
THE LINKING PAIRINGS OF ORIENTABLE SEIFERT

MANIFOLDS

JONATHAN A. HILLMAN

Abstract. We compute the p-primary components of the linking
pairings of orientable 3-manifolds admitting a fixed-point free S1-
action. Using this, we show that any nonsingular linking pairing
on a finite abelian group with homogeneous 2-primary summand
is realized by such a manifold. However there are pairings on in-
homogeneous 2-groups which are not realizable.

In [3] we computed the linking pairings of oriented 3-manifolds which
are Seifert fibred over non-orientable base orbifolds. Here we shall
consider the remaining case, when the base orbifold is also orientable.
Thus the Seifert fibration is induced by a fixed-point free S1-action
on the manifold. (We shall henceforth call such a space a “Seifert
manifold”, for brevity.) We give presentations for the localization of the
torsion at a prime p in §2, and use these to give explicit formulae for the
localized linking pairings in §3. We then study the cases p odd and p =
2 separately, in §§3-6 and §§7-8, respectively. Every nonsingular pairing
on a finite abelian group whose 2-primary subgroup is isomorphic to
(Z/2kZ)m (for some k,m) is the linking pairing of a Seifert manifold

with geometry H2 × E1, and also of one with geometry S̃L. However
if the 2-primary subgroup has exponent 2k but is inhomogeneous the
restrictions of the pairing to direct summands of exponent properly
dividing 2k must be odd. The final section §9 summarizes briefly the
earlier work of Oh on the Witt classes of such pairings [6].

1. Bilinear pairings

A linking pairing on a finite abelian group N is a symmetric bilinear
function ℓ : N × N → Q/Z which is nonsingular in the sense that

ℓ̃ : n 7→ ℓ(−, n) defines an isomorphism from N to Hom(N,Q/Z).

If L is a subgroup of N then ℓ̃ induces an isomorphism L⊥ = {t ∈
N | ℓM(t, l) = 0 ∀l ∈ L} ∼= N/L. Such a pairing splits uniquely as
the orthogonal sum (over primes p) of its restrictions to the p-primary
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subgroups of N . It is metabolic if there is a subgroup P with P = P⊥,
split [5] if also P is a direct summand and hyperbolic if N is the direct
sum of two such subgroups. If ℓ is split N is a direct double. A linking
pairing ℓ is even if 2k−1ℓ(x, x) ∈ Z for all x ∈ N such that 2kx = 0.
Hyperbolic pairings are even. We shall say that ℓ is odd if it is not
even.
If w = p

q
∈ Q× (where (p, q) = 1) let ℓw be the pairing on Z/qZ given

by ℓw(m,n) = [mnw] ∈ Q/Z. Then ℓw ∼= ℓw′ if and only if w′ = n2w for
some integer n with (n, q) = 1. In particular, if q = 2k then ℓw ∼= ℓw′

if and only if 2kw′ ≡ 2kw mod (2k, 8). Every linking pairing on an
abelian group of odd order is an orthogonal sum of pairings on cyclic
groups. However, if the order is even we need also pairings on the
groups (Z/2kZ)2. (See [5, 7]. Our strategy shall be to localize at a
prime p, and we shall consider appropriate invariants later.
If M is a closed oriented 3-manifold Poincaré duality determines a

linking pairing ℓM : T (M) × T (M) → Q/Z, which may be described
as follows. Let w, z be disjoint 1-cycles representing elements of T (M)
and suppose that mz = ∂C for some 2-chain C which is transverse to
w and some nonzero m ∈ Z. Then ℓM([w], [z]) = (w •C)/m ∈ Q/Z. It
follows easily from the Mayer-Vietoris theorem and duality that if M
embeds in R4 then ℓM is hyperbolic. (If X and Y are the closures of the
components of R4 −M and TX and TY are the kernels of the induced
homomorphisms from T (M) to H1(X ;Z) and H1(Y ;Z) (respectively)
then T (M) ∼= TX ⊕ TY and the restriction of ℓM to each of these
summands is trivial [5]).
The linking pairing has a dual formulation, in terms of cohomology.

Let βQ/Z : H1(M ;Q/Z) → H2(M ;Z) be the Bockstein homomorphism
associated with the coefficient sequence

0 → Z → Q → Q/Z → 0,

and let D : H1(M ;Z) → H2(M ;Z) be the Poincaré duality isomor-
phism. Then ℓM may be given by the equation

ℓ(w, z) = (D(w) ∪ β−1
Q/ZD(z))([M ]) ∈ Q/Z.

