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Abstract

This paper investigates the uniform convergence for the Nadaraya-Watson es-

timators in a non-linear cointegrating regression. Our results provide a optimal

convergence rate without the compact set restriction, allowing for martingale in-

novation structure and the situation that the data regressor sequence is a partial

sum of general linear process including fractionally integrated time series. We also

investigate the uniform convergence for functionals of general non-stationary time

series, which is of interests in its own right.
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1 Introduction

The past few decades has witnessed significant developments on cointegration analysis,

particularly linear models have dominated empirical work in the applications of these

methods. While it is convenient for practical implementation, linear structure of the

traditional cointegration model is often too restrictive for modeling propose. Empirical

examples in this regard can be found in Granger and Teräsvirta (1993). In such situa-

tions, given the prevalence of nonlinear relationships in economics, it is expected that
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nonlinear cointegration captures the features of many long-run relationships in a more

realistic manner.

Typical non-linear cointegrating regression model has the form

yt = f(xt) + ut, t = 1, 2, ..., n, (1)

where {ut} is a zero mean equilibrium error, xt is a non-stationary regressor and f(·)
is an unknown real function on R. With given observations (xt, yt) which may include

non-stationary components, the point-wise estimation and inference of the unknown f(·)
have been becoming increasing interests in literature. Phillips and Park (1998) studied

nonparametric autoregression in the context of a random walk. Karlsen and Tjøstheim

(2001) and Guerre (2004) studied nonparametric estimation for certain nonstationary

processes in the framework of recurrent Markov chains. Karlsen, et al. (2007) developed

an asymptotic theory for nonparametric estimation of a time series regression equation

involving stochastically nonstationary time series. Karlsen, et al. (2007) address the

function estimation problem for a possibly nonlinear cointegrating relation, providing

an asymptotic theory of estimation and inference for nonparametric forms of cointegra-

tion. Under similar conditions and using related Markov chain methods, Schienle (2008)

investigated additive nonlinear versions of (1) and obtained a limit theory for nonpara-

metric regressions under smooth backfitting. More recently, Wang and Phillips (2009a,

2009b, 2011) and Cai, et al. (2009) considered an alternative treatment by making use

of local time limit theory and, instead of recurrent Markov chains, worked with partial

sum representations of the type xt =
∑t

j=1 ξj where ξj is a general linear process. For

other related current works, we refer to Kasparis and Phillips (2009), Park and Phillips

(1999, 2001), Bandi (2004), Gao, et al (2009a, b), Choi and Saikkonen (2004, 2010),

Marmer (2008), Chen, et al (2010), Wang and Phillips (2012), and Wang (2011).

Different from these aforementioned point-wise asymptotic work, this paper is con-

cerned with the uniform convergence for the Nadaraya-Watson estimator f̂(x) of f(x)

in the non-linear cointegrating regression model (1), defined by

f̂(x) =

∑n
s=1 ysK[(xs − x)/h]∑n
s=1K[(xs − x)/h]

, (2)

where K(x) is a nonnegative real function and the bandwidth parameter h ≡ hn →
0 as n → ∞. In this regard, for a near I(1) regressor xt, Wang and Wang (2011)

established uniform consistency for both the regression and the volatility functions under

2



a compact set. Without the compact set restriction, Gao, et al. (2011) derived strong and

weak consistency results for the case where the xk is a null-recurrent Markov chain, but

imposed the independence between uk and xk. More currently, Wang and Chan (2011)

investigated the uniform convergence for a class of martingales. As a direct application

of their main result, Wang and Chan (2011) removed the restriction on the independence

between uk and xk as required in Gao, et al. (2011), but their result only works for the

xk to be a recurrent Markov chain.

Using some quite different techniques, in this paper, we establish the uniform con-

sistency of f̂(x) defined by (2) with sharp (probably optimal) convergence rate without

the compact set restriction, under very general settings on the regressor xt and the er-

ror presses ut. Explicitly, our model allows for the regressor xt to be a partial sum of

general linear process and for a martingale innovation structure. We also investigate the

uniform convergence for functionals of general non-stationary time series. This result is

of interests in its own right.

This paper is organized as follow. Section 2 presents our main results. The uniform

convergence for functionals of general non-stationary time series is considered in Section

3. Technical proofs are postponed to Section 4. Throughout the paper, we denote

constants by C,C1, C2, ... which may be different at each appearance.

2 Main results

Let {ξj, j ≥ 1} be a linear process defined by

ξj =
∞∑
k=0

φk εj−k, (3)

where {εj,−∞ < j <∞} is a sequence of iid random variables with Eε0 = 0, Eε20 = 1,

E|ε0|k < ∞ for some k > 2 and the characteristic function ϕ(t) of ε0 satisfies
´∞
−∞(1 +

|t|)|ϕ(t)|dt <∞. Throughout the paper, the coefficients φk, k ≥ 0 are assumed to satisfy

one of the following conditions:

C1. φk ∼ k−µ ρ(k), where 1/2 < µ < 1 and ρ(k) is a function slowly varying at ∞.

C2.
∑∞

k=0 |φk| <∞ and φ ≡
∑∞

k=0 φk 6= 0.

We also make use of the following assumptions in the asymptotic development.
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Assumption 2.1. xt =
∑t

j=1 ξj, where ξj is defined as in (3).

