BMW ALGEBRA, QUANTIZED COORDINATE ALGEBRA AND
TYPE ¢ SCHUR-WEYL DUALITY

JUN HU

ABSTRACT. We prove an integral version of the Schur—Weyl duality between
the specialized Birman—Murakami—Wenzl algebra B, (fq2m+1, q) and the quan-
tum algebra associated to the symplectic Lie algebra sp,,,. In particular,
we deduce that this Schur—-Weyl duality holds over arbitrary (commutative)
ground rings, which answers a question of Lehrer and Zhang ([38]) in the sym-
plectic case. As a byproduct, we show that, as a Zl[g, q_l]-algebra, the quan-
tized coordinate algebra defined by Kashiwara in [34] (which was denoted by
A% (g) there) is isomorphic to the quantized coordinate algebra arising from a
generalized Faddeev—Reshetikhin—-Takhtajan construction (see [23], [29], [47]).
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1. INTRODUCTION

Let m,n € N. Let U(gl,,) be the universal enveloping algebra of the general lin-
ear Lie algebra gl,,, (C) over Q. Let Uz(gl,,,) be the Kostant Z-form ([37]) in U(gl,,,).
For any commutative Z-algebra K, let Ug (gl,,,) := Uz(gl,,,) ®z K. The natural left
action of Uk (gl,,) on (K™)®" commutes with the right place permutation action
of the symmetric group algebra K&,,. Let 4,194 be the natural representations

©a: (K6,) — Endg (K™)®"), va: Uk(gl,) — Endg (K™)®"),

respectively. The well-known type A Schur-Weyl duality (see [7], [9], [14], [26], [48],
[49]) says that

(a) pa(K6&,) =Endy, (g, )((K™)®"),
(b) Ya(Uk(gl,,)) = Endgs, ((K™)®");
(c) if K is an infinite field, then
Endy, g ) (K™)®") = Endgar,, (x) (K™)®"),

and the image of the group algebra KGL,,(K) in Endg ((K™)®") also
coincides with Endge,, ((K™)®");
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(d) if K is a field of characteristic 0, then there is an irreducible Ug/(gl,,)-
K&,,-bimodule decomposition

(K™Pr= P AeSs
A=(A1 A2, )m
L(A)<m
where Ay (resp., S*) denotes the irreducible left Uk (gl,,)-module (resp.,
irreducible right KS,,-module) associated to A, A - n means ) is a partition
of n, and ¢(\) denotes the largest integer ¢ such that A; # 0.

There is a quantized version of the above type A Schur—Weyl duality. Let ¢ be
an indeterminate over Z. Let &/ = Z[q,q~ '] be the Laurent polynomial ring in
q. Let Ug(q)(gl,,) be the quantized enveloping algebra of gl,, over Q(q) ([19], [32],
[33]), where ¢ is the quantum parameter. Let Ug(gl,,) be the Lusztig’s o7-form
([40]) in Ugqy(al,,). Let 7 (6,) be the Iwahori-Hecke algebra associated to the
symmetric group &,,, defined over & and with parameter gq. By definition, 5, (&,,)
is generated by ﬁ, e ,fn,l which satisfy the well-known braid relations as well
as the relation (ﬁ - Q)(ﬁ +q1)=0,fori=1,2,--- ,n— 1. For any commutative
of -algebra K, we use ( to denote the natural image of ¢ in K, and we define
Uk(gl,,) = Uy(gl,) @u K, % (8,,) := H#y(6,) ®u K. Then, there is a left
action of Ug(q) (gl,,,) on Q(¢q)™ which quantizes the natural representation of g, (C).
Via the coproduct, we get an action of Ug(q (al,,) on (Q(¢g)™)®". Furthermore,
this action actually gives rise to an action of Uz (gl,,) on (&™)®" ([20]). By base
change, we get an action of Ugk/(gl,,) on (K™)®" for any commutative <7-algebra
K. There is also a right action of #%(S,,) on (K™)®". Let pa,1%4 be the natural
representations

pa: (A (6n))P — Endg (K™)®"),  ta: Uk(al,,) — Endg ((K™)°"),

respectively. Then by [2], [20], [21] and [33],

(@) 0a(Hk(6y)) = Endy, gy ((K™)®");

(b)) ¥a(Uxk(8l,)) = Endge(s,) (K™)%");

(¢)) if K is a field of characteristic 0 and ¢ is not a root of unity in K, then
there is an irreducible Uk (gl,,,)--#% (&, )-bimodules decomposition

(E™)%" = B 2aes
A=(A1, Ao, Fn
L(N)<m
where Ay (resp., S*) denotes the irreducible left Uk (gl,,)-module (resp.,
irreducible right /% (&,)-module) associated to A.

The algebra End %K(G,L)((K m)®”) is called “g-Schur algebra”, which forms an
important class of quasi-hereditary algebra and has been extensively studied by
Dipper—James and many other people. It plays an important role in the modular
representation theory of finite groups of Lie type (cf. [11], [12], [24]). The signifi-
cance of the above results lies in that it provide a bridge between the representation
theory of type A quantum groups and of type A Hecke algebras at an integral level.
Note that in the semisimple case, the above Schur—Weyl duality follows easily from
the complete reducibility. The difficult part lies in the non-semisimple case, where
the surjectivity of ¢4 was established in [21] by making use of Kazhdan-Lusztig
bases of type A Hecke algebra, while the proof of the surjectivity of 14 relies heav-
ily on the amazing work of [2], where the quantized enveloping algebra of gl,, is
realized as certain “limit” of ¢-Schur algebras. To the best of our knowledge, there
is no alternative approach for this part.
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A natural question arises: how about the Schur—Weyl dualities in other types?
The answer is: there do exist Schur—Weyl dualities in types B, C, D in semisimple
case (for both classical and quantized versions). However, it is an open question
(see [29, Page80, Linel], [38, Abstract]) whether or not these Schur-Weyl dualities
hold in an integral or characteristic free setting (like the type A situation).

The purpose of this paper is to give an affirmative answer to the above open
question in the quantized type C' case. That is, we shall prove an integral version
of quantized type C' Schur—Weyl duality. Note that there is no counterpart in type
C' of the work [2] in the literature. It turns out that our approach provides a new
and general framework to prove integral Schur—Weyl dualities for all classical types.
Before stating the main results in this paper, we first recall the known results for
the classical type C' Schur—Weyl duality. Let K be an infinite field. Let V be a 2m-
dimensional K-linear space equipped with a skew bilinear form (,). Let GSp(V)
(resp., Sp(V')) be the symplectic similitude group (resp., the symplectic group) on
V ([15], [28]). For any integer ¢ with 1 < ¢ < 2m, set i’ := 2m + 1 —i. We fix an
ordered basis {vl, Vg, - ,’Ugm} of V such that

(Ui7vj) =0= (Ui'7vj')a (Uiavj') = 6” = —(Uj/,Ui), Vi1 < Z7j <m.

Let 9B,,(—2m) be the specialized Brauer algebra over K. This algebra contains the
group algebra K&,, as a subalgebra. There is a right action of 9B,,(—2m) on V&
which extends the sign permutation action of &,,. We refer the reader to [10] for
definitions of 9B, (—2m) and its action. Let ¢, ¢ be the natural representations

0+ (B (—2m))P — Endg (VE"), ve : KGSp(V) — Endg (VE),
respectively.

Theorem 1.1. ([3], [4], [5])

(1) The natural left action of GSp(V') on V®™ commutes with the right action
of B, (—2m). Moreover, if K = C, then

pc(Bn(—2m)) = Endegsyv) (VE") = Endespr) (VE"),
Y (CGSp(V)) = ¢ (CSp(V)) = Endg,, (—2m) (VE"),

(2) if K = C, then there is an irreducible CGSp(V)—B,,(—2m)-bimodule de-
composition
[n/2]

ver= @ AN e DM,

=0 AFn—2f
(N)<m

where A(N) (resp., D(\')) denotes the irreducible left CGSp(V')-module

(resp., the irreducible right B, (—2m)-module) corresponding to A (resp.,
corresponding to Xt), A\t denotes the transpose of \.

By the work of [9], [10] and [46], the complex field C used in part (1) of the above
theorem can be replaced by arbitrary infinite field. That is, we have a characteristic
free version of type C' Schur—Weyl duality in group case.

Theorem 1.2. ([9], [10], [46]) Let K be an arbitrary infinite field. Then
(1) ¢c(KGSp(V)) = Endsg, (—2m) (VE");
(2) ¢c(Bn(—2m)) = Endgasyv) (V") = Endggpv) (VE).

For the quantized type C' Schur—Weyl duality, we require V' to be a 2m dimen-
sional vector space over Q(¢q) equipped with a skew bilinear form (,). We fix an
ordered basis {v;}?™ as before. Let Ug(q)(sP2,,) be the quantized enveloping alge-

bra of sp,,,(C) over Q(q), where g is the quantum parameter. Let B, (—¢*™"?, q)
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be the specialized Birman—Murakami—Wenzl algebra (specialized BMW algebra for
short) over Q(q). There is a right action of B,,(—¢*™?, ¢) on V™ which quantizes
the right action of B,,(—2m). We refer the reader to Section 3 for precise definitions
of B,,(—¢*™ T q) and its action. Let ¢c,1)c be the natural representations

po (Ba(—¢*"",q))P — Endgy (VE"),
vt Ug(g)(sP2m) — Endg(q) (VE),
respectively.

Theorem 1.3. ([8, 10.2], [38])

(1) The natural left action of Ug(g)(spa,,) on VO™ commutes with the right
action of B, (—¢*>™*1,q). Moreover,

e (% (7q2m+17 Q)) = EndUQ(Q)(f'pzm) (V@n)’
Yo (UQ (5p2m)) Endg,, (—g2m+1,q) (V®n);

(2) there is an irreducible Ug(q) (5p2m)—iBn(fq2m+1, q)-bimodule decomposition
[n/2]
B @ oo
f=0 Arn—2f
L(AN)<m

where A(X) (respectively, D(A')) denotes the irreducible left Ugq)(sPay,)-
module (respectively, the irreducible right B, (—q¢*™ 1, q)-module) corre-
sponding to \ (resp., corresponding to \!).

Let Uy (spy,) be the Lusztig’s o/-form in Ug(q)(spa,,). Let Vi be the free
o/-module spanned by {v;}7™. Note that B, (—¢*™"! ¢) has a natural o/-form
B, (—¢*"*1 q)y. For any commutative %-algebra K, let ¢ be the natural im-
age of ¢ in K, and we define Ug (5p,,,,) = Ugs(8Po,,) @ K, B (=ML () =
B, (—¢*>" " q)r @7 K. The representation ¢¢ naturally gives rise to an action of
Uy (8ps,,) on VE™ which commutes with the right action of B, (—¢*™*1,q).,. By
base change, for any commutative .7-algebra K, we get an action of Uk (sme) on
V2™ which commutes with the right action of %n(—CQW‘H, Q);

The main results in this paper are the following two theorems.

Theorem 1.4. For any commutative <7 -algebra K,

wc (UK (5p2m)) = El’ld%n(_@nﬁl’o (V;?n) .

Theorem 1.5. For any commutative <7 -algebra K,
@c (%n(_<2m+17 C)) = End[[_]K(sp2m) (V;?n) .

Note that if we specialize the parameter ¢ to 1x € K, then the BMW algebra
B, (—¢*>™ "1 q) becomes the specialized Brauer algebra 9,,(—2m), and the action
of B,,(—¢*™* 1 q) on n-tensor space becomes the action of B,,(—2m) used in [10].
Applymg the above two theorem, we get the following corollary.

Corollary 1.6. For any commutative Z-algebra K,

(1) Yo (Uk(span,)) = Endss, (—am), (VE");
(2) ("o} (%n(—2m)K) = EndUK(spm)(V[?n)-
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Note that this corollary can also be deduced from the main result in [10] by using the
equivalence between the category of rational Spa,,(K)-modules and the category
of locally finite Uk (sp,,,, )-modules.

The algebra S}/ (2m, n) := Endg,, (_c2m+1 ¢ (VE’") is called “symplectic ¢-Schur
algebra” by Oehms ([47]). Tt is a cellular (in the sense of [25]) and quasi-hereditary
K-algebra. The strategy that we use to prove Theorem 1.4 is to inspect the in-
duced natural homomorphism ¢ from Lusztig’s modified quantum algebra (see
[41]) Uk (sps,y,) to the symplectic g-Schur algebra S3¢(2m,n), and (roughly speak-
ing) to interpret 1;(; as the dual of the natural map from the nth homogeneous
component of the quantized coordinate algebra of SpM,,,,(K) (symplectic monoid)
to the quantized coordinate algebra of Sp,,,(K) (symplectic group). It turns out
that the kernel of 1ZC is spanned by the canonical basis elements it contains. As
a consequence, we deduce the following result, which is announced in [16] without
proof.

Corollary 1.7. For any commutative o -algebra K, S}!(2m,n) is isomorphic to
the generalized q-Schur algebra S(m) defined in [16], where 7 is the set of dominant
weights occurring in VO™, In particular, if specializing q to 1, then we recover the
symplectic Schur algebra studied in [13] and [15].

The strategy that we use to prove Theorem 1.5 is similar to that used in [10].
We first prove the equality under the assumption that m > n. Then we reduce the
case m < n to the case m = n via a commutative diagram. Finally, we convert the
task of proving the equality concerning o to a purely type C' quantum algebra
representation theorietic problem which involves no BMW algebras. However, the
direct generalization from [10] does not work here. In our quantized case the proof
is much more difficult. We expect that our approach for both equalities can be
applied to prove integral versions of various other Schur—-Howe—Weyl dualities in
Lie theory.

The paper is organized as follows. In Section 2, we collect some basic knowl-
edge about the usual and the modified form of the quantized enveloping algebra
of spy,, (C) as well as their actions on the n-tensor space V™. The new result is
Lemma 2.3, which enables us to reduce the proof of the equality concerning ¢ to
the proof of an equality concerning ¥ ¢. In Section 3, we show that each finite trun-
cation A%Y(2m, <n) of the quantized coordinate algebra A%Y(2m) of SpM,,, (K) is a
cellular coalgebra. The two-sided simple comodule decomposition of the quantized
coordinate algebra ﬁf@y(q)@m) of Sp,,,(K) is obtained, which actually coincides
with Peter—-Weyl’s decomposition proved by Kashiwara ([34]). In Section 4, after
proving that the tensor product Vi (A) ® Vi(A) of a cell left comodule and a
cell right comodule of A}Y(2m, <n) is actually a co-Weyl module of the quantum
algebra Uk (g @ g) (Lemma 4.13), we are able to identify the type C' quantized co-
ordinate algebra AZ(g) defined by Kashiwara in [34] with the quantized coordinate

algebra gﬁ (2m) arising from generalized FRT construction. The proof relies on
some nice properties of the upper global crystal basis (i.e., the dual canonical basis)
of the quantized coordinate algebra A?(g) introduced by Kashiwara. Then we give
a proof of our first main result—Theorem 1.4. In Section 5, we give a proof of
our second main result—Theorem 1.5 in the case where m > n, following a similar
idea (but different and more difficult arguments than) in [10, Section 3]. The case
where m < n is dealt with in Section 6. We reduce the proof of Theorem 1.5 to the
proof of the surjectivity of a map between coinvariants of two tensor spaces and
the commutativity of a certain diagram of maps (Lemma 6.1). For the former, we
use Lusztig’s theory on based modules ([41]) as in [10, Section 4]. The proof of the
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latter turns out to be quite delicate and more interesting than in the classical case.