The cup-product and Bockstein structure on H∗(M ;Fp) for M a Seifert
manifold have been computed in [2]. Bryden and Zvengrowski also
treat the case of coefficients Z/psZ, under the hypothesis that the p-
adic valuations of the cone point orders are either s, 1 or 0.

2. the torsion subgroup

Assume now that M = M(g;S) is a Seifert manifold with Seifert
data S = ((α1, β1), . . . , (αr, βr)), where r ≥ 1 and αi > 1 for all i ≤ r.
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Then H1(M ;Z) ∼= Z2g ⊕H , where H has a presentation

〈q1, . . . , qr, h | Σqi = 0, αiqi + βih = 0, ∀i ≥ 1〉.

The torsion subgroup T (M) is a subgroup of H . Let εS = −Σ βi

αi
be

the generalized Euler invariant of the Seifert fibration.
We shall modify this presentation to obtain one with more conve-

nient generators. Our approach involves localizing at a prime p. After
reordering the Seifert data, if necessary, we may assume that αi+1 di-
vides αi in Z(p), for all i ≥ 1. (Note that if εS = 0 then α1

α2
is invertible

in Z(p).) Localization loses nothing, since ℓM is uniquely the orthogonal
sum of pairings on the p-primary summands of T (M). (We shall often
write ℓM rather than Z(p) ⊗ ℓM , for simplicity of notation.)
Using the relation Σqi = 0 to eliminate the generator q1, we see that

Z(p) ⊗ T (M) has the equivalent presentation

〈q2, . . . , qr, h | α1εSh = 0, αiqi + βih = 0, ∀i ≥ 2〉.

Since α2 and β2 are relatively prime there are integers m,n such that
mα2 + nβ2 = 1. Let γi =

α2

αi
βi and q′i = γ2qi − γiq2, for all i. (Then

q′2 = 0.) Let s = −mh+ nq2 and t = α2q2 + β2h. Then h = −α2s+ nt
and q2 = β2s+mt. Since t = 0 in H this simplifies to

〈q′3, . . . , q
′
r, s | α1α2εSs = 0, αiq

′
i = 0, ∀i ≥ 3〉.

In particular, if exactly rp of the cone point orders αi are divisible by
p and εS = 0 then T (M) has nontrivial p-torsion if and only if rp ≥ 3,
in which case Z(p)⊗T (M) is the direct sum of rp−2 cyclic submodules,
while if εS 6= 0 then T (M) has nontrivial p-torsion if and only if rp ≥ 2
and then Z(p) ⊗ T (M) is the direct sum of rp − 1 cyclic submodules.

3. the linking pairing

The Seifert structure gives natural 2-chains relating the 1-cycles rep-
resenting the generators of H . For let Ni be a torus neighborhood of
the ith exceptional fibre, and let Bo be a section of the restriction of the
Seifert fibration to M∗ = M \ ∪intNi. Let ξi and θi be simple closed
curves in ∂Ni which represent qi and h, respectively. Then ∂Bo = Σξi,
and there are singular 2-chains Di in Ni such that ∂Di = αiξi + βiθi,
since αiqi + βih = 0 in H1(Ni;Z). We may choose disjoint annuli Ai in
M∗ with ∂Ai = θ2 − θi, for i 6= 2. For convenience in our formulae, we
shall also let A2 = 0. Then Ci = β2Di − βiD2 + β2βiAi is a singular
2-chain with ∂Ci = αiβ2ξi − α2βiξ2.
Let ξ′i = γ2ξi − γiξ2, for i ≥ 3, σ = −mθ2 + nξ2 and

U = α1Bo + α1εSnD2 − Σ
α1

αi

(Di + βiAi).
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Then ξ′i is a singular 1-chain representing q′i and ∂Ci = αiξ
′
i, for all

i ≥ 3, σ is a singular 1-chain representing s and U is a singular 2-chain
with ∂U = α1α2εSσ.
We may assume that ξi • θi = 1 in ∂Ni. In order to calculate inter-

sections and self-intersections of the 1-cycles ξi with the 2-chains Ci in
M , we may push each ξi off Ni. Then ξi and Dj are disjoint, for all
i, j, while ξ2 • Ai = 1, ξi • Ai = −1 and ξj • Ai = 0, if i, j 6= 2 and
j 6= i. Similarly, we may assume that θ2 is disjoint from the discs Dj