Assumption 2.2. {ut,Ft}t≥1 is a martingale difference, where Ft = σ(x1, ..., xt+1, u1, ..., ut),

satisfying E(u2t | Ft−1) →a.s. σ
2 < ∞, as t → ∞ and supt≥1E|ut|2p < ∞, where

p ≥ 1 + [1/δ0] for some 0 < δ0 < α, where

α =

µ− 1/2, under C1,

1/2, under C2.
(4)

Assumption 2.3. The kernel K satisfies that supxK(x) <∞,
´∞
−∞(1+|s|)K(s)ds <

∞, and

|K(x)−K(y)| ≤ C |x− y|.

for any x, y ∈ R, whenever |x− y| is sufficiently small.

Assumption 2.4. There exists a real positive function g(x) such that

|f(y)− f(x)| ≤ C |y − x|βg(x),

uniformly for some 0 < β ≤ 1 and any (x, y) ∈ Ωε, where ε can be chosen sufficient small

and Ωε = {(x, y) : |y − x| ≤ ε, x ∈ R}.

Assumption 1 allows for the regressor xt to be a fractionally integrated process (under

C1) and also a partial sum of short memory linear process (under C2). The condition

C2 is used in Wang and Wang (2011) as well as Wang and Chan (2011). The condition

C1 is new. Putting d2n = Ex2n, we have

d2n = Ex2n ∼

cµn3−2µρ2(n), under C1,

φ2n, under C2.
(5)

where cµ = 1/((1 − µ)(3 − 2µ))
´∞
0
x−µ(x + 1)−µdx. See, e.g., Wang, Lin and Gulati

(2003) for instance. This notation and fact will be repeatedly used later without further

explanation.

Assumption 2.2 is standard as in the stationary situation in which we impose a

martingale structure so that cov(ut+1, xt) = E[xtE(ut+1 | Ft)] = 0. This conditional

orthogonality conditions is the same as in Wang and Wang (2011) as well as Wang and

Chan (2011), but weaker than that in Gao et al (2011), which assumes xt and ut are
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independent.

Assumptions 2.3 and 2.4 are standard conditions on the kernel K(x) and the unknown

functional f(x), which are the same as in Wang and Wang (2011). Assumptions 2.3 does

not restrict the kernel to have a finite compact, as required in most of the previous works.

Assumption 2.4 hosts for a wide set of functionals, including that f(x) = θ1 + θ2x+ ...+

θkx
k−1; f(x) = θ1 + θ2 x

θ3 ; f(x) = x(1 + θx)−1I(x ≥ 0); f(x) = (θ1 + θ2 e
x)/(1 + ex).

We have the following main result.

Theorem 2.1. Under Assumptions 2.1–2.4, for any Bn ≤ M0 dn/ logγ0 n, any h satis-

fying h→ 0 and nα−δ0h→∞, we have

sup
|x|≤Bn

|f̂(x)− f(x)| = OP

[( dn
nh

)1/2
log1/2 n+ hβ δn

]
, (6)

where M0 > 0 is a fixed constant, δn = sup|x|≤Bn g(x), and

γ0 =


4(3−2µ)
2µ−1 , under C1 and 9/10 < µ < 1 ,

(5−2µ)(3−2µ)
(2µ−1)2 , under C1 and 1/2 < µ ≤ 9/10,

4, under C2 .

Remark 2.1. A better result can be obtained if we are only interested in the point-

wise asymptotics for f̂(x). Indeed, as in Wang and Phillips (2009a, b) with minor

modification, we may show that, for each fixed point x,

f̂(x)− f(x) = OP

[( dn
nh

)1/2
+ hβ

]
. (7)

Furthermore f̂(x) has an asymptotic distribution that is mixing normal, under minor

additional conditions to Assumption 2.2.

In comparison to the stationary regressor situation, where the sharp rate of conver-

gence in (6) is OP [(log n/nh)1/2] (see Hansen (2008), for instance), the convergence

rate in (6) is sharp (probably optimal). There is an essential difference for the rate of

convergence between stationary and non-stationary time series. The reason behind the

difference is mainly because, in non-stationary case, the amount of time spent by the

process around any specific point is of order dn rather than n. More explanation can be

found in Remark 3.3 of Wang and Phillips (2009a).
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Remark 2.2. The bandwidth condition nα−δ0h → ∞ is related to the moment con-

dition of the martingale sequence ut. If high moments of ut exists, we can choose

δ0 to be sufficiently small. When |uk| ≤ C, we can obtain better bandwidth condition

nαh log−θ n → ∞, where θ is a real number depending only on γ0. In (6), hβ δn → 0 is

necessary to guarantee the uniform consistency of f̂(x). If the regression function f(x)

has thin tail, e.g. f(x) = (α+βex)/(1+ex), δn will be bounded by a constant. In a point-

wise situation, the term hβ can be improved if we put a bias term in the left hand of (7).

See Wang and Phillips (2011). It is not clear at the moment whether there are similar

properties for the uniform consistency (6). The issue seems to be difficult, since we have

to consider the uniform convergence for zero energy functionals of non-stationary time

series, which is not available at the moment. We leave this topic for future work.

Remark 2.3. The result (6) improves Theorem 3.2 of Wang and Wang (2012), even

assuming x is in a finite compact set. As stated in Remark 2.1, our rate of convergence

may be optimal for this kind of uniform convergence. In a specific situation that xt =∑t
j=1 εj, that is, xt is a random walk, Wang and Chan (2011) proved that the range

|x| ≤ Bn in Theorem 2.1 can be improved to |x| ≤M0

√
n. It is not clear at the moment

whether the similar result still holds under our general regressors. It seems that a quite

different techniques is required to attack this problem and hence leave for future work.

See Remark 3.2 for more details in this regard.

