
THE F2-COHOMOLOGY RINGS OF Sol3-MANIFOLDS

J.A.HILLMAN

Abstract. We compute H∗(N ;F2) for N a Sol3-manifold, and
then determine the Borsuk-Ulam indices BU(N,φ) with φ 6= 0 in
H1(N ;F2).

The Borsuk-Ulam Theorem states that any continuous function f :
Sn → Rn takes the same value at some antipodal pair of points. This
may be put in a broader context as follows. Let N be an n-manifold
and let Nφ be the double cover associated to an epimorphism φ : π →
Z/2Z. Let tφ be the covering involution. The Borsuk-Ulam index
BU(N, φ) is the maximal value of k such that for all maps f : Nφ → Rk

there is an x ∈ Nφ with f(x) = f(tφ(x)). Then the Borsuk-Ulam
Theorem is equivalent to the assertion that BU(RP n, α) = n, where
α : π1(RP n)→ Z/2Z is the canonical epimorphism.

In low dimensions this invariant may be determined cohomologically,
and is known for many pairs (N, φ), with N a Seifert fibred 3-manifold,
including all those with geometry E3, S3, S2×E1, Nil3 or H2×E1 [1, 2].
Here we shall determine this invariant for all such pairs with N a closed
Sol3-manifold. This follows easily once we know the mod-2 cohomology
rings of such manifolds. We compute these using Poincaré duality and
elementary properties of cup-product in the low-degree cohomology of
groups. (Our approach can also be applied to E3- and Nil3-manifolds.)

1. Sol3-manifolds and their groups

Let M be a closed Sol3-manifold. Then π = π1(M) has an unique
maximal abelian normal subgroup

√
π, which is free abelian of rank

2. (This subgroup is in fact the Hirsch-Plotkin radical [5] of π.) The
quotient π/

√
π is virtually Z (i.e., has two ends), and so is an extension

of Z or D∞ = Z/2Z ∗Z/2Z by a finite normal subgroup. The preimage
of this finite normal subgroup is torsion-free, and so is either Z2 or
Z o−1 Z (the Klein bottle group). Since Out(Z o−1 Z) is finite and π
is not virtually abelian, this preimage must be

√
π. Hence π/

√
π ∼= Z

or D∞.

1991 Mathematics Subject Classification. 57M25.
Key words and phrases. Borsuk-Ulam Theorem, cohomology, Sol3-manifold.

1



2 J.A.HILLMAN

Suppose first that π/
√
π ∼= Z. Then M is the mapping torus of

a self-homeomorphism of T = S1 × S1, and π ∼= Z2 oΘ Z, where
Θ = ( a cb d ) ∈ GL(2,Z). Thus π has a presentation

〈t, x, y | txt−1 = xayb, tyt−1 = xcyd, xy = yx〉.
Let ε = det(Θ) = ±1 and τ = tr(Θ) = a + d. Then M is orientable
if and only if ε = 1, in which case |τ | > 2, since π is not virtually
nilpotent. Let θ be a root of the characteristic polynomial det(Θ −
XI2) = X2 − τX + ε. Then θ is a unit in the quadratic number field
Q[θ], and

√
π is isomorphic to an ideal I in the ring Z[θ]. (The latter

may not be the full ring of integers in Q[θ]!)
Conversely, if α is a quadratic algebraic unit and I is an ideal in Z[α]

then I is free abelian of rank 2 as an abelian group, and π = I oα Z is
the group of the mapping torus of a self-homeomorphism of T . If α is
not a root of unity this mapping torus is a Sol3-manifold. If (α, [I]) and
(β, [J ]) are two such pairs the corresponding groups are isomorphic if

and only if either β = ±α and [I] = [J ] or β = ±α−1 and [I] = [J ].
(Here [I] denotes the ideal class of I and the overbar denotes the Galois
involution given by α↔ εα−1.) Each such ring Z[α] has finitely many
ideal classes, by the Jordan-Zassenhaus Theorem.

If π/
√
π ∼= D∞ then π ∼= B ∗T C, where B and C are torsion-free,

T ∼= Z2 and [B : T ] = [C : T ] = 2. Thus M is the union of two twisted
I-bundles. Moreover, β1(π;Q) = 0. Hence M is orientable, since
χ(M) = 0, and so B and C must be copies of the Klein bottle group.
Hence M is the union of two copies of the mapping cylinder of the
double cover of the Klein bottle. The double cover of M corresponding
to the preimage of

√
D∞ in π is a mapping torus.