(for all j) and the annuli Ak (for all k 6= 2). Since Bo is oriented so
that ∂Bo = Σξi, we must have θ2 •Bo = −1. Hence

ξ′i • Ci = −β2βi(γ2 + γi),

ξ′i • Cj = −β2βjγi,

and
ξ′i • U = α1εSγi

for all i, j ≥ 3 with j 6= i, while

σ • U =
α1

α2

− nα1εS

and
σ • Ci = nβ2βi.

Let q̃i = ciq
′
i, where ciβi ≡ 1 modulo α2, for all i ≥ 3. Then

ℓM(q̃i, q̃i) = [−β2
ciαiβ2 + α2

α2
i

] ∈ Q/Z

and

ℓM(q̃i, q̃j) = [−β2
α2

αiαj
] ∈ Q/Z.

If εS 6= 0 then we also have

ℓM(s, s) = [
α1 − nα1α2εS

α1α2
2εS

] ∈ Q/Z

and

ℓM(s, q̃i) = [
1

αi
] ∈ Q/Z.

In particular, the linking pairings depend only on S and not on g.
(We could arrange that the deminators are powers of p, after further
rescaling the basis elements. However that would tend to obscure the
dependence on the Seifert data.)
Let S and S ′ be two systems of Seifert data, with concatenation S ′′,

and let M ′′ = M#fM
′ = M(0;S ′′) be the fibre-sum of M = M(0;S)

and M ′ = M(0;S ′). If all the cone point orders of S ′ are relatively
prime to all the cone point orders of S and either εS′ = εS = 0 or
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εS′εS 6= 0 then εS′′ = εS + εS′ and ℓM ′′ = ℓM ⊥ ℓM ′. Thus if every
p-primary summand of a linking pairing ℓ can be realized by some
M(0;S) with all cone point orders powers of p then ℓ can also be
realized by a Seifert manifold. (It is not clear how the linking pairings
of M,M ′ and M ′′ are related when some of the cone point orders in S
and S ′ have a common factor.)

4. the homogeneous case: p odd

Every nonsingular torsion pairing on a finite abelian p-group is the
orthogonal sum of pairings on homogeneous summands, and when p is
odd the decomposition is essentially unique [7].
The group Z(p) ⊗ T (M) is homogeneous of exponent pk if ui =

αi

pk

is invertible in Z(p) for 3 ≤ i ≤ rp and either εS = 0 or α1α2εS/p
k is

invertible in Z(p). We shall assume that this is so, for some odd prime
p, throughout this section. For convenience, we shall also write ui =

αi

pk

for i = 1 and 2.
Let ℓ be a linking pairing on N ∼= (Z/pkZ)ρ and L ∈ GL(ρ, Z/pkZ)

be the matrix with (i, j) entry pkℓ(ei, ej), where e1, . . . , eρ is some basis
for N . The rank of ℓ is rk(ℓ) = dimFp

N/pN = ρ. If p is odd then
a linking pairing ℓ on a free Z/pkZ-module N is determined up to
isomorphism by rk(ℓ) and the image d(ℓ) of det(L) in F×

p /(F
×
p )

2 =
Z/2Z. (This is independent of the choice of basis for N .) In particular,
ℓ is hyperbolic if and only if ρ = rk(ℓ) is even and d(ℓ) = [(−1)

ρ
2 ].

Suppose first that εS = 0. Then α1

α2
= u1

u2
is also invertible in Z(p), and

Z(p) ⊗ T (M) ∼= (Z/pkZ)rp−2, with basis ei = q̃i+2, for 1 ≤ i ≤ rp − 2.
On applying row operations

rowi 7→ rowi −
u3

ui+2
row1

for 1 < j ≤ rp − 2 and then

row1 7→ row1 −
u2

β2u3
Σ1<i≤rp−2βi+2rowi

to L we obtain a lower triangular matrix. Hence

det(L) = (−β2)
rp−2(−β−1

2 L11 + Σ3<i≤rp

βiu2

β3u3ui
)Π3<j≤rp((βjuj)

−1β2).