Remark 2.4. To outline the essentials of the arguments in the proof of Theorem 2.1,

we split the error of f̂(x)− f(x) as

f̂(x)− f(x) =

∑n
t=1 utK[(xt − x)/h]∑n
t=1K[(xt − x)/h]

+

∑n
t=1

[
f(xt)− f(x)

]
K[(xt − x)/h]∑n

t=1K[(xt − x)/h]

:= Θ1n(x) + Θ2n(x). (8)

Under Assumptions 2.3 and 2.4, it is readily seen that, whenever n is sufficiently large,

sup
|x|≤Bn

|Θ2n(x)| ≤ Chβ δn.

Under Assumption 2.2, {Sn(x),Ft}t≥1 is a class of martingale, where Sn(x) =
∑n

t=1 utK[(xt−
x)/h]. In order to estimate the Θ1n, by Theorem 2.1 of Wang and Chan (2011) (See
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Appendix for a restatement of the theorem), it suffices to show the following results:

sup
|x|≤M0 dn/ log

γ0 n

n∑
k=1

K2[(xk − x)/h] = OP (nh/dn), (9)

[
inf

|x|≤M0 dn/ log
γ0 n

n∑
t=1

K[(xt − x)/h]
]−1

= OP [dn/(nh)], (10)

for any h, satisfying h → 0 and nαh log−θ n → ∞, where θ is a real number depending

only on γ0. The results (9) and (10) is a direct consequence of Theorem 3.2, together

with Remark 3.1, where we established the uniform consistency for functionals of non-

stationary time series .

To end this section, we introduce the following examples which satisfy the condition

C1 and C2 respectively.

Example 1. Let {Yt} be an ARMA(p,q) process, defined by

φ(B)Yt = θ(B)εt, (11)

where φ and θ are the pth and qth degree polynomials

φ(z) = 1− φ1z − ...− φpzp (12)

and

θ(z) = 1 + θ1z + ...+ θqz
q (13)

and B is the backshift operator, {εj,−∞ < j < ∞} is white noise with mean 0 and

variance σ2. Suppose that φ(·) and θ(·) have no common zeroes. If θ(z) 6= 0 for all z ∈ C
such that |z| ≤ 1, Yt can be represented as

Yt =
∞∑
k=0

ψkεt−k (14)

where ψ(z) = θ(z)/φ(z), |z| ≤ 1 satisfying
∑∞

k=0 |ψk| < ∞ and
∑∞

k=0 ψk 6= 0. See, e.g.

Brockwell and Davis (1987). That is, Yt is a linear process satisfying the condition (C2).
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Example 2. Let {Zt} be a fractionally integrated process {Zt} initialized at Z0 = 0,

defined by

(1−B)dZt = εt, (15)

where 0 ≤ d < 1/2, B is a backshift operator, and {εj,−∞ < j < ∞} is a sequence

of i.i.d. random variables with Eε0 = 0, Eε20 = 1, and characteristic function φ(t) of ε0

satisfying
´∞
−∞(1+ |t|)|φ(t)|dt <∞. The fractional difference operator (1−B)γ is defined

by its Maclaurin series (by its binomial expansion, if γ is an integer):

(1−B)γ =
∞∑
j=0

Γ(−γ + j)

Γ(−γ)Γ(j + 1)
Bj where Γ(z) =


´∞
0
sz−1e−sds, if z > 0

∞, if z = 0.
(16)

If z < 0, Γ(z) is defined by the recursion formula zΓ(z) = Γ(z + 1).

We may present Zt as Zt =
∑∞

k=0 a(k)εt−k with

a(k) =
Γ(k + d)

Γ(k + 1)Γ(d)
∼ 1

Γ(d)
kd−1, (17)

as k →∞. See Wang, et al. (2003) for instance. That is, Zt is a linear process satisfying

the condition (C1) with µ = 1− d.

3 Uniform bounds for functionals of non-stationary

time series

Consider a triangular array xk,n, 1 ≤ k ≤ n, n ≥ 1 constructed from some underlying time

series. In most practical situations, xk,n is equal to xk/dn, where xk is a partial sum and

0 < dn →∞ in such a way that xn/dn has a limit distribution. The functional of interest

Sn of xk,n is defined by the sample average

Sn(x) =
n∑
k=1

g[cn (xk,n + x)], x ∈ R,

where cn is a certain sequence of positive constants and g is a real function on R.

Such functionals commonly arise in non-linear regression with integrated time series

[Park and Phillips (1999, 2001)] and non-parametric estimation in relation to nonlinear
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cointegration models [Phillips and Park (1998), Karlsen and Tjostheim (2001), Wang and

Phillips (2009a, 2009b, 2011)]. The limit behavior of Sn(x) in the situation that cn →∞
and n/cn → ∞ is particularly interesting and important for practical applications as it

provides a setting that accommodates a sufficiently wide range of bandwidth choices to

be relevant for non-parametric kernel estimation.

For a fixed x, the limit distribution of Sn(x) has been established by Wang and

Phillips (2009a, 2009b, 2011) under very general setting on xk,n. The aim of this section

is investigate the uniform (upper and lower) bound for Sn(x) on a compact set or on

R. As discussed in Section 2, these results will be useful in the investigation of uniform

convergence for kernel estimates in a non-linear cointegrating regression. We make use

of the following assumptions in the development of main results.

Assumption 3.1. supx |g(x)| <∞,
´∞
−∞ |g(x)|dx <∞ and |g(x)− g(y)| ≤ C|x− y|

whenever |x− y| is sufficient small on R.

Assumption 3.2. There exists a stochastic process G(t) having a continuous local

time LG(t, s) such that x[nt],n ⇒ G(t), on D[0, 1], where weak convergence is understood

w.r.t the Skorohod topology on the space D[0, 1].

