THE F,-COHOMOLOGY RINGS OF Sol>-MANIFOLDS
J.A.HILLMAN

ABSTRACT. We compute H*(N;Fs) for N a Sol*-manifold, and
then determine the Borsuk-Ulam indices BU (N, ¢) with ¢ # 0 in
HY(N;Fy).

The Borsuk-Ulam Theorem states that any continuous function f :
S™ — R" takes the same value at some antipodal pair of points. This
may be put in a broader context as follows. Let N be an n-manifold
and let IV be the double cover associated to an epimorphism ¢ : 7 —
Z/2Z. Let ty be the covering involution. The Borsuk-Ulam index
BU(N, ¢) is the maximal value of k such that for all maps f : N, — RF
there is an x € N, with f(z) = f(ts(x)). Then the Borsuk-Ulam
Theorem is equivalent to the assertion that BU(RP™,«) = n, where
a:m(RP") — Z/2Z is the canonical epimorphism.

In low dimensions this invariant may be determined cohomologically,
and is known for many pairs (N, ¢), with N a Seifert fibred 3-manifold,
including all those with geometry E3, 3 S? x E!, Nil3 or H? x E! [1, 2].
Here we shall determine this invariant for all such pairs with N a closed
Sol3-manifold. This follows easily once we know the mod-2 cohomology
rings of such manifolds. We compute these using Poincaré duality and
elementary properties of cup-product in the low-degree cohomology of
groups. (Our approach can also be applied to E3- and Ni/3-manifolds.)

1. Sol3-MANIFOLDS AND THEIR GROUPS

Let M be a closed Sol3>-manifold. Then m = 7;(M) has an unique
maximal abelian normal subgroup /7, which is free abelian of rank
2. (This subgroup is in fact the Hirsch-Plotkin radical [5] of w.) The
quotient 7 /+/7 is virtually Z (i.e., has two ends), and so is an extension
of Zor Dy, = Z/2Z 7 /27 by a finite normal subgroup. The preimage
of this finite normal subgroup is torsion-free, and so is either Z? or
Z x_1 Z (the Klein bottle group). Since Out(Z x_y Z) is finite and 7
is not virtually abelian, this preimage must be /7. Hence 7/\/7m &2 Z
or D...
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Suppose first that 7/y/7 = Z. Then M is the mapping torus of
a self-homeomorphism of T = S x S', and 7 = Z? xg Z, where
O =(%g) € GL(2,Z). Thus 7 has a presentation

b

(t,z,y | tot™t = 2%0, tyt™! = a%?, zy = yzx).

Let € = det(©) = £1 and 7 = tr(©) = a + d. Then M is orientable
if and only if ¢ = 1, in which case || > 2, since 7 is not virtually
nilpotent. Let 6 be a root of the characteristic polynomial det(© —
XI) = X? —7X + . Then 6 is a unit in the quadratic number field
QI6], and /7 is isomorphic to an ideal I in the ring Z[f]. (The latter
may not be the full ring of integers in Q[6]!)

Conversely, if « is a quadratic algebraic unit and [ is an ideal in Z[o/]
then [ is free abelian of rank 2 as an abelian group, and 7 = I X, Z is
the group of the mapping torus of a self-homeomorphism of 7. If « is
not a root of unity this mapping torus is a Sol*-manifold. If (a, []) and
(B,[J]) are two such pairs the corresponding groups are isomorphic if
and only if either 8 = +a and [I] = [J] or 8 = £a~ ! and [I] = [J].
(Here [I] denotes the ideal class of I and the overbar denotes the Galois
involution given by a <+ ea~!.) Each such ring Z[a] has finitely many
ideal classes, by the Jordan-Zassenhaus Theorem.

If 7/\/7T & Dy then 7 = By C, where B and C' are torsion-free,
T>7Z?and [B:T]=[C:T]=2. Thus M is the union of two twisted
I-bundles. Moreover, ((m;Q) = 0. Hence M is orientable, since
X(M) =0, and so B and C must be copies of the Klein bottle group.
Hence M is the union of two copies of the mapping cylinder of the
double cover of the Klein bottle. The double cover of M corresponding
to the preimage of /Dy in 7 is a mapping torus.