Now

−β−1
2 L11 + Σ3<i≤rp

βiu2

β3u3ui
=

α2

β3u3
Σ1<i≤rp

βi

αi
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in Z(p). This is congruent to − α2

β3u3

β1

α1
mod (p), since εS = 0, and so

det(L) ≡ (−1)rp−2β
2rp−5
2 (−β1

α2

α1
)Π3≤j≤rp(βjuj)

−1 mod (p).

Hence

d(ℓM) = [(−1)rp−1α1

α2
(Π1≤i≤rβi)(Π3≤j≤ruj)].

When u1 and u2 are also invertible in Z(p) (i.e., all the cone point orders
have the same p-adic valuation) then [α1

α2
] = [u1u2] in F×

p /(F
×
p )

2, and so
the formula is invariant under permutation of the indices.
A similar argument applies if α1α2εS/p

k is invertible in Z(p). In this
case the integers u2 = α2

pk
and v = α1εS are also invertible in Z(p),

since uv = α1α2εS/p
k. However u1 = α1

pk
may be divisible by p. Let

Σ∗ = Σ3≤i≤rp
βi

ui
. Then Σ∗ ∈ Z(p) and v − β1 −

β2u1

u2
≡ Σ∗ mod (p).

We now have Z(p) ⊗ T (M) ∼= (Z/pkZ)rp−1, with basis ei = q̃i+2, for
1 ≤ i ≤ rp − 2, and erp−1 = s.

Let d∗ = β−2
2 ( 1

u2
− β2u1

u2
2
v
) be the element in the bottom right corner

of the matrix L. On applying row operations

rowi 7→ rowi +
β2u2

ui+2
rowrp−1

for 1 ≤ j ≤ rp − 2 and then

rowrp−1 7→ rowrp−1 + β−2
2 Σ1≤i≤rp−2βi+2rowi

to L we obtain a lower triangular matrix. Hence

det(L) = (−β2)
rp−1(Π3≤i≤rp((βiui)

−1β2).(d∗(1 +
u2

β2

Σ∗)− β−3
2 Σ∗)

= (−1)rp−1β
2rp−6
2 ((1−

β2u1

u2v
)(
β2

u2
Σ∗)− Σ∗)Π3≤i≤rp(βiui)

−1

≡ (−1)rp−1β
2rp−6
2

β1β2

u2v
Π3≤i≤rp(βiui)

−1 mod (p).

Hence

d(ℓM) = [(−1)rp−1(Π1≤i≤rpβi)(Π2≤j≤rpuj)v].

When u1 is also invertible in Z(p) we have v = u1p
kεS, and so the

formula is again invariant under permutation of the indices.
The localized pairing Z(p) ⊗ ℓM is hyperbolic if and only if either

εS = 0, rp = ρ+ 2 is even and [α1

α2
(Π1≤i≤rpβi)(Π3≤j≤rpuj)] = [(−1)

rp

2
−1]

or εS 6= 0, rp = ρ+1 is odd and [(Π1≤i≤rpβi)(Π2≤j≤rpuj)v] = [(−1)
rp−1

2 ].
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5. realization of homogeneous p-primary pairings: p odd

Let p be an odd prime and ℓ a linking pairing on (Z/pkZ)ρ, where
ρ ≥ 1, and let d(ℓ) = [w]. We shall show that ℓ ∼= ℓM and ℓ ∼= ℓM ′,
where M = M(0;S) and M ′ = M(0;S ′) are Seifert manifolds and
εS = 0 and εS′ 6= 0. If p ≥ 5 or ρ > 2 we may assume that αi = pk

for all i ≤ r, where r = ρ + 2 if εS = 0 and r = ρ + 1 if εS 6= 0. In
this case ui = 1 for all i and so d(ℓM) = [(−1)ρ+1Πβi], if εS = 0, and
d(ℓM) = [(−1)ρ(Πβi)(Σβi)], if εS 6= 0. If p = 3 and ρ = 2 a similar
result holds, but we must now allow cone point orders dividing 3k+1.
If εS = 0 and ρ is odd the equation Σβi = 0 always has solutions with

all βi ∈ (Z/pkZ)×. If ξ is a nonsquare in (Z/pkZ)× setting β ′
i = ξβi

for all i gives another solution, and [Πβ ′
i] = [ξ][Πβi]. (If p ≡ 3 mod

(4) we may take ξ = −1, which corresponds to a change of orienta-
tion of the 3-manifold.) Thus the two isomorphism classes of linking
pairings on (Z/pkZ)ρ are realized by M(0; (pk, β1), . . . , (p