In particular, π has a presentation

〈u, v, y, z | uyu−1 = y−1, vzv−1 = z−1, yz = zy, v2 = u2ayb, z = u2cyd〉,

where ( a cb d ) ∈ GL(2,Z) corresponds to the identification of
√
C with

T =
√
B. This presentation simplifies immediately to

〈u, v, y | uyu−1 = y−1, v2 = u2ayb, vu2cydv−1 = u−2cy−d〉.
Hence πab ∼= Z/4cZ ⊕ Z/4Z if b is odd, and πab ∼= Z/4cZ ⊕ (Z/2Z)2

if b is even. Let x = u2. Then conjugation by uv acts on 〈x, y〉 ∼= Z2

via Ψ = η
(
ad+bc 2ac

2bd ad+bc

)
, where η = ad− bc = ±1. We have det(Ψ) = 1,

tr(Ψ) ≡ 2 mod (4), Ψ ≡ I2 mod (2) and abcd 6= 0.
Conversely, any ( a cb d ) ∈ GL(2,Z) with abcd 6= 0 gives rise to such a

Sol3-manifold, for then |tr(Ψ)| = 2|ad + bc| ≥ 6. Moreover, suppose
P =

(
2k+1 2m

2n 2k+1

)
∈ SL(2,Z), where mn 6= 0. Then k(k + 1) = mn,

and so we may write m = m1m2 and n = n1n2, with k = m1n1
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and k + 1 = m2n2. The Sol3-rational homology sphere corresponding
to

(
m1 −m2
−n2 n1

)
∈ GL(2,Z), is doubly covered by the mapping torus

asociated to P .
Every quadratic unit α such that α + ᾱ ≡ 2 mod (4) and αᾱ = 1 is

realized in this way. Which ideal classes are realized? The ideal class
must be invariant under the conjugation α 7→ α−1.

Every subgroup of finite index in π can be generated by three el-
ements, while proper subgroups of infinite index need at most two
generators. If a nontrivial normal subgroup N has infinite index in π
then it has Hirsch length ≤ 2. Hence it is abelian, and so has finite
index in

√
π. Thus proper quotients of a Sol3-group π either have two

ends or are finite.

2. the mod-2 cohomology ring

Martins has constructed an explicit free resolution P∗ → Z of the
augmentation Z[π]-module, and a partial diagonal approximation ∆ :
P∗ → P∗ ⊗ P∗, which he used to compute the integral cohomology ring,
for semirect products π ∼= Z2oΘZ with Θ ∈ GL(2,Z) [4]. His formulae
should (in principle) apply with coefficients F2 also.

We shall take a somewhat different approach, first computing cup
products into H2(π;F2) and then using Poincaré duality. Our strat-
egy in determing relations in H2(π;F2) shall be to use restrictions to
subgroups (such as

√
π) and epimorphisms to quotient groups (such as

π/
√
π or small finite 2-groups), with known cohomology rings.

We shall usually write H∗(X) and H∗(X) for the homology and
cohomology of a space or group X, with coefficients F2, and denote the
cup-product by juxtaposition. In each case considered below, the given
generators for a group G represent a basis for H1(G), and we shall use
the corresponding Kronecker dual bases for H1(G) = Hom(H1(G),F2).

Lemma 1. Let w = w1(π). Then wαβ = α2β + αβ2, for all α, β ∈
H1(π). In particular, if w = 0 then α2β = αβ2 and (α+β)3 = α3 +β3.

Proof. The first assertion follows from the Wu relation Sq1z = w ∪ z
for all z ∈ Hn−1(X), which holds for any PDn-complex X. The second
follows easily. �

If G is a group let Xn(G) = 〈gn|g ∈ G〉 be the subgroup generated
by all nth powers. The next lemma is a refinement of Theorem 2 of [3]
(which is restated here as part (1) of the lemma).