In particular, 7 has a presentation

-1 _ -1 -1 _ -1 _ 2 __ . 2a,b _..2c,d
(u,v,y,z\uyu _y ,’UZ'U ==z ,yZ—Zy,'U =1u y,z—uy),

where (§9) € GL(2,Z) corresponds to the identification of v/C' with
T = v/B. This presentation simplifies immediately to

1 2a..b 2c, d 1 —2c —d
=u Yy ).

(u, v,y | uyu~ Y, vuytu”

Hence 7% = Z/4cZ & Z/4AZ if b is odd, and 7% = Z/4cZ & (Z/27)?
if b is even. Let # = u®. Then conjugation by uv acts on (z,y) = Z>
via W = (“4irc 295 ), where ) = ad — be = +1. We have det(¥) = 1,
tr(¥) =2 mod (4), ¥ = I, mod (2) and abed # 0.

Conversely, any (4 g) € GL(2,7Z) with abed # 0 gives rise to such a
Sol®-manifold, for then |tr(¥)| = 2|ad + bc| > 6. Moreover, suppose
p = (*M 2m ) € SL(2,Z), where mn # 0. Then k(k + 1) = mn,
and so we may write m = mims and n = ning, with £k = mn,

=y v =u
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and k + 1 = mgny. The Sol3-rational homology sphere corresponding
to (1”,112 ’,fl”) € GL(2,7Z), is doubly covered by the mapping torus
asociated to P.

Every quadratic unit o such that o +a =2 mod (4) and aa =1 is
realized in this way. Which ideal classes are realized? The ideal class
must be invariant under the conjugation o+ a~!.

Every subgroup of finite index in 7 can be generated by three el-
ements, while proper subgroups of infinite index need at most two
generators. If a nontrivial normal subgroup N has infinite index in 7
then it has Hirsch length < 2. Hence it is abelian, and so has finite
index in /7. Thus proper quotients of a Sol*>-group 7 either have two

ends or are finite.

2. THE MOD-2 COHOMOLOGY RING

Martins has constructed an explicit free resolution P, — 7Z of the
augmentation Z[r]-module, and a partial diagonal approximation A :
P, — P, ® P,, which he used to compute the integral cohomology ring,
for semirect products m & Z? xg Z with © € GL(2,Z) [4]. His formulae
should (in principle) apply with coefficients Fy also.

We shall take a somewhat different approach, first computing cup
products into H?(m;F,) and then using Poincaré duality. Our strat-
egy in determing relations in H?(7;Fy) shall be to use restrictions to
subgroups (such as y/7) and epimorphisms to quotient groups (such as
7/+/m or small finite 2-groups), with known cohomology rings.

We shall usually write H,(X) and H*(X) for the homology and
cohomology of a space or group X, with coefficients Iy, and denote the
cup-product by juxtaposition. In each case considered below, the given
generators for a group G represent a basis for H;(G), and we shall use
the corresponding Kronecker dual bases for H'(G) = Hom(H,(G),F,).

Lemma 1. Let w = wi(w). Then wafB = o?B + af?, for all a, B €
H'(w). In particular, if w = 0 then o> = af8? and (a+3) = o+ 3.

Proof. The first assertion follows from the Wu relation Sq'z = w U z
for all z € H"*(X), which holds for any PD,-complex X. The second
follows easily. O

If G is a group let X"(G) = (¢"|g € G) be the subgroup generated
by all n'" powers. The next lemma is a refinement of Theorem 2 of [3]
(which is restated here as part (1) of the lemma).

Lemma 2. Let G be a group, and p, ¢, € H(G). Let K = Ker(p)
and L = K NKer(¢). Then
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(1) the kernel of cup product from the symmetric product ©*H*(G)
to H*(G) is the dual of X*(G)/X*(G)[G, X?(G)];

(2) the canonical projections induce isomorphisms
HY(G/X*(K))~ HY(G/X?*(L)) 2 HY(G/X*Q)) 2 HY(G);

(3) po =0 in H*(G) < pp =0 in H*(G/X*(K));

(4) ¢* = po + py in H*(G) & ¢* = po + py in H*(G/X?(L)).

Proof. Part (1) is Theorem 2 of [3], while part (2) is clear.

If ¢tp = 0 in H*(G) then there is a 1-cochain F' : G — Fy such that
é(g)(h) = 6F(g,h) = F(gh) + F(g) + F(h), for all g,h € G. Part
(3) follows easily, since F' restricts to a homomorphism on K, and is
constant on cosets of X?(K).

Part (4) is similar. O

In most of the cases considered here, the coefficients in the linear
relations determining the kernel of cup product may be found by re-
stricting to 2-generator subgroups.