k, βρ+2)) and
M(0; (pk, β ′

1), . . . , (p
k, β ′

ρ+2)).
If ρ = 4t − 2 and w 6≡ 1 mod (p) there is an integer x such that

x ≡ 1
2
(w− 1) mod (p). The images of x and w− 1− x are invertible in

Z/pkZ. Let β1 = 1, β2 = −w, β3 = x and β4 = w−1−x and β2i+1 = 1
and β2i+2 = −1 for 2 ≤ i < 2t. Then Σβi = 0, β4 ≡ β3 mod (p) and
[(−1)r−1Πβi] = [w].
If ρ = 4t and w 6≡ 1 mod (p) let β1 = 1, β2 = w, β3 = β4 = β5 = y,

β6 = w − 1 − 3y and β2i+1 = 1 and β2k+2 = −1 for 3 ≤ i ≤ 2t,
where y ≡ −1

4
(1 + w) mod (p). Then Σβi = 0, β6 ≡ β3 mod (p) and

[(−1)r−1Πβi] = [w].
These choices work equally well for all p ≥ 3, if [w] 6= 1. If ρ is even,

w ≡ 1 mod (p) and p > 3 there is an integer n such that n2 6= 0 or 1
mod (p), and we solve as before, after replacing w by ŵ = n2w.
However if p = 3 and [w] = 1 we must vary our choices. If ρ = 4t−2

with t > 1 let β1 = β2 = β3 = β4 = 1, β5 = β6 = −2 and β2i+1 = 1
and β2i+2 = −1 for 3 ≤ i < 2t. If ρ = 4t let β2i−1 = 1 and β2i = −1
for 1 ≤ i ≤ 2t + 1. In the remaining case (when ρ = 2) we find that
if Σ1≤i≤4βi = 0 then [−Πβi] = [−1]. In this case we must use instead
S = ((3k+1, 1), (3k+1, 5), (3k,−1), (3k,−1)) to realize the pairing with
[w] = [1].
The manifolds with Seifert data as above are H2 × E1-manifolds,

except when ρ = 1 and p = 3, in which case they are the flat man-
ifold G3 (with its two possible orientations). The manifold M =
M(1; (3, 1), (3, 1), (3,−2)) is an H2 × E1-manifold with T (M) ∼= Z/3Z
and base orbifold a torus with cone points.

All such pairings may also be realized by by S̃L-manifolds.
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If r 6≡ 2 + (−1)r−1w mod (p) let β1 = β2 =
1
2
(2 + (−1)r−1w − r) and

βi = 1 for 2 < i ≤ r. Then Πβi is a square and v = Σβi = (−1)r−1w,
so [(−1)r−1(Πβi)v] = [w].
If r ≡ 2+ (−1)r−1w mod (p) and r ≥ 4 let β1 = β2 =

p+1
2
, β3 = β4 =

−p−1
2

and βi = 1 for 4 < i ≤ r.
The remaining case (when ρ = 2, p = 3 and [w] = 1) is realized by

M(0; (3k+1, 1), (3k, 1), (3k, 1)).
When ρ = 1 these constructions give lens spaces (S3-manifolds),

while M(0; (3, 1), (3, 1), (3,−1)) is a Nil3-manifold. Forming the fibre-
sum with S1 × S1 × S1 (adding a handle to the base orbifold) in these

cases gives S̃L-manifolds.

6. the inhomogeneous case: p odd

We now consider the inhomogeneous case, assuming for simplicity
of notation that the cone point orders are powers of the odd prime p.
Let αi = pk for 1 ≤ i ≤ m1, αi = pk−λ1 for m1 < i ≤ m2, . . . , and
αi = pk−λt for mt < i ≤ r = mt+1, where 0 < λ1 < · · · < λt < k.
If εS = 0 and m1 = 2, let m = m2, while if m1 > 2, let m = m1 − 2.

If εS 6= 0 and α1α2εS/α3 is divisible by p, let m = 1. Otherwise, let
m = m1 − 1.