The main results of this paper were announced at the International Conference
“GLO7: Geometry and Lie Theory” (Sydney, July, 2007). The author thanks the
organizers for inviting him to attend and give talk at this conference. He would like
to thank Professor S. Doty, Professor G. Lehrer, Professor C.W. Curtis, Professor S.
Ariki, Professor F. Goodman and the anonymous referee for their helpful remarks
and comments.

2. TENSOR SPACE AND MODIFIED QUANTIZED ENVELOPING ALGEBRA OF TYPE C

In this section we shall recall some basic facts about the usual and the modified
form of the quantized enveloping algebra of type C' as well as their actions on the
n-tensor space V®*. We shall show that, for any commutative @7-algebra K, the
image of the quantum algebra Uk (sp,,,) in the endomorphism algebra of the n-
tensor space VI(?” coincides with the image of the corresponding modified quantum
algebra Uk (sp,,, ).

Recall the Dynkin diagram of sp,,,

1 2 3 m-1 m
O—@—@ coooee .\=.
Figure 1.1

b

where each vertex labeled by i represents a simple root «;. For each integer ¢ with
1 < i < m, let @/ be the corresponding simple co-root. Let X be the weight

lattice of sp,,,. We realize X as a free Z-module with basis €1, -+ ,&,,. Then
O =26, a;=¢; —€it1, t=1,2,--- m—1.

Throughout this paper, we shall identify the weight A = Ae1 + -+ A\pem € X
with the sequence (A1, , Ay,) of integers. We shall also write A = (Ag,---, An)

and |[A] ;== A1 + -+ A Let
XTi={\e X|(\,a;) >0,V1 <i<m},
i.e., the set of dominant weights. Then A = (Ay,--- ,\y,) € X if and only if X is

a partition. Let (,) be the symmetric bilinear form X defined by (e;,¢;) = §; ; for
any %, j. The Cartan matrix A = (a; ;) (where a; j := 2(j, a;)/(, ;) of sp,,,, is:

2 -1
-1 2 -1
-1
2 =2
-1 2

with rows and columns indexed by {1,...,m}. Given a fixed indeterminate ¢ set

Y

g fi#Em
L= @2, ifi=m
k__—k
k) = &3 and (K]} = [Kk — 10; - (1]

Qi*qil '
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The quantized enveloping algebra Ug(q) := Ug(q)(sPa,,) is the associative unital
algebra over Q(q) generated by e;, f;, ki, k!

(3

ikt =k k=1, kRS =R

i=1,...,m, subject to the relations:

kiejk;1 = qai’jejv szjk;1 = q_ai,jfja
hi k] o[k itm
lei, fi] = ﬁ&,j where k; = { K i m
1—a;,;
riks, Y el
k=0
1—a;,;
e . ek
i, > (~0F R gt o,
k=0

where ef*) = ef /[k]} and f*) = f£/[K].
Ug(q) is a Hopf algebra with coproduct A, counit ¢ and antipode S defined on
generators by

Ale)=e;@1+k@e, Alfi)=1@fi+fiok ', Alk)=k®k,
ele;) =e(fi) =0, e(ki) =1,
S(es) = —k; ‘e, S(fi) = —fiki, S(ki) =k ".

Recall our definition of V in the first paragraph below Theorem 1.3. For each

1 <i < 2m,let i’ := 2m + 1 —i. The action of the generators of Ug(, on
Varg) i= Var ®r Q(q) is as follows (cf. [29, (4.16)])".

Vi, lf.] =1 + 17 op - ’
f .7 e v Uma lfj:m5
€V = —Ugp1y, ifj=1 =
v (1) / _’ e 0, otherwise,
0, otherwise;
Vit+1, lf.] :ia f .
U, if j=m,
fivj =4 —v, (= (41, fvge=g 0 DT
. 0, otherwise,
0, otherwise;
qu;, ifj=diorj=(+1),
kivi =< q vy, ifj=i+1lorj=1,
vy, otherwise,
quj, if j =m,
kmvj = ¢ g lvy, if j=m,
vy, otherwise,
where 1 < i < m, j € {1,---,m}U{m/,---,1'}. Via the coproduct, we get

an action of Ug(,) on V&Z). Let Uy := Uy (spy,) be the Lusztig’s o/-form in
Ug(q) (8P2,)- As an o/-algebra, Uy is generated by

e 1 ki kY a=0,1,2,- 1<i<m.
Lemma 2.1. The above action of Ug(,) on V&Z) naturally gives rise to an action
of Uy om Vg’".
Proof. 1t is well-known that U is an «/-Hopf algebra. Hence it suffices to show
that U,V C V,y. However, this follows from direct verification. O

INote that our km = k2, in this paper corresponds to ky, in the notation of [29].
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For any commutative o/-algebra K, we define U = Uk (sp,,,) = Uy R K.
By base change, we see that there is a representation

wc : UK — EDdK(VI(?n)

In Lusztig’s book [41, Part IV], a “modified form” [UQ(q) of Ug(y) was introduced.
The algebra UQ(q) in general does not have a unit element. But it does have a
family {1)}rex of orthogonal idempotents such that TUQ(Q) = @A,HGXIAUQ(Q)lﬂ.
In a sense, the family {1,} serves as a replacement for the identity. Let my , be
the canonical projection from Ug(,) onto IAUQ(q)lu (see [41, (23.1.1)]). As a Q(q)-
algebra, UQ(Q) is generated by the elements e;1y, f;1 and 1) withi € {1,2,--- ;m}
and A € X, where the following relations are satisfied.

a1, =1,1x=08 .1, elx=1apa,(eily), fila = 1a_q,(fily),

(eila—a;)(fi1n) = (filagai)(eiln) = i 5 [(A ) )ilx,

1—ay; 1—a;j

(~DFeMejel ™™ = ST (VR T =0 i i 4
k=0 k=0

where (\, ) := 2(\, ;) /(a, @;), and the last identity is understood as its canon-
ical image under 7y , for any A, p € X.

Let U, be the o7 -subalgebra, of U@(q) generated by egk)h, fi(k)h fore=1,2,---,
m, k=0,1,2,---, A €X. Then by [41, (23.2)], U, is a free o7-module, and in fact
Uy is an &/-form of Ug(g)-

Since V@@(Z) is a finite dimensional integrable module over Ug(g), it follows that

V&Z) naturally becomes a unital @Q(q)—module in the sense of [41, (23.1.4)]. For

each A € X, we define py to be the projection operator from V®" onto its A-weight
space (with respect to the subalgebra generated by ki',--- k', kEl).

yVm—1>
Lemma 2.2. Let JC be the map
1AHpA7 eilA'_’QZJC(@i)P/\, filAH¢C(fi)pA7 7’:172a "z reX.

Then {/;C can be naturally extended to a representation of UQ(Q) on VO™ such that
Yo (P1y) = o (P)pxa for any P € Ug(q) and X € X.

Proof. This follows directly from the definition of IUQ(Q) and the fact that V&Z) is
a direct sum of its weight spaces.

By restriction and applying Lemma 2.1, we see that Vf;" naturally becomes an
Ug-module. For any commutative o/-algebra K, we define Ux = Ug(sp,,,) :=
Uy ®q K. By base change, we get a representation

1;0 : IUK — EndK(VEm),
Lemma 2.3. With the above notation, for any commutative <7 -algebra K,
Ye (UK) = ¢ (IUK)~
Proof. Tt suffices to show that ¥¢ (Uﬂ) = 7;[;0 (Ug{)

Let X, be the set of weights (with respect to the Cartan part of sp,,,) in V™.
Obviously, X, is a finite set. As linear operators on V", it is easy to check that
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fori=1,2,--- ,mand a=0,1,2,---,

¢c(€§a)) = 1;0( Z eE‘”h), 1/Jc(fi(a)) = 1;0( Z fi(a)1A)7

AEX, AEX,

Yo (ki) = JC( Z (J(’\’aiv)l,\)

AEX,
As a result, we deduce that ¥¢ (Uﬂ) - 7:2;0 (Ud) It remains to show that
o (Uw) € Ye (Um)

It suffices to show that py = Jc(l,\) € Yo (Ud) for each A € X,,. For each

integer 7 with 1 <i < m, we set (following Lusztig)

] Rt R
t qf _ ql_s ) ?

s=1

for t > 1, ¢ € Z. By [39, Lemma 4.4], we know that

[Ki;c] € Ugy.
t
Let A € X,,. We write ; := (A, a) for each i. Note that for each i,
5 e {—n,fnJrl,u',71,0,1,~~~,n71,n}, if i #m,
T {220+ 2,0, -2,0,2,- 0 20— 2,20, ifi=m.
We define

m—1 ~ ~
I Kis; =X — 1] | Ki; =X +2n

i=1
Koni —Am — 1] [Komi —Am + 4n
4n 4n ’

Clearly, p) € Uy. For each p € X,,, we use V&Z) [1] to denote the p-weight
space of V&Z). One can verify directly that

. N
z, ifzeVyy) [l

0, ifze V&’Z) [p] with p #£ A

e (py)(x) = {

As a result, we deduce that py = Jc(b\) =yc(p)) € Yo (UQ{), as required. This
completes the proof of the lemma. O

Remark 2.4. Lemma 2.3 enables use to reduce the proof of the equality concerning
1o to the proof of the equality concerning 1. Note that the arguments used in
the proof of Lemma 2.3 actually work in all types.

3. BMW ALGEBRAS AND A GENERALIZED FRT CONSTRUCTION

In this section we shall first recall the definitions of specialized BMW algebras
and Oehms’s results on a generalized Faddeev—Reshetikhin—Takhtajan (FRT for
short) construction. Then we shall analyze the structure of each finite trunca-
tion A%)(2m, <n) of the quantized coordinate algebra A%Y(2m) of SpM,,,. Using
Oehms’s symplectic bideterminant basis for the quantized coordinate algebra of
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symplectic monoid scheme SpM,,,, we shall conclude that A%Y(2m,<n) is a cel-
lular coalgebra. The two-sided simple comodule decomposition of the quantized
coordinate algebra g&y(q)(Qm) is obtained.

Let x,r, z be three indeterminates over Z. Let R be the ring

R:=2Z[r,r, " z,2)/(1—2)z+ (r—r"")).

For simplicity, we shall use the same letters r, 7!

respectively.

Definition 3.1. ([6], [43], [44]) The Birman—Murakami—Wenzl algebra (or BMW
algebra for short) B, (r, x, 2) is a unital associative R-algebra with generators T, E;,
1 <i<n-—1 and relations
()T, —T7 ' =2(1-E), for1 <i<n-—1,
) E? =xE;, for1<i<n-1,
) TiTia Ty = Ty TiTiqa, for 1 <i<n—2,
) TT, = T,T,, for i~ j| > 1,
) EiEip\E; = E;, Ej 1 BBy = Ei11, forl<i<n-—2,
)
)
)

, 2, x to denote their images in R

Ty By = BBy, TiTiEiy = BBy, for1<i<n-—2,
ET;, =T,F; :TilEi, fO’I’lSZSTL—l
ETi B =rE;, B/ TiE; 1 =rEi11, for1 <i<n-—2.

In [43], Morton and Wassermann proved that 9B, (r, z,z) is isomorphic to the
Kauffman’s tangle algebra [36] whose R-basis is indexed by Brauer diagrams. As a
consequence, they show that 9B, (r, z, 2) is a free R-module with rank (2n —1)!!. In
fact, the same is still true if one replaces the ring R by any commutative R-algebra
K. Note that if we specialize r to 1 and z to 0, then B, (r, z, z) will become the
usual Brauer algebra with parameter x.

We regard &/ as an R-algebra by sending r to —q ,z2toq—q " and x
to1—3>"  ¢*. The resulting </-algebra will be denoted by B, (—¢*" ", q) .
We set B, (—¢>™ 1, q) = B,,(—¢*" ", @) oy @07 Q(q), and we call it the specialized
Birman—Murakami-Wenzl algebra (or specialized BMW algebra for short). Note
that if we specialize further ¢ to 1, then B,,(—¢*™*1, ¢) will become the specialized
Brauer algebra 9B,,(—2m) used in [10] and [31].

There is an action of the algebra 9B, (—¢*>™*!,
which we now recall. We set

2m+1 1

q)er on the n-tensor space V5"

(p17"' vp2m) = (m7m_1a"' 71a_17"' 7_m+1a_m)a

and €; := sign(p;). For any 4,5 € {1,2,--- ,2m}, we use E; ; to denote the corre-
sponding basis of matrix units for Endg(q) (V). Let “ =" be the ring involution

defined on & by ¢! = ¢¥!, k = k for any k € Z. The involution “—” can be
uniquely extended to an involution of End,, (V5?) such that

L ;@FE, =FE;; @ By, TT =TT,

for any integers 1 < 4,7, k,l < 2m, any r € & and any = € End (V§2). Following
[47, Section 2], we set

B = Z (qui,i Q@ E;i+ Eiy ® Ez’z) +q Z Ei; ® Eji+

1<i<2m 1<i,j<2m
i#5.7
2 Ry
@-1 > (Em QE; =" e By Em—),
1<j<i<2m

yi= ), " PaeEiy @ By

1<i,j<2m
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We define 3’ := q8-1, ' := 7. By direct verification, we have that

Fi= > (eFi®Bu+q By @E)+ > Eiy©Et

1<i<2m 1<i,j<2m
i#5.5'
-1 Pj—Pi
(a—¢7 ) > (Eu ® Ejj—q" Meiei By @ Ew)
1<i<j<2m
L R
voi= E qu pleiejEi,j/ & Ei/J.
1<i,j<2m

Note that the operators? 3,~" are related to each other by the equation
(3.2) § = (8)" = (g— g (idyes —).
Fori=1,2,--- ,n—1, we set

B :=idyei-1 @8 @idyen-i-1, 7 :=idyei-1 @y @idyen—i-1.

By [8, (10.2.5)] and [29, Section 4], the map ¢ which sends each T; to /] and
each F; to ] for i =1,2,--- ,n — 1 can be naturally extended to a right action of
B, (—¢*"*1 q) ey on Vg” such that all the statements in Theorem 1.3 hold. Note
that if we specialize ¢ to 1, then T; degenerates to —s; € B, (—2m) for each ¢ and
this action of B,,(—¢*™*1, ¢) becomes the action studied in [10] of the specialized
Brauer algebra B,,(—2m) on V,*".