Assumption 3.3. For all 0 ≤ k < l ≤ n, n ≥ 1, there exist a sequence of constants

dl,k,n ∼ C0[n/(l − k)]−d for some 0 < d < 1 and a sequence of increasing σ-fields

Fk,n (define F0,n = σ{φ,Ω}, the trivial σ-field) such that xk,n are adapted to Fk,n and,

conditional on Fk,n, (xl,n − xk,n)/dl,k,n has a density hl,k,n(x) satisfying that hl,k,n(x) is

uniformly bounded by a constant K and uniformly for j − k sufficiently large

sup
y
|hl,k,n(y + u)− hl,k,n(y)| ≤ C min{|u|, 1}. (18)

Theorem 3.1. Under Assumptions 3.1 and 3.3, we have

sup
|x|≤nm0

|Sn(x)| = O[(n/cn) log n], a.s., (19)

for any cn → ∞ and cn/n → 0, and any fixed constant 0 < m0 < ∞. If there exist

positive constants m (allow to be sufficient large) and k (allow to be sufficient small)

such that n sup|x|>nm/2 |g(cn x)| = O[(n/cn) log n] and n−mk
∑n

t=1 |xt,n|k = O(1) a.s., then

sup
x∈R
|Sn(x)| = O[(n/cn) log n], a.s. (20)
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We mention that the additional conditions to establish (20) are close to minimal.

The bound can be improved if we are only concerned with convergence in probability,

as stated in the following theorem.

Theorem 3.2. Under Assumptions 3.1-3.3, we have

sup
|x|≤M0/ log

γ1 n

|Sn(x)| = OP (n/cn), (21)

where

γ1 =

4
(

d
1−d

)
, if 0 < d ≤ 3/5,(

1+d
1−d

)(
d

1−d

)
, if 3/5 < d < 1.

(22)

for any fixed M0 > 0, cn → ∞ and (n/cn) log−θ n → ∞, where θ = (1 − d)γ1/d. If in

addition
´∞
−∞ g(x)dx 6= 0, then

[
inf

|x|≤M0/ log
γ1 n
|Sn(x)|

]−1
= sup
|x|≤M0/ log

γ1 n

|S−1n (x)| = OP (cn/n). (23)

Remark 3.1. The requirement on dl,k,n is mild. Indeed, in most practical situations,

xk,n =
∑k

j=1 ηj/dn, where d2n = var(
∑k

j=1 ηj) ∼ C0n
2d for some 0 < d < 1, as stated

in the following examples. It is hence natural to assume dl,k,n ∼ C0[n/(l − k)]−d. This

condition can be generalized to dl,k,n ∼ C0[nρ(n)/(l− k)ρ(l− k)]−d, where ρ(n) is slowly

varying function at infinity or more generally to those as in Assumption 2.3 (i) of Wang

and Phillips (2009a) without essential difficulty. We omit this kind of generalization

here for notation convenience.

Remark 3.2. It is readily seen that dl,k,n ∼ C0[n/(l− k)]−d for some 0 < d < 1 satisfies

Assumption 2.3 (i) of Wang and Phillips (2009a). If in addition to Assumptions 3.1-3.3,´∞
∞ g(x)dx 6= 0. Theorem 2.1 and Remark 2.1 of Wang and Phillips (2009a) yield that

cn
n

n∑
t=1

g[cn (xt,n + yn)]→D

ˆ ∞
−∞

g(x)dxLG(1, y), (24)

whenever cn → ∞, n/cn → ∞ and yn → y, where LG(1, 0) is the local time process

defined by

LG(t, s) = lim
ε→0

1

2ε

ˆ t

0

I
{
|G(r)− s| ≤ ε

}
dr.
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Note that P (0 < LG(1, x) <∞) = 1, for any fixed x ∈ R and LG(1, x)→ 0, as x→∞.

It might be possible to improve the range |x| ≤ M0/ logγ1 n in (21) and (23) into x ∈ R
and |x| ≤ M0 (not possible for |x| ≤ bn in (23) where bn → ∞), respectively. However,

to do this, we require a quite different technique, and hence leave it for future work.

The essential behind the proof of Theorem 3.2 is a fact that Sn(x) can be approxi-

mated by Sn(0) under a reasonable rate. Explicitly we have the following theorem.

Theorem 3.3. Let γ ≥ 0. Under Assumptions 3.1-3.3, we have

sup
|x|≤M0/ log

γ n

|Sn(x)− Sn(0)| = OP [(n/cn) log1−λ n], (25)

for any fixed M0 > 0, cn →∞ and (n/cn) log−θ n→∞, where θ = max{λ+ 1, η},

λ =


(1−d)2γ/d−(2d−1)

2−d , if 1/2 < d < 1 and γ ≥ d(5d− 1)/(2d− 1),

(1+γ)(1−d)−2d
1+d

, otherwise,
(26)

and

η =


γ + (λ+ 1)(1− 2d)/(1− d), if 0 < d < 1/2,

γ − 1, if d = 1/2,

(1− d)γ/d, if 1/2 < d < 1.

(27)

To end this section, we introduce the following examples on xk,n, which satisfy As-

sumptions 3.2 and 3.3.

Example 3.1. Let {ξj, j ≥ 1} be a stationary sequence of Gaussian random variables

with Eξ1 = 0 and covariances γ(j− i) = Eξjξi satisfying the following condition for some

0 < β < 2 and λ > 1,

d2n ≡
∑

1≤i,j≤n

γ(j − i) ∼ nβ and |γ̃l,k| ≤ λdkdl−k, (28)

as min{k, l − k} → ∞, where

γ̃l,k =
k∑
i=1

l∑
j=k+1

γ(j − i) (29)
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Let xk,n =
∑k

j=1 ξj/dn, 1 ≤ k ≤ n. Then xk,n satisfies Assumptions 3.2 and 3.3 with

G(t) = Wβ/2(t). See Corollary 2.1 of Wang and Phillips (2009a).

