—1]) (aT) + er1[—1]e22[—1] + €21 [—1] + aea[—2].
Hence
WY =en[1] +ess[—1], W5 = ean[—1] + eas[-1],
Wiy = en[—1]+esa[—1], W = en[-1] + ess[~1],
WiY = enn[=ess[~1] + ean[~1esa[1] + ean[~1] + vess[-2),
Wiy = era[—1]ess[—1] + eaa[—1]eas[—1] + esa[—1] + a eqs[2],
W3t = era[=1ezs[~1] + eaa[~1esa[~1] + eso 1] + veza[-2],
WY = enr[—1ess[—1] + ea [~ eas[—1] + es1[—1] + a eas[—2)].

For the images under the Miura transformation we have

v(W) = en[=1] +ess[-1],  v(W5)) = eas[~1] + eaa[-1],
v(Wiy) = era[—1] + eaa[-1], v(W)) = ear[~1] + eqs[1],
v(W) = enn[~1)ess[~1] + ear[~1]esa[~1] + a ess[~2],
v(Wyy) = era[—1]eas[~1] + eaa[~1]eas[1] + a eqa[-2],
v(W3y) = eral—1)ess[~1] + eaa[~1]esa[~1] + a eza[-2],
(W) = er1[~1]eas[—1] + ear[~1] eaa[~1] + oveas[—2].

Let the form ky, be as in Example 1.1. The values k,(x, y) are then given in the following
table, where the columns and rows correspond to the x and y variables, respectively:
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€11 €22 €33 €44 €12 €21 €34 €43
en | 5= | 5 [EIETT 0 0 [0
en| =5 [ TP [ H[ B[ 0 0 [0
e | I [ EE [ EE [ L 0 [
gy | —EEL | _EHD K3R48 0 0 0
€12 0 0 0 0 0 k+2 0 0
€91 0 0 0 0 k+2 0 0 0
€34 0 0 0 0 0 0 0 k+ 2
€34 0 0 0 0 0 0 k+ 2 0

These values can be used to calculate the operator product expansion formulas for the
generators of W*(g, f). In particular, set

1
C2(k+4)

2 2 1 1 3 1 1 1 1
(—2v? + W) + W + S + W W)

L) y,0 1 1 1 1
=W — (k+ )W + Wy — ) - Wiy,
where the primes indicate the action of ad 7 taking e;;[—1] to e;;[—2]. Then L is the

conformal vector of W*(g, f):

12k* + 41k + 32 2 Lw) + 1
— w
2(k+4)2(z—w)*  (z—w)? Z—w

L(z)L(w) ~

2 Proof of Theorem 1.2

Recall the notation (1.2) and let d = @y @, be the Lie superalgebra such that @ = b and
a; = m[t,t7Y], where m[t, t71] is regarded as the supercommutative Lie superalgebra, while

[z,y] =adx(y) for xe€ay and y € a;.
We will write ;;[—m| ® e,, for the element
ejil=m] @ epq € gl ot @ gl, = m[t ¢

with m > 1, when it is considered as an element of a;.

Let V*v(a) be the representation of @ induced from the one-dimensional representation
of (b[t]® C1) @ m[t]t on which b[t] C @y and m[t]t C @ act trivially and 1 acts as 1. Then
V*®(a) is naturally a vertex algebra which contains V**(b) as its vertex subalgebra. We
will regard V**(a) as a (non-associative) algebra with repsect to the (—1)-product

Ve (a) @ Ve (a) — Vo (a), a®b— acnb,



where the Fourier coefficients a,) are defined in the usual way from the state-field corre-
spondence map,

Y(a,z) = Za(n)z_"_l for ae€ V" (a).
nez

By [9] the W-algebra is given by

W=(g, f) ={veV™(b) | Qu=0},

where @ : V¥ (a) — V*®(a) is the derivation of the non-associative algebra V**(a) defined
by the following properties. First, () commutes with the translation operator D of the
vertex algebra V" (a), that is, [Q, D] = 0. Moreover, we have the commutation relations

[Qu €ji X epq] = Z Z(eai ® erq)@pja X epr) - Z Z(d}ai & erq)<eja & epr)

a=1 r=1 a=i+1 r=1
+ o ,QZ) ® epq + el]+1 ® 6pq el—lj ® epq

and
1 1
[Q, )i ® €pq) = B Z (Vjr @ €qs)(Yri ® €ps) — 2 Z (Vri @ €sp)(Vjr ® €45),
1<r<j,1<s<n 1<r<j,1<s<n

where we used the abbreviations
€ij ® epg = (€15 ® €p¢)[—1] 1, Vij ® epg = (Yij ® epq)[—1] 1,
Vi ® €pg = D (thij ® epg)[—1] 1 = (1hi; ® €,)[-2] 1,

and set ¢, = 0. Also, we used the fact that

trm P+ (ad (€5i ® €pg) ad (€ @ epq)) =n(l+i—j — 1)

for 1 <i<j<land 1< p,q<n, where p, denotes the restriction of the operator to m.