Lemma 2. Let G be a group, and ρ, φ, ψ ∈ H1(G). Let K = Ker(ρ)
and L = K ∩Ker(φ). Then
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(1) the kernel of cup product from the symmetric product �2H1(G)
to H2(G) is the dual of X2(G)/X4(G)[G,X2(G)];

(2) the canonical projections induce isomorphisms
H1(G/X2(K)) ∼= H1(G/X2(L)) ∼= H1(G/X4(G)) ∼= H1(G);

(3) ρφ = 0 in H2(G)⇔ ρφ = 0 in H2(G/X2(K));
(4) φ2 = ρφ+ ρψ in H2(G)⇔ φ2 = ρφ+ ρψ in H2(G/X2(L)).

Proof. Part (1) is Theorem 2 of [3], while part (2) is clear.
If φψ = 0 in H2(G) then there is a 1-cochain F : G→ F2 such that

φ(g)ψ(h) = δF (g, h) = F (gh) + F (g) + F (h), for all g, h ∈ G. Part
(3) follows easily, since F restricts to a homomorphism on K, and is
constant on cosets of X2(K).

Part (4) is similar. �

In most of the cases considered here, the coefficients in the linear
relations determining the kernel of cup product may be found by re-
stricting to 2-generator subgroups.

Lemma 3. Let {T, Y } be the basis for H1(D8) corresponding to the
presentation D8 = 〈t, y|t2 = y4 = 1, tyt−1 = y−1〉. Then (T +Y )Y = 0
in H2(D8).

Proof. Let D∞ have the presentation 〈u, v|u2 = v2 = 1〉, and let U, V
be the dual basis for H1(D∞). Then H∗(D∞) = F2[U, V ]/(UV ). Let
f : D∞ → D8 be the epimorphism given by f(u) = t and f(v) =
ty. Then f induces an isomorphism D∞/X

4(D∞) ∼= D8, so H2(f) is
injective. Since f ∗U = T +Y and f ∗V = Y , we see that (T +Y )Y = 0
in H2(D8). �

Let E be the “almost extraspecial” 2-group with presentation

〈t, u, v | t2 = 1, u2 = v2, tut−1 = u−1, tv = vt, uv = vu〉.

Lemma 4. Let {T, U, V } be the basis for H1(E) corresponding to the
above presentation. Then TU + U2 + V 2 = 0 in H2(E).

Proof. Since X2(E) ∼= Z/2Z, the kernel of cup product from �2H1(G)
to H2(G) has dimension 1 [3]. Thus there is an unique nontrivial linear
relation aT 2 + bU2 + cV 2 + dTU + eTV + fUV = 0 in H2(E). The
coefficients can be determined by restriction to the subgroups 〈t〉 ∼=
Z/4Z, 〈t, u〉 ∼= D8, 〈t, v〉 ∼= Z/4Z ⊕ Z/2Z, and 〈u, v〉 ∼= Z/4Z ⊕
Z/2Z. �

3. mapping tori

Suppose that π ∼= Z2 oΘ Z, where Θ = ( a cb d ) ∈ GL(2,Z). Let
ε = ad− bc = ±1 and τ = a+ d. Let ∆1 = det(Θ− I2) = 1− τ + ε and
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∆2 = (a− 1, b, c, d− 1) be the elementary divisors of Θ− I2. Then ∆2
2

divides ∆1, and

πab ∼= Z⊕ Z/(∆1/∆2)Z ⊕ Z/∆2Z.

Let β = β1(π;F2). Then 1 ≤ β ≤ 3, and β2(π;F2) = β, by Poincaré
duality. Let ρ : π → Z/2Z be the unique epimorphimorphism which
factors through π/

√
π ∼= Z. If π is non-orientable then ρ = w1(M),

and K = π+, the maximal orientable subgroup of π.
1. If τ is odd then ∆1 is odd and πab ∼= Z ⊕ odd. In this case ρ is

the unique epimorphism from π to Z/2Z, and

H∗(π) ∼= F2[ρ,Ξ]/(ρ2,Ξ2),

where Ξ has degree 2, by Poincaré duality.
2. If τ ≡ ε−1 mod (4) then πab ∼= Z⊕Z/2Z⊕odd, and β = 2. Hence

H1(π) = 〈ρ, σ〉, where σ does not factor through Z/4Z. Moreover, if
G = π/X4(π) then X2(G) ∼= (Z/2Z)2 is central in G. Thus ρ2 = ρσ =
0, by Lemma 2, while σ2 6= 0. Hence H2(π) = 〈σ2,Ξ〉, for some Ξ of
degree 2. Duality then implies that σ3 = ρΞ 6= 0. We may assume also
that σΞ = 0, and so

H∗(π) ∼= F2[ρ, σ,Ξ]/(ρ2, ρσ, σΞ, ρΞ + σ3,Ξ2).