Lemma 3. Let {T,Y} be the basis for H'(Dg) corresponding to the
presentation Dg = (t,y|t> = y* =1, tyt™' =y~ ). Then (T+Y)Y =0
m HQ(Dg)

Proof. Let D, have the presentation (u,v|u? = v* = 1), and let U,V
be the dual basis for H'(D,,). Then H*(Dy,) = Fy[U,V]/(UV). Let
f : Ds — Dg be the epimorphism given by f(u) = t and f(v) =
ty. Then f induces an isomorphism D, /X*(D..) = Dg, so H?(f) is
injective. Since f*U =T +Y and f*V =Y, we see that (T+Y)Y =0
in H%(Dg). O

Let E be the “almost extraspecial” 2-group with presentation
tuv|t? =1, v =0° tut™' =u', tv =vt, uv = vu).

Lemma 4. Let {T,U,V'} be the basis for H'(E) corresponding to the
above presentation. Then TU +U? + V? =0 in H*(E).

Proof. Since X?(E) = Z/2Z, the kernel of cup product from ©*H'(G)
to H?(G) has dimension 1 [3]. Thus there is an unique nontrivial linear
relation aT? + bU? + cV? + dTU + TV + fUV = 0 in H*(E). The
coefficients can be determined by restriction to the subgroups (t) =
Z/AZ, (t,u) = Dsg, (t,v) = Z/AZ & Z/2Z, and (u,v) = Z/4Z &
7/27. 0

3. MAPPING TORI

Suppose that m = Z2 xg Z, where © = ($5) € GL(2,Z). Let
e=ad—bc=xland 7 =a+d. Let Ay =det(©—1;) =1—7+¢ and
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Ay = (a—1,b,¢c,d — 1) be the elementary divisors of © — I,. Then A2
divides Ay, and

T 270 7/ (A AL B Z) N7

Let 5 = Bi(m;Fy). Then 1 < g < 3, and fo(m;Fe) = 3, by Poincaré
duality. Let p : @ — Z/2Z be the unique epimorphimorphism which
factors through m/y/7 = Z. If 7 is non-orientable then p = wq (M),
and K = 7", the maximal orientable subgroup of .

1. If 7 is odd then A; is odd and 7 = Z @ odd. In this case p is
the unique epimorphism from =« to Z/2Z, and

H*(ﬂ-) = FQ[p7 E]/<:027 52)7
where = has degree 2, by Poincaré duality.

2. If T =¢e—1mod (4) then 7 =~ Z& Z/27Z ®odd, and 3 = 2. Hence
H'(m) = (p,0), where o does not factor through Z/4Z. Moreover, if
G =7/ X*(m) then X?(G) = (Z/2Z)? is central in G. Thus p? = po =
0, by Lemma 2, while 0* # 0. Hence H?*(w) = (02, Z), for some Z of
degree 2. Duality then implies that 0® = p= # 0. We may assume also
that = = 0, and so

H*(7) = Falp,0,Z]/(p%, po, 0=, p= + 0*, E).

3. If T=e+1 mod (4) and A is odd then 7% =2 Z & Z/2*Z & odd,
for some k > 2. Hence H'(w) = (p,0), where o> = p? = 0. Since
po = 0, by the nondegeneracy of Poincaré duality,

H*(m) 2 Fylp,0,Z,9Q]/(p?, po, 0%, pQ, 02, p= + 0Q, =2, Q* =Q),

where = and €2 have degree 2.

In all the remaining cases § = 3. For if 7 = ¢ + 1 mod (4) and A,
is even then a and d are odd and b and ¢ are even. Hence A; = 2Fg
and Ay = 2¢¢/, where 0 < ¢ < g and ¢,q¢ are odd. In this case
70 > 7@ 7287 @ Z/2Z @ odd, so the images of {t,z,y} form a

basis for Hy(m). Let {p, 0,1} be the dual basis, so that

o(z) =¢(y) =1 and o(t) =o(y) =(t) = ¢(z) = 0.