Now we recall what Oehms called “generalized Faddeev—Reshetikhin—Takhtajan
construction”. The basic references are [23], [29] and [47]. We concentrate on the
quantized type C case. Let u;,1 < i < 2m, (resp., X; ;,1 <4,j < 2m) be a basis
of V* (resp., of V* ® V) satistying u;(v;) = 6; ; (resp., X; ; = u; ® v;) for each 1, j.
Set

I(2m,n) == {(i1,- -~ ,in) | i; € {1,2,--+ ,2m} for each j}.
For each i = (i1, - ,in) € I(2m,n), we set v; := v;, ®---®v;,. An endomorphism
p € End(V®™) is uniquely determined by its coefficient p;; with respect to the
basis {vi }ier(2m,n), that is,

plop) = Y s
iel(2m,n)

For any commutative «7-algebra K, we use F(2m) to denote the tensor algebra
over V*®V, which can be identified with the free K-algebra generated by the (2m)?
symbols X; ; for i,j € {1,2,---,2m}. For each i,j € I(2m,n), we write

Xi,j = Xil’leimJé T Ximjn'
Following [47, Section 2], for an endomorphism p € End(V®"), we write

X = Z HibXbj, Xijlp= Z Xiblb,j-
bel(2m,n) bel(2m,n)

Note that the algebra F (2m) possesses a structure of bialgebra where comultipli-
cation and augmentation on the generators z; j are given by

A(Xi’j) = Z Xi,b ® Xb’j, E(Xi’j) = 5i,j~
bel(2m,n)

2The reason we use the operators 3,7 is because we want to let B, (—¢?>™mt1,

VE™ from the right hand side instead of from the left hand side.

q) oy act on
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Following Oehms [47], we can apply the generalized FRT construction with re-
spect to the subset {3,~7} C End(V) ® End(V) to obtain a new bialgebra A3 (2m).
Precisely, we define

A?(Qm) = FK(Qm)/<ﬂ l Xi,j - Xiw.i Zﬁ, Y ! Xi,j - Xi,j 2’77 la.] S I(Qma 2)>;
which is necessarily a bialgebra as the ideal generated by 51 X;; — Xj;1 3 and
v Xij — Xijly for i,j € I(2m,2) is actually a bi-ideal. Clearly, A}Y(2m) is a
Z-graded algebra, that is,

A 2m) = P A(2m,n).
0<nez
For each i,j € I(2m,n), let x;; be the canonical image of Xj; in A%Y(2m,n).
By the main result in [47], the natural map A%/ (2m,n) @y K — A} (2m,n) is
an isomorphism for any commutative «/-algebra K. The algebra A3Y(2m) is a

quantization of the coordinate ring of the symplectic monoid scheme SpM,,,, which
is defined by (for any commutative Z-algebra K)

SPMy,, (K) i= {A € M (K) | 3d(A) € K, A'JA = AJA = d(A)J},

where J is the Gram matrix of the given skew bilinear form with respect to the
basis {v; }27,.
In [47], Oehms constructed a basis for A%Y(2m,n) for each n. To describe that

basis, we need some more notations. For ¢ =1,2,--- ,n — 1, we set
Bi = idyei-1 0 R idyen—i-1, v :=idyei-1 @y ® idyen—i-1.

Recall that fori = 1,2,--- ,n—2, we have the braid relation 3;8;110; = Bi+18:8i+1-
Recall also that (see Section 1) we have used &,, to denote the symmetric group on
n letters. For each w € &,, there is a well-defined element 8(w) € End(V®™), where
B(w) = By, ... Bi, whenever k is minimal such that w = (i1,41+1) ... (i, 9, +1). For
each partition A of n, let ! be the transpose of ), and let &+ be the corresponding
Young subgroup of &,, (which is the subgroup fixing the sets {1,2,--- , A\{}, {\! +
LA 4+ 2, )X+ Ab}--+). For each w € &, and each pair of multi-indices
i,j € I(2m,n), we set (following Oehms)

TG0 = Y () Bw) Ly,
weS ¢
and call Tq’\(i : j) a quantum symplectic bideterminant.

Recall that for each partition A = (A1, Ag, -+ ,) one can naturally associates a
Young diagram reading row lengths out of the components );. For example,

(3,3,2,1) «

For each positive integer k, let AT (m, k) be the set of partitions of k into not more
than m parts. Let A € AT (m, k) with 0 < k < n. For each i € I(2m, k), one can
construct a A-tableau Ti)‘ by inserting the components of i column by column into
the boxes of the Young diagram of A. In the above example,

iy | is | is

A _ | 12| 16| 19
179 == :
13 | 17
ig

Let iy be the unique multi-index in I(2m, k) such that in the corresponding A-
tableau T}", the jth row is filled with the number j for each integer j with 1 < j < m.
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For each integer 1 < i < A\ = E()\t), we use w; o to denote the unique longest
element in the symmetric group Gy:. Let

A1
Wo Nt = H W;,0-
i=1

Let iy € I(2m k) be such that T)‘ TP wg xe. Following [47, Section 6], we put a
new order “ <” on the set {1,2,--- ,2m}, namely,
m=<m'<(m-1)<(m-1)<---<1=<1.

We define I7"Y* to be the set of i € I(2m, k) such that the entries in T}* are weakly
increasing along rows and strictly increasing down columns according to the order
“ <7 and for each 1 <4 < m, 4,7 are limited to the first m — i + 1 rows.

In the previous example, we have

1111 4|3
m_[2]2]2 o _[3]2]1
! 3|3 ’ ix 201
4] L1
Lemma 3.3. For any A € AT (m, k), we have
Te e,
Proof. This follows directly from the definition of I}"¥*. O

For each A € AT (m, k), let I be the set of multi-indices i € I(2m, k) such that
the entries in Tf‘ are strictly increasing down columns with respect to the usual
order “<” on {1,2,---,2m}. For each integer j > 1, we write

AV = (A@1% o0 (A1) oA,

The following result was used in [47, Section 15] without proof. Since we shall use
it in this paper, we include a proof here.

Lemma 3.4. Let A € AT (m,k), i,j € I\'"Y" and j > 1 be an integer. We have that
i A/s o
AV (13(.3))
= Z T,I’\(i,h“))@Tj(h(l),h(Q)) ®-~®Tq’\(h(j>,j).
h(D) .. h@elf
Proof. We only prove the special case where j = 1. The general case follows from
the same argument. For each positive integer r, we set w, := (1,1,---,1). Let
————

T copies
A= (p1,- -+, pp) be the transpose of A\, where p = A;. We split j into p multi-
indices j' € I(2m, ), where for each [ € {1,2,---,p}, the entries of j' are taken
from the Ith column of T->‘. The same thing can be done with i. Then

TR(1§) = Tg (130T (2,57 - T4 (17,37),
hence
A(T200) = AT (130) A (T2 (2,5) - A (T (2,57)).
Therefore, to prove the lemma, it suffices to consider the case where p = 1.
Now assume that p = 1. Then A = wy. Ifi,j € I3, then the lemma follows from

[47, (20)]. In general, by the definition of Iy*¥* ([47, Section 6]), we can find some
simple reflections sg,,- - , Sq4,, 5117 -+, 81, € Gy such that

(1) i:=1i8¢4, 8¢ " Sq, € I, k,_] =js;, 81,81, €15

wk7
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(2) For each integer 1 < ¢ < a, the action of s,, on isg, Sq, -+ Sq., does not
exchange the indices 4, for any 7;

(3) For each integer 1 < ¢ < b, the action of s;, on js;, s, - -+ s;,_, does not
exchange the indices 4,4’ for any i.

Now using [47, (13), (20), Corollary 11.9], we deduce that there exist integer
a(i), b(j), such that

Aok a())+bG) A (T T
T} (1,3) = (=) DOTAG, ).
Therefore, applying [47, (20)], we get that
A(T)(,5) = ()" DPDA(T)E,]))
= Y (0"} h) © (—9)" VT (h,])
helg

> T)(,h) @ T} (h,j),
heIf

as required. O

For each integer n > 0, set
Api={A:=\1)|1€Z,0<1<n/2,A€ At (m,n—21)}.

Let dg € A%Y(2m) be the central group-like element as defined in [47, (7)] and [29,
Corollary 6.3]. By definition,

dq = —q_pk_plerlx(k7k/)7(l7l/) Ly € A;g(QTfh 2),

which is independent of the choices of k,l € {1,2,---,2m}. For each A\ := (A1) €
A, and each i,j € IV, we set D%J = dT)(i,j). Oehms ([47, (7.1)]) proved
that A%)(2m,n) @ K = A} (2m,n) for any commutative </-algebra K. Indeed,
A%(2m,n) is a free &/-module and the elements in the following set

(3.5) {DA

ij

A= (D €A ijen)

form an &/-basis of A%Y(2m,n).

For each integer k > 0, we put an order on the set AT(m,k), write A < pu
if Xt= pub fori =1,2,---,s—1and X\, < u! for some s. For example, for
A= (2,2,1),u = (3,1,1) € AT(3,5), we have u < A. Next, we put an order
on A,. Forany A = (N 1), p = (u,b) € Ay, write A < pif Il < borl = b and
A < p. For each A = (A1) € Ay, we set M(A) = I\, Let “4” be the </-linear

A ) = Dj%i for all

involution of A%Y(2m,n) which is defined on generators by (DjJ

AeMpije A

Lemma 3.6. ([47, Theorem 7.1]) With respect to the ordered set (A,, <), the finite
set M(X) and the < -linear involution “¢”, the coalgebra A%Y(2m,n) is a cellular
coalgebra in the sense of [47, Section 5, page 860] with cellular basis given by

A . . muys
{Dii ‘A: A €An, ijen” }
For each A = (A1) € A,, we set

A;’(Qm,nyé = .Q{—Span{Di%j A<p=(ub) €A, ije ILnys}’

= >
A
=

A (2m,n)=2 = d_span{pﬁ, = (u,b) € Ap, i,j € I/Tys}.
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By general theory of cellular coalgebra ([47, Section 5, page 860]), we know that
both A%Y(2m,n)"2 and A%Y(2m,n)=2 are two-sided coideal of A%Y(2m,n), and we
have a two-sided A%Y(2m, n) comodule isomorphism

A%Y(2m,n)=2 /A (2m,n) 2 = V" (A) @ V()),

where V(A) (resp., V"(}))) is the cell right (resp., left) comodule corresponding
to A. Note that V"()) = V(A) as &/-module, while the left A%Y(2m,n)-coaction
is obtained by twisting the right A%Y(2m,n)-coaction using “«”. If we extend the
base ring </ to the rational function field Q(g), then V(A)g(q) is an irreducible right
Az@(q) (2m, n)-comodule.

For any commutative o/-algebra K, we set
S;(u (2m, n) = End%n(_42m+170 (V[(?n>7

where ( is the image of ¢ in K. The algebra S;¢(m,n) is called “symplectic ¢-Schur
algebra” by Oehms ([47]). By [29, Proposition 2.1], there is a non-degenerate pairing
between Fy(q)(2m) and Endgq) (V") such that for any X;j € Fyq)(2m,n), f €

g Q)
EndQ(q)(V®”)), where i,j € I(2m,n),n,n € Z=Y,

@(q
<Xl-]’f>0 - {u() <f(v'])> n= ﬁ,

, otherwise.

where u; 1= u;, ® - -®u,;, , {u;} is the basis of V* dual to {v;}. By [29, Proposition
2.1], it induces a non-degenerate pairing (, )y between A%gy(q)(Qm) and

@ Q(q) (2m, n)

0<nez
Furthermore, it induces a pairing (, )y between A(SQy( )(2m) and Ug(q). Precisely, for
any zjj € AQ"( y(2m,n), u € Ug(y), where i,j € I(2m,n),n € 720,

(1, u)o = (Tij, Yc(u))o,

where ¢ is the canonical homomorphism

Ye : Ug(g) = Sg(g (2m, ) := Endsg, (—g2m+1 g (V&Z))'

In [46] and [47], Oehms proved the pairing (,)o actually induces an <7-algebra
isomorphism S%¥(2m, n) = (A% (2m,n))" for each n € Z=°. Note that our F(2m)
is just T(E) in the notation of [29, Section 2], while the ideal generated by [
Xi;— Xijlp fori,j € I(2m,2) in our paper is the same as the ideal generated by
Im(idggr —BE) in [29, Section 2]. Note also that over 7, the algebra A%Y(2m) is
only a homomorphic image of S(E) in [29, Proposition 2.1]. However, if we work
over Q(g), then Aay(q)@m) coincides with S(E) in the notation of [29, Proposition
2.1] because of the relation (3.2). Therefore, for each A = (A1) € An, V(XA)g(g)
is also an irreducible left S&q)(Zm, n)-module, and hence an irreducible left Ugq)-
module.

For any commutative o7-algebra K, let { be the natural image of ¢ in K, we
define A5Y(2m) := A3Y(2m)/(d¢c—1), where d is the natural image of d, in A5Y(2m).
Note that A7Y(2m) is a quantized version of the coordinate algebra of the symplectic
monoid SpM,,, (K), while g%’(?m) is a quantized version of the coordinate algebra
of the symplectic group Sp,,,(K). The algebra g‘;?(Zm) will play a key role in
the proof of Theorem 1.4 in the next section. We use m¢ to denote the natural
projection

o A (2m) —» gig(Zm)
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For each integer n > 0 and each commutative @7-algebra K, we define
AT (m, <n) |_| AT (m,k), A(2m,<n) @ AY(2m, k).
0<k<n 0<k<n

We shall call A%Y(2m,<n) a finite truncation of the quantized coordinate algebra
A%(2m) of SpM,,,. Clearly, A%Y(2m, <n) is a sub-coalgebra of A%Y(2m) as well as
a free @/-submodule with basis

{T(f(i,j) ‘ XeAt(m,<n), i,je 1;”@}

The author is grateful to Professor S. Doty and the referee for the first part of
the following corollary.

Corollary 3.7. Let n > 0 be an integer and K be a commutative <f -algebra.
1) The maps
Telawemny: AR (2m,n) — mo (A (2m,n))
Tolasy@m,m): AR (2m, <n) — 7o (A (2m, <n))
are both isomorphisms.
2) A%(2m) is a free o -module and the elements in the following set

. . A € AT (m,n —2l) for some integer n,l
A ) )
{WC (Tq ("J)) ‘ withn > 0,0 <1<n/2,ije I

form an <f -basis of ﬁfzg(Qm) Moreover, the canonical map
Zﬁ@m) D K — A%Y(2m)
is an isomorphism.

Proof. Suppose that 0 # = € Ker (WCLA?(Qm’n)). Since d, is central, it follows that
x = (dg — 1)y for some y € A} (2m). Note that dg # 0 is homogeneous of degree 2,
while z is homogeneous of degree n. By Lemma 3.6, the elements in the following
set

{le)\IJ ‘)\— (A1) € Ay for some k>0 and 0 <1 < k/2, 1J€Imys}

form a homogeneous basis of A}Y(2m). Expressing y into a linear combination
of this basis and comparing the degree of each homogeneous component, we get a
contradiction. This proves that 7¢| 45 (2m ) 18 injective and hence an isomorphism.
As a result, we deduce that ¢ | A3¥(2m,<n) 18 also an isomorphism. This proves 1).
The statement 2) is an immediate consequence of the statement 1). ]

Henceforth, we shall use Corollary 3.7 to identify A3 (2m,n) and A (2m,<n)

Wy

as subspaces of g:ﬁ,’@m) without further comments. The involution “x” gives rise to
an «/-linear involution of A%Y(2m, <n), which will be still denoted by “+”. Recall
that in the paragraph below (3.5) we have introduced an order “<” on the set
of partitions of a fixed integer. Now we generalize it to the case of partitions of
possibly different integers. For any \, u € AT (m, <n), write A < p if

Al = |p| € 2N or |A| = |pu| and A < p.

Corollary 3.8. With respect to the ordered set (At (m, <n), <), the finite set I\'Y*
(for each A\ € At (m, <n)) and the < -linear involution “”, the coalgebra A%Y(2m, <
n) is a cellular coalgebra with cellular basis given by

{Tj(i,j) ‘ AeAT(m,<n), ije I’;“/}
Furthermore, for each commutative o -algebra K, the canonical map
A%(2m, <n) @y K — A (2m, <n)
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18 an isomorphism.
Let A*(m) := Uy AT (m, k). For each A € A*(m, < n), we set

A% (2m, <n) = ,Q%—Span{Tq”(i,j) ’ A=peAt(m,<n),ije ISWS},
A% (2m, <n)=* = ,Qf—Span{Tq”(i,j) | A=peAt(m,<n), ije ISWS}.