3. If τ ≡ ε+ 1 mod (4) and ∆2 is odd then πab ∼= Z⊕ Z/2kZ ⊕ odd,
for some k ≥ 2. Hence H1(π) = 〈ρ, σ〉, where σ2 = ρ2 = 0. Since
ρσ = 0, by the nondegeneracy of Poincaré duality,

H∗(π) ∼= F2[ρ, σ,Ξ,Ω]/(ρ2, ρσ, σ2, ρΩ, σΞ, ρΞ + σΩ,Ξ2,Ω2,ΞΩ),

where Ξ and Ω have degree 2.
In all the remaining cases β = 3. For if τ ≡ ε + 1 mod (4) and ∆2

is even then a and d are odd and b and c are even. Hence ∆1 = 2kq
and ∆2 = 2`q′, where 0 < ` ≤ k

2
and q, q′ are odd. In this case

πab ∼= Z ⊕ Z/2k−`Z ⊕ Z/2`Z ⊕ odd, so the images of {t, x, y} form a
basis for H1(π). Let {ρ, σ, ψ} be the dual basis, so that

σ(x) = ψ(y) = 1 and σ(t) = σ(y) = ψ(t) = ψ(x) = 0.

If G = π/X4(π) then X2(G) = 〈t2, x2, y2〉 ∼= (Z/2Z)3 is central in G,
so the kernel of cup product from �2H1(π) to H2(π) has rank 3. It
then follows from Poincaré duality that H∗(π) is generated as a ring by
H1(π). In each case, ρσ2 = ρρσ = 0 and ρψ2 = ρρψ = 0, by Lemma
1. Hence ρσψ 6= 0, by the nondegeneracy of Poincaré duality. It then
follows easily that ρσ, ρψ and σψ are linearly independent, and so form
a basis for H2(π). We may write

σ2 = mρσ + nρψ + pσψ and ψ2 = qρσ + rρψ + sσψ,
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for some m, . . . , s. On restricting to
√
π, we see that p = s = 0,

since σ2|√π = ψ2|√π = 0 and ρ|√π = 0, while σψ|√π 6= 0. Since
ρσ2 = ρ2σ = ρψ2 = ρ2ψ = 0, taking cup products with σ and ψ gives

σ3 = nρσψ, σ2ψ = mρσψ, ψ3 = qρσψ and σψ2 = rρσψ.

4. If ` ≥ 2 then a ≡ d ≡ 1 and b, c ≡ 0 mod (4), so ε ≡ 1 mod (4)
also, i.e., π is orientable. In this case σ2 = ψ2 = ρ2 = 0, and so

H∗(π) ∼= F2[ρ, σ, ψ]/(ρ2, σ2, ψ2).

Suppose now that ` = 1.
5. If π is orientable and ∆1 ≡ 0 mod (8) we may assume that one

of σ, ψ or σ + ψ factors through Z/4Z. Thus either σ2 = 0, ψ2 = 0
or σ2 = ψ2. We may assume that σ2 6= 0. Then ρσ2 = ρ2σ = 0 and
ψσ2 = ψ2σ = 0, and so σ3 6= 0, by the nonsingularity of Poincaré
duality. Hence

H∗(π) ∼= F2[ρ, σ, ψ]/(ρ2, ρψ + σ2, ψ2).

In this case we see that φ3 = 0⇔ φ2 = 0.
If π is orientable and ∆1 ≡ 4 mod (8) then τ ≡ 6 mod (8) and a, d are

odd, and so a ≡ d mod (4). In this case ψ2 6= 0 and (σ + ψ)2 6= 0 also,
and so σ2 = mρσ+ nρψ and ψ2 = qρσ+ rρψ are linearly independent.
Hence mr + nq = 1 in F2. Since w = 0, σ2ψ = σψ2 and so m = r.

