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Abstract

We consider boundary scattering for a semi-infinite one-dimensional deformed Hubbard
chain with boundary conditions of the same type as for the Y=0 giant graviton in the AdS/CFT
correspondence. We show that the recently constructed quantum affine algebra of the deformed
Hubbard chain has a coideal subalgebra which is consistent with the reflection (boundary Yang-
Baxter) equation. We derive the corresponding reflection matrix and furthermore show that
the aforementioned algebra in the rational limit specializes to the (generalized) twisted Yangian
of the Y = 0 giant graviton.
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1 Introduction

The Hubbard model was introduced in order to study strongly correlated electrons [1], and later
due to many generalizations (e.g. [2, 3]) it grew into a large family of models (see e.g. [4, 5]).
Recently, the interest in the Hubbard model has been renewed due to remarkable successes
in solving similar models appearing in the context of the AdS5 × S5 correspondence (see for
instance review [6] and references therein).

An interesting relation between the Hubbard model and the AdS5 × S5 string was found
by studying the centrally extended Uq(su(2|2)) algebra Q [7]. The integrable model with this
underlying algebra turns out to describe a variety of quantum deformed Hubbard models as
well as the AdS5 × S5 superstring in the rational q → 1 limit. This makes it an interesting
model to study since it offers a unified description of all of these systems. We will simply refer
to it as the deformed Hubbard model.

It was found that the deformed Hubbard model is actually invariant under the affine ex-
tension, Q̂, of the symmetry algebra [8]. In the rational q → 1 limit this algebra becomes
the Yangian symmetry of the AdS5 × S5 superstring [9]. The fundamental R-matrix can be
found by requiring invariance under Q alone, but the affine extension plays a crucial role in the
determination of S-matrices in higher representations. The fundamental S-matrix was found
in [7] and in the rational limit is equivalent to Shastry’s R-matrix [10, 11, 12]. The S-matrix
describing bound state scattering has also recently been derived [13]. Its construction relies
heavily on the affine generators in Q̂. This is similar to the situation in AdS5 × S5, where this
part was played by the Yangian charges instead [14].

When studying integrable models with periodic boundary conditions, the spectrum is gov-
erned by the S-matrix and thus indirectly through the underlying (bulk) symmetry algebra.
However, for integrable systems with boundaries, there is another object, called the reflection
matrix, which describes the scattering of excitations off the boundary. Generically, boundaries
preserve a subalgebra of the bulk Lie algebra and this subalgebra then determines the corre-
sponding reflection matrix. However this is usually not enough to determine the bound state
reflection matrix and a coideal subalgebra of the corresponding bulk Yangian or quantum affine
algebra is required.
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Open boundary conditions for the one-dimensional Hubbard model have received less at-
tention than their closed chain counterpart, but they exhibit a rich variety of structures (see
e.g. [15, 16, 17]). The reflection matrices for open boundary conditions for the deformed Hub-
bard chain have been studied in [18]. Drawing from similarities with open spin chains in the
context of AdS/CFT [19], two types of boundary conditions were formulated corresponding to
Y = 0 and Z = 0 brane configurations. In this paper we will study boundary conditions cor-
responding to the Y = 0 system applied to bound states. For this configuration, the boundary
representation is a singlet and the boundary conditions preserve half of the supersymmetries.

The aim of this paper is twofold. Firstly, we want to identify the symmetry algebra that
governs boundary scattering. For the AdS5 × S5 superstring this algebra is a (generalized)
twisted Yangian [20, 21]. Here we find it to be an affine coideal subalgebra B̂ of Q̂. Its
structure turns out to be governed by the notion of quantum symmetric pairs which have been
heavily studied in the context of semisimple Lie algebras [23, 24, 25, 26]. Inspired by these
results we explicitly construct the boundary algebra B̂.

Secondly, having found the symmetry algebra B̂ we use it to compute the reflection matrix
of arbitrary bound states and show that it satisfies the reflection (also called boundary Yang-
Baxter) equation. Conversely, we explicitly solve the reflection equation and find that our
reflection matrix is the unique solution, thus proving that B̂ is indeed the correct and unique
symmetry algebra. Finally, we also show that in the q → 1 limit we reproduce the results for
the Y = 0 configuration for the AdS5 × S5 superstring found in [27].

It is worth to note, that somewhat similar boundary scattering problems for quantum affine
algebras of the Lie algebras of classical type have been considered in [28, 29], where again the
scattering is governed by some coideal subalgebra B, which in some cases is called a q-Yangian
[30]. Boundary scattering has also been intensively studied for sine-Gordon and affine Toda
field theories [31, 32, 33, 34]. The investigation of reflection equation bearing on the quantum
symmetric pairs constructed by G. Letzter was considered in [35, 36].

This work is organized as follows. In section 2 we discuss the relevant notation and def-
initions of the bulk algebra and its bound state representations. In section 3 we present the
required axiomatic formulation of the coideal subalgebras and quantum symmetric pairs. Then
in section 4 we present the general form of reflection matrix for arbitrary bound states and
discuss its properties. We end with some concluding remarks. The Appendix is reserved for
the q → 1 limit of Q̂ and also for a brief review of the twisted Yangian of the Y = 0 giant
graviton.

2 Deformed quantum affine algebra

In this section we shall review the quantum affine algebra constructed in [8] and its bound state
representation constructed in [13].

Quantum affine algebra Q̂. The algebra Q̂ of the quantum deformed one-dimensional
Hubbard chain was recently constructed in [8] and is a deformation of the centrally extended
affine algebra ŝl(2|2). It is generated by four sets of the Chevalley-Serre generators Ki ≡ qHi ,
Ei, Fi (i = 1, 2, 3, 4) and two sets of the central elements Uk and Vk (k = 2, 4) with Uk being
responsible for the deformation of the coproduct.

Let us start by recalling the symmetric matrix DA and the normalization matrix D asso-
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ciated to the Cartan matrix A for ŝl(2|2):

DA =




2 −1 0 −1
−1 0 1 0
0 1 −2 1
−1 0 1 0


 , D = diag(1,−1,−1,−1). (1)

The algebra is then defined accordingly by the following commutation relations

KiEj = qDAijEjKi, KiFj = q−DAijFjKi,

{E2, F4} = −g̃α̃−1(K4 − U2U
−1
4 K−1

2 ), {E4, F2} = g̃α̃+1(K2 − U4U
−1
2 K−1

4 ),

[Ej , Fj} = Djj

Kj −K−1
j

q − q−1
, [Ei, Fj} = 0, i 6= j, i+ j 6= 6. (2)

These are supplemented by a set of Serre relations (j = 1, 3)

[Ej , [Ej , Ek]]− (q − 2 + q−1)FjFkFj = 0, [E1, E3] = E2E2 = E4E4 = {E2, E4} = 0,

[Fj , [Fj , Fk]]− (q − 2 + q−1)FjFkFj = 0, [F1, F3] = F2F2 = F4F4 = {F2, F4} = 0. (3)

Central elements are related to the quartic Serre relations (for k = 2, 4) as follows,

{[E1, Ek], [E3, Ek]} − (q − 2 + q−1)EkE1E3Ek = gkαk(1− V 2
k U

2
k ),

{[F1, Fk], [F3, Fk]} − (q − 2 + q−1)FkF1F3Fk = gkα
−1
k (V −2

k − U−2
k ). (4)

This algebra has three central charges

C1 = K1K
2
2K3,

C2 = {[E2, E1], [E2, E3]} − (q − 2 + q−1)E2E1E3E2,

C3 = {[F2, F1], [F2, F3]} − (q − 2 + q−1)F2F1F3F2. (5)

The central elements Vk are constrained by the relation K−1
1 K−2

k K−1
3 = V 2

k .