If G = 7/X*m) then X?(G) = (t?,2%,y*) = (Z/2Z)? is central in G,
so the kernel of cup product from @*H'(w) to H*(x) has rank 3. It
then follows from Poincaré duality that H*(m) is generated as a ring by
H(m). In each case, po? = ppo = 0 and pyp? = ppyp = 0, by Lemma
1. Hence poy # 0, by the nondegeneracy of Poincaré duality. It then
follows easily that po, py and o are linearly independent, and so form
a basis for H?(m). We may write

0% = mpo +np +pod and  ¥* = gpo +rp + s,
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for some m,...,s. On restricting to /m, we see that p = s = 0,
since 0% = = ¥*| 7z = 0 and p| = = 0, while ot)| 5z # 0. Since
po? = p?oc = p? = p*p = 0, taking cup products with o and v gives

o’ =npoy, o*Y =mpo, P* =qpoy and oyp? =rpoi.

4. If £ > 2thena=d =1 and b,c =0 mod (4), so € = 1 mod (4)
also, i.e., 7 is orientable. In this case 0 = 1)? = p? = 0, and so

H*(ﬂ-> = ]FQ[IO7 g, 77Z}]/(p2’ 027 ¢2)

Suppose now that ¢ = 1.

5. If 7 is orientable and A; = 0 mod (8) we may assume that one
of o, 1 or o + 1 factors through Z/4Z. Thus either 0% = 0, ¢* = 0
or 02 = ¢?>. We may assume that ¢ # 0. Then po? = p’c = 0 and
Yo? = 1?0 = 0, and so 0® # 0, by the nonsingularity of Poincaré
duality. Hence

H*(m) = Fsp, 0,9/ (0%, pt + 02, 4?).

In this case we see that ¢* = 0 & ¢% = 0.

If 7 is orientable and A; = 4 mod (8) then 7 = 6 mod (8) and a, d are
odd, and so a = d mod (4). In this case * # 0 and (o + )? # 0 also,
and so 0% = mpo +npy and Y? = qpo + rpy are linearly independent.
Hence mr +ng =1 in Fy. Since w = 0, 0%y = 0)? and so m = r.

6. Suppose first that a = 1 mod (4). Then bc = 4 mod (8), and so
b=c=2mod (4). Let L, = Ker(p) N Ker(¢). Then 7/X?(Ly) has a
presentation

toy|tt=a=y* =1, to =at, tyt™' = 2%y, zy = yz).

Let J = (t,z) & (Z/4Z)?. Then o2|; = py|; = 0, while po|; # 0.
Applying part (3) of Lemma 2, we see that m = 0, and so 02 = py
and ¢? = po. (Note, however, that Lemma 2 does not assert that the
relation ¢? = gpo + rpy also holds in 7/X?(L4)! For this, we could
use Ly, = Ker(p) N Ker(¢) instead.) Hence

H*(m) = Falp, 0,0]/(p°, pto + 02, po + ¥7).

In particular, 0® = ¢* = (p+0)* = (p+¢)* # 0.

If a = —1 mod (4) then bc = 0 mod (8). If, say, b = 2 mod (4) (so
¢ = 0 mod (4)) then the change of basis ' = x, ¥ = xy reduces this
case to the one just considered. In terms of the given basis, we have

H*(m) = Fyp,0,¢]/(p°, po + 0°, ptp 4 0% + 7).

In this case 0® # 0, but ¢* = 0. A similar result holds if b = 0 mod (4)
and ¢ = 2 mod (4).
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7. If, however, a = —1 mod (4) and b = ¢ = 0 mod (4) then 7/X*(7)
has a presentation

1

oyt =at=yt =1, tat P =27, tyt ™ =y, xy = y2).

In this case J = (¢,z) is non-abelian, and ¢?|; # 0, while p|; = 0.
Hence we must have m = r = 1. It is clear from the symmetry of the
presentation for 7/X?4(7) that we must also have n = ¢ in this case,
and so n = ¢ = 0. Thus

H*(m) = Falp, 0,0]/(p*, po + o2, pp + 4?).

We now find that ¢ = 0 for all ¢ € H' (7).

If / =1 and M is non-orientable then a and d are odd, and A; =
—a —d =0 mod (4). In this case p = w;(M), and so oy + o) =
poy # 0, by Lemma 1. After swapping = and vy, if necessary, we may
assume that a =1 mod (4).

8. If bc = 0 mod (8) then, after a further change of basis of the
form o' = z,y = xzy or &’ = xy,y = y, if necessary, we may assume
that b = ¢ = 0 mod (4). Then ¢* = 0, and 7/{(t*, z,y*)) = Dg, so
(p+ ) =0 also. Hence

H*(ﬂ') = F2[pa g, ¢]/(p2a O-Qa p,@b + 1/)2)

In particular, (o +9)* = (p+ o + )3 # 0, and all other classes have
cube 0. In terms of the given bases, the other cases are:
If b=0 and ¢ = 2 mod (4) then

H*(m) = Falp, 0,9/ (p*,0° + 4%, pip + p*, 0%).