6. Suppose first that a ≡ 1 mod (4). Then bc ≡ 4 mod (8), and so
b ≡ c ≡ 2 mod (4). Let Lφ = Ker(ρ) ∩ Ker(φ). Then π/X2(Lφ) has a
presentation

〈t, x, y | t4 = x4 = y2 = 1, tx = xt, tyt−1 = x2y, xy = yx〉.

Let J = 〈t, x〉 ∼= (Z/4Z)2. Then σ2|J = ρψ|J = 0, while ρσ|J 6= 0.
Applying part (3) of Lemma 2, we see that m = 0, and so σ2 = ρψ
and ψ2 = ρσ. (Note, however, that Lemma 2 does not assert that the
relation ψ2 = qρσ + rρψ also holds in π/X2(Lφ)! For this, we could
use Lψ = Ker(ρ) ∩Ker(ψ) instead.) Hence

H∗(π) ∼= F2[ρ, σ, ψ]/(ρ2, ρψ + σ2, ρσ + ψ2).

In particular, σ3 = ψ3 = (ρ+ σ)3 = (ρ+ ψ)3 6= 0.
If a ≡ −1 mod (4) then bc ≡ 0 mod (8). If, say, b ≡ 2 mod (4) (so

c ≡ 0 mod (4)) then the change of basis x′ = x, y′ = xy reduces this
case to the one just considered. In terms of the given basis, we have

H∗(π) ∼= F2[ρ, σ, ψ]/(ρ2, ρσ + σ2, ρψ + σ2 + ψ2).

In this case σ3 6= 0, but ψ3 = 0. A similar result holds if b ≡ 0 mod (4)
and c ≡ 2 mod (4).
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7. If, however, a ≡ −1 mod (4) and b ≡ c ≡ 0 mod (4) then π/X4(π)
has a presentation

〈t, x, y | t4 = x4 = y4 = 1, txt−1 = x−1, tyt−1 = y−1, xy = yx〉.

In this case J = 〈t, x〉 is non-abelian, and σ2|J 6= 0, while ρψ|J = 0.
Hence we must have m = r = 1. It is clear from the symmetry of the
presentation for π/X4(π) that we must also have n = q in this case,
and so n = q = 0. Thus

H∗(π) ∼= F2[ρ, σ, ψ]/(ρ2, ρσ + σ2, ρψ + ψ2).

We now find that φ3 = 0 for all φ ∈ H1(π).
If ` = 1 and M is non-orientable then a and d are odd, and ∆1 =
−a − d ≡ 0 mod (4). In this case ρ = w1(M), and so σ2ψ + σψ2 =
ρσψ 6= 0, by Lemma 1. After swapping x and y, if necessary, we may
assume that a ≡ 1 mod (4).

8. If bc ≡ 0 mod (8) then, after a further change of basis of the
form x′ = x, y′ = xy or x′ = xy, y′ = y, if necessary, we may assume
that b ≡ c ≡ 0 mod (4). Then σ2 = 0, and π/〈〈t2, x, y4〉〉 ∼= D8, so
(ρ+ ψ)ψ = 0 also. Hence

H∗(π) ∼= F2[ρ, σ, ψ]/(ρ2, σ2, ρψ + ψ2).

In particular, (σ + ψ)3 = (ρ + σ + ψ)3 6= 0, and all other classes have
cube 0. In terms of the given bases, the other cases are:

If b ≡ 0 and c ≡ 2 mod (4) then

H∗(π) ∼= F2[ρ, σ, ψ]/(ρ2, σ2 + ψ2, ρψ + ψ2, σ2ψ).

Here σ3 = (ρ+ σ)3 6= 0 and all other classes have cube 0.
If b ≡ 2 and c ≡ 0 mod (4) then

H∗(π) ∼= F2[ρ, σ, ψ]/(ρ2, σ2, ψ2 + ρσ + ρψ).

Here ψ3 = (ρ+ ψ)3 6= 0 and all other classes have cube 0.
9. If b ≡ c ≡ 2 mod (4) then σ2 and ψ2 are linearly independent.

There are three distinct epimorphisms from π to the almost extraspecial
group E, given by f(x) = u−1v), f(y) = u; g(x) = v, g(y) = uv−1; and
h(x) = v, h(y) = u. Using these epimorphisms to pull back the relation
given in Lemma 3, we find that

H∗(π) ∼= F2[ρ, σ, ψ]/(ρ2, σ2 + ρψ, ψ2 + ρσ + ρψ).