Hopf algebra. The group-like elements X ∈ {1,Kj , Uk, Vk} (j = 1, 2, 3, 4 and k = 2, 4) have
the coproduct ∆ defined in a usual way, ∆(X) = X ⊗X, while for the remaining Chevalley-
Serre generators they are deformed by the central elements Uk. Similar considerations work for
the antipode S and co-unit ε. Summarizing we have

∆(Ej) = Ej ⊗ 1 +K−1
j U

+δj,2
2 U

+δj,4
4 ⊗ Ej , ∆(Fj) = Fj ⊗Kj + U

−δj,2
2 U

−δj,4
4 ⊗ Fj . (6)

Representation. We shall be using the q-oscillator representation constructed in [13]. The
bound state representation is defined on vectors

|m,n, k, l〉 = (a†3)
m(a†4)

n(a†1)
k(a†2)

l |0〉, (7)

where the indices 1, 2 denote bosonic oscillators and 3, 4 - fermionic and the total number of
excitations k+l+m+n = M is the bound state number and the dimension of the representation
is dim= 4M . This representation constrains the central elements as U := U2 = U−1

4 and
V := V2 = V −1

4 and describes a spin-chain excitation with quasi-momentum p related to the
deformation parameter as U = eip.
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The triples corresponding to the bosonic and fermionic slq(2) in this representation are
given by

H1|m,n, k, l〉 = (l − k)|m,n, k, l〉, H3|m,n, k, l〉 = (n−m)|m,n, k, l〉,

E1|m,n, k, l〉 = [k]q |m,n, k − 1, l + 1〉, E3|m,n, k, l〉 = |m+ 1, n− 1, k, l〉,

F1|m,n, k, l〉 = [l]q |m,n, k + 1, l − 1〉, F3|m,n, k, l〉 = |m− 1, n + 1, k, l〉. (8)

The supercharges act on basis states as

H2|m,n, k, l〉 = −

{
C −

k − l +m− n

2

}
|m,n, k, l〉,

E2|m,n, k, l〉 = a (−1)m[l]q |m,n+ 1, k, l − 1〉+ b |m− 1, n, k + 1, l〉,

F2|m,n, k, l〉 = c [k]q |m+ 1, n, k − 1, l〉+ d (−1)m |m,n − 1, k, l + 1〉. (9)

Here [n]q = (qn − q−n)/(q − q−1) and C is the q-factor of the central element V = qC and
represents the energy of the state. The representation labels a, b, c, d satisfy constraints

ad =
q

M
2 V − q−

M
2 V −1

qM − q−M
, bc =

q−
M
2 V − q

M
2 V −1

qM − q−M
,

ab =
gα

[M ]q
(1− U2V 2) , cd =

gα−1

[M ]q
(V −2 − U−2) , (10)

which altogether give the multiplet shortening (mass–shell) condition

g2

[M ]2q
(V −2 − U−2)(1 − U2V 2) =

(V − qMV −1)(V − q−MV −1)

(qM − q−M)2
. (11)

The explicit x± parametrization of the representation labels is

a =

√
g

[M ]q
γ , b =

√
g

[M ]q

α

γ

x− − x+

x−
,

c =

√
g

[M ]q

γ

α V

i g̃ q
M
2

g(x+ + ξ)
, d =

√
g

[M ]q

g̃ q
M
2 V

i g γ

x+ − x−

ξx+ + 1
. (12)

The central elements in this parametrization read as

U2 =
1

qM
x+ + ξ

x− + ξ
= qM

x+

x−
ξx− + 1

ξx+ + 1
, V 2 =

1

qM
ξx+ + 1

ξx− + 1
= qM

x+

x−
x− + ξ

x+ + ξ
, (13)

here ξ = −ig̃(q − q−1) and g̃2 = g2/(1− g2(q − q−1)2).
The action of the affine charges H4, E4, F4 is defined in exactly the same way as for the

regular supercharges subject to the following substitutions C → −C and (a, b, c, d) → (ã, b̃, c̃, d̃).
Then the affine labels ã, b̃, c̃, d̃ are acquired from (12) by replacing

V → V −1, x± →
1

x±
, γ →

iα̃γ

x+
, α → α α̃2, α̃ → −

1

α̃
. (14)

Finally, we introduce the multiplicative spectral parameter of the algebra

z =
1− U2V 2

V 2 − U2
= q−Mζ(x+) = q+Mζ(x−) with ζ(x) = −

(x+ ξ)(1 + 1/(ξx))

ξ − ξ−1
, (15)

which will play an important role in describing the reflection algebra.
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3 Coideal quantum affine algebra

We define the boundary conditions for the deformed one-dimensional Hubbard chain to be of the
same type as those of the Y = 0 giant graviton [18, 19] (see Appendix B for details). This kind
of boundary conditions are described by a quantum version of the symmetric pair (g, gθ) and
the boundary scattering is governed by a coideal subalgebra. The axiomatic formulation and
classification of coideal subalgebras and quantum symmetric pairs for semisimple Lie algebras
was done by G. Letzter in series of works [23, 24, 25, 26]. We shall explicitly construct the
quantum affine coideal subalgebra B̂ of Q̂ relying on G. Letzter’s construction.