By general theory of cellular coalgebra, we have that both A%Y(2m, < n)~* and
A%Y(2m, < n)=* are two-sided coideal of A%Y(2m,<n), and we have a two-sided
A%(2m, <n)-comodule isomorphism

A% (2m, <n)=rA%Y(2m, <n)"* = V"(\) @ V()),

where V() (resp., V"(A)) is the cell right (resp., left) comodule corresponding to
A. Note that V"(X) = V()) as &/-module, while the left A%Y(2m, <n)-coaction is
obtained by twisting the right A%Y(2m, <n)-coaction using “+”. If we extend the
base ring &7 to the rational function field Q(g), then V(\)q(q) is an irreducible right
A(S@y(q) (2m, <n)-comodule.

Suppose that A € AT(m,k) with 0 < k < n. We set A = ()\,0) € Ag.
Note that the A%Y(2m, < n)-comodule V(\). is isomorphic to the restriction of
the AY(2m, k)-comodule V(A)g()- In particular, every simple Aaf(q)@m,g n)-
comodule comes from the restriction of a simple Af@y(q)(Qm, k)-comodule, or equiv-
alently, of a simple S&q)(Qm,k)—module for some 0 < k < n. Therefore, by the

surjection from Ug,) onto S&q)@m, k), we see that every simple Af@y(q)(Qm, <n)-

comodule comes from the restriction of a simple UQ(q)—module. For any field K
which is an «7-algebra, we define

Vi (V) = VN @ K, S5¥(2m, k) = S°(2m, k) @ K.
Then Vg (X) = V(A 0) can be regarded as a S} (2m, k)-module.

Corollary 3.9. Let K be a field which is an </ -algebra. Let k > 0 be an integer
and X\ € At (m, k). Then as a S3¢(2m, k)-module, V i (X\) has a unique simple socle.

Proof. By [47], S}¢(2m, k) is a cellular quasi-hereditary algebra. By definition, the
dual of Vi (A) is a cell module of S3¢(2m, k). Thus, the corollary follows from the
general theory of cellular quasi-hereditary algebra. O

Recall that 1¢ induces a natural morphism from Uk (g) to S7¢(2m, k), via which
S3 (2m, k)-module Vi (\) can be regarded as an Ug-module. Note that the above
corollary does not immediately imply that V(A) has a unique simple socle as an
Ug-module because at this moment we did not know if that natural morphism from
Uk to S (2m, k) is surjective or not. However, in the next section we shall show
that this is indeed the case.

Corollary 3.10. For each integer n > 0, we have a two-sided Azg(Qm,S n)-
comodule isomorphism

O, Aa’(q)@m, <n)

1

P VN ® VN
AeAT(m,<n)

Furthermore, we have a two-sided Zié’(?m)—comodule isomorphism

0: Ay, (2m) = B VWVow @ VN,
k>0,AeAt (m,k)
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and a commutative diagram

9n
Aay(q)(Qm, <n) —— EBAeA+(m,gn) V' (Na@ ® VNa

~ 9 N
AQy(q) (2m) —— @kzo,,\ew(m,k) Vv ()‘)Q(q) ® VO‘)Q(Q)
where the two vertical maps are natural embedding.

Proof. This follows from the cellular structure of A%J(2m,<n) given in Corollary
3.8 and the fact

A%Y(2m) = U A% (2m,<n),

n>0
and the following commutative diagram

s On r
AQg (2m, <n) — Drea+im,<n) V' Na@ © V(N)a()

s ~ 07 r
Agg(2m, <0) —"— Bicn+m,<n) V Naw © V(N

where n > n > 0 and the two vertical maps are natural embedding. ]

Corollary 3.11. For each integer n > 0 and each X\ € At (m,n), let pry be the
natural projection from AQ( y(2m) onto V"(A)g(q) ® V(A)q(q)- Then the elements
in the following set

{pra (T .3))
form a Q(q)-basis of V"(N)qg(q) @ V(Na(q)-

e )

We end this section with the following lemma. Recall the definition of iy, Y,\
given in the paragraph above Lemma 3.3.

Lemma 3.12. For each A € At (m,n), we have

WC(Tq/\(iA,i,\)) = q‘“7r0<T NN ) 3 kwc( A 7k))
.] keIm,yq
j,k<ﬁA

< mod A%Y(2m, Sn)”‘),

where ay € 7Z, C’ﬁk € o, and “94” is the same as defined in [47, Proposition 8.4].
In particular, we have that

0 # pry (me (T (ix,1r))) € VT(A) @ V(A).

Proof. This follows directly from [47, (8), Proposition 8.4, Corollary 9.12] and the
facts that any quantum symplectic bideterminant in AQ( )(Zm) is homogeneous and
the central group-like element d, is homogeneous of degree 2. O
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4. A COMPARISON OF TWO QUANTIZED COORDINATE ALGEBRAS

In [34], Kashiwara introduced a version of quantized coordinate algebras (which
was denoted by A%(g) there) for any symmetrizable Kac-Moody Lie algebras g.
In this section we shall first show that in the case of type C, the Z[q, ¢~ !] algebra
AZ(g) and the quantized coordinate algebra gfg(Qm) are isomorphic to each other.
Then we shall give a proof of Theorem 1.4. Throughout this section, we set

8= 592,n(C), Ua(o) = Ua(o)(8): Uote) = Vo) (0)-
Following [34], we use Oj,¢(g) to denote the category of Ug(y-modules M such
that
(1) M = @®rex My, where M), := {x eM ’ k;x = q<>"az‘v>x,V1 <i< m},
(2) for any i, M is a union of finite dimensional Ug(q)(g;)-modules, where
Ug(q)(gi) denotes the Q(g)-subalgebra generated by

ei, fi, kitl’ kg:l’ e 7krinl'
(3) for any u € M, there exists | > 0 satisfying e;, ---e;;u = 0 for any
i1, ,9 € {1,2,--- ,;m}.
Then O;,+(g) is semisimple and any simple object is isomorphic to the irreducible

module V'(X\) with highest weight A. Note that Ug(,) has a structure of bi-Ug(g)-
module. Hence UEJ)( q Was naturally endowed with a structure of bi-Ug(,)-module.

Definition 4.1. ([34, (7.2.1)]) We set

. N Ug(qyu belongs to Oini(g) and uUQ(q)
A(I(g) T {u € U@(q) ‘ belongs to Olnt(g PP)
AZ(g) = {ueA \ (4, Uyy) c@f}

4%(g) = {u € A4(0) | (w,U) € Qlg,a 1},
where (,) is the natural pairing.

Recall the pairing (, )o between Ay y (2m) and Ug(q) (see Section 3, the second
paragraph below Lemma 3.6).

Lemma 4.2. ([29, Theorem 6.4(2)]) We have that
(dg —1,y)0 =0, for any y € Ug(y)-

and the pairing {,)o induces a non-degenerate Hopf pairing {,)o between Zf@y(q) (2m)
and the quantized enveloping algebra Ug(q)

A(ay(q)(Qm) x Ug(q) — Q(q)-

As a result, we have two Hopf algebra injections

LA - A&%Q)(Qm) — (UQ(q)) , Ly UQ(q) — (A(S‘/(q)(Qm)> s

where for any Hopf algebra H, H® denotes the Hopf dual of H.

Lemma 4.3. With the above notations, the pairing {,)o naturally induces a non-
degenerate Hopf pairing (, o between Azpy( )(2m) and the modified quantized envelop-
ing algebra IUQ(q)

A(‘S’(q)(Qm) x Ug(q) — Q(q).
As a result, we have two Hopf algebra injections

Ta: A(E)y(q)(2m) — (UQ(q)) , Iy UQ(q) — (Aay(q) (2m)) ,
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Proof. This is an easy consequence of Lemma 2.3, Lemma 4.2 as well as the following
two standard facts:

(a) any simple [UQ(q)—module is a submodule of V&Z) for some n € Z=9;

(b) ifu e UQ(q) acts as 0 on every simple [UQ(q)—module, then u = 0.

For each i € I(2m,n), we define wt(i) = (g1, , ftm ), Where
s 3=#{1§j§n‘ij:s}—#{1§j§n|ij:5’}, s=1,2,---,m.
We identify wt(i) = (g1, - , tm) With the weight pie1 + -+ + pmem € X.

Lemma 4.4. Let i,j € I(2m,n). Set u = wt(j). Then for any integer a with
1<a<m,
<7TC (TqA(iaj))vka>0 = qw’abf(”c (Tq)\(i,j)))

Proof. This follows from direct verification. O

Note that Ug(q)(g) = Ug(q)(g°?P) via the anti-automorphism ¢ defined on gen-
erators by:

ei— fi, fime, ki—ky, i=12-- ,m.

We identify Ug(q) (9P g) with Ug(y) (9) @Ug(q)(g). Using ¢, the bi-Ug,)(g) structure
on (UQ(Q))* can be interpreted as a left Ug(q) (g @ g)-structure, i.e.,

((a@b)f)(a:) = f((b(b)xa), Va,b,x € Ugq)(a), f € (U@(q)(g))*.

Let W,,, = W(C,,) be the Weyl group of type C,,,. Let wy be the longest element
in Wy, fX= (A1, -+, A\n) € X, then woX = (=1, ,—Ap). Let k € Z2° and
A € At(m, k). Recall our definitions of iy given above Lemma 3.3. We have the
following observation.

Corollary 4.5. Let k € Z=° and A\ € A*(m, k). Then mc (Tq/\(iA,iA)) is a weight
vector of weight ()\, /\) satisfying

eﬂTc<Tq)\<i)\,i)\)) =0= Wc(T(;\(i,\,i)\))fi, V1 S ) S m.

Proof. Note that iy € If. We identify n¢ (TqA (i, i)\)) as an element in (UQ(Q))* via

ta. Recall that the Ug(q) (g ® g)-structure on (UQ(Q))* comes from its bi-Ugq)(g)
structure.

We first look at the left Ug(y)-action on (UQ(q))*. Recall that 7 is a bialgebra
map. For each integer j > 1, by Lemma 3.4 and [47, (20)], we know that

AL) (wc (T ia, i,\))>

= Y 7we(f}ivhW) @ e (T} (M h®) @ -
h® ... hWerlg

® me (T (YD), 1y)).
In particular, we have that

mo(Tp(inin) = Y &(me (T (i) ) 7o (T i, h).

helg
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With these in mind and using Lemma 4.4, for any f € Ug(,) and any integer a with
1 <a < m, we get that

<ka7TC (Tq)\(i)\, ik)), f>0
<7TC(Tq)\(i)\;i>\))afka>0
Z <A(7TC(T;\(i>\,i/\))>af ® ka)o

herls
= Z <7TC (Tq)\(i)\? h))a f>0<7TC (Tq)\(hv iA))a ka>0
hels
=g 37 (e(me (T (0, 1)) ) 7o (T2 (i, b)) o
hels

= ¢ (re (TN ix,10)). f)o,

which implies that k,m¢ (TqA (i, i)\)) = q<>"o‘z>7rc (T,;\(iA, i,\)). In a similar way, one
can prove that if we regard (UQ(q))* as a right Ug(,)-module, then 7¢ (Tq’\(i)\, i,\))
is a weight vector of weight .

It remains to show that e;7¢ (Tq)‘(iA7 i)\)) =0= Wc(Tq)‘(i)\,i)\))‘fi forany 1 <i<
m. It suffices to show that for any f € Ug(y),

(4.6) (eime (T, (ix, 1)), Fho = (e (T7 (ix, 1) fi, fo-
By definition,
(esmc (T (ix,10)), flo = (me (T, (ix, 1)), feido,
(me (T (i, 05)) fir Flo = (e (T (ix,10)), fif)o-
By direct verification, one can show that for any h € I,

(o (T (h,1))), ei)0 = 0 = (7o (T, (ix, h)), fi)o,

from which the equality (4.6) follows immediately. This completes the proof of the
corollary. O

By Corollary 3.10 and the discussion above it, we see that every simple ﬁ&y(q) (2m)

comodule comes from the restriction of a simple Ugg)-module. For each A € X +,
let V(A) (resp., V™(A)) denotes the left (resp., the right) simple module with highest
weight A. By Corollary 3.11, Lemma 3.12 and Lemma 4.5, it is easy to see that
V(N)aq(q) is identified with V(A) as left Ug(y)-module, and V" (\)q(q) is identified
with V"()) as right Ug(g)-module. By [34, Proposition 7.2.2], we have a Peter—Weyl
decomposition

(4.7) A= D VeV,
AEX+

from which the following result follows easily.

Lemma 4.8. With the above notations, we have that

ea (A3, 2m) = Ay(0).

For later use, we denote by ®, the canonical embedding induced from the iso-
morphism (4.7) from V" (\) @ V() into A,(g) for each X\ € X+.
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In [34], Kashiwara introduced a crystal basis B(A,4(g)) of A,(g). He proved that
B(A,4(g)) has the crystal structure

B(A.(9) = || BO),
rex+
where B()\) := B"(A\) @ B()\), and B"()\) (resp., B()\)) denotes the crystal basis of
V" (A) (resp., of V(\)). For each b € B(A), let G(b) be the corresponding upper
global crystal base of A,(g). Recall that g = sp,,, in this paper. By the results in

[42], [UQ(Q) has also a crystal base Liyc x+ B()) as well as a canonical base (or lower
global crystal base) {G(b)|b € B(A\),A € XT}. This canonical base is an /-basis
of Uy . There exists a canonical coupling (,); between A,(g) and Ug(, (cf. [35,
(10.1.1)]) defined by

(®\(u®v), P)1 := (u, Pv), YA € XT,u € V'(\),v € V(\), P € Ug(y,

where (,) is the pairing between V" (X) and V() introduced in [34, (7.1.2)]. By the
results in [35], for each A € X, there is a bijection ¥ : B(\) — B(\), such that

(4.9) (G),G0)1 =8, 5y, VbV € BON).

In [34], Kashiwara proved that the upper global crystal bases {G(b)|b € B(\),\ €
X+} form a Q[q, ¢~ !] basis of A(qQ (g), and he remarked that it is actually an «7-basis
of A%(g). For the reader’s convenience, we include a proof here.

Lemma 4.10. With the above notations, we have that the elements in the following
set

{é(b) ‘ be B\, A e X+}
form an of -basis of AL(g).

Proof. First we show that for each A € X+, and each b € B(\),

~ z

G(b) € A, (9)-
Let P € Uy . By definition, for any p € X, A € XT ue V"(\),v € V(}),

(Pr(u®@v), P11 = (u, P1,v).
It follows that for any given A € X, u € V" ()\),v € V()), there are only finitely
many p € X such that
<(I))\(u ® v)?Pllt)l 7é 0.
Therefore, applying [34, Proposition 7.2.2] and (4.9), we get that
(G(b),P) =D (G(b),Plu)1 € o,

pneX

which implies that G(b) € A%(g).
Second, we want to show that

A(e) € {r e 4@ | (2. 001 € 7},

from which and together with (4.9) the lemma would follow immediately.

Let f =i 2;,®y € AZ(g), where for each 1 < i < t, a; € Vr(A@),
yi € VIX®), and A® € X+, Let P € Uy, p € X. Our purpose is to show that
(f,P1,)1 € o/. Let n be an integer which is large enough such that

(1) |u| <n, |p|=n (mod 2Z), and
(2) for each 1 < i < t, either V(A®)) C V®n=1 or V(A\¥)) C V&,
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We write {1,2,--- ,t} = I; U I5, where
L={1<i<t|VvQAD)cven} L={1<i<t| VD) cver]
Let p’u € U, be as defined in the proof of Lemma 2.3 with respect to our fixed

n and u. By the definition of A?(g), we have that (f,Pp|) € «/. Note that
P Vet =0=1,V¥" 1 It follows that

(f, Pl = Z(wivpluyi) = Z(xi,Pp;yi) = Z (i, Ppl,y:)

i€l i€l i€l Ul
= (f, Pp,) € #,
as required. This completes the proof of the lemma. O

Let A € X*. Let Ag()\) denote the standard «7-form of V(A), i.e., the Uy (g)-
submodule generated by the highest weight vector vy. Then A () is spanned
by Lusztig’s canonical basis as in [41, §14.4]. Note that the upper global crystal
basis {G(b) | b € B(\)} is Lusztig’s dual canonical basis. The dual basis to the
upper global crystal basis under the canonical contravariant form (.,.) on V() is

the lower global crystal basis, i.e., Lusztig’s canonical basis, cf. [27] and [34, §3.3,
4.2.1]. Let

V(N :={veV(A) | (v,w) € & for all w € Ay (N)}.