In particular, every epimorphism φ 6= ρ has nonzero cube.
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4. unions of twisted I-bundles

Suppose that π/
√
π ∼= D∞. Then π is orientable, and has a presen-

tation

〈u, v, y | uyu−1 = y−1, v2 = u2ayb, vu2cydv−1 = u−2cy−d〉,
where ad− bc = ±1 and abcd 6= 0. Let B = 〈u, y〉 and C = 〈v, u2cyd〉.

If b is odd then πab ∼= Z/4cZ ⊕ Z/4Z, where the summands are
generated by u and u−av, respectively. Let U(u) = V (v) = 1, U(v) = a
and V (u) = 0. Then

H∗(π) ∼= F2[U, V,Ξ,Ω]/(U2, UV, V 2, UΞ + V Ω,Ξ2,Ω2,ΞΩ),

where Ξ and Ω have degree 2.
If b is even then πab ∼= Z/4cZ ⊕ (Z/2Z)2 and the images of u, v

and y represent a basis for H1(π). Let {U, V, Y } ∈ H1(π) be the dual
basis. Then U2, V 2 and Y 2 are all nonzero, but W = U + V lifts to
a homomorphism from π to Z/4Z, and so W 2 = 0. Hence U2 = V 2.
Since U and V are induced from classes in H1(D∞) we have UV = 0.
We also have UY |B = Y 2|B and V Y |C = Y 2|C , while U |C , V |B, U2|B
and V 2|C are all 0.

Suppose that pU2+qY 2+rUY +sV Y = 0 in H2(π). On restricting to
the subgroups B and C, we find that q+r = q+s = 0. Since U2 6= 0 we
must have q = r = s = 1. Multiplying by U and V , we find that UY 2 +
U2Y = 0 and V Y 2 +V 2Y = 0. Poincaré duality for π now implies that
{U2, Y 2, UY } is a basis for H2(π), while UY 2 = U2Y = V Y 2 generates
H3(π). We see also that U3 = U2V = UV 2 = V 3 = (U + V )3 = 0,
while (U + Y )3 = (V + Y )3 = (U + V + Y )3 = Y 3.

Suppose first that b ≡ 0 mod (4). Then G = π/〈〈uv, u2, y4〉〉 ∼= D8.
Hence (U + V + Y )Y = 0 in H3(π). It follows easily that Y 3 = 0, and
so all cubes are 0 in H3(π).

If b ≡ 2 mod (4) then π/〈〈u2, (uv)2, v4, y4〉〉 has a presentation

〈u, v, y | u2 = (uv)2 = v4 = 1, uyu−1 = vyv−1 = y−1, v2 = y2〉
Hence there is an epimorphism f : π → E, given by f(u) = t, f(v) = u
and f(y) = u−1t−1v. Since f ∗T = U + Y , f ∗U = V + Y , f ∗V = Y and
UV = 0, it follows from Lemma 4 that UY + V Y + V 2 + Y 2 = 0 in
H2(π). Multiplying by Y , we find that UY 2 + Y 3 = 0 and so Y 3 6= 0.
In this case, only the cubes induced from H∗(π/

√
π) are zero.

5. the borsuk-ulam index

We may identify an epimorphism φ with a nonzero class inH1(N ;F2).
Then BU(N, φ) = 1⇔ φ lifts to an integral class Φ ∈ H1(N ;Z), while
BU(N, φ) = n⇔ φn 6= 0 in Hn(N ;F2) In general, 1 ≤ BU(N, φ) ≤ n.
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See [1]. When n = 3 the remaining possibility is that BU(M,φ) = 2⇔
φ2 = 0 but φ is not the reduction of an integral class.

Suppose first that π/
√
π ∼= Z. Then the following results are imme-

diate from §3.
1. If ρ : π → Z/2Z is the unique epimorphism which factors through

π/
√
π ∼= Z then BU(M,ρ) = 1.