3.1 Boundary algebra and symmetric pairs

Before moving on to quantum deformed (affine) algebras, let us first briefly recall the algebraic
structure for boundaries with Yangian algebras. Consider an integrable model with symmetry
algebra described by the Yangian Y(g) for some Lie algebra g. Suppose that the boundary
module respects a subalgebra a ⊂ g and that there is an involution θ : g 7→ g such that a = gθ

is a θ-fixed subalgebra of g. Then a and subset b = g\a respecting

[a, a] ⊂ a, [a, b] ⊂ b, [b, b] ⊂ a. (16)

are positive and negative eigenspaces of θ, namely θ(a) = +a and θ(b) = −b. Thus, if the
underlying symmetry algebra in the bulk is the Yangian Y(g), then the associated symmetry
algebra respected by the boundary is the so-called (generalized) twisted Yangian Y (g, a) [22]
generated by the level-0 charges Ji and twisted level-1 charges 1

J̃p := Ĵp +
α

4
fp
qi (J

q Ji + Ji Jq) = Ĵp −
α

4
[Ta, Jp], (17)

where indices i(, j, k, ...) run over the a-indices and p, q(, r, ...) over the b-indices, α is a formal
deformation parameter conventionally set to 1, and Ta is the quadratic Casimir operator of g
restricted to the subalgebra a. The Yangian Y(g, a) is a left coideal subalgebra,

∆Y(g, a) ⊂ Y(g)⊗Y(g, a). (18)

and is invariant under the extension θ̄ of the involution θ acting on Yangian charges as

θ̄(Jin) = (−1)nJin, θ̄(Jpn) = (−1)n+1Jpn, θ̄(α) = −α, (19)

where n is the level of the charge, thus it is easy to see that J̃p is invariant under θ̄ which acts
as a filtration on Y(g).

However, this construction does not straightforwardly extend to quantum deformed alge-
bras. Of course, at the level of the algebra, one can again define the involution θ that will
specify the preserved subalgebra. But this cannot be extended to Uq(g), since Uq(g

θ) in the
general case need not be a Hopf subalgebra of Uq(g). This complicates identifying the symmetry
algebra of the boundary which should clearly be a subalgebra of the full symmetry algebra.

3.2 Coideal subalgebras and quantum symmetric pairs

We continue by giving the formulation of coideal subalgebras for semisimple algebras as de-
scribed in [23, 24, 25, 26]. The results presented here allow for a generalization consistent with
the affine structure presented in Section 2. We shall follow [25] quite closely and for the reader’s
convenience we shall try to give all the necessary constructions that will be used in later on in
the explicit construction of the coideal subalgebra of Q̂.

1This construction is not valid when θ is trivial, gθ = g. For this case we refer to [37].
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Setting. Consider a Lie algebra g with Cartan matrix (aij) and a diagonal normalization
matrix (di) (here and further 1 ≤ i, j ≤ n) such that (diaij) is a symmetric matrix. Let the
triangular decomposition of the algebra be n− ⊕ h ⊕ n+ and let Φ denote the root system of
g and Φ+ the set of the positive roots. Let π = {α1, α2, . . . , αn} be the set of simple positive
roots and (αi, αj) = diaij denote the Cartan inner product on h∗. Then n+ and n− have a basis
of root vectors {eβ |β ∈ Φ+} and {f−β |β ∈ Φ+} respectively. Let h1, . . . , hn be the basis of h.
Then the standard Chevalley-Serre basis of g is given by {eβ , f−β |β ∈ Φ+} ∪ {h1, . . . , hn}.

Let the quantized universal enveloping algebra Uq(g) be generated over C(q) by the elements
xi, yi, t

±1
i , that correspond to the standard Chevalley-Serre basis. The algebra Uq(g) becomes

a Hopf algebra H when equipped with the coproduct ∆, counit ǫ and antipode σ given by2

∆(xi) = xi ⊗ 1 + t−1
i ⊗ xi, ǫ(xi) = 0, σ(xi) = −tixi,

∆(yi) = yi ⊗ ti + 1⊗ yi, ǫ(yi) = 0, σ(yi) = −yit
−1
i ,

∆(ti) = ti ⊗ ti, ǫ(ti) = 1, σ(ti) = t−1
i . (20)

Being a Hopf algebra, Uq(g) admits left and right adjoint actions making Uq(g) into a left and
right module. The (twisted) adjoint action is defined as

(adxi) b = xib− (−1)[i][b]t−1
i btixi, (adr xi)b = tibxi − (−1)[i][b]tixib,

(ad yi) b = yibt
−1
i − (−1)[i][b]byit

−1
i , (adr yi)b = byi − (−1)[i][b]yit

−1
i bti,

(ad ti) b = t−1
i bti, (adr ti)b = tibt

−1
i , (21)

for all b ∈ Uq(g). Here (−1)[i][b] represent the grading factor of supercharges. We shall also be
using the shorthand notation ad yi1 · · · yil = ad yi1 · · · ad yil and similarly for adr. Finally, let us
introduce the abelian subgroup T of Uq(g) generated by the elements t±1

i . Let Q(π) be equal to
the integral lattice generated by π, i.e Q(π) =

∑
1≤i≤n Zαi and define Q+(π) =

∑
1≤i≤nNαi;

here N is the set of non-negative integers. Then there is an isomorphism τ of abelian groups
from Q(π) to T defined by τ(αi) = ti, thus for every λ ∈ Φ there is an image τ(λ) ∈ T .

Coideal subalgebra. A vector subspace I of the Hopf algebra H is called a left coideal if

∆(I) ⊂ H ⊗ I. (22)

In the same way the right coideal may be defined, ∆(I) ⊂ I ⊗H. Let M be a Hopf subalgebra
of H such that ∆M ⊂ M⊗M. Then (adM) I (resp. (adrM) I) is an (adM) (resp. (adrM))
invariant coideal of H.

We shall be considering the scattering off the right boundary; thus we shall be interested
in left coideals only. However all considerations we shall present may be straightforwardly
extended for right coideals (scattering off the left boundary).

Quantum symmetric pairs. Let θ be a non-trivial involution of g. It defines a symmetric
pair (g, gθ), where gθ is the θ–fixed subalgebra of g. We shall assume that θ is maximally split

2Note that t±1
Here = t∓1

Letzter. This is due to the consistency with (6).
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with respect to the Cartan algebra, i.e. it satisfies the following three conditions3

a) θ(h) = h,

b) if θ(hi) = hi, then θ(ei) = ei and θ(fi) = fi,

c) if θ(hi) 6= hi, then θ(ei) ∈ n− and θ(fi) ∈ n+. (23)

Quantum symmetric pairs are the quantum analogs of the pair of enveloping algebras Uq(g),
U(gθ) and consists of a pair of algebras Uq(g) and B, where that B is a left coideal subalgebra

∆B ⊂ Uq(g)⊗ B. (24)

The pair (B, Uq(g)) is then called a quantum symmetric pair if B is the unique4 maximal coideal
subalgebra which specialized to U(gθ) as q → 1.

Construction of B. The explicit construction of B is given in [25]. It is formulated in terms
of the root vectors of g.