Then the matrix L has the block form L =
(

A pλ1B

pλ1Btr pλ1D

)
, where A

is an m × m block with det(A) 6≡ 0 mod (p), and where the blocks
B and D may be further partitioned into blocks divisible by higher

powers of p. Let Q =
(

Im −A−1pλ1B
0 Iρ−m

)
. Then QtrLQ =

(
A 0
0 pλ1D′

)
, where

D′ = D − pλ1BtrA−1B. Block-diagonalizing L in this fashion does not
change the residue mod (p) of D. Thus on iterating this process we
see that ℓM is an orthogonal sum of pairings on homogeneous groups
(Z/pkZ)m, (Z/pk−λ2Z)m2−m1 . . . , (Z/pk−λtZ)ρ−mt . We may read off
the determinantal invariants of each summand from the corresponding
diagonal block of the original matrix L.
With these reductions in mind, we may now contruct Seifert mani-

folds realizing given pairings. Let ℓ be a linking pairing on a p-primary
group. Then ℓ is the orthogonal sum ⊥0≤j≤t ℓj , where ℓj is a pairing on
(Z/pkjZ)ρj , with ρj > 0 for 0 ≤ j ≤ t and 0 < kj < kj−1 for 1 ≤ j ≤ t.
Let d(ℓj) = [wj] for 0 ≤ j ≤ t, and let k = k0. We shall adapt the
constructions of §5 to obtain a Seifert manifold M with ℓM ∼= ℓ.
If p ≥ 5 and εS = 0 we let αi = pk for 1 ≤ i ≤ m1 = ρ0 + 2, αi = pk1

for m1 < i ≤ m2 = m1 + ρ1, . . . , and αi = pkt for mt < i ≤ (Σρj) + 2.
For each 1 ≤ j ≤ t we let βi = 1 for mj < i < mj+1 and βmj+1

= wj.
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We must then choose βi for 1 ≤ i ≤ m1 so that [Π1≤i≤m1
βi] = [w1] and

Σ1≤i≤m1
βi = pkε− Σm1<i≤rp

k βi

αi
. This is straightforward.

If p = 3 we may have to modify α1 and α2 as in §5 in order to realize
all possible pairings.
A similar strategy applies when εS 6= 0. We set m1 = ρ0 + 1 and

proceed as before. (The prime p = 3 again needs separate treatment.)

7. realization of homogeneous 2-primary pairings

The situation is more complicated when p = 2. A linking pairing ℓ
on (Z/2kZ)ρ is determined by its rank ρ and certain invariants σj(ℓ) ∈
Z/8Z ∪ {∞}, for ρ− 2 ≤ j ≤ ρ. (See §3 of [5], and [4].) We shall not
calculate these invariants here. Instead, we shall take advantage of the
particular form of the pairings given in §3.
Let ℓ be a linking pairing on N = (Z/2kZ)2, and let e, f be the

standard basis for N . Suppose that a = 2kℓ(e, e) is odd, and let
b = 2kℓ(e, f) and d = 2kℓ(f, f). (Then b is even and d is odd, by
nonsingularity of the pairing.) Let f ′ = −a−1be+ f . Then ℓ(e, f ′) = 0
and ℓ(f ′, f ′) = [ d

′

2k
] ∈ Q/Z, where d′ ≡ d− a−1b2 mod (2k). Therefore

ℓ ∼= ℓ a

2k
⊥ ℓ d′

2k

. In particular, if b ≡ 0 mod (4) then ℓ ∼= ℓ a

2k
⊥ ℓ d

2k
.

Let M = M(0;S) be a Seifert manifold. The pairing Z(2) ⊗ ℓM is
even if and only if

(1) there is a k ≥ 1 such that ui =
αi

2k
is odd, for all 1 ≤ i ≤ r2; and

(2) either r2 is odd or εS = 0 (in which case r2 is even).

In particular, Z(2) ⊗ T (M) ∼= (Z/2kZ)2s for some s ≥ 0. (Conversely,
if Z(2) ⊗ T (M) is homogeneous of exponent 2k, the localized pairing is
odd if and only if either εS = 0, ui =