2. If τ ≡ ε− 1 mod (4) then BU(M,φ) = 3 for all φ 6= ρ.
3. If τ ≡ ε + 1 mod (4) and either ∆2 is odd or a ≡ d ≡ 1 mod (4)

and b, c are divisible by 4, then BU(M,φ) = 2 for all φ 6= ρ.
4. If ε = 1, ∆1 ≡ 0 mod (8) and ∆2 ≡ 2 mod (4) then BU(M,φ) = 2

for the two epimorphisms φ 6= ρ such that φ2 = 0 (i.e, that factor
through Z/4Z) and BU(M,φ) = 3 for the four such that φ2 6= 0.

5. If ε = 1, ∆1 ≡ 4 mod (8) and Θ ≡ −I2 mod (4) then BU(M,φ) = 2
for all φ 6= ρ.

6. If ε = 1 and ∆1 ≡ 4 mod (8), but Θ 6≡ −I2 mod (4), then
BU(M,φ) = 2 for the two epimorphisms φ 6= ρ such that φ2 = 0 and
BU(M,φ) = 3 for the four such that φ2 6= 0.

7. If ε = −1, τ ≡ 0 mod (4), ∆2 ≡ 2 mod (4) and bc ≡ 0 mod (8)
then BU(M,φ) = 2 for the four epimorphisms φ 6= ρ such that φ3 = 0
and BU(M,φ) = 3 for the two such that φ3 6= 0.

8. If ε = −1, τ ≡ 0 mod (4), ∆2 ≡ 2 mod (4) and bc ≡ 4 mod (8)
then BU(M,φ) = 3 for all φ 6= ρ.

Suppose now that π/
√
π ∼= D∞. Then the following results are

immediate from §4.
9. If πab ∼= Z/4cZ ⊕ Z/4Z then BU(M,φ) = 2 for all φ.
10. If πab ∼= Z/4cZ⊕(Z/2Z)2 and b ≡ 0 mod (4) then BU(M,φ) = 2

for all φ.
11. If πab ∼= Z/4cZ⊕(Z/2Z)2 and b ≡ 2 mod (4) then BU(M,φ) = 2

for epimorphisms φ which factors through π/
√
π, while BU(M,φ) = 3

otherwise.

6. other geometries

We remark finally that similar arguments may be used to determine
the F2-cohomology rings and Borsuk-Ulam invariants for pairs (N, φ)
with N a closed E3- or Nil3-manifold. These manifolds are all Seifert
fibred over flat 2-orbifolds. Since they have been covered in [2], we shall
confine ourselves to some brief observations.

The ten closed flat 3-manifolds may be easily treated individually.
The only one admitting a class φ with φ3 6= 0 has group G4, with
holonomy Z/4Z and abelianization Z⊕ Z/2Z. Thus H1(π) = 〈T,X〉,
where T 2 = 0 and X2 6= 0. We may deduce that TX = 0 also, by
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mapping G4 onto D8. It follows easily that

H∗(G4) ∼= F2[T,X,Ω]/(T 2, TX,XΩ, TΩ +X3,Ω2),

where Ω has degree 2. (Thus X3 = (T + X)3 6= 0. These classes
correspond to the two epimorphisms without integral lifts.)

The possible Seifert bases B of closed Nil3-manifolds are the seven
flat 2-orbifolds with no reflector curves: B = T , Kb, S(2, 2, 2, 2),
S(2, 4, 4), S(2, 3, 6), S(3, 3, 3) or P (2, 2). Let β = πorb1 (B) be the orb-
ifold fundamental group of the base. Then πab is an extension of βab

by a finite cyclic group Z/qZ, if the base is orientable (B 6= Kb or
P (2, 2)), and by Z/(2, q)Z otherwise. The ring H∗(π) depends only
on the base B and the residue of q mod (4). If B = T or Kb then
π ∼= Z2 oΘ Z, for some Θ ∈ GL(2,Z). These are in fact the cases re-
quiring most effort. In all other cases πab is finite, and the projection of
π onto β induces an isomorphism H1(π) ∼= H1(β). When B = S(2, 3, 6)
or S(3, 3, 3) this group is cyclic. (In particular, such Nil3-manifolds
are not unions of twisted I-bundles.) When B = S(2, 4, 4) we have
π/X4(π) ∼= β/X4(β) ∼= G4/X

4(G4). The cases of S(2, 2, 2, 2) and
P (2, 2) are related to those of the flat 3-manifolds G2 and B4, respec-
tively.
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