The involution θ of g has an associated automorphism Θ on the root system Φ. Let πΘ =
{Θ(αi) = αi |αi ∈ π} = Θ(π) ∩ π, then (23) tells that Θ(−αi) ∈ Φ+ for all αi /∈ πΘ. More
precisely,

Θ(−αi) ∈
∑

αj /∈πΘ

Nαj +Q+(πΘ), for ∀αi /∈ πΘ. (25)

This implies that there exists a permutation p on the set {i |αi ∈ π\πΘ} such that ∀αi ∈
π\πΘ ⇒ Θ(−αi) − αp(i) ∈ Q+(πΘ). Let π∗ be a maximal subset of π\πΘ such that αi ∈
π∗ if i = p(i) or αp(i) /∈ π∗. Then for given i such that αi ∈ π∗ there exists a sequence
{αi1 , . . . , αir | ∀αi ∈ πΘ} and a set of positive integers m1, . . . ,mr such that the involution θ
may be lifted to the quantum involution θ̃ of Uq(g) subject to the following properties

a) θ̃(q) = q−1,

b) θ̃(τ(λ)) = τ(−Θ(λ)) for all τ(λ) ∈ T,

c) θ̃(xi) = xi and θ̃(yi) = yi for all αi ∈ πΘ,

d) θ̃(yi) =
(
adrx

(m1)
i1

· · · x
(mr)
ir

)
x′p(i)

and θ̃(yp(i)) = (−1)m(i)
(
adrx

(mr)
ir

· · · x
(m1)
i1

)
x′i for all αi ∈ π∗,

e) θ̃(x′i) =
(
adry

(m1)
i1

· · · y
(mr)
ir

)
yp(i)

and θ̃(x′p(i)) = (−1)m(i)
(
adry

(mr)
ir

· · · y
(m1)
i1

)
yp(i) for all αi ∈ π∗. (26)

Here x′i = tixi and x
(m)
i = xmi /[m]qi ! , y

(m)
i = ymi /[m]qi ! , where qi = q(αi,αi)/2.

Next, define a set D = {αi ∈ π∗| i 6= p(i) and (αi,Θ(αi)) 6= 0} and let M denote the
subalgebra of Uq(g) generated by {xi, yi, t±1

i | αi ∈ πΘ}. This setting allows us to define the

3If θ is not maximally split it is often possible to replace θ by a conjugate θ′ = ψθψ−1 which is maximally
split; here ψ is an automorphism of g. As an example, let g = sl(2). Then there is only one non-trivial involution
θ(h) = h, θ(e) = −e, θ(f) = −f leading to gθ = {h}. However it is isomorphic to a maximally split involution

θ′(h) = −h, θ′(e) = −f , θ′(f) = −e with gθ
′

= {e− f}.
4In the sense of [25].
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coideal subalgebra B of Uq(g) generated by M, TΘ = {τ(λ)|Θ(λ) = λ} and the set of twisted
charges B = {By,i, By,i | αi ∈ π\πΘ}, defined by

By,i = yit
−1
i + dy,i θ̃(yi)t

−1
i and Bx,i = t−1

i x′i + dx,i t
−1
i θ̃(x′i), (27)

with dy,i, dx,i = 1 for αi /∈ D and dy,i, dx,i ∈ C otherwise. Note that Bx,i may be obtained
from By,i with the help of the anti-automorphism κ of Uq(g) which is defined as κ(xi) = yit

−1
i ,

κ(yi) = tixi, κ(t
±1
i ) = t±1

i and also if a ∈ C and ā is a complex conjugate of a, then κ(au) = āu
for ∀u ∈ Uq(g), i.e. κ is a conjugate linear map and gives Uq(g) a structure of Hopf ∗–algebra.
Then it is easy to see that κ (Bx,i) = By,i,

κ(t−1
i x′i) = yit

−1
i and κ

(
dx,i t

−1
i θ̃(x′i)

)
= d̄x,i θ̃(yi)t

−1
i . (28)

Furthermore, it implies that
dy,i = d̄x,i . (29)

3.3 Construction of the coideal subalgebra

Having all the algebraic structures presented we are ready to explicitly construct the quantum
affine coideal subalgebra B̂ of Q̂ by generalizing the results derived in the previous section. Let
us start from inspecting the charges of Q̂. It has eight regular supercharges, namely

F2, F21, F32, F321 and E2, E21, E32, E321, (30)

where we have used a shorthand notation Fijk = [Fi, [Fj , Fk]] and the same for Eijk. By
replacing F2 → F4 and E2 → E4 eight affine supercharges are obtained,

F4, F41, F34, F341 and E4, E41, E34, E341. (31)

The replacement of the same type applied to (5) produces affine partners of the central charges,
Ĉ1, Ĉ2 and Ĉ3. And finally, the affine partners of F1, E1 and F3, E3 are

F̂1 = E432, Ê1 = F432 and F̂3 = E421, Ê3 = F421. (32)

The boundary we are considering does not respect bosonic symmetries E1, F1, central
charges C2, C3 and affine charges E4, F4 (let us name these charges as the broken, while the
rest will be named as preserved), thus it breakes exactly half of the supercharges (30) and (31)
with the broken regular supercharges being

E21, E321 and F21, F321. (33)

In other words, we consider the involution that simply acts like

θ(X) = X, ∀X ∈ {E2, E3, F2, F3,K1,K2,K3,K4, C1}

θ(X) = −X, ∀X ∈ {E1, F1, E4, F4, C2, C3}. (34)

In the q → 1 limit this clearly gives rise to the symmetric pair

gθ = {H1, E2, F2, H2, E3, F3, H3, U2, C1},

g\gθ = {E1, F1, C2, C3}, (35)

of the centrally extended sl(2|2) algebra (see Appendix A for details on q → 1 limit).
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Furthermore, it is easy to see that θ is isomorphic to a maximally split symmetric pair.
Thus the construction presented in section 3.2 and the relation to the algebraic structures of
the Y = 0 giant graviton implies that for each broken regular charge, the algebra B̂ must
possess a corresponding twisted affine charge satisfying coideal property (24). We shall denote
these charges as

B = {F̃1, F̃21, F̃321, Ẽ1, Ẽ21, Ẽ321, C̃2, C̃3}. (36)

Coideal subalgebra. The set of positive simple roots of Q̂ is π = {α1, α2, α3, α4}. The
boundary conditions imply that the corresponding root space automorphism Θ (25) acts on
the simple roots as

Θ(α2) = α2, Θ(α1) = −α2 − α3 − α4,

Θ(α3) = α3, Θ(α4) = −α1 − α2 − α3. (37)

Thus πΘ = {α2, α3} and it gives rise to a subalgebra M of Q̂. Note that α4 = δ − θ̄ is the
affine root where θ̄ = α1 +α2 +α3 is the highest root of the non-affine algebra Q. However we
are interested in the finite dimensional representations which are constructed by dropping all
imaginary roots; thus giving the constraint K1K2K3K4 = 1 [8, 13].