αi

2k
is even for i = 1 and 2, and is

odd for 2 < i ≤ r2, or εS 6= 0, u1 is even and ui is odd for 1 < i ≤ r2.)
Suppose that εS = 0 and Z(2)⊗ ℓM is odd. Then the diagonal entries

of L are odd and the off-diagonal elements are even. In particular,
A =

(
L11 L12

L21 L22

)
is invertible. We may partition L as L =

(
A C
Ctr B

)
, where

C is a 2× (r2−4) block with even entries and B is a (r2−4)× (r2−4)

matrix. Let Q =
(

I2 −A−1C
0 Ir2−4

)
. Then det(Q) = 1 and QtrLQ = ( A 0

0 B′ ),

where B′ = B−CtrA−1C. The columns of C are proportional, and the
ratio u3/u4 is odd. Since the entries of C are even and since A− I2 has
even entries, B′ ≡ B mod (8). Iterating this process, we may replace
L by a block-diagonal matrix, where the blocks are either 2 × 2 or
1×1, and are congruent mod (8) to the corresponding blocks of L. We
may diagonalize each such 2× 2 block as above, and so we may easily
represent ℓM as an orthogonal sum of pairings of rank 1.
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Let ℓ =⊥1≤i≤ρ ℓwi
be an odd linking pairing on (Z/2kZ)ρ. Let S =

((α1, β1), . . . , (αr, βr)), where α1 = α2 = 2k+2, αi = 2k for 3 ≤ i ≤ r =
ρ+2, β2 = 1, βi is an integer such that βiwi ≡ 1 mod (8) for 3 ≤ i ≤ r
and β1 = −1− 4Σi≥3βi. Then εS = 0 and ℓM ∼= ℓ.
When εS 6= 0 and ℓM is odd we first replace each q̃i by uiq̃i + z−1s,

where z = 2kℓM(s, s). We then see that ℓM ∼= ℓ̃ ⊥ ℓz, where the matrix

for ℓ̃ has odd diagonal entries and even off-diagonal entries, and we
may continue as before. (If r is odd we may assume that αi = 2k for all
i. If r is even we may assume that αi = 2k for i > 1, but homogeneity
of Z(2) ⊗ T (M) requires that α1

α2
be even.)

If a linking pairing ℓ on (Z/2kZ)ρ is even then ρ is also even, and
either ℓ is hyperbolic (and is the orthogonal sum of ρ

2
copies of the

pairing Ek
0 ) or it is the orthogonal direct sum of a hyperbolic pairing of

rank ρ−2 with the pairing Ek
1 (if k > 1). When k = 1 all even pairings

are hyperbolic. Otherwise, ℓ is determined by the image of the matrix
L = 2kℓ(ei, ej) in GL(2s, Z/4Z). In particular, if L = ( 0 c

c d ) with c odd
and d even the pairing is hyperbolic.
Suppose that k > 1, and that αi = 2k for 1 ≤ i ≤ r. (If r is even

we assume also that εS = 0.) Then the diagonal entries of L are all
even and the off-diagonal entries are are all odd. We may reorder the
basis of T (M) so that Lii ≡ 0 mod (4), for all i ≤ t and Lii ≡ 0 it mod
(4) for t < i ≤ ρ. We may again partition L as L =

(
A C
Ctr B

)
, where

A ∈ GL(2, Z/2kZ), C is a 2× (ρ−2) block. and B is a (ρ−2)× (ρ−2)

matrix. If we conjugate by Q =
(

I2 −A−1C
0 Iρ−2

)
to obtain QtrLQ = ( A 0

0 B′ ),

then B′ ≡ B mod (2). In particular, the off-diagonal entries are still
odd, but the residues mod (4) of the diagonal entries are changed.
Iterating this process, and using the fact that Ek

1 ⊥ Ek
1
∼= Ek

0 ⊥ Ek
0 ,

we find that ℓ is hyperbolic if and only if ρ
2
− t ≡ 0 or 3 mod (4).

In terms of the Seifert data, if εS = 0 or β1 ≡ Σi≥3βi mod (4) then

t = #{i ≥ 3 | βi + β2 ≡ 0 mod (4)}.

Otherwise εS 6= 0 and Σi 6=2βi ≡ 0 mod (4), and then

t = #{i ≥ 3 | βi + β2 ≡ 0 mod (4)}+ 1.

In particular, if S = ((2k, β1), . . . , (2
k, βr)) with βi = (−1)i for 1 ≤ i ≤ r

then εS = − 1
2k

if r is odd and εS = 0 if r is even, and ℓM ∼= (Ek
0 )

ρ

2 is

hyperbolic. We may realize the non-hyperbolic pairing (Ek
0 )

ρ
2
−1 ⊥ Ek

1

using either β1 = −3, β2 = β3 = 1 and βi = (−1)i for 4 ≤ i ≤ ρ + 2,
with εS = 0, or β1 = 1 and βi = (−1)i for 2 ≤ i ≤ ρ+ 1, with εS = 1

2k
.