Here and below, Wβ(t) denotes fractional Brownian motion with 0 < β < 1 on D[0, 1],

defined as follows:

Wβ(t) =
1

A(β)

ˆ 0

−∞

[
(t− s)β−1/2 − (−s)β−1/2

]
dW (s) +

ˆ t

0

(t− s)β−1/2dW (s),

where W (s) is a standard Brownian motion and

A(β) =
( 1

2β
+

ˆ ∞
0

[
(1 + s)β−1/2 − sβ−1/2

]2
ds
)1/2

.

Example 3.2. Let xk,n = xk/dn, where xk is defined as in Assumption 2.1 and dn is

defined as in (5). Then xk,n satisfies Assumptions 3.2 and 3.3 with

G(t) =

Wµ−3/2(t), under C1,

W (t), under C2.
(30)

The verification of xk,n satisfying Assumption 3.2 and 3.3 are largely similar to that the

proof of Corollary 2.2 of Wang and Phillips (2009a). The only additional work is to

check (18), which is given in Appendix.

4 Proofs of main results

This section provides proofs of the main results. we start with a lemma, which will be

heavily used in the proof of main results. Throughout this section, we denote constants

by C,C1, C2, ..., which may be different at each appearance.

Lemma 4.1. For any real function l(x) satisfying supx |l(x)| < ∞ and
´∞
−∞ |l(x)|dx <

∞, there exist a constant H0 not depending on t1, t2, t3 and m such that

sup
x
E
(
|
t3∑

k=t2

l[cn (xk,n + x)]|m | Fn,t1
)

≤ Hm
0 (m+ 1)!nd c−1n (t3 − t1)1−d

[
1 +

{
(t3 − t2)1−dnd c−1n

}m−1]
. (31)

for all 0 ≤ t1 < t2 < t3 ≤ n and integer m ≥ 1. In particular, by letting t1 = 0, t2 = 1
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and t3 = n, we have

sup
x
E|

n∑
k=1

l[cn (xk,n + x)]|m ≤ Hm
0 (m+ 1)! (n/cn)m. (32)

Proof. First recall that, given on Fs,n, (xt,n−xs,n)/dt,s,n has a density ht,s,n(x) which

is uniformly bounded by a constant K. Simple calculations show that, for 1 ≤ s < t ≤ n,

E
{
|l[cn(xt,n + x)]| | Fs,n

}
=

ˆ ∞
−∞
|l[cndt,s,n y + cn(xs,n + x)]|ht,s,n(y)dy

≤ K

cndt,s,n

ˆ ∞
−∞
|l[y + cn(xs,n + x)]|dy

≤ K l1/(cndt,s,n), (33)

where l1 =
´∞
−∞ |l(x)|dx. By virtue of this estimate, it follows from conditional arguments

repeatedly that, for any t2 ≤ k1 < k2 < ... < km ≤ t3,

E
(∣∣l[cn(xk1,n + x)] ... l[cn(xkm,n + x)]

∣∣ | Fn,t1)
≤ E

(∣∣l[cn(xk1,n + x)] ... l[cn(xkm−1,n + x)]
∣∣E(|l[cn(xkm,n + x)]| | Fn,km−1

)
| Fn,t1

)
≤ K l1 c

−1
n d−1km,km−1,n

E
(∣∣l[cn(xk1,n + x)] ... l[cn(xkm−1,n + x)]

∣∣ | Fn,t1)
≤ ......

≤ (K l1)
m c−mn d−1k1,t1,n d

−1
k2,k1,n

· · · d−1km,km−1,n
.

13



Therefore, by recalling dt,s,n ∼ C0 [(n/(t − s)]−d for some 0 < d < 1 and letting H0 =

max{1, K l0 l1C0} where l0 = supx |l(x)|, we have

E
(
|
t3∑

k=t2

l[cn (xk,n + x)]|m | Fn,t1
)

≤ max{1, lm−10 }
[ t3∑
k1=t2

E
(
|l
[
cn(xt,n + x)

]
| | Fn,t1

)
+2

∑
t2≤k1<k2≤t3

E
(
|l
[
cn(xk1,n + x)

]
l
[
cn(xk2,n + x)

]
| | Fn,t1

)
+ ...

+m!
∑

t2≤k1<...<km≤t3

E
(
|l
[
cn(xk1,n + x)

]
... l
[
cn(xkm,n + x)

]
| | Fn,t1

)]
≤ Hm

0

[
nd c−1n

t3∑
k1=t2

(k1 − t1)−d

+2n2d c−2n
∑

t2≤k1<k2≤t3

(k1 − t1)−d(k2 − k1)−d + ...

+m!nmd c−mn
∑

t2≤k1<...<km≤t3

(k1 − t1)−d(k2 − k1)−d...(km − km−1)−d
]

≤ Hm
0 (m+ 1)!nd c−1n (t3 − t1)1−d

[
1 +

{
(t3 − t2)1−dnd c−1n

}m−1]
.

This proves Lemma 4.1. 2

We are now ready to prove the main results.