Here 0® = (p+ 0)® # 0 and all other classes have cube 0.
If b=2 and ¢ =0 mod (4) then

H*(7) = Fyp, 0,9]/ (0%, 0%, 4% + po + pip).

Here ¢® = (p + 1)? # 0 and all other classes have cube 0.

9. If b = ¢ = 2 mod (4) then ¢% and v? are linearly independent.
There are three distinct epimorphisms from 7 to the almost extraspecial
group E, given by £(z) = u~'v), £(y) = u; g(x) = v, 9(y) = uv); and
h(x) = v, h(y) = u. Using these epimorphisms to pull back the relation
given in Lemma 3, we find that

H* () 2 Falp, 0,9/ (p*, 0% + p, 0 + po + py).

In particular, every epimorphism ¢ # p has nonzero cube.
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4. UNIONS OF TWISTED /-BUNDLES

Suppose that 7/y/7 = D.. Then 7 is orientable, and has a presen-
tation
1

2 1 —2c,,—d

(u, v,y | uyu™ =yl v :Uzayba UUQCydU_ =u "y "),

where ad — be = +1 and abed # 0. Let B = (u,y) and C' = (v, u*y?).
If bis odd then 7% = Z/4cZ & Z/4Z, where the summands are

generated by u and u~%v, respectively. Let U(u) =V (v) =1, U(v) = a

and V(u) = 0. Then
H*(m) 2 Fo[U,V,E,Q]/(U?, UV, V:UE+VQ,Z2 0% 2Q),

where = and €2 have degree 2.

If bis even then 7% = Z/4cZ @ (Z/2Z)? and the images of u,v
and y represent a basis for H (). Let {U,V,Y} € H'(7) be the dual
basis. Then U?, V2 and Y? are all nonzero, but W = U + V lifts to
a homomorphism from 7 to Z/4Z, and so W? = 0. Hence U? = V2.
Since U and V are induced from classes in H'(D,) we have UV = 0.
We also have UY'|gp = Y?|g and VY |o = Y?|¢, while Ulg, Vg, U?|p
and V?|o are all 0.

Suppose that pU?+qY?2+rUY +sVY = 0in H*(7). On restricting to
the subgroups B and C, we find that ¢+7 = ¢+s = 0. Since U? # 0 we
must have ¢ = r = s = 1. Multiplying by U and V', we find that UY 2+
U?Y =0 and VY2 +V?Y = 0. Poincaré duality for 7 now implies that
{U?,Y? UY} is a basis for H?*(r), while UY? = U?Y = VY? generates
H3(m). We see also that U3 = U?V = UV? = V3 = (U+ V)3 =0,
while ( U+Y)? =V +Y)P=U+V+Y)?=Y>

Suppose first that b = 0 mod (4). Then G = 7/ {{uv,u? y*)) = Ds.
Hence (U +V +Y)Y =0 in H3(n). Tt follows easily that Y3 = 0, and
so all cubes are 0 in H3(7).

If b =2 mod (4) then m/{(u?, (uv)?, v, y*)) has a presentation
1 Lo? = )
Hence there is an epimorphism f : 7 — E, given by f(u) =t¢, f(v) =u
and f(y) =u 't . Since ff\T=U+Y, ff U=V +Y, f*V =Y and
UV = 0, it follows from Lemma 4 that UY + VY + V2 4+ Y2 =0 in
H?(r). Multiplying by Y, we find that UY? 4+ Y3 = 0 and so Y? # 0.
In this case, only the cubes induced from H*(w/\/7) are zero.

<uavvy | UZ = (U'U)Q = U4 = 1, U,y’u_ = va_l = y_

5. THE BORSUK-ULAM INDEX

We may identify an epimorphism ¢ with a nonzero class in H(N;Fs).
Then BU(N, ¢) =1 < ¢ lifts to an integral class ® € H'(N;Z), while
BU(N,¢) =n < ¢"™ # 0 in H"(N;Fy) In general, 1 < BU(N, ¢) < n.
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See [1]. When n = 3 the remaining possibility is that BU (M, ¢) = 2 <
¢* = 0 but ¢ is not the reduction of an integral class.