The manifolds constructed in this section are eitherH2×E1-manifolds
(if εS = 0), or S̃L-manifolds (if εS 6= 0), with the exceptions of the



THE LINKING PAIRINGS OF ORIENTABLE SEIFERT MANIFOLDS 11

Hantzsche-Wendt flat manifold M(0; (2,−1), (2, 1), (2,−1), (2, 1)) and
the S3-manifoldsM(0; (2, 1), (2, 1), (2, β)) andM(0; (4, 1), (2, 1), (2, β)).

8. the inhomogeneous case: p = 2

In the inhomogeneous case a reduction as in §6 is possible when the
(ρ−m)× (ρ−m) matrix BtrA−1B ≡ 0 mod (4). For instance, this is
so if εS = 0 and either

(1) the gaps λ1, λ2 − λ1, . . . , λt − λt−1 in the 2-adic valuations of
the cone point orders are all at least 3;

(2) α2

α3
is even, mi is even for all 1 ≤ i ≤ t + 1 and the gaps are all

at least 2; or
(3) α2

α3
is even and mi ≡ 2 mod (4) for all 1 ≤ i ≤ t + 1.

However the general situation is less clear.
If Z(2) ⊗ T (M) has exponent 2k, but is not homogeneous, then there

are generators q̃i of order 2
k−λ, for some 0 < λ < k. If, moreover, either

εS = 0 or T (M)/2k−1T (M) is not cyclic then α2

αi
must be even and so

2k−λℓM(q̃i, q̃i) is odd for all such i.
We may derive from this observation a criterion for recognizing pair-

ings which are not realizable by Seifert manifolds that is independent
of the choice of generators. Let N ∼= N ′ ⊕ N ′′ be a finite abelian
group, where the homogeneous summands of N ′ have exponent ≥ 4
and 2N ′′ = 0, and let ℓ = ℓ′ ⊥ ℓ′′, where ℓ′ is a pairing on N ′ and and
ℓ′′ is a hyperbolic pairing on N ′′. Then ℓ(x, x) = 0 for all x ∈ N such
that 2x = 0. In particular, if N ′ is not cyclic then ℓ is not realizable
by a Seifert manifold.
For example, the pairings ℓ 1

4

⊥ ℓ 1

4

⊥ E1
0 and E2

0 ⊥ E1
0 are not

realized by any Seifert manifolds. (These provide counter-examples to
a conjecture raised in [1].) The pairing ℓ 1

4

⊥ E1
0 is not realizable by

a Seifert manifold with εS = 0. It is however realized by the Nil3-
manifold M(0; (2, 1), (2, 1), (2, 1), (2,−1)).

9. Witt classes

Two pairings ℓ and ℓ′ are Witt equivalent if there are metabolic pair-
ings µ and µ′ such that ℓ ⊥ µ ∼= ℓ′ ⊥ µ′. The set of Witt equivalence
classes is an abelian group W (Q/Z) with respect to orthogonal sum of
pairings. The canonical decomposition into primary summands gives
an isomorphism

W (Q/Z) ∼= ⊕p primeW (Fp)

where W (F2) = Z/2Z, W (Fp) ∼= Z/4Z if p ≡ 3 mod (4) and W (Fp) ∼=
(Z/2Z)2 if p ≡ 1mod (4). If a, b are relatively prime nonzero integers let
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w( b
a
) be the Witt class of the pairing ℓ b

a
. The summands are generated

by the classes of such pairings.
In [6] bordism arguments are used to compute the Witt class of ℓM ,

for M = M(0;S) a Seifert manifold. If εS = 0 the Witt class of ℓM is
−Σw( βi

αi
), while if εS = p

q
(in lowest form) then it is −w( 1

pq
)− Σw( βi

αi
)

[6]. In particular, the image of ℓM in W (Fp) is nontrivial if εS = 0 and
rp is odd or if εS 6= 0 and rp is even.
Remark. The definition of Witt equivalence given here is appropriate

for obtaining bordism invariants, as in [6]. However the Witt groups
defined in [5] use a finer equivalence relation, involving stabilization by
split pairings (rather than by metabolic pairings).
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