Proof of Theorem 3.1. Let

yj = −[nm0 ]− 1 + j /m′n, j = 0, 1, 2, ..., mn, (34)

where m′n = [(n/cn)1/2c2n] and mn = 2([nm0 ] + 1)m′n. It follows that

sup
|x|≤nm0

∣∣Sn(x)
∣∣ ≤ max

0≤j≤mn−1
sup

x∈[yj ,yj+1]

n∑
t=1

∣∣g[cn(xt,n + x)]− g[cn(xt,n + yj)]
∣∣

+ max
0≤j≤mn

∣∣ n∑
t=1

g[cn(xt,n + yj)]
∣∣

:= λ1n + λ2n. (35)

14



It follows from Assumption 3.1 that

λ1n ≤ C n cn max
0≤j≤mn−1

|yj+1 − yj| = O
[
(n/cn)1/2

]
, (36)

which yields λ1n = O(n/cn), a.s., as n/cn →∞.
We use Lemma 4.1 to estimate λ2n. To this end, let m = log n in (32). It follows from

Markov inequality and the Stirling approximation of (m+1)! that, for any M0 ≥ em0+3H0

where H0 is given as in Lemma 4.1,

P
(

max
1≤j≤mn

∣∣∣ n∑
t=1

g
[
cn(xt + yj)

∣∣∣] ≥M0 (n/cn) log n, i.o.
)

≤ lim
s→∞

∞∑
n=s

mn∑
j=1

P
(∣∣∣ n∑

t=1

g
[
cn(xt,n + yj)

]∣∣∣m ≥ [M0 (n/cn) log n
]m)

≤ lim
s→∞

∞∑
n=s

mn

[M0 (n/cn) log n
]m max

1≤j≤mn
E
∣∣∣ n∑
t=1

g
[
cn(xt + yj)

]∣∣∣m
≤ lim

s→∞

∞∑
n=s

mnH
m
0 (m+ 1)!

[M0 log n
]m

≤ C lim
s→∞

∞∑
n=s

nm0+1Hm
0[

M0 log n
]m√2π (m+ 1)

(m+ 1

e

)m+1

≤ C lim
s→∞

∞∑
n=s

e−(m0+3) logn nm0+1 log n

≤ C1 lim
s→∞

∞∑
n=s

n−2 = 0. (37)

This proves λ2n = O[(n/cn) log n], a.s. Taking the estimates of λ1n and λ2n into (35), we

obtain the required (19).

To prove (20), we first write

n∑
k=1

g[cn (xk,n + x)] =
n∑
k=1

g[cn (xk,n + x)]I(|xt,n| ≤ nm/2)

+
n∑
k=1

g[cn (xk,n + x)]I(|xt,n| > nm/2)

:= λ1n(x) + λ2n(x) (38)
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It follows from (19) and n sup|x|>nm |g(cn x)| = O[(n/cn) log n] that

sup
x∈R
|λ1n(x)| ≤ sup

|x|≤nm
|λ1n(x)|+ sup

|x|>nm
|λ1n(x)|

≤ O[(n/cn) log n] + n sup
|x|>nm/2

|g(cn x)| a.s.

≤ O[(n/cn) log n] a.s., (39)

As for λ2n(x), we have

sup
x∈R
|λ2n(x)| ≤ C

n∑
t=1

I(|xt,n| > nm/2) ≤ Cn−mk/2
n∑
t=1

|xt,n|k

= O(1) a.s., (40)

Combining (38)-(40), we prove (20). The proof of Theorem 3.1 is now complete. 2

Proof of Theorem 3.2. It follows immediately from Theorem 3.3 and Remark 3.2.

We omit the detalis.

Proof of Theorem 3.3. Let ηn = (n/cn) log−λ n, bn = [n log−ν n], where ν =

(λ + 1)/(1 − d), and let Tn be the largest integer s such that sbn ≤ n. Also write

yj = −M0/ logγ n + j/m′n, j = 0, 1, 2, ...,mn, where m′n = [(n/cn)1/2c2n] and mn =

[M0m
′
n/ logγ n] + 1. It is readily seen that

n/bn ∼ logν n, Tnbn ≤ n, mn ≤ Cn2, (41)

due to cn → ∞ and cn/n → 0. Furthermore, by recalling the definitions of λ and η,

tedious but elementary calculations show that, whenever γ ≥ 0,

dν − η ≤ 1− 2λ, (d− 1)ν + λ ≤ −1, 2dν − γ ≤ 1− λ. (42)

We now return to the proof of Theorem 3.3. Using the similar arguments as in the

16



proof of (35), we have

sup
|x|≤M0/ log

γ n

|Sn(x)− Sn(0)|

≤ sup
|x|≤M0/ log

γ n

|Sn(yj)− Sn(0)|+Oa.s.[(n/cn)1/2]

≤ max
1≤j≤mn

|
Tn−1∑
s=2

∆ns(yj)|+ max
1≤j≤mn

∆n(yj) +Oa.s.[(n/cn)1/2], (43)

where, for s = 1, ..., Tn ,

∆ns(x) =

(s+1)bn∑
t=sbn+1

(
g[cn(xn,t + x)]− g(cn xn,t)

)
,

∆n(x) ≤
( 2bn∑
t=1

+
n∑

t=Tnbn

) ∣∣g[cn(xn,t + x)]− g(cn xn,t)
∣∣.

Recall ηn = (n/cn) log−λ n. Using Theorem 3.1, it is readily seen that

max
1≤j≤mn

∆n(yj) ≤ C
[
(bn + |n− Tnbn|)/cn

]
log n

≤ C (n/cn) log1−ν n ≤ C ηn log n, a.s.

This, together with (43), implies that (23) will follow if we prove

max
1≤j≤mn

(
|

Tn∑
s=2

s∈even

∆ns(yj)|+ |
Tn∑
s=2
s∈odd

∆ns(yj)|
)

= OP (ηn log n). (44)

We only prove (44) for s ∈ even. The other is similar and hence the details are omitted.