We shall build B̂ based on the affine extension, hence we set π∗ = {α4}. This fixes the
permutation map p to act as p(4) = 1. Next, with the help of (27) and (37), we define the
twisted affine charges to be 5

Ẽ321 = F4K
−1
4 + dy θ̃(F4)K

−1
4 , θ̃(F4) = (adrE3 adrE2)E

′
1, (38)

F̃321 = E′
4K

−1
4 + dx θ̃(E

′
4)K

−1
4 , θ̃(E′

4) = (adrF3 adrF2)F1, (39)

Then with the help of the right adjoint action adrM we construct the rest of the twisted affine
charges,

Ẽ21 = (adrF3) Ẽ321, F̃21 = (adrE3) F̃321, (40)

Ẽ1 = (adrF2 adrF3) Ẽ321, F̃1 = (adrE2 adrE3) F̃321, (41)

C̃2 = (adrE2) Ẽ321, C̃3 = (adrF2) F̃321. (42)

Let us show the coideal property for the these charges explicitly. However it is enough to show
this property for the charges (38) and (39) only,

∆Ẽ321 = F4K
−1
4 ⊗ 1 + UK−1

4 ⊗ Ẽ321 + dy θ̃(F4)K
−1
4 ⊗K5

+dy(q
2 − 1)

(
q−1K−1

4 (adrE2)E
′
1 ⊗K5E3 − UE′

1K
−1
4 ⊗K1K

−1
4 (adrE3)E

′
2

)

∈ Q̂ ⊗ B̂, (43)

and

∆F̃321 = E′
4K

−1
4 ⊗ 1 + U−1K−1

4 ⊗ F̃321 + dx θ̃(E
′
4)K

−1
4 ⊗K5

−dx(q
2 − 1)

(
K−1

4 (adrF2)F1 ⊗K−1
3 K5F3 − U−1K−1

4 F1 ⊗ (adrF3)F2K1K
−1
4

)

∈ Q̂ ⊗ B̂. (44)

Here K5 = K1K2K3K
−1
4 and the coideal property is satisfied provided K1K

−1
4 ∈ TΘ. This is

easy to see, because the linear combination α1 − α4 is invariant under the automorphism (37)
as Θ(α1 −α4) = α1 −α4. The coideal property for the rest of the charges, (40), (41) and (42),
is obvious since B̂ is invariant under the adjoint action of M.

5Equivalently, one could choose π∗ = {α1} as a starting point giving Ẽ1 = E′
1K

−1
1 + dx θ̃(E

′
1)K

−1
1 and

F̃1 = F1K
−1
1 + dy θ̃(F1)K

−1
1 where θ̃(E′

1) = (adrF2 adrF3)F4 and θ̃(F1) = (adrE2 adrE3)E
′
4.
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Reflection algebra. In order to build the boundary scattering theory we need to have rep-
resentations of Q̂ corresponding to incoming and reflected states. We shall be bearing on the
reflection Hopf algebra constructed in [37].

Let the representation defined in section 2 describe incoming states carrying momentum p.
It is related to the deformation parameter as U = eip. Then the representation corresponding to
the reflected states with momentum −p shall have deformation parameter equal to e−ip = U−1.
Next, the total fermion and boson number conservation together with the energy conservation
constrains central elements V and Ki to be invariant under the reflection.

This implies that there is a reflection automorphism κ of the algebra defined as

κ : (V,U) 7→ (V ,U) and κ : (Ej , Fj ,Kj) 7→ (Ej, F j,Kj), (45)

where the underlined charges describe the representation of reflected states and the constraints

U = U−1, V = V, Ki = Ki (46)

define the representation uniquely. The representation labels a, b , c, d associated to the charges
Ej, F j may be obtained from (10) by replacing U 7→ U−1 and similarly for the affine ones. Then,
we can express the labels of the reflected charges in terms of the initial ones as

a =
γ

γ
a, b =

γα2

γ

cd

a
V 2, c =

γ

γα2

ab

d
V −2, d =

γ

γ
d, (47)

giving

a =

√
g

[M ]q
γ, b =

√
g

[M ]q

α

γ

g̃2(x+ − x−)

g2(1 + ξx−)(ξ + x+)
,

c =

√
g

[M ]q

γ

α V

gq
M
2 (ξx− + 1)

ig̃ x−
, d =

√
g

[M ]q

g̃ q
M
2 V

i g γ

x+ − x−

ξx+ + 1
, (48)

The extension to the affine case is obvious. Here we have chosen a =
γ

γ a as an initial constraint
with γ being the reflected version of γ, i.e. κ(γ) = γ. By comparing (48) with (12) we find the
reflection map for the x± parameterization to be

κ : x± 7→ −
x∓ + ξ

ξx∓ + 1
. (49)

It is in agreement with the one conjectured in [18]6. In the q → 1 limit this maps reduces to
the usual reflection map κ : x± 7→ −x∓.

Let us also introduce the reflected coproducts of Ei and Fi associated to the reflection Hopf
algebra [37]. They are

∆ref(Ej) = Ej ⊗ 1 +K−1
j U−δj,2−δj,4 ⊗ Ej, ∆ref(Fj) = F j ⊗Kj + U+δj,2+δj,4 ⊗ Fj . (50)

These shall play an important role in finding the explicit form of the reflection matrix.
The expressions in (47) may be casted in a matrix form

(
a b
c d

)
D = T

(
a b
c d

)
T−1 with D =

(
γ/γ 0

0 γ/γ

)
, T =

(
U−2 0
0 −z

)
, (51)

6The authors of [18] are using the x± parametrization of [7], while we use the one of [8]. The map between
these two is x±

BK = gg̃−1(x±
BGM + ξ).
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revealing the explicit relation between two isomorphic representations of Q̂. Here γ and γ are
unconstrained parameters defining the representations of incoming and reflected states. Thus
the matrix D may be understood as a matrix relating two different basis, while the matrix
T expresses the reflection automorphism of the algebra. Indeed, physical intuition tells that
the representations of incoming and reflected states should be related via the spectral and
deformation parameters only.

Finally, we want to perform some checks of our constructions. Firstly, the twisted affine
central charges C̃2 and C̃3 (42) must be conserved under the reflection. Thus requiring C̃2 = C̃2

and C̃3 = C̃3 we find

dy =
g̃

gαα̃
and dx = −αα̃

g̃

g
. (52)

Let us make a direct link to the constraint (29) arising from the Hopf ∗–algebra. Requiring
g̃/g to be real, we find (αα̃)2 = −1 having a solution α̃ = 1 and α = i which corresponds to
the usual setting of unitary representations.

Secondly, the spectral parameter z associated the algebra is required transform as κ : z 7→
z−1 under the reflection map. This is indeed true and follows straightforwardly when applying
map κ to (15).