Then Vi (A) = Homy (Viy, o)) is Uy (g)-stable and spanned by the upper global
crystal basis of V/(A). Similar statement is true for V2, (), V" (X). For any field K
which is an @7-algebra, we define
VA @ V(A :i= (VLA @ Vy(N) @y K,
AN ®@ Ag(A) = (Ay(N) © Ax (V) @ K.

Since A% (A) ® Ak (A) is a highest weight module generated by its highest weight
vector (cf. [41, Theorem 14.4.11]) and has the same dimension as V" (\) ® V (),
it follows that A% (A\) ® Ak () is isomorphic to the Weyl module of Uk (g @ g)
associated to (A, \). Note that V4 (\) ® Vir(\) = (A%(\) ® Ag(\))". Therefore,

we have

Lemma 4.11. Let A € X . For each field K which is an < -algebra, Viz(A\) @V (N)
is isomorphic to the co-Weyl module of Uk (g @ g) associated to (X, X).

We recall the Bruhat order “<” on the set X of dominant weights. Namely,
A < pif and only if p— X € Y7", Z=%;. Note that A < p implies that A < g,
where “<” is the usual dominance order defined on the set of partitions (cf. [11]).
In particular, [A| < |u|. If |A] < |p|, then A < p implies that |u| — |A| € 2N and
hence A = p; if |A\| = |u|, then A\ <y implies that A* > uf, which also implies that
At is bigger than p! under the lexicographical order, hence we still have A = p. For
each A € Xt we define

Al(g)=* = M-Span{é(b) ) AzpeXtbe E(“)}’
10 =l 35 0 ),

and A,(g)=* == A7 (g)>* @ Q(q), Ag(g)=* = Af(9)<* @ Q(g). For each b €
B()), let G(b) be the corresponding upper global crystal base of V"(A\) @ V(A). By
construction, we know that V"(A) @ V() is spanned by {G(b) | b € E()\)} The
following result is implicit in the proof of [34, Section 5,6]. The author is indebted
to Professor Kashiwara for pointing out this to him.

Lemma 4.12. ([34]) With the decomposition (4.7) in mind, we have that
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(1) for each A € X*,b e B(\),
Gh) eGh)+ Y. Q@GH);

v eB(p)
A>peXxt

(2) for each A € X,

Ag(@)= 2 Brspex+ V() @ V(p), Ag(9)* = @yspex+V (1) @ V(w).

In particular, Ay(g)S*/Aq(g)* V" (\) @ V(N);
(3) both AZ(g)<* and AZ(g)<* are Uy (g @ g)-stable.

For each integer k > 0, we define
Al(g)=" = JZf-SPfﬂ““{é(b) ‘ be B(u),p € AF(m, Sk:)}.

Then it is clear that

Al@)<F = > AN
AEAT (m,<E)
In particular, A?(g)gk is Uy (g @ g)-stable. Recall that for any A € X, wo\ =
(=A1,-++,—Am). Recall also our definitions of Vi (A) and Vg (A) in Section 3.

When regarded as a left Ux(g @ g)-module, V% (A) ® Vi (A) is isomorphic to
Vi (A) ® Vk(A).

Lemma 4.13. Let K be a field which is an o7 -algebra and n > 0 be an integer. Let
A € AT (m,n). If N is a nonzero Uk (g @ g)-submodule of V' (\) ® Vi (A), then
pry (wc (T;‘(iA7i)\))) ®uw 1k € N. In particular, Vi, (X) ® Vi (X) is isomorphic to
the co-Weyl module of Uk (g @ g) associated to (A, A).

Proof. We divide the proof into four steps:
Step 1. First, we claim that for any integer ¢ > 0 and any i,j € I3 UI}"Y",

eI G) = Y (~1)Y B ge@ITA b,
heIf
h(b»wj

FOTXG ) = Y (1) @I PEITAG b),
herls
h(iﬁ)j

T,?(i,j)fi(t) _ Z (_1)0’(i,h)qc(i,h)Tq)\(h7j)’
helg
ni

TN gl = Y (~1)? G gdE AW j),
helg
Y

where a'(h,j),a(h,j),t’(i,h),b(i, h),d (h,j),c(h,j),d (i,h),d(i,h) € Z and h R i
means that h differs from i on exactly ¢ indices, on which each index i is changed
intoi+1or¢— 1.

We only prove the first equality as the others can be proved in a similar way. By
the same argument used in the proof of Lemma 3.4, we can assume without loss of
generality that i,j € I. For any f € Ug(q), we have that

(TN03), Fo = (TNE5), fel)o = (TN h), Fo(T (b, ), el)o.
helg
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It suffices to show that (T7'(h,j), egt))o # 0 only if h 0 j, and in that case it is
equal to (—1)* ™) ga(md) for some o’ (h, j),a(h,j) € Z.
By definition,

(g e = 3 (=) 8w pun (e ).
bel(2m,n)
weG ¢
Note that h,j € I. Recall the definition of el(-t) (cf. [41, 3.1.5]) and the action of
e; given in Section 2. To calculate the above sum, it suffices to consider only those

b € I(2m,n) such that b P j and the entries in each column of T} are weakly
increasing from top to bottom. By the definition of §(w), we know that G(w)n,b # 0
only if each column of h has the same set of entries as the corresponding column of
b. It follows that we can further restrict ourselves to those b € I5. Now applying
[47, Lemma 11.8], we deduce that only the case when w = 1,b = h can make
contribution to the above sum, from which our claim follows immediately.

Step 2. We define P(N) := {(p,v) € X x X|N,,,, # 0}. We claim that for some
ko, - ,km € Z and some v € X, (v, A\1e1 + koea + -+ + kmem) € P(N).

Recall that W, is the Weyl group of type C,,. By [1, Lemma 1.13], we know
that for any A € X,

(4.14) A € P(N) implies that (wy A, wed) € P(N) for any wy,ws € Wp,.
Therefore, it is equivalent to show that for some ki, - ,k,_1 € Z and some
v e X, (vkrer + -+ + km—16m—1 + Aem) € P(N). For simplicity, for each
i,j e Iy, we write
v(i,j) = pry (T(C (T;\(l,_])))
Then the elements in {v(i,j)[i,j € I3'¥"} form a K-basis of Vi (\) ® Vg (A).
Since N is a submodule of V% () ® Vi (A), any weight (v,u) of N satisfies
A > v, A > p. In particular, Ay > v1, A1 > p1. By (4.14), we can assume without
loss of generality that for some integers ki,--- , &k, with 0 < k,, < A1 and some
veX, ke + -+ knem) € P(N). Furthermore, we assume that our k,, is

chosen such that k,, is as big as possible. For each weight vector 0 # x € N with
weight (v, k1e1 + -+ + kmem ), we can write

T = Z Ci,jv(iaj)a
ijermys
for some Cj; € K. Set
J(z) ={j € I'Y"|Ci; # 0, for some i € I\"V}.

For each j € J(x), the assumption k., > 0 and the fact that j € I,"’" imply that
71 = m. Let t\ be the standard A-tableau such that the numbers 1,2, --- | k entered
in usual order along the successive columns of A\. We define

¢y = #{1 <t<k | j+ = j1 and t sits in the first row of tA},

G=#{1<t<k | ji = j1 and ¢ sits in the first row of t, }.
We assert that ¢; = ky, and ¢; =0, Vj € J(z). In fact, if this is not true, then we
can find some jo € J(x) such that 0 < ¢, > ¢ for any j € J(z). It is easy to see

(o)

that e;,’°’ is a nonzero weight vector with weight <V, Z;r;—ll ker+ (km + 265, )5m> ,

a contradiction to the maximality of k..

If k,, = A1, then we are done. Henceforth we assume 0 < k,, < A;. For each
j € J(z), we define b; € {1,2,--- ,2m} to be the least integer (with respect to the
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order “ <) in the first row of 7}" such that bj = m. In particular, bj = m’ (because
¢;=0). We set

J1 —{_]€J |b ‘<bh,Vh€J( )}
Let b = b; for any j € Jl( ). For any j € J1(z), we define

cj' = #{1 <t<nm | j: = b and t sits in the first row of tA}.

Let

Jo(z) = {j € Ji(z) | ¢ > e}, Vhe Ji(z)}.
Let ¢ = ¢ for any j € JQ( ). Then ¢’ > 0. We define

eﬂf’"“ ). eéﬁr)l ey fm , ifm<b<2m.

Using the first two formulae we have given in Step 1 and the fact that Tq)‘(i, h)=0
whenever there are two identical indices appearing in an adjacent position in a
column of T} ([47, Corollary 9.2]) as well as the definition of I{"¥® and the action
of each e;, f; given in Section 2, we deduce that zx € N is a nonzero weight vector
with weight equal to either

( > kot kbc)b(km+c“)em>,

1<s<m
s#b,s#m

or

( Z kses + (ky + ¢ ey + (km + c")sm)

1<s<m
s;éb’,s;ém

In both case, applying (4.14) if necessary, we get a contradiction to the maximality
of k,,. This proves our claim.

Step 8. We claim that for any integer 1 < ¢t < m, there exist some integers
k{' 1, -+ k), € Z and some V" € X, such that (u”7Z§-_1 g+ k;’55> €
P(N).

We make induction on ¢. If ¢ = 1, this is true by the result obtained in Step 2.

Suppose that the claim is true for ¢t — 1. That is, for some integers k¢, ,k,, € Z
and some v € X, we have that

t—1 m
) = <V,ZAJ-5]- +stes) € P(N).
j=1 s=t

Using (4.14), we can further assume that the weight X is chosen such that

(4.15) km = max{|ks| | t < s <m} >0, and ki, is as big as possible.
We are going to show that for some integers Et, e @m,l €,
< Z)\ €5+ MEm + Z k 55> € P(N).
s=t

If this is true, then we can apply (4.14) again to get our claim.

If £(A) < t—1, then there is nothing to prove. Henceforth, we assume that
¢(A) > t. In particular, Ay > 0. By (4.14), we know that (v, Z;;ll Aj€j + kmee +
Sm i1 ks—185) € P(N), which implies that 0~} Ajej+kmei+3nr 1 ko165 < A,
It follows that 0 < k,, < A;. We assert that k,, = A\;, from which our claim will
follows immediately.
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Suppose k,, < A:. For each nonzero weight vector x of weight (v, X) in N, we

write
T = Z Cij(z)v(i, j).
ijernve
for some Cjj(x) € K. We define J(z),¢;,¢j, b5, J1(2), b, ¢}, Jo(x),c” as in Step 2.
We first show that k,, > 0. In fact, if k,,, = 0, then by (4.15) we know that k; = 0

for any ¢ < ¢ < m. Using the definition of I}'¥®, it is easy to see that for each
jeJ(@),

(4.16) V1 <I1<t—1,1appears \; times in j and I’ does not appear in j.
Since \; > 0, it follows that for any j € J(z),
j1€{mm/ ;m—1,(m—1),--- t,t'}.

If there exists j € J(z) such that j; = m, then (as k,, = 0) bj = m’. In this case
b= m' and it is easy to see that eﬁ,”;")x € N is a nonzero weight vector of weight
(v, 23;11 Ajej +2c"e,,). Since ¢ > 0, we get a contradiction to (4.15).
Henceforth we assume that j; # m for any j € J(z). In particular, j; > m/'.
Note that j; =< t'. We define j to be the unique integer such that j = j; for
some j € J(z) and j < hy, Vh € J(x). Set ¢ = max{¢|j € J(z),j1 = j}. Then

c>0. If t < j < m then it is easy to see that f,(,f) e fj(:_)lfj(C)x € N is a nonzero

weight vector of weight (v, Zz;ll As€s — CEj — CEyy); while if m' < j < ¢’ then

© 0

it is easy to see that ey’ ---€;7 e, 2 € N is a nonzero weight vector of weight

(v, 22;11 As€s + c€j + cep). In both cases using (4.14), we get a contradiction to
(4.15). Therefore, we must have k,, > 0. In particular, for any j € J(z), j1 = m.

The remaining argument is similar to that used in Step 2 with some slight mod-
ification. First, by the same argument used in Step 2, we can show that j; = m,
¢j = ky, and ¢; = 0. In particular, b > m/. We claim that b < t'. In fact, if b = ¢t —1,
then for any j € J(z), the first row of the remaining tableau after deleting all the
entries of TJ.’\ in{t—1,(¢t—=1)",---,2,2/,1,1’} has length k,,. On the other hand, we
know that for any j € I,"Y* satisfying (4.16), the first row of the remaining tableau
after deleting all of the entries of TJ-’\ in {t—1,(t—-1),---,2,2',1,1'} must have
length Ay > A;. It follows that k,, = )\, a contradiction to our assumption. This
proves that m’ < b < t'.

Now we follow exactly the same argument used in Step 2 to define an element
z. Note that the condition m’ < b < t’ ensures that zz # 0 is a weight vector in N
with weight

m

t—1
<I/, Z )\j&‘j + Zii‘\sag)
j=1 s=t

such that |Em\ > k. Applying (4.14) if necessary, we get a contradiction to (4.15).
This proves our assertion that k,, = A;.

By induction and set ¢t = m, we get that for some v € X, (v, A) € P(N).

Step 4. Starting from a nonzero weight vector x € N with weight (v, \) and
Using a similar argument as used in Step 3, we can prove that (A, \) € P(IN). Note
that the (A, A)-weight space of Vi (A) ® Vi (A) is one-dimensional and is spanned
by pr) (7rc (T (ix, iA))) ®e 1. As N is a submodule of Vi (A) ® Vi (A), we can
deduce that

pry (ﬂc(T;\(i)\,i,\))) Re 1 € N.

This completes the proof of the lemma. O



28 JUN HU

Corollary 4.17. Let K be a field which is an o -algebra and n > 0 be an integer.
Let A € AT (m,n). Then Vi (\) is isomorphic to the co-Weyl module of Ugk/(g)
associated to \.

Proof. If L is a simple Ug (g)-submodule of Vi (), then L& L is a simple Ux (g g)-
submodule of Vi (A\)®@V i (A). By Lemma 4.13, V7 (A)®V g () is isomorphic to the
co-Weyl module of Uk (g @ g) associated to (A, A). So it must have a unique simple
Uk (g®g)-socle. This implies that V i () also has a unique simple Ug (g)-socle. By
the universal property of co-Weyl module, we see that there exists an embedding
from Vg (A) into the co-Weyl module Vi (A). Comparing their dimensions, we
deduce that this embedding must be an isomorphism. O

Theorem 4.18. With the above notations, we have that
ea(AEm) = A4a), ea(AEm, <k)) = AL@)", VE>0.