To this end, let F∗n,v = Fn,(2v+1)bn , v ≥ 0, and M1 > 0 is chosen later,

∆′ns(x) = ∆n,2s(x)I(|∆n,2s(x)| ≤M1 ηn),

∆∗ns(x) = ∆′n,s(x)− E
(
∆′n,s(x) | F∗n,s−1

)
.
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Under these notation, to prove (44) for s ∈ even, it suffices to show

λ1n := max
1≤j≤mn

|
Tn/2∑
s=1

∆∗ns(yj)| = OP (ηn log n), (45)

λ2n := max
1≤j≤mn

|
Tn/2∑
s=1

E
(
∆n,2s(yj) | F∗n,s−1

)
| = OP (ηn log n), (46)

λ3n := max
1≤j≤mn

|
Tn/2∑
s=1

(
∆n,2s(yj)I(|∆n,2s(yj)| > M1 ηn)

+E
[
∆n,2s(yj)I(|∆n,2s(yj)| > M1 ηn) | F∗n,s−1

])
= OP (ηn log n). (47)

We start with (46). Note that, for any 2sbn < t ≤ (2s + 1)bn and |x| ≤ M0/ logγ n

(letting sn = (2s− 1)bn),∣∣∣E[g[cn(xt,n + x)]− g(cn xt,n)
∣∣∣F∗n,s−1]∣∣∣ =

∣∣∣E[g[cn(xt,n + x)]− g(cn xt,n)
∣∣∣Fn,sn]∣∣∣

=
∣∣∣ˆ ∞
−∞

(
g[cn(xsn,n + dt,sn,ny + x)]− g[cn (xsn,n + dt,sn,ny)]

)
ht,sn,n(y)dy

∣∣∣
≤ d−1t,sn,n

ˆ ∞
−∞

g[cn(y + xsn,n)]
∣∣ht,sn,n[(y − x)/dt,sn,n]− ht,sn,n(y/dt,sn,n)

∣∣ dy
≤ C c−1n d−1t,sn,n min{|x|d−1t,sn,n, 1} ≤ C |x| c−1n (n/bn)2d

≤ C c−1n log2dν−γ n, (48)

due to Assumption 3.3 and dt,s,n ∼ C0[n/(t− s))]−d. It is readily seen that

λ2n ≤
Tn/2∑
s=1

max
1≤j≤mn

|E
(
∆n,2s(yj) | F∗n,s−1

)
|

≤ C (n/cn) log2dν−γ n = OP (ηn log n), (49)

due to (42), which yields (46).

Next for (47). Using Lemma 4.1 with t1 = 0, t2 = 2sbn + 1 and t3 = (2s + 1)bn, for

any integer m ≥ 1,

sup
x

E|∆n,2s(x)|m ≤ Hm
0 (m+ 1)! (n/cn)

{
1 +

[
(n/cn)(n/bn)d−1

]m−1}
≤ 2Hm

0 (m+ 1)!(n/cn)m(n/bn)(d−1)(m−1),
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whenever (n/cn) log−(λ+1) n→∞. By virtue of this fact, we have

Eλ3n ≤ 2
mn∑
j=1

Tn/2∑
s=1

E∆n,2s(yj)I(|∆n,2s(yj)| > M1 ηn)

≤ 2mnTn H
m
0 (m+ 1)!(n/cn)

[(n/cn)(n/bn)d−1

M1 ηn

]m−1
≤ C n4(H0/M1)

m (m+ 1)! log−(m−1) n,

due to (41) and (d− 1)ν + λ ≤ −1 by (42). Taking m = log n and letting M1 ≥ 5H0, it

follows from the Stirling approximation of (m+ 1)! that

Eλ3n ≤ Cn4 log5 n exp{−(M1/H0) log n} ≤ Cn−1 log5 n→ 0, (50)

which implies that λ3n = oP (1). Hence (47) follows.

We finally consider (45). First note that, similarly to the proof of (48),

Ik,j :=
∣∣∣E({g[cn(xn,j + x)]− g[cnxn,j]} | Fn,k

)∣∣∣
≤ d−1j,k,n

ˆ ∞
−∞

g[cn(xn,k + y)]
∣∣hj,k,n[(y − x)/dj,k,n]− hj,k,n(y/dj,k,n)

∣∣ dy
≤ C c−1n d−1j,k,n min{|x|d−1j,k,n, 1}

≤ C c−1n [n/(j − k)]d min{|x|[n/(j − k)]d, 1},
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for any k < j. This, together with (33), implies that, for any |x| ≤M0/ logγ n,

E[∆∗2ns(x)|F∗n,s−1] ≤ 2E[∆2
n,2s(x)|Fn,(2s−1)bn ]

≤
(2s+1)bn∑
k=2sbn+1

E
(
{ g[cn(xn,t + x)]− g[cnxn,t] }2 | Fn,(2s−1)bn

)
+ 2

∑
2sbn+1≤k<j≤(2s+1)bn

∣∣E({g[cn(xn,k + x)]− g[cnxn,k]}

{g[cn(xn,j + x)]− g[cnxn,j]}
∣∣∣Fn,(2s−1)bn)∣∣

≤ C (n/cn)(n/bn)d−1 + 2
∑

2sbn+1≤k<j≤(2s+1)bn

E
(
|g[cn(xn,k + x)]− g[cnxn,k]| |Ik,j|

∣∣∣Fn,(2s−1)bn)
≤ C (n/cn)(n/bn)d−1 + C n2d c−2n b−dn

∑
2sbn+1≤k<j≤(2s+1)bn

(j − k)−d min{nd log−γ n(j − k)−d, 1}

≤ C (n/cn)(n/bn)d−1 + C n2d c−2n b1−dn

bn∑
k=1

k−d min{(n/k)d log−γ n, 1}

≤ C (n/cn)(n/bn)d−1
[
1 + (n/cn) log−η n

]
, (51)

where we have used the fact: for 0 < d < 1, letting ζ = γ/d,

bn∑
k=1

k−d min{(n/k)d log−γ n, 1}

≤
n/ logζ n∑
k=1

k−d + nd log−γ n
bn∑

k=n/ logζ n+1

k−2d

≤ C n1−d log−η n.