Yangian limit. The algebra Q̂ in the q → 1 limit has no singular elements and the naive
q → 1 limit leads to the undeformed universal enveloping algebra. The relation to the associated
Yangian algebra was explicitly shown in [8] by considering the the specific combinations of
charges of Q̂ that are singular in the q → 1 limit. The construction presented in [8] is very
closely related to the so-called Drinfeldian [38]. However the twisted affine charges (38 - 42) are
already of the required form. Thus the algebra B̂ in the rational q → 1 limit is isomorphic to
the associated twisted Yangian (91) proposed by [20, 21]. The explicit relations between the
quantum affine and Yangian charges are

lim
q→1

αα̃Ẽ321

2(q − 1)
= −Ẽ321 − gαF2 lim

q→1

F̃321

2αα̃(q − 1)
= −F̃321 −

g

α
E2,

lim
q→1

αα̃Ẽ21

2(q − 1)
= Ẽ21 + gαF23, lim

q→1

F̃21

2αα̃(q − 1)
= F̃21 −

g

α
E23,

lim
q→1

αα̃Ẽ1

2(q − 1)
= Ẽ1, lim

q→1

F̃1

2αα̃(q − 1)
= −F̃1,

lim
q→1

αα̃C̃2

2(q − 1)
= −P̃+ gαH2, lim

q→1

C̃3

2αα̃(q − 1)
= −K̃−

g

α
H2. (53)

We have also checked that these relations hold at both algebra and coalgebra level. Noting
that the contributions of the extended central charges for the twisted Yangian generators are
also recovered in the above limit(see also appendix B).

4 Boundary scattering

In this section we consider the boundary scattering theory for the deformed Hubbard model
and find the explicit form of the bound state reflection matrix. Moreover, we explicitly solve
the reflection equation and show that the reflection matrix K is indeed invariant under the
coideal subalgebra B̂.
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Reflection matrix. The boundary we are considering is a singlet with respect to the bound-
ary algebra B̂, thus it may be represented via the boundary vacuum state |0〉B . It is annihilated
by all charges of it, with the exception of the generators Ki, which actually keep the boundary
invariant,

Ki |0〉B = qHi |0〉B = |0〉B . (54)

We define the reflection matrix to be the intertwining matrix

K |m,n, k, l〉 ⊗ |0〉B = K
(a,b,c,d)
(m,n,k,l) |a, b, c, d〉 ⊗ |0〉B . (55)

The space of states |m,n, k, l〉 is 4M -dimensional and can be decomposed into four 4M =
(M + 1) + (M − 1) +M +M subspaces that have the orthogonal basis

|k〉1 = |0, 0, k,M−k〉, k = 0 . . .M,

|k〉2 = |1, 1, k−1,M−k−1〉, k = 1 . . .M − 1,

|k〉3 = |1, 0, k,M−k−1〉, k = 0 . . .M − 1,

|k〉4 = |0, 1, k,M−k−1〉, k = 0 . . .M − 1. (56)

Symmetry constraints. The reflection matrix (55) is required to be invariant under the
coproducts of the boundary algebra [21]

K∆(J)−∆ref(J)K = 0, ∀J ∈ B̂. (57)

The form of reflection matrix is constrained by the bosonic charges E3 and F3 to five indepen-
dent sets of coefficients

K |k〉1 = Ak |k〉
1 +Dk |k〉

2,

K |k〉2 = Bk |k〉
2 + Ek |k〉

1,

K |k〉α = Ck |k〉
α, (58)

where α = 3, 4 and we have dropped the boundary vacuum state. We note that the basis (56)
was chosen is such a way that the reflection matrix would act diagonally on the quantum number
k. Also we are working in an orthogonal, but not orthonormal basis in order to avoid having
normalization factors appearing in explicit expressions. However switching to the orthonormal

basis is rather easy and requires only extra factors of ([k]![M − k]!)
1
2 and ([k]![M − k]!)−

1
2 to

be added to Dk and Ek respectively.
We start by determining the limiting conditions - the constraints for reflection coefficients

A0, D0, C0 and AM , DM , CM . This can be achieved by considering reflection of the lowest
state |0〉1:

K |0〉1 = A0 |0〉
1, thus D0 = 0. (59)

Then the invariance condition (57) for the charge E2,

(KE2 − E2 K) |0〉1 = 0, gives C0 =
a

a
A0 =

γ

γ
A0. (60)

We choose the overall normalization to be A0 = 1. The same constraint may be found by
considering the reflection of states |0〉α and the charge F2. Similar considerations for the
highest state |M〉1 give

DM = 0 and AM =
c

c
CM−1 = −

γ

z U2 γ
CM−1. (61)
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Next we turn to the states |k〉α as they scatter from the boundary diagonally. The twisted
affine charge F̃1 acts on these states as a raising operator

F̃1|k〉
α = fk(z)|k + 1〉α, F̃ 1|k〉

α = fk(1/z)|k + 1〉α,

with fk(z) ≡ dx[M − k − 1]qq
−M/2−k−1

(
qM − q2k+2z

)
V −1 . (62)

The invariance condition then straightforwardly gives

Ck+1 fk(z) − fk(1/z)Ck = 0, (63)

leading to the iterative relation

Ck =
fk−1(1/z)

fk−1(z)
Ck−1 =

qM − q2k/z

qM − q2kz
Ck−1. (64)

This relation is then simply solved by

Ck = C0

k∏

n=1

qM − q2n/z

qM − q2nz
. (65)

The coefficients Ck are (anti)symmetric up to a factor of z under the interchange k → M−k−1
for M being (even)odd,

zkCk = −zM−k−1CM−k−1 for M = even and k = 0, ... , M/2− 1,

zkCk = zM−k−1CM−k−1 for M = odd and k = 0, ... , (M − 1)/2 − 1. (66)

This symmetry comes from the requirement that the reflection is covariant under the renaming
of bosonic indices 1 ↔ 2 as the reflection is of a diagonal type for the states |k〉α. However this
is not the case for the states |k〉1,2, thus there is no such symmetry for the rest of the reflection
coefficients. The factors of z in (66) arises due to the non-commutative nature of the model.
In the q → 1 limit this (anti)covariance specializes to (anti)symmetry for M being (even)odd,
as observed in [27].