In other words, the quantized coordinate algebra defined by Kashiwara and the quan-
tized coordinate algebra A%Y(2m) arising from a generalized FRT construction are
isomorphic to each other as & -algebras. Furthermore, we have the following com-
mutative diagram

. ld .
UQ(Q) ’ UQ(Q)

l L

*

Agle) A (A, (2m))"
where the two vertical maps are induced by the two natural pairings {,)o, (,)1 re-
spectively.
Proof. We first show that ¢4 (Aﬁ(Qm, Skz)) = AZ(g)=F for any k > 0, from which
the equality 4 (gff;(Qm)) = AZ(g) follows at once. We divide the proof into two
steps:
Step 1. We claim that ¢4 (Afz{y(%n7 gk)) C AZ(g)=F.

By Lemma 4.8 and the bimodules decomposition we have discussed before, we
have

'a (Afg(zm, gk)) Ca (Any(q)Qm, gk)) C A,(g)=k.
For any integer A € AT(m,<k), and any i,j € I,"Y", it is easy to verify directly
that
<7TC(Tq>\(i7j))a[U&Zf>0 S fQ{

It follows that ¢4 (A;’(Qm, §k)> C A%Z(g). Hence by Lemma 4.12,

(A (m, <B) € 4,0 1 AZ(g) = AZ(@) <,
as required.

Step 2. We now show that ¢4 <A§(2m, §k)) = Ag(g)ﬁk. Our strategy is to show
that for any field K which is an «7-algebra, 1 := 14 ®4 1li is an injection from
A (2m, <k) into AK(g)=F.

For each A € AT (m, k), let by be the unique element in B(\) such that G(by) €
V7(A) ® V(A) is a highest weight vector of weight (A, ). Note that

e;G(by) =0, Ve; € U@(q)(g Dg).
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We use induction on dominant weights with respect to the order “<”. If A € X+
is maximal with respect to the order “<”, then A is minimal with respect to the
order “<”. Then

V(A @ V(N C AYE2m, <k), VLN @ Vg < Al(g)=F
By Lemma 4.12, we also know that G(by) = G(by). In that case, as both G(by)
and ¢4 (7TC (T;‘(iA,i,\))) are the highest weight vectors of weight (A, A) in AZ(g),
we deduce (by Corollary 4.5 and Lemma 3.12) that

G(by) = £q"1a <7TC (Tq’\(ix,ix)))y
for some a € Z. Since
" (V’“(/\) ® V() ) C AZ()=F (VTN © VY) = Vi (A) @ Vi (M),

we deduce that for any field K which is an «7-algebra, ¢ induces a nonzero Uy (g g)-
homomorphism tg := 14® 1 from Vi (AN @V (A) to VE(A)@Vk(N). By Lemma
4.11 and Lemma 4.13, we know that both modules are co-Weyl modules of Uk (gg)
associated to (A, A). It follows that tx must always be an isomorphism. Hence ¢4
must be an isomorphism as well. In particular,

‘A (VT(A) ® V(A)) — VI @ Vi (V).

In general, let A € Xt assume that for any field K which is an <7-algebra, ¢x
is an injection from A3 (2m, < k)™* into

AK <k z )\ Z Af(g)g“.
peA (m,<k)

HEX

We want to prove that ¢ is also an injection from A% (2m, < k)= into

AK@=FF N = Y AK@=

pEAT (m,<k)
AN
By bimodules decomposition, Lemma 4.12 and definition, we know that
W(Ay(gm <k) ”) C A%(g) () Ag(0) = (# \) == AZ(g)<F(# ).

By the same argument as before, we know that
é(b)\) = iqaLA (7TC (Tq)\(i)\, ix)))7

for some a € Z. Therefore, 1y induces a nonzero Uy (g @ g)-homomorphism 7.,
from

VN ® V(A) = AT (2m, < k)= /AT (2m, < k)
to

Vir(N) @ Vir (N) = AL (8)="(# N)/AG(0)=F(Z ).
For any field K which is an «7-algebra, we get by base change a nonzero Uk (g® g)-
homomorphism 7x from

Vic(A\) @ Vi(N) =2 A (2m, < k)= A¥ (2m, < k)™
to
Vie(N) @ Vi (A) = AF (9)=F(F V) /Ag ()" (£ V).
By Lemma 4.11 and Lemma 4.13, we know that both modules are co-Weyl modules

of Uk (g g) associated to (A, A). It follows that 7x must always be an isomorphism.
It follows that tx must always be an injection, as required.
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By induction, we know that for any field K which is an <7-algebra, tx is an
injection from A3 (2m, < k) into AX(g)<*. Comparing their dimensions, we can
deduce that it must be an isomorphism, from which we can deduce that ¢4 must
be an isomorphism as well. This proves the first part of this Theorem.

It remains to prove the commutativity of the diagram. Note that as [U@(q)(g @

g)-module, Aaq)@m) is generated by the elements mc (T (ix,ix)), A € AT(m).

Therefore, it suffices to show that for any A\ € A*(m,k), & > 0 and any P €
U, € X, (me (T (ix,1n)), Plu)o = (me (T (ix,1n)), Plu)1.

Note that there exists also a canonical coupling (,)1 between A,(g) and Ug(g
(cf. [35]) defined by

(®x(u®v), Py = (u,Pv), VA€ XT,ue V' (\),veV(A),P e Uy,
where (,) is the pairing between V" (\) and V()) introduced in [34, (7.1.2)]. By
direct verification, we see that

(me (T (i, 0x)), Plu)o = 6xu(me (T, (ia, 1)), Po,
(ta(me (T (x,0))), Pl = 6x(ea(me (T (ia,10))), P)1.
Therefore, it suffices to show that
T (T (i, 10)), Pho = (ta(me (T (x,10))), P)1.
Using the PBW basis of Ug(,) and Lemma 4.5, we can reduce to the proof to the

case where P is generated by klﬂ, e ,k,i,tll. In that case, the proof follows from an
easy verification. This completes the proof of the Theorem. O

We remark that each integer k& > 0, the dual of the Ug(q) (9 g)-module A,(g)=<*
together with the dual basis of its upper global crystal basis actually forms a based
module in the sense of [41, 27.1.2].

Henceforth, we shall identify AZ(g) with /ng(%n) via t4. By Theorem 4.18,
the quantized coordinate algebra A?(g) was equipped with two bases. One is
{G(b)}AeX+, beB(b)’ (i’j))}AeX+, ijeryve:
trix between these two bases must be invertible as a matrix over /. Combining
this with (4.9), we can find an «/-basis {G} ijermve Of U, such that

WJELN

another is {mc (T} The transition ma-

J}/\EX"',

1, if A=p,i=b,j=1,
0, otherwise.

(4.19) (e (TH(b,1)),GPy) = {

for any A\, p € X+, i,je Iy'Y" and b,1€ e,

Proof of Theorem 1.4: For each integer 0 < [ < [n/2] and each A € At (m,n—20),
i,j € I"Y?, we use (D;\Jl) to denote the base element of S77(2m,n) dual to the

base element D;: J’.l of A%Y(2m,n). We have the following commutative diagram:

3 {E s id s
Ug(q) <, SQZZq)(Qm,n) _— SQZZq)(Qm,n)

rul zl
(Z‘s@%@@m))* e (Aéy(Q)(Qm))* - (A(ay(q)(Zm’ n)) *
By Theorem 4.18, (4.19) and the fact

(o f, 7&t0 (w)o = (o (f), T (w))o, Vu € Ug, f € Ag(,(2m),
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we deduce that
se@y - |

(D:Y) , if|A| <nand 2l :=n — || is even;

0, otherwise.

In particular, this shows that {EC (Ugg) = 5%Y(2m,n). By base change, we know
that for any commutative o-algebra K,

(lZC Lo, ®£¢K> (Ux) = Si¢(2m,n).

This completes the proof of Theorem 1.4.

Corollary 4.20. With the above notations, we have that

iL,je ", Xe AT(m,k), k> n}

~ _ A
Ker(vo ly,,) = %-Span{GiJ or k<mn andn—k is odd

be B\),A e At(m, k), k> n}

- Qf—Span{G(b) or k<n andn —k is odd

As a result, this is still true if we replace o/ by any commutative < -algebra K.

Proof. It suffices to prove the second statement. Let 7 be the set of dominant
weights in V®". Let Q(q)S(m) be the generalized Schur algebra associated to 7

defined by Doty [16]. Then it is easy to check that the homomorphism zzc factors
through g(4)S(7). Let S(7) be the o7-form of g4)S(7) defined in [16]. For any
field K which is an «7-algebra, let xS(7) := »S(7) ® K. Applying Theorem 1.4
and comparing dimensions we deduce that the natural homomorphism from g S(7)
to Endgs, (¢2m+1,¢) (VI‘?”) is an isomorphism. So the same is true if we replace K by
/. Now the second statement follows directly from the definition of ,S(w) given
in [16]. O

Note that in the proof of the above corollary, we have also given a proof of
Corollary 1.7.

5. PROOF OF THEOREM 1.5 IN THE CASE WHERE m > n

The purpose of this and the next section is to give a proof of Theorem 1.5.
Before starting the proof, we make some reduction. By the results in [47], we know
that the symplectic g-Schur algebra is stable under base change. That is, for any
commutative @7-algebra K, there is a canonical isomorphism

S (2m,n) @y K = 57 (2m,n).

Furthermore, S?/(2m,n) is an integral quasi-hereditary algebra. For any field K
which is an «7-algebra, Vi & Ak (e1) & Vi (e1) = Li(e1) is a tilting module over
S (2m,n). It follows that V2" is also a tilting module over S3¢(2m,n). Applying
Theorem 1.4 and using [21, Lemma 4.4 (c)], we get that

Endy,, (Vg") ®.r K = Endgey am n) (vgn) ©u K
~ EndS?(?m,n) (V}?”) = Endy, (VI(?”)

In other words, the endomorphism algebra Endy, (V}?") is stable under base

change. Therefore, to prove Theorem 1.5, it suffices to show that the natural
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homomorphism from (B,,(—¢?™*1,

q) ez )P to Endy,, (Vg") is surjective. Equiva-
lently, it suffices to prove this is true with & replaced by any field K which is an

of -algebra.

In this section we shall give a proof of Theorem 1.5 in the case where m > n.
Henceforth, we shall assume that K is field, and ¢ is the image of q in K and
m > n. Note that, in this case, by [29, Proposition 4.2],

dim Endy, (V,? n) = Endy,, (V&Z)>

2
- ¥ (dimD()\t)) = dim B, (g™, q) = dim B, (—¢2™*1 0.
0<f<[n/2]
AFn—2f
Therefore, in order to prove Theorem 1.5 in the case m > n, it suffices to show that
pc is injective.

Our strategy to prove the injectivity of p¢ is similar to that used in [10, Section
3], but some extra technical difficulties do arise due to the complexity of the action
on n-tensor space in this quantized case. First, we make some convention on the
left and right place permutation actions. Throughout the rest of this paper, for any
0,7 €6,,a€{l,2,--- n}, weset

(a)(o7) = ((a)o)7, (07)(a) = o(7(a)).
In particular, we have o(a) = (a)o™?!.
I(2m,n),w € &,

Therefore, for any i = (i1,ia, - ,i,) €

iw = (1,72, , i)W = (fw1), lw(2), " lwn))
which gives the so-called right place permutation action:
viw = (Vg @+ @ Vi, )W = Vi, ) @ @ Vi, = Viw-
For each w € &,,, the element T, (resp., fw) is well defined in the BMW algebra

B, (—¢?mHL () (resp., in the Hecke algebra % (&,,)) because of the braid relations.
Precisely,

Ty =1T;1Tj,---Tj, € %n(*gszrlaC% Ty = fjlsz Tjk € %K(Gn)v

for any reduced expression sj, s;, - - - 55, of w.

Set
Bi= Y (BuioBy)+ Y Ey@Eu+
1<i<2m 1<i,j<2m
i#]
(a—a7") > (E“ ® Ej,j)-
1<i<j<2m
Fort=1,2,--- ,n—1, we set

Bi = idv@i—l ®B® idV@nfi—l .

By [33], the map @ which sends each T to B; fori = 1,2, - .n—1 can be naturally
extended to a representation of ., (&,,) on V?".

Lemma 5.1. Let i = (iy,ig,- - ,in) € I(2m,n). Suppose that i; # i} for any
1 <4,k <n. Then for any w € &,,

Ty = viTw;
if furthermore i1 > ig > -+ > iy, then viTy = Viy.

Proof. This follows directly from the definition of action (see the formulae given
above (3.2)). O
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Let ¢ be an indeterminate over Z. Let R be the ring
R:= Z|r, r,1q, q_l,x]/((l —z)(q— q_l) + (r— r_l)).

R naturally becomes an R-algebra (with z acting as ¢ — ¢~%). We regard </ as
an R-algebra by sending r to —¢*™*! and z to 1 — >_" 2. The resulting

i=—m 4
of -algebra is exactly B, (—¢*™ " q)y. We refer the reader to the beginning of

Section 3 to understand how & is an R-algebra. Let B, (r, q) := B, (r, 2, 2) @5 R.
In [22], a cellular basis for B, (r, ¢) indexed by certain bitableaux was constructed
by Enyang. The advantage of that basis is that it is explicitly described in terms
of generators and amenable to computation. In the remaining part of this section
we shall use Enyang’s results in [22]. We first recall some notations and notions.

For each natural number n and each integer f with 0 < f < [n/2], we set

v=v; = ((27),(n—2f)), where (2/) := (2,2, ,2) and (n — 2f) are considered
————
f copies

as partitions of 2f and n — 2f respectively. So v is a bipartition of n. Let t” be
the standard v-bitableau in which the numbers 1,2,--- ,n appear in order along
successive rows of the first component tableau, and then in order along successive
rows of the second component tableau. We define

t“d is row standard and the first column of t() is an}

D, = { . .
d€ Gy increasing sequence when read from top to bottom

For each partition A of n — 2f, we denote by Std()) the set of all the standard
A-tableaux with entries in {2f + 1,---,n}. The initial tableau t* in this case has
the numbers 2f 4+ 1,--- ,n in order along successive rows.

Lemma 5.2. Let d € D,,. Assume that d = d's; with £(d) = £(d") + 1, where
1<j<n—1. Thend €D,,.

Proof. Since d = d's; and £(d) = ((d') + 1, we get (j)(d)™' < (j+ 1)(d)~'. It
follows that 7, 7+ 1 can not both sit in the second component of t“d’. If j, j + 1 sits
in different components of t“d’, then the lemma follows immediately. So it suffices
to consider the case where both j,j + 1 sits in the first component of t'd’. But
d € Dy, we deduce that j, 7 + 1 must be located in different rows and can not be
both located in the first column of ") d’ , which implies that d’ € D, (as t“d" and
t’d differ only in the positions of j,j + 1). O

Recall that (cf. [22]) the map T; — T;, E; — E;,V1 < i < n — 1 extends
naturally to an algebra anti-automorphism of B, (—¢*™*! q),. We denote this

Wy ”

anti-automorphism by “x”.

Lemma 5.3. ([22]) For each A\ n—2f, s,t € Std(\), let ms+ denote the canonical
image in B, (—¢*>™ 1, q) o of the corresponding Murphy basis element (cf. [45]) of
the Hecke algebra .7 (& (2541,... ny). Then the set

0< f<[n/2l, \Fn—2f, s, te Std()),
di,dy € D, where v := ((2), (n — 2f))

is a cellular basis of the BMW algebra B, (—¢*™ 1, q) o .

{T§1E1E3 o Eap 1mgTy,

As a consequence, by combining Lemma 5.3 and [22, (3.3)], we have
Corollary 5.4. With the above notations, the set

0 S f S [n/Q], S G{Qf.l,_l,u.,n}; d13d2 € DV7
where v := ((27), (n — 2f))

is a basis of the BMW algebra B, (—¢*™ 1, q) o .