and η is given in (27). It follows from this estimate that

max
0≤j≤mn

Tn/2∑
s=1

E[∆∗2ns(yj) | F∗n,s−1]

≤ C (n/cn)(n/bn)d
[
1 + (n/cn) log−η n

]
≤ C(n/cn)2 logdν−η n ≤ C η2n log n,

due to (42) and (n/cn) log−η n → ∞. This, together with the facts that |∆∗ns(yj)| ≤ ηn

and for each j, {∆∗ns(yj),F∗n,s} forms a martingale difference, it follows from the well-
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known martingale exponential inequality (see, e.g., de la Pana (1999)) that, there exists

a M0 ≥ 3 such that, as n→∞,

P [λ1n ≥M0ηn log n]

≤ P
[
λ1n ≥M0ηn log n, max

0≤j≤mn

Tn/2∑
s=1

E[∆∗2ns(yj) | F∗n,s−1] ≤ C η2n log n
]

+ o(1)

≤
mn∑
j=0

P
[ Tn/2∑
s=1

∆∗ns(yj) ≥M0ηn log n,

Tn/2∑
s=1

E[∆∗2ns(yj) | F∗n,s−1] ≤ C η2n log n
]

+ o(1)

≤ mn exp
{
− M2

0 log2 n

2C log n+ 2M0 log n

}
+ o(1)

≤ mn exp{−M0 log n}+ o(1)→ 0, (52)

where the last inequality follows from (41). This yields λ1n = OP

(
ηn log n

)
. Combining

(49)-(52), we establish (44). 2
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Appendix 1. Example 3.2: Verification of Assumption 3.3. Write

xl =
l∑

j=1

j∑
i=−∞

εiφj−i

= xk +
t∑

j=s+1

s∑
i=−∞

εiφj−i +
l∑

j=k+1

j∑
i=s+1

εiφj−i

:= x∗k,l + x′k,l, (53)

The similar arguments as in the proof of Corollary 2.2 in Wang and Phillips (2009a)

yields that x′k,l/dl−k, where dn is defined as in (5), has a density hl,k(x) and
´∞
−∞(1 +

|t|)|ϕl,k(t)|dt < ∞ uniformly for 0 ≤ k < l ≤ n, where ϕl,k(t) = Eeitx
′
l,k/dl−k , due to´

(1 + |t|)|Eeitε0|dt <∞. Hence, conditional on Fk,n = σ(εj,−∞ < j ≤ k),

(xl,n − xk,n)/dl,k,n has a density hl,k(x− x∗k,l/dl−k) (54)

where xt,n = xt/dn and dl,k,n = dl−k/dn. Furthermore, for any u ∈ R, we have

sup
x

∣∣hl,k(x− x∗k,l/dl−k + u)− hl,k(x− x∗k,l/dl−k)
∣∣

≤ sup
x
|hl,k(x+ u)− hl,k(x)|

≤ C
∣∣∣ ˆ ∞
−∞

(
e−it(x+u) − e−itx

)
ϕl,k(t)dt

∣∣∣
≤ C min{|u|, 1}

ˆ ∞
−∞

(1 + |t|) |ϕl,k(t)|dt ≤ C1 min{|u|, 1}.

That is, Assumption 3.3 is satisfied for xt,n = xt/dn, where xt is given as in Assumption

2.1. 2

Appendix 2. Uniform convergence for a class of martingales. This

result comes from Theorem 2.1 of Wang and Chan (2011). Let (uk, xk) with xk =

(xk1, ..., xkd), d ≥ 1, be a sequence of random vectors.

Assumption 2.1. {ut,Ft}t≥1 is a martingale difference, where Ft = σ(x1, ..., xt+1, u1, ..., ut),

satisfying E(u2t | Ft−1)→a.s. σ
2 <∞ and supt≥1E|ut|2p <∞ for some p ≥ 1 specified in

Assumption 2.4 below.

Assumption 2.2. f(x) is a real function on Rd satisfying supx∈Rd |f(x)| < ∞ and

|f(x)− f(y)| ≤ C ‖x− y‖ for all x, y ∈ Rd and some constant C > 0.

Assumption 2.3. There exist positive constant sequences cn ↑ ∞ and bn with
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bn = O(nk) for some k > 0 such that

sup
‖x‖≤bn

n∑
t=1

f 2[(xt + x)/h] = OP (cn). (55)

Assumption 2.4. h → 0, nh → ∞ and n c−pn logp−1 n = O(1), where cn is defined

as in Assumption 2.3 and p is defined as in Assumption 2.1.

We have the following main result.

Theorem 4.1. Under Assumptions 2.1-2.4, we have

sup
‖x‖≤bn

∣∣∣ n∑
t=1

ut f [(xt + x)/h]
∣∣∣ = OP

[
(cn log n)1/2

]
. (56)

If (55) is replaced by

sup
‖x‖≤bn

n∑
t=1

f 2[(xt + x)/h] = O(cn), a.s., (57)

the result (56) can be strengthened to

sup
‖x‖≤bn

∣∣∣ n∑
t=1

ut f [(xt + x)/h]
∣∣∣ = O

[
(cn log n)1/2

]
, a.s. (58)
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