The remaining reflection coefficients, as we shall show, will be expressed in terms of Ck

and Ck−1. Requiring the reflection matrix to be invariant under the charges E2 and F2 on the
bosonic states |k〉1,2, we obtain the following set of separable equations

Dk b− [M−k]q (Ck a−Ak a) = 0, Ck b− [M−k]qEk a−Bk b = 0,

Dk d+ [k]q (Ck−1 c−Ak c) = 0, Ck−1 d+ [k]qEk c−Bk d = 0, (67)

with the unique solution

Ak = (Ck−1[k]qbc + Ck[M−k]qad) /N, Dk = [k]q[M−k]q (Ckac − Ck−1ac) /N,

Bk = (Ck[k]qbc+ Ck−1[M−k]qad) /N, Ek = (Ckbd − Ck−1bd) /N, (68)

where the normalization factor N is

N = [k]q b c + [M−k]q a d =
V qM/2−k − V −1q−M/2+k

q − q−1
. (69)

13



Writing the coefficients explicitly in terms of x± parametrization we then finally obtain

Ak =
γ g̃ q

M
2 (x− − x+)

(
g̃2qM [k]qCk−1 − g2[M−k]qCk (ξ + x+)

2
)
V

iγg2[M ]q (ξ + x+)2 (1 + ξx+)N
,

Bk =
iγ q−

M
2 (x− − x+)

(
g̃2[M−k]qCk−1 (x

−)
2
− g2qM [k]qCk (1 + ξx−)

2
)

γg̃[M ]q (x−)
2 (1 + ξx−)V N

,

Dk =
γγ q

M
2 [k]q[M−k]q

(
g̃2Ck−1x

− + g2Ck (1 + ξx−) (ξ + x+)
)

iαg̃[M ]q x− (ξ + x+)V N
,

Ek =
iα g̃ q

M
2 (x− − x+)

2 (
g̃2Ck−1x

− + g2Ck (1 + ξx−) (ξ + x+)
)
V

γγ g2[M ]q x− (1 + ξx−) (ξ + x+) (1 + ξx+)N
. (70)

Unitarity. The reflection matrix satisfies the unitarity constraint

K(p)K(−p) = 1. (71)

Rational limit. In the q → 1 limit the reflection coefficients get reduced to

Ak =
γ

γ

x−

x+N

(
(M−k)Ck(x

+)2 − kCk−1

)
, Bk =

γ

γ

x+

x−N

(
(M−k)Ck−1(x

−)2 − kCk

)
,

Dk =
γγ

α

k(M−k) (Ckx
+ + Ck−1x

−)

N(x+ − x−)
, Ek =

α

γγ

x− − x+

N

(
Ckx

+ + Ck−1x
−
)
, (72)

and the coefficients Ck and the normalization N are given by 7

Ck =
2igu−M + 2k

−2igu−M + 2k
Ck−1, N = k + (M−k)x−x+. (73)

By choosing γ =
√
i(x− − x+) and γ = γ these are in agreement with the ones found in [27].8

Fundamental representation. In this case M = 1 and the state |k〉2 is absent, thus the
reflection matrix is purely diagonal. The charges E2 and F2 constrain the reflection coefficients
to be

A0 =
a

a
C0 =

γ

γ
C0, (74)

A1 =
c

c
C0 = −

γ

γ

C0

z U2
−→
q→1

−
γ

γ

x−

x+
C0. (75)

Again, choosing the normalization to be A0 = 1 this is in agreement with [18] and with [19] in
the rational limit.

7Here we have rescaled the normalization factor as N(69) → N(73)/(x
+x− − 1) in q → 1 limit.

8Up to some factors due to different choice of the basis (56) with respect to the one in [27].
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Reflection Equation. In order to show the integrability of the model, we have to show that
the reflection matrix is a solution of the reflection equation (boundary Yang-Baxter equation).
In fact, we shall explicitly derive the coefficient Ck by solving the reflection equation. The
unique solution we find agrees perfectly with the coefficients that are derived from the symmetry
considerations. This explicitly proves that K respects the symmetry coideal algebra B.

Consider two states with bound state numbers M1, M2 and spectral parameters z1, z2. Let
us denote Ki = KMi

(zi) and Sij = SMiMj
(zi, zj) and also let the underscored index indicate

that the corresponding representation is reflected. Then the reflection equation is then given
by

K2S21K1S12 = S21K1S12K2, (76)

which explicitly written out in components reads as

Kδ
γ(z2)S

γ,d
β,c (z2, z

−1
1 )Kc

b (z1)S
b,β
a,α(z1, z2) = Sδ,d

γ,c(z
−1
2 , z−1

1 )Kc
b (z1)S

b,γ
a,β(z1, z

−1
2 )Kβ

α(z2), (77)

where we have used Roman and Greek letter to distinguish indices of the fist and second states
respectively.

Let us first consider states of the form |k1〉
α ⊗ |k2〉

α, because the reflection matrix acts
diagonally on these states. This corresponds to the subspace I case in terms of the analysis
performed in [13]. Then the reflection equation becomes

k1+k2∑

n=0

Cm(z1)X
K−n,n
m (z2, z

−1
1 )Cn(z2)X

k1,k2
n (z1, z2) =

k1+k2∑

n=0

X
n,K−n
m (z−1

2 , z−1
1 )Cn(z1)X

k1,k2
n (z1, z

−1
2 )Ck2(z2). (78)

We will now proceed with the derivation of Ck. For k1 = k2 = 0 we easily find that the
reflection equation is satisfied. Next we consider the state where k1 = 1, k2 = 0. In this case
the reflection equation is satisfied provided that C1 satisfies the following relation

C1(z1) = C0(z1)


1−

z21 − 1

z1

(
qM1−M2(z22C1(z2)−C0(z2))

z2(C1(z2)−C0(z2))
+ z1

)


 . (79)

The right hand side is allowed to depend solely on z1 thus there are two solutions, a trivial one
C1 = C0 and

C1 =
z−1 −AqM

z −AqM
C0. (80)

The latter solution has an undetermined constant A. This coefficient may be determined by
either considering the rational limit, or by studying the reflection equation involving states
from the subspace II of [13]. Both arguments lead to A = q−2. Finally, by studying a state
with k1 = 2, k2 = 0 we can solve for C2 and so on. This leads to the following solution

Ck = C0

k∏

i=1

qM − q2i/z

qM − q2iz
, (81)
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which perfectly agrees with (65). As expected, the trivial solution does not solve the reflection
equation in general case.

Subsequently we have numerically checked the reflection equation for generic values of
k1, k2, n,M1,M2 for all different states from subspace II and subspace III and found it to be
satisfied.

5 Discussion

In this work we have considered open boundary conditions for the deformed Hubbard model
of the same type as for the Y = 0 giant graviton in the AdS/CFT correspondence. In this
situation exactly half of the supersymmetries are broken. The symmetry algebra compatible
with these boundary conditions is a twisted coideal quantum affine algebra B̂ of the quantum
affine deformed algebra Q̂.

Inspired by results obtained for semisimple Lie algebras [23, 24, 25, 26] we provide an
explicit construction of B̂ that is of a coideal form. We then find the corresponding reflection
matrix for arbitrary bound states and show that it satisfies the reflection equation (boundary
Yang-Baxter equation). Conversely, we explicitly solve the reflection equation and find that our
reflection matrix corresponds to the unique solution compatible with the boundary conditions.
This proves that the reflection matrix indeed respects B̂ as symmetry algebra.