{T;lElEg oo Byp 1T, Ty,
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By base change, we can apply the previous results to the specialized algebra
B, (—¢*m L (). The main result in this section is

Theorem 5.5. Suppose m > n. Then the natural homomorphism
ec i Bu (=P, () — Endg (VE")
is injective. In particular, oc maps B, (—C*™+L () isomorphically onto

Endyyc sp,,,) (VE")-

To prove the theorem, it suffices to show the annihilator ann%n(,gzmﬂ,g)(v(@”)
is (0). Note that

ann%”(,czmﬂyo(‘/@”) = m ann%n(,czmﬂ,c)(v).
veVen
Thus it is enough to calculate anng (_c2m+1 ¢)(v) for some set of chosen vectors
v € V®" such that the intersection of annihilators is (0). We write

ann(v) = anng, (_czm+1,¢)(v) = {x € B, (—C*m () | vz = 0}.

For each integer f with 0 < f < [n/2], we denote by BY) the two-sided ideal
of B, (—¢*>™*1, q) .y generated by E1E3 -+ - Esf_1. Note that BY) is spanned by all
the basis elements whose indexing diagrams contain at least 2f horizontal edges (f
edges in each of the top and the bottom rows in the diagrams). We recall a notion
introduced in [10]. For i € I(2m,n), an ordered pair (s,t) (1 < s <t <mn) is called
a symplectic pair in i if is = (i;)’. Two ordered pairs (s,t) and (u,v) are called
disjoint if {s,t} N {u,v} = 0. We define the symplectic length {s(v;) = £,(i) to be
the maximal number of disjoint symplectic pairs (s,t) in i. Note that if f > £5(v;),
then clearly BY) C ann(v;).

Lemma 5.6. anng (_c2m+1 () (V®") c BW,

Proof. Since m > n, the tensor v := v, ®v,_1®--- Qw1 is defined. Note that 7 # 5’
for any i,5 € {1,2,--- ,n}. Applying Lemma 5.1, we deduce that vT,, = vT,, for
any w € G,. Now B is contained in the annihilator of vfw, hence is contained
in the intersection of all annihilators of vfw, as w ranges over &,. Hence B
annihilates the subspace S spanned by the vT,, = vfw, where w runs through &,,.

On the other hand, since m > n, it is well known (cf. [21]) that the anni-
hilator of v in the Hecke algebra % (6,,) is {0}. Therefore, we conclude that
ann%n(,@m“@ (V®n) Q B(l) [l

Suppose that we have already shown anngs  (_¢c2m+1 ¢) (V®”) C BWY) for some nat-
ural number f > 1. We want to show anng (_c2m+1 ¢) (V") € BUTD If f > [n/2]
then ann%n(_czm+17c)(V®") C BY) =0 implies that anng, (_¢2m+1,¢) (V®”) =0C
BU*1 and we are done. Thus we may assume f < [n/2].

For i:= (i1, -+ ,in) € I(2m,n), we define WT(i) = A = (A1, , Aay), where
A; is the number of times that v; occurs as tensor factor in v; for each 1 < 7 < 2m.
We call WT(i) the G La,,-weight of v;. Note that for a given composition A of n,
the simple tensors of G La,,-weight A span a % (&,,)-submodule M* of V& thus

ver= @ M
AEA(2m,n)

as (S, )-module, where A(2m,n) denotes the set of compositions of n into not
more than (2m) parts. It is well-known that M* is isomorphic to the permutation
representation of % (&,,) corresponding to A.
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As a consequence, each element v € V®” can be written as a sum

v = Z (N
AEA(2m,n)
for uniquely determined vy € M.

Following [10], we consider the subgroup II of &y ... 253 < &,, permuting the
rows of ' but keeping the entries in the rows fixed. The group II normalizes the
stabilizer & ,sy of " in Gap. We set U := S(yry x II. By [10, Lemma 3.7], we
have

Gop = | | Wd,
dEDf

where “LJ” means a disjoint union. We set Dy := Dy, N Say.
Lemma 5.7. Let d € Dy. Then for any w € ¥, {(wd) > £(d).

Proof. Let w € W. By definition, we can write w = w”w’, where w” € &y, w' €
II. Note that &,y is generated by s1,s3,- -+ , 271, and Il is generated s1, 83, - -,
gf_l, where §,» = 52452i—152i+152; for i = 1, 2, tee ,f — 1.

We claim that ¢(w) = {(w”w'd) > ¢(w'd). In fact, this follows easily from the
counting of the number of inversions and the fact that for any o € &,

o) ={(,5) |1<i<j<n,(i)o>(jo}.
Therefore, it remains to show that £(w’d) > ¢(d).

Note that the subgroup generated by 51,52, ,5¢_1 is isomorphic to the sym-
metric group &y. We use { to denote the length function of & with respect to
the generators 3;,i = 1,---, f — 1. We use induction on £(w'). If £(w') = 1, then
w' = §; = S89;82;—182;+152;. In this case, our claim ¢(w'd) > £(d) follows directly
from the counting of the number of inversions. Suppose that for any w’ € IT with
U(w') = k — 1, we have (w'd) > £(d). Let w' € II with {(w') = k. We can write
w' = 5;u/, where 1 < j < f — 1, such that Z(w') = Z(u’) + 1. Now counting the
number of inversions, it is easy to see that ¢(w'd) = £(s;u'd) > £(u'd). On the
other hand, by induction hypothesis, ¢(u'd) > £(d). Therefore, {(w'd) > £(d), as
required. This completes the proof of the lemma. O

Let Py := {(i1,--- ,i2p)]1 < i1 < -+ < igy < n}. For each J € Py, we use d;
to denote the unique element in D, such that the first component of t“d; is the
tableau obtained by inserting the integers in J in increasing order along successive

rows in . Let 75(2 s.n—2f) be the set of distinguished right coset representatives
of Safn—2f) in &,. Clearly dy € D(zf,n—25), and every element of Doy ,_ay) is of
the form d; for some J € Py. The following result is well known.

Lemma 5.8. Let J = (iq,i2,--- ,i25) € Py. Then
(82782f 41" Siy;—1)(S2p—182f = Sip,_,—1) -~ (5283 54,-1)(5152 -+ 8, 1)
is a reduced expression of dj.
By [10, Lemma 3.8], D,,, = UJGPf Dydy.
Definition 5.9. We define
c=(c1,c9, -+ ,ca5)

:((m—f—i-l)’,---,(m—l)',m’,m,m—l,u-,m—f+1).
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Note that m—f+1 <m—f+2<--- <m<m’ <--- < (m—f+2) < (m—f+1)".
Let dy be the unique element in G such that

() = (a+1)/2, ifae{l,3,--,2f — 1},
T l2f+1—a/2, ifac{24, -, 2f}

Then dy € Dy. Counting the number of inversions, we deduce that £(dy) = f(f—1).
On the other hand, by direct verification, we know that

do = (Szf—zszf—l)(Szf—452f—352f—252f—1) t (5253 co 52f—252f—1)~

It follows that

(5.10) (s2f—2S2f—1)(S2f—aS2f_3S2f—282f—1)-- (8283 Saf_282f_1)
is a reduced expression of dj.
Definition 5.11. We define
Vg, = vcdgl = V(m—f11) @ Um—f+1 @ @ V(m_1) @ Umn—1 ® Uy & V..

Lemma 5.12. Letd € Dy, Jy:={n—2f+1,n—2f+2,--- ,n}.
(1) There exists w € &, such that dg = dw and €(dy) = £(d) + £(w);
(2) For any J € Py, there exists w' € &,,, such that d;, = dyw" with ((dj,) =
dy)+L(w');
(3) for any d € D,, with d # dody,, there exists integer 1 < j < n — 1 such
that dsj € Dy, and {(ds;) = £(d) + 1.

Proof. The statement (2) is a well-known result, see e.g., [11]. We only give the
proof of the statements (1) and (3).

First, we claim that there exists an element w; € &gy, such that dw; € Dy,
{(dwy) = €(d) + £(w;1) and the numbers 1,2,--- | f are located in the first column
of t?)). In fact, let 1 < a < f be the smallest integer which is not located in the
first column of t(Qf)d, then for any integer b which is located in the first column
of t(2f)d, we must have b > a + 1. Furthermore, any integer between a and b — 1
can only be located in the first a — 1 rows of the second column of 2. Now let
Wi = Sp—18p—2 - Sq. It is easy to see that dw; € Dy, {(dwi) = £(d) + {(w), and

1,2,--- ,a are located in the first column of 20, Using induction on a, we can find
an element w’ € Gaf, such that dw’ € Dy, {(dw') = ¢(d) + £(w’) and the numbers
1,2,---, f are located in the first column of 2N Let wo,s be the unique element

in Gy such that

)

(@)wo = (a+1)/2, ifae{1,3,---,2f -1},
C\f+a/2, ifae{2,4,---,2f}.
Then, dw' = wo sw) for some w) € G si1 p12... 25}
Let wy € &yp41 f42,... 253 be defined by

Then wy is the unique longest element in &yyi1 49... 27}. It is well known that

there exists w” € &yy41 p12... 25} such that wy = wiw” and £(wg) = £(wy)+L(w").

It is clear that
fdu' ") = Ewo, swh) = uwo,g) + £(wh) = Lo g) + £(wh) + (")

= l(wo, pwi) + L(w") = L(dw') + L(w") = £(d) + L(w") + L(w").

Therefore,

0(d) + (w') + L(w") = (dw'w") < U(d) + L(w'w") < U(d) + L(w") + L(w"),
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which forces ((w'w”) = L(w') + L(w”). Since dy = dwo jwy = dwo pwiw” =
d(w'w"). The statement (1) is proved.

Let d € D,, with d # dodj,. We can write d = d1d;,, where dy € Dy, J; € Py.
For any d’ € 5(2f7n_2f) and any integer 1 < j < n — 1 satisfying d’ = d”s; and
od) = £(d") + 1, it is well known that d” € ﬁ(gﬂn,w). If J1 # Jy, then the
statement (3) follows directly from this well-known fact and the statement (2).
Now we assume J; = Jy. Then d; # dyp. By statement (1), we can find s; € Goy
such that dis; € Dy and {(dis;) = ¢(d1) + 1. Then d;olsldtjo = s; for some
5j € G(n_2f,2y)- Note that

Udsj) = L(drdy,s;) = Ud1sidy,) = L(disi) + U(dy,) = £(dr) + 1+ 4(ds,)
=/(d) + 1,
as required. O
We define
Ip={b = (b1 buag) [1<buap <o <br<by<m—f

It is clear that {s(ve ® vp) = f for all b € I,

For an arbitrary element v € V®" we say the simple tensor v; = v;, ® - - Qu;_ is
involved in v, if v; has nonzero coefficient in writing v as linear combination of the
basis {vj | je I(2m,n)} of V®"_ For later use, we note the following very useful
fact: for any (i1,142), (j1,72) € I(2m,2),

(5.13) vj, ®vj, is involved in (v;;, ® v,)3" only if j1 < i and jo > is.
Lemma 5.14. Let s,i1,--- ,i, be integers such that
() 1<s< f;

(2) gs(ilv o ,ia) = 07.
(3) for each integer 1 < t < a, either 1 < iy < m—f+1 orm' < i <
(m—f+s+1).
Let d be a distinguished right coset representative of
S1,2, ,25) X G(2541, 25+a)
in Gasiq. Let J:={a+1,a+2,--- ,a+2s}. Let
:[)':’Uil ®...®via’
w = V(m—f+1) Y V(m—f+2) @ ® U(m—f+s) Q Um—fts Q" @ Um—fi1.
Then
FR@) Ty = Caa,@RT+ Y, Auuy, @ BV,
uel(2m,2s+a)
for some z € Z, and Ay # 0 only if

(4) ls(uy, -+ ,uzs) < 8; and
(5) any integer x with (m — f+ 1) <z <2morm— f+s+ 1<z <m does
not appear in (uy, -+ ,Ugg).

Proof. We write
J1=)d, j2=(2)d, -+ jas = (25)d.
Then 1 < j; < jo < -+ < jos < 2s+a, and d = d; if and only if j; = a + ¢ for each
integer 1 <t < 2s. Note that
(8j1—1 7"+ 5251)(8jo—1 " 8352) =+ (Sjpu—1 " " S2541525)

is a reduced expression of d1.
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If ¢(d) =1, i.e., d = 1, then there is nothing to prove. In general, let
A" = (sjy—1- - 5352)(Sj5-1 - 5488) -+ (8jpu_y 1" 525525 1)-
Then
A7 = (sj,-1 - 5251)d " (Sjp0—1 -+~ S2041524), £(d) = €(d') + j1 + jos — 25 — 1,
and d’ is a distinguished right coset representative of

6{2,3,---,23—1} X 6{23,---,2s+a—1}
in G(23,... 26+a—1}- Note that since j; < a+ 1, any simple tensor involved in
(P@w)Tj, -1+ ToTh
is of the form
v, 00, Q- QU Qvp ® W ® V(m—fts)s
where
W = V(m—fi1)y @ @ Vim—fis)y @ Vm—fis® @ U fi1.
It suffices to consider the following three cases:
Case 1. 1 < j; < a. Then iyt = m — f + s. Since £,(i1, -+ ,iq) = 0, by the

definition of ', it is easy to see that

WT(iy, - ig) = WT(iy, - ,ia).
In particular, either 1 <G <m-— f+1lorm <0 < (m—f+s+1). We define

~I __ ~/ _ ~
v —v;2®v;3® ®1};a, w =w.

Then our conclusion follows easily from induction on a.

Case 2. j; =a+ 1 and iy # (m — f +1)’. Then we must have j, = a + t for each
integer 1 < t < 2s. By the definition of 3/, it is easy to see that iy # (m — f + 1)
implies that either 1 <3 <m— f+1orm’ <i; < (m— f+s+1). We define

5//:7)?2@”?‘3@'”@”?&@“2@“’ ,&}’N:a/
By induction on £(d), we deduce that
('17” ® @N)T(d/)—l _ Cz{[}// Q" + Z Aluvm @ @ Vuyyyy_ o

uel(2m,2s+a—2)
for some z € Z, and A, # 0 only if
(al) €s(up, -+ ,ugs—2) < s—1; and
(a2) any integer x with 1 <z <m—f+1orm' <a < (m— f+s) does not
appear in (uy,- - ,Us—2)-

It remains to consider

(vgl uw’ @' ® ’Umff«kl)Ta«stfl -+ Tos1Tas,

(U’i\l X Vuq (SR Vugsya—2 ® Um—f+1)Ta+2s—1 te T23+1T2m

where uq, -+ ,us—2 satisfy the conditions (al), (a2) above. Note that under the
action of Tyia5—1 « - - Tas+1T2s, the first (2s—1) parts do not change, while by (5.13)
the 2s position will be replaced by a vector of the form v, with p < m— f+1. Now
using the condition (a2), our conclusion follows immediately.