Suppose first that 7//7 = Z. Then the following results are imme-
diate from §3.

1. If p: m — Z/27 is the unique epimorphism which factors through
7/\/m = 7 then BU(M, p) = 1.

2. If T =¢e—1 mod (4) then BU(M, ¢) = 3 for all ¢ # p.

3. If T =¢c+1 mod (4) and either Ay is odd or a = d = 1 mod (4)
and b, ¢ are divisible by 4, then BU(M, ¢) = 2 for all ¢ # p.

4. Ife =1, Ay =0 mod (8) and Ay = 2 mod (4) then BU(M, ¢) = 2
for the two epimorphisms ¢ # p such that ¢? = 0 (i.e, that factor
through Z/4Z) and BU (M, ¢) = 3 for the four such that ¢* # 0.

5. Ife =1, Ay =4 mod (8) and © = —I5 mod (4) then BU(M, ¢) = 2
for all ¢ # p.

6. If e =1 and Ay = 4 mod (8), but © # —I, mod (4), then
BU(M, ¢) = 2 for the two epimorphisms ¢ # p such that ¢? = 0 and
BU(M, ¢) = 3 for the four such that ¢? # 0.

7. Ife=—1,7 =0 mod (4), Ay = 2 mod (4) and bc = 0 mod (8)
then BU(M, ¢) = 2 for the four epimorphisms ¢ # p such that ¢* = 0
and BU(M, ¢) = 3 for the two such that ¢3 # 0.

8. If e =—1,7=0 mod (4), Ay = 2 mod (4) and bc = 4 mod (8)
then BU(M, ¢) = 3 for all ¢ # p.

Suppose now that 7/y/m = D,. Then the following results are
immediate from §4.

9. If 7% = Z/4cZ & Z/AZ then BU(M, ¢) = 2 for all ¢.

10. If 7% = Z/4cZ & (Z/27)? and b = 0 mod (4) then BU (M, ¢)
for all ¢.

1. If 7% = Z/4cZ @ (Z/27)* and b = 2 mod (4) then BU (M, ¢) = 2
for epimorphisms ¢ which factors through 7 /+/7, while BU (M, ¢) = 3
otherwise.

2

6. OTHER GEOMETRIES

We remark finally that similar arguments may be used to determine
the Fy-cohomology rings and Borsuk-Ulam invariants for pairs (N, ¢)
with N a closed E3- or Nil*>-manifold. These manifolds are all Seifert
fibred over flat 2-orbifolds. Since they have been covered in [2], we shall
confine ourselves to some brief observations.

The ten closed flat 3-manifolds may be easily treated individually.
The only one admitting a class ¢ with ¢* # 0 has group G4, with
holonomy Z/47Z and abelianization Z & Z/27. Thus H'(r) = (T, X),
where 7% = 0 and X? # 0. We may deduce that TX = 0 also, by
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mapping G4 onto Dg. It follows easily that
H*(Gy) 2 [T, X,Q)/(T*, TX, XQ,TQ+ X3 02,

where 2 has degree 2. (Thus X? = (T + X)3 # 0. These classes
correspond to the two epimorphisms without integral lifts.)

The possible Seifert bases B of closed Nil*>-manifolds are the seven
flat 2-orbifolds with no reflector curves: B = T, Kb, S(2,2,2,2),
S(2,4,4), S(2,3,6), S(3,3,3) or P(2,2). Let 8 = 7"%(B) be the orb-
ifold fundamental group of the base. Then 7 is an extension of 3%
by a finite cyclic group Z/qZ, if the base is orientable (B # Kb or
P(2,2)), and by Z/(2,q)Z otherwise. The ring H*(7) depends only
on the base B and the residue of ¢ mod (4). If B = T or Kb then
7 2 7% xg Z, for some © € GL(2,7Z). These are in fact the cases re-
quiring most effort. In all other cases 7 is finite, and the projection of
7 onto 5 induces an isomorphism Hy(7) = Hy(f). When B = 5(2,3,6)
or S(3,3,3) this group is cyclic. (In particular, such Ni/*-manifolds
are not unions of twisted /-bundles.) When B = S(2,4,4) we have
/XY m) =& B/XYB) 2 Gy4/X*(G4). The cases of S(2,2,2,2) and
P(2,2) are related to those of the flat 3-manifolds Gy and By, respec-
tively.
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