Finally, we show that the twisted quantum affine algebra and reflection matrix we have
found in the rational q → 1 limit specializes exactly to the twisted Yangian of the Y = 0 giant
graviton and the reflection matrix associated to it, which for the reflection of arbitrary bound
states was found by L. Palla [27]. Furthermore, we have casted the twisted Yangian of the
Y = 0 giant graviton in a very compact form (91) with the help of the outer automorphism U

of the extended su(2|2) algebra. However, the explicit form (53) of the rational q → 1 limit of
B̂ was somewhat surprising. Bearing on the Yangian limit of Q̂ found in [8], we were expecting
to obtain the twisted secret charges constructed in [39]. However it turned out not to be the
case, thus the role of the twisted secret charges of [39] remains unknown.

Due to the high complexity of the bulk S-matrix we were unable to check the reflection equa-
tion in complete generality, however we did check a wide number of generic cases numerically
and all of them were satisfied.

In this work we have used the reflection Hopf algebra formalism introduced in [37], how-
ever we have not stated explicitly the reflection automorphism of the algebra. We have only
constructed the map between the representations of incoming and reflected states. This was
sufficient for our purpose – finding explicit form of the reflection matrix. Construction of the
reflection automorphism requires a detailed analysis of the outer-automorphism group of Q̂
and thus is beyond of the scope of this paper. Nevertheless it is a very important question and
deserves to be explored.

This work has revealed one more algebraic structure related to the deformed quantum
affine algebra Q̂. The natural next step would be to explore boundary scattering for other
boundary conditions, most notably the one of the same type as of the Z = 0 giant graviton. It
would also be interesting to apply the Bethe ansatz for these systems and derive their transfer
matrices [40]. Furthermore, there has recently been a rapid development in the q-deformed
Pohlmeyer reduced version of the AdS5 × S5 superstring theory [41, 42], however the presence
of boundaries in the Pohlmeyer reduced theories has not been much investigated. Thus it would
be very interesting to see the effects of boundaries in such theories and find plausible links to
the algebraic constructions considered in this work.
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A Algebra maps

The q → 1 limit map. Algebra Q̂ in the conventional q → 1 limit specializes to the centrally
extended sl(2|2). Central elements U and V of the algebra in this limit become U → U and
V → 1. The representation labels (a, b, c, d) (12) specialize to the usual non-deformed labels
(a, b, c, d) of [11], while the affine ones become

(
ã, b̃, c̃, d̃

)
→

(
αα̃ c, αα̃ d,−

a

αα̃
,−

b

αα̃

)
. (82)

The natural choice of normalization for α̃ is 1. The explicit map between the generators of the
algebras is

Ei → Ei, Fi → Fi, Hi → Hi for i = 1, 2, 3, (83)

and
E4 → αF321, F4 → −α−1E321, H4 → −H1 − H2 − H3. (84)

The central charges are being mapped as

C1 → C, C2 → P, C3 → K. (85)

The sl(2|2) → su(2|2) map. The map between these algebras reads as

E1 → L1
2, F1 → L2

1, H1 → −2L1
1,

E2 → Q2
4, F2 → G4

2, H2 → −L1
1 − R3

3 +
1

2
H,

E3 → R4
3, F3 → R3

4, H3 → −2R3
3. (86)

Their commutators are

E32 → Q2
3, E21 → Q1

4, E321 → Q1
3,

F23 → G3
2, F12 → G4

1, F321 → G3
1. (87)

Finally, the central charges are being mapped as

C → 2H, P → C, K → C†. (88)

For details on su(2|2) see e.g. [43].
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B Symmetries of Y=0 giant graviton

The Y = 0 giant graviton preserves the su(2|1) subalgebra of the psu(2|2) ⋉ R3 and has no
degrees of freedom attached to the end of the spin chain [19]. The algebra a = su(2|1) is obtained
from the g = psu(2|2) ⋉ R3 by dropping the generators with bosonic indices a, b, c, ... = 1
(or equivalently with a, b, c, ... = 2). Thus the surviving (preserved) charges from a subgroup

a = {R β
α , L 1

1 , Q 2
α , G α

2 , H}, while the broken charges form a subset b = psu(2|2)⋉R3\su(2|1)
consisting of {L 2

1 , L 1
2 , Q 1

γ , G γ
1 , C, C†}.

Since the Cartan-Killing form of the extended su(2|2) algebra is degenerate, the algebra
does not have well-defined Casimir operator. Thus we cannot apply the formula (17) naively9.
In order to use (17), the Casimir operator of su(2|1) have to be enhanced by u(1) outer auto-
morphism U,

Ta = −Rδ
γR

γ
δ + 2L1

1L
1
1 +Q2

γG
γ
2 −G

γ
2Q

2
γ − 2HU . (89)

This extra charge is the Cartan generator of su(2) outer automorphism of the extended su(2|2)
algebra and it serves the hypercharge for generators,

[U,Qa
α] = +1

2Q
a
α, [U,Gα

a ] = −1
2G

α
a , [U,C] = +C, [U,C†] = −C†,

[U,Lb
a] = [U,Rβ

α] = [U,H] = 0. (90)

Then (17) implies that the twisted Yangian charges governing the scattering of the Y = 0 giant
graviton are

Q̃1
α = Q̂1

α − 1
4

[
Ta,Q1

α

]
, L̃2

1 = L̂2
1 −

1
4

[
Ta,L2

1], C̃ = Ĉ− 1
4

[
Ta,C],

G̃α
1 = Ĝα

1 − 1
4

[
Ta,Gα

1 ], L̃1
2 = L̂1

2 −
1
4

[
Ta,L1

2], C̃† = Ĉ† − 1
4

[
Ta,C†]. (91)

The explicit forms of their co-products are

∆Q̃1
α = Q̃1

α ⊗ 1 + 1⊗ Q̃1
α +Q1

ᾱ ⊗ Rᾱ
α − L1

2 ⊗Q2
α +Q1

α ⊗Kα
α + εαβC⊗G

β
2 ,

∆G̃α
1 = G̃α

1 ⊗ 1 + 1⊗ G̃α
1 −Gᾱ

1 ⊗ Rα
ᾱ + L2

1 ⊗Gα
2 −Gα

1 ⊗Kα
α − εαβC† ⊗Q2

β,

∆L̃2
1 = L̃2

1 ⊗ 1 + 1⊗ L̃2
1 − 2L2

1 ⊗ L1
1 −G

γ
1 ⊗Q2

γ ,

∆L̃1
2 = L̃1

2 ⊗ 1 + 1⊗ L̃1
2 + 2L1

2 ⊗ L1
1 −Q1

γ ⊗G
γ
2 ,

∆C̃ = C̃⊗ 1 + 1⊗ C̃+C⊗H,

∆C̃† = C̃† ⊗ 1 + 1⊗ C̃† −C† ⊗H. (92)

Here Kα
α = Rα

α + L1
1 +

1
2H and 4̄ = 3, 3̄ = 4.
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