Our goal now is to reduce the calculations to the principal nilpotent case. To this end,
when n = 1, we will write a and b respectively, instead of a and b, and replace k with
k+ (n—1)(1—1) in (1.3). Consequently, V*b(a) will denote the vertex algebra V**(a)
with n = 1 (and k replaced by k + (n — 1)(I — 1)). We let @ denote the operator @ for
V*b(a). We have

J
Q e]z Zeazw]a_ Z wai eja"_&w;‘i_'_wﬁrli _wjiflv

a=1+1

@ 5 = % S (o thos = e ty0),

i<r<j



where we used the notation e;; = e;;[—1], ¥i; = i;[—1], ¥i; = 1;;[—2], and we set 1;; = 0.

We will regard V**(a) ® C[7] as a non-associative algebra with the natural subalgebras
V*e(a) and C[r] together with the relation [r,u] = Dwu for u € V*®(a). Similarly, the
tensor product V*b(a)®@C|[r] will be regarded as a non-associative algebra with the relation
[7,u] = Du for u € V*5(a), where D denotes the translation operator of the vertex algebra
V*b(a). Define the non-associative algebra homomorphism

n

T Ve@@Ch] = M, @ V@ @Cll, o Tw) = Y ey ® Tyyle)

p,q=1
by
Toa(ejil=m]) = ejil-m] @ eqp,  Tpq(¥yil-m]) = vjil-m] @ eqp and Te(r) = 1.
We extend the definition of the column-determinant to matrices A = [a;;] with entries
in a non-associative algebra by using right-normalized products,

cdet A = Z SEN O+ y1)1(Ao(2)2 (A (3)3 (- - - (@ra—1)1-1 Ty 1)) (2.4)

geS;

Note the relation

T (cdet B) = T (cdet B),

where cdet B is regarded as an element of V*5(a) ® C[r]. The first part of Theorem 1.2
will now be implied by the following two propositions.

Proposition 2.1. For any a € V"o (a) @ C[7] and 1 < p,q < n we have the relations
(@ Tpql0)] = Ty ([@ )
Proof. This follows immediately from the definitions of the operators @ and Q. O
Proposition 2.2. We have the relation
(@, cdet B] = 0.

Proof. We use induction on [. For any 0 < s < [ consider the submatrix B®) of B
corresponding to its last s rows and columns, which is given by

[T+ e gi1isp1]|—1] -1 0 0

elfs+2lfs+1[_1] aT + elfs+2lfs+2[_1] -1 oo 0

e1-11—s41[—1] e1-11-st2[—1] cooaTHeo1q[—1] -1
€”,s+1[—1] ell,erQ[—l] OJT—FGH[—H_

Using the definition (2.4), set D®) = cdet B®),
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Lemma 2.3. We have the column expansion formula

DY =3 B pe-,
=1

where Bi(j-) denotes the (i,7) entry of B®). O
Suppose that s < [. By the induction hypothesis, the commutator [@, D®)] equals

0 -1 0 0
0 aT+ 61754,2[754,2[—1] —1 Ce 0

Z cdet |~ ii1i s [—1]

i=1
0 er-11-si2[—1] ceeaTH e q1[—1] -1
| 0 er—sro[—1] aT +ey[—1]]
so that
[Q,D¥] = Zi/fl i+11-s[—1] DO, (2.5)

Hence, by Lemma 2.3, we have

l

@00 =>"[@, B D + Z B [@, D).

i=1
Now we use the definition of @ and relation (2.5) to write this expression as

l -1

l
> (3 st = 2 s vl b 4ian) D0 = ] o),
=1

a=1 i=1 a=1

where, as before, we write e;; = e;;[—1], ¥i; = i;[~1] and ¢}, = 1;;[—2] for brevity.
Thus,

I -1
[@7 D(l)] = Zzeal@me(l D) — Zzwal ewD(l g Z( %1 +7/}z+11) =

i=1 a=1 i=1 a=2 i=1

l—i
ZB(Z)Z (V1—as1: DY)
= a=1



which equals

l
—a Y thyrD ZZ% (eia D¢ +Z%+11Dl )
a=2

a=2 i=a
! l
- Z%l(Z(@aaT + e;q) DY — D(l—a+1)>
a=1 a=1
! l—a+1

_ Z <D(lfa+1 Z Bl at1) py(l—a+1- z)) _0,
a=1

where the last equality holds by Lemma 2.3. Here we used the relations

(eji[_"rnllbpq[‘_Td)'u = 6]2[ ](lbpq[ n] )7
(Vpql—nl eji[=ml]) u = Ypg[—n](eji[-m] u),

which hold under the assumption

u € span of {e;;/[—m'], Yyy[-n'] | j'>7 and ¢ > p}.
This completes the proof of the proposition. O

To see the second part of Theorem 1.2, consider the grading of V**(b) induced by the
grading of b. One has

l—r+1

W@(]r _ ij( Z er+371s[—1]> + (terms of higher degree).
s=1

l—r+1

Now the elements ) " e,45_15 with r =1,...,[ form a basis of g[fl

and the elements

I—r+1
E er+sfls®eji7 T:L...,l and i,jzl,...,n,

form a basis of g/. Hence the claim follows from [8, Theorem 4.1] (cf. [1, Theorem 5.5.1])
thus completing the argument.
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