Case 3. j1 = a+ 1 and i = (m — f+1). Then we also must have /Z.\QS+1 = 49g,

Jt = a+t and ?t = 4;_1 for each integer 2 < ¢t < 2s. In this case, our conclusion
follows from the same argument used in the proof of Case 2. O
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Lemma 5.15. Letb € I, v =vp @ ve € VO™, Let w € D,;. If w # dody,, then
ToEVE3---Eop 1 € ann(v).
Proof. Let w € D,,. We write w = didy, where d; € Dy, J € Ps. Then
v = (vp ® vc)delefl.
Let J = (41,42, - ,i2f). By Lemma 5.8,
(81171 ce 8281)(51‘271 ce 8382) ce (Sigf,rl ce 82f82f71)(8i2f71 ce 82f+182f)

is a reduced expression of d;l. Using Lemma 5.14, we get that

(5.16) (vh ® Ve) Tyo1 = G205, (ve ® 1) + > Ay,

for some integer z and some A, € K, where the subscript v’ runs over all the
simple n-tensor such that its first (2f)-parts have symplectic length less than f. Tt
follows that if J # Jy, then we are done. Henceforth, we assume that J = Jj, then
dq 7é do and

UT;;ElEg s E2f—1 = Ca(vc X Ub)Td;1E1E3 s ng_l,

for some integer a.
By (5.10),
o= (52f—152f—2 t 3382)(82f—182f—2 te 5554) T
(Szf—1$2f—252f—352f—4)(Szf—152f—2)
is a reduced expressed expression of dgy ! By Lemma 5.12, for any d € D ¢, dis less
or equal than dy in the Bruhat order. It follows that there is a subexpression of o

which is equal to a reduced expression of d~'. Combining this with the definitions
of the operator 8’ and the indices b, ¢, it is easy to see that

(5.17) (Uc R vb)Ty-1 = veTg-1 @ vp = Czéd’do’l}cdal ® vp + Z By,

for some integer z € Z and some B, € K, where the subscript v’ runs over all
the simple n-tensor v;, ® --- ® v, such that there exists 1 < s < f satisfying
Jos—1 # (j2s)’. Now using the fact that di # dp, it is easy to see that (v ®
’Ub)TdflElE?) L E2f—1 =0. Hence, UT$E1E3 R E2f—1 = 07 as required. U

We are now ready to prove the key lemma from which our main result in this
section will follow easily.

Lemma 5.18. Let S be the subset

{T;lElEg oo By 1T, Ty,

d17d2 € DVf7 dl # dOdJof}
o c 6{2f+1’...’n}

of the basis (5.4) of Bp(—¢*™H1, (), and let U be the subspace spanned by S. Then

BW) ﬂ( m ann(vp ® vc)) =B+t g .
bel;

Proof. By definition of Iy, {s(v,) = 0. Hence {5(vp @ vc) = f. It follows that
BUHYD C ann(vp ® ve). This, together with the Lemma 5.15, shows that the right-
hand side is contained in the left-hand side.
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Now let = € B() ﬂ(ﬂbejf ann(vp ®c)). We want to show that z € BUTD o U.
Using the basis (5.4) of the BMW algebra 9B,,(—(?™ %!, (), we may assume that

v =Tj,q, E1Es3- "E2f1( Z Zde)
deD,,

where v = vy = ((27), (n — 2f)) and the elements zq4, d € D,, are taken from the
K-linear subspace spanned by {T,, | w € S2y11,... n}}. We then have to show
x = 0, or equivalently, to show that z4 = 0 for each d € D,,.

Let d € D,,. We write zq = 2066{2f+1,...m,} B,T,, where B, € K for each o.
Suppose that vp2q = 0 for any b € Ir. By the definition of Iy, it is easy to see that

0= VpZd = E Bg’l}ng
0€S (2741, n}

= Z Bg’l)bfg

0€6 2541, n}

= VUp Z Bofg.

0€S (2741, n}

However, since m—2f > n—2f, the Hecke algebra 7% (S(2541,... n}) acts faithfully
on vp. This implies B, = 0 for each 0 € G2741,... »nj. Thus zg = 0, as required.
Therefore, to show that zq = 0, it suffices to show that vpzq = 0 for any b € Iy.
We divide the proof into two steps:

Step 1. We first prove that zq,4,, = 0, equivalently, vpza,q, = 0 for any b € I;.
Let b € Iy.

0= (”Ub & 'UC)SU = Z (’Ub X vc)deleglElEg cee E2f—1Zde
0

deD,,,

¢ Y (UCOE1E3 e Bap 1 ® vb)szd
deD,,

¢y (%OE1E3 B ®szd>Td,
dEDuf

for some integer z € Z, where the third equality follows from (5.16) and (5.17).

By [10, Lemma 3.8], for each d € D,, we can write d = d1dy, where d; € Dy,
J € Py, and €(d) = £(d1) + £(ds). Hence Ty = Ty, Ty,. Therefore

0= Z (’UCOElEg s E2f—1 X 'UbZd)Td
deD,

Z Z (UCOElES"'Efol ®Ub2d1dJ)Td1TdJ
JEPy di€Dy

> > (vcoElEs“'Ezf—lel ®Ub2d1d.])Td.,~
JEPy di€Dy

We want to show that UbZdgd,, = 0. Note that
Voo BN B3+ - Eop_1 = Z +("v;, Qv @ Vi, @V, @ -+ - Q Uiy ®vi}7
1<iy, - ,ip<2m

for some a; € Z. Note also that each simple tensor vg involved vp 2444 Jo has the
same (G Lg,,-weight as vp. Let (i1,--- i) € I(2m, f). We claim that
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(a) for any b,b € I(2m,n — 2f),j € I(2m,2f) with WT(b) = WT(b) =
WT(b) an ( ) = f, the simple n-tensor (ve,q, ® vg)dy, is involved in

(55,015, 0+ 913, )T,

if and only if (_/]'\1,32, R ,ng) = Codo, J = JO and B = E’;
(b) for any di € Sy with dy < dy (in the Bruhat order), the simple (2f)-tensor
Ugyd, 1S involved in

(vi; ® vy ® Vi, OV @+ Qv ® vy, VT4,

if and Only if (ila i27 e 71f) = ((m - f+ 1),, Tty (m - 1)/,m/) and dl = do.
Once these two claims are proved to be true, it is easy to see that the identity

UbZdyd,, = 0 follows at once. Therefore, it remains to prove the claims (a) and (b).

Suppose that (ve,q, ® vg)dy, is involved in

(1);1 ® Y5, ®--® v??f ® vB)Td"'

By definition,
(Ucodo ® Uﬂ)dJo =g @ Veody-

Let J: (jl,jg,"' ,jgf). Then

(S2pS2p+1 " Sjoy;—1)(S2p—182f **+ Sjoy 1 —1) - (8182 8j,-1)

is a reduced expression of d;. Note that 1 < j; < -+ < joy < 2f. If joy # n, then

the rightmost vector of any simple tensor involved in (vA ®v;, ®---Bu;, ® vg)Ta,

must be v, which is impossible (because bp—s ¢t < m—f). Therefore, we deduce
that joy = n. Let Y be the set of all the simple n-tensor v which is involved in

(v, @05, @ @3, @) TopTapsr - Tooi.

Note that by < m— f for each t. We claim that for each integer t with 1 <t < n-—2f,
be # (Jar)". L

In fact, if 1 <t <mn — 2f is the smallest integer such that b, = (jas)’, then the
(2f + t)th position of any simple tensor involved in

(1)3\1 ®1)32 Q- ®v;2f ®UE)(T2fT2f+1 o 'T2f+t—1)

is a vector v, with either a > (m — f 4+ 1) or a < (m — f +1). It follows (from the
definition of 8’ and (5.13)) that the nth position of any simple tensor involved in

(U’j?l ®’U;2 Q- ®U’J?2f ®’U‘B)(T2fT2f+1 : "Tnfl)

is a vector v, with either a < m — f or a > (m — f)’. Since the action of
(Top1Top - Tjy, ;1) (T1To---Tj 1) on any simple n-tensor does not change
its rightmost vector, we deduce that vy ® ve,a, can not be involved in

(v;, ® vy, @+ @ vz, QUg)(TofTapsr -+ Tnor)(Top-1Top - Tjpy 1)
.. (T1T2 .. ’11]41—1)7

a contradiction. R
Therefore, by # (jos)’ for any 1 <t < n —2f. It follows that v = =v; ®v;, ®

Qv Oup U is the unique simple n-tensor in ¥ such that vg ® vcodo is

involved in
o(Top1Top - Thyy y—1) - (1T T —1).
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In particular, we deduce that j]'\gf = (C()do)gf =m— f+1. Now we are in a position
to use induction on n. It follows easily that

(jla.ij"' aj2f—1) = (n_2f+lan_2f+27 y L — 1)a

Gl, T 71/7'\2f71) = ((codo)1, -+, (codo)2f-1), b=b.
Conversely, by the definition of 3', (veyd, ® v5)T4,, = V5 @ Ved,- This proves the
claim (a).

We now turn to the claim (b). By Lemma 5.1 and direct verification, it is easy
to see that the simple (2f)-tensor ve,q, is involved in
(U(m—f-i-l)’ QUm—fr1® V(m— f+2)’ QUm—f2Q - QU & Um)TdO.
This proves one direction of the claim (b). Now suppose that the simple (2f)-tensor
Veyd, 15 involved in
(viy ® vig ® Vi, @V ® -+ ® vy @ Vit )Ty,

where (i1,--- ,if) € I(2m, f), di € Sof with d; < dy (in the Bruhat order). Then

dy has a reduced expression which is a subexpression of (5.10). Hence we can write
dy = did, where d} is a subexpression of
(s27—252f—1)(S2f—aS2f—352f—252f—1) - (5485 S27_2525-1),
d is a subexpression of sgs3 -« - Saf_2825_1, such that £(dy) = ¢(d}) + £(d}). Then
Ta, = Ta Tyy-
By definition of d}, any simple tensor involved in
(vi, ® Vi, @ Vi, @V, @ QUi @ Ui})ng
is of the form
Vi, @V @V DUy @ - @ Vpgp_y,s

where 1 = (I1,1a, - ,laf—2) € I(2m,2f — 2) with £4(1)
can choose one such simple n-tensor, say

f — 1. By assumption, we

1] .
1}[ ] = U4y ®Uz’1 Ry, Ui, ®--- ®vlzf—27

such that ve,a, is involved in vTyy. By definition of df, it is easy to see that
i1 = (m— f+1). We claim that

(b1) (I4,la,--- lap—2) = (m—=f+2),(m—f+3),---,m' m,--- ,m— f+

3,m— f+2);

(b?) dlll = 85283 S82f—252f—-1-.
If both (bl) and (b2) are true, then the claim (b) follows easily from induction on
f. Therefore, it suffices to prove the two claims (bl) and (b2).

Recall that codp = ((m — f+1),--- ,(m =1, m',mm—1,--- m—f+1). If
I1 < (m— f+2), then (by (5.13)) the second position of any simple (2f)-tensor
involved in v[”Tdflf is always occupied by a vector v, with a < (m— f+2), which is
impossible (because ve,q, is involved in vTyy). Hence Iy > (m — f +2)". By similar
reason, we can deduce that I; can not be strictly bigger than (m— f+1)’. Therefore,
I e{(m—f+1),(m—f+2)")}. Assume that Iy = (m— f+1)". Then by (5.13) and
the fact that £(1) = f —1, it is easy to see for any simple (2f)-tensor vg, @ - @ vy,
involved in U[I]Td/{, we have k; < m — f + 1 for some ¢t > 3, a contradiction. This
forces I3 = (m — f + 2)’. Repeating the same argument, we deduce that for any
integer 1 <t < f—1,l;=(m— f+t+1). Now since ¢5(1) = f — 1, it follows that
{va lf+1a T ale*Q} = {(m - f + 1)17 (m - f + 2)/7 e a(m - 1)/} In particular,
l; # m' for any t. Using the same arguments as before, we easily deduce that for
each integer f <t < 2f —2, 1, = m — ¢+ f. This proves (bl). Now (b2) follows
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immediately from (bl) and the fact that ve,a, is involved in vTyr. This proves
another direction of the claim (b), hence completes the proof of the claim (b).

Step 2. Let S’ be the subset

{T;O% E\Es--- By 1T, Ty,

d2 € Dufv d2 7é dOdJm}
o c 6{2f+17...7n}

of the basis (5.4) of B,,(—(?>™*1 (), and let U’ be the subspace spanned by S’. By
the main results we obtained in Step 1, we know that
B n( ﬂ ann(vp, ® vc)> cBYVaoUuaU.
bely
We want to prove that
BY) m( ﬂ ann(vp ® vc)) c BVt gU.
bely
If this is not the case, then by Lemma 5.15,

U’mB(f)m( m ann(vp, ®vc)) # 0.

bely
Let 3 be the set of those dy € Dy, such that there exist some

o e U'(\BY) (anng,, (_czns1 ) (VE"), da € Dy, 02 € Sapi1, my

satisfying
Tiya, ErEs - Eap 1Ty, Ta,
is involved in z’. We choose dy € 3 such that £(ds) is as big as possible.
By the definition of U’, dy # dodj,. It follows from Lemma 5.12 that we can
find an integer j with 1 < j <n —1, such that dys; € D,,, and £(das;) = £(d2) + 1.
Let

o e U'(\BY (Nanng, (—czmer o) (V") dy € Dy, 02 € Sapit my
such that T;odjo ErEs - Eoy_1T5,Ty, is involved in 2’. We claim that there exist
T € Graf41,... n},d3 € Dy, with £(d3) > £(d2), such that
Taya, ErEs - - - Eap 1 Tr Ta,
is involved in z'Tj.
We write
= AOT;OdJ0 E\Es---Eop_12q,Ta,+

Z AdyoTgga, E1Es -+ Eap 1 To Ty,
€S 2541, ,n}
do#dy €D,
£(dy)<L(d2)
where 0 # 24, € K-Span {T|w € S(2541.... n}}, To, is involved in zg,, 0 # Ag €
K, Ag - € K for each dy, 0.

Note that TjodJo E1E3 ce ng_lzdszsz = Td*odJO E1E3 s E2f—1zd2ngsj- It re-
mains to analyze how each T ds, EVEj3- - Eop 1151y, T; is expressed as a linear
combination of the basis elements given in Corollary 5.4. Our purpose is to show
that TjodJO E1E3- - Eyp 115, T4,s; is not involved in each

T;()dgo E1E3 et EQf_lTo-Tdéjjj,

We divide the discussion into cases:
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Case 1. ((dys;) = £(dy) + 1. In this case, Ty Tj = Ty, We write dys; =
wydy, where wy € &,,, and tVdy is row standard. Then £(wady) = £(ws) + £(ds).
Furthermore, we can write Ty, = x4T,,,, where

S <T1,T3,~‘~ ,Tgf_1>, wﬁl € 6u}2)'

We have
T;DdJO E\E3 - Eoy (T, Ty Ty = T;E)dJO E1\Es3---Eop 1151y, Ty,

= Z AaT;()dJO E1E3 N EQf—lTﬁngl (mod B(f+1))’
aeG{Qf‘Flw-»,n}

for some Az € K, where the second equality follows from the fact that Fo; 175, 1 =
r~1Ey 1 for each i and [22, (3.2)]. Now we use [22, Proposition 3.7] to ex-
press Tjo dsg E\Es---Eop 1157, as a linear combination of the basis elements

given in Corollary 5.4. Note that in the notation of [22, Proposition 3.7], it
is easy to check (in all the three cases listed in [22, Proposition 3.7]) that u =
S2;S2j4+152j—152;w, L(u) < L(w),l(v) = l(w) — 1,0(v") < L(w) — 1. Tt follows that
each Tjo dsg E\Es---Eyy_115T,, can be expressed as a linear combination of the
basis elements of the form

Tc}kodJD E\Es- - Eop 1Tor Ty,

where 0" € Graf41,... n}, d5 € Dy, with either

(1) £(dy) < £(dy); or

(2) ¢(dY) = £(dy) and dgq = zdY for some z € II.
Note that ¢(ds) < £(dy) + 1 with equality holds only if dys; = ds. As a result,
0(dy) < £(dy) + 1. If £(dy) < {(d2) + 1, then dj # das; and we are done. If
U(dy) = £(d2)+1, then £(dy) = £(da), £(ds) = £(dy) = £(d5)+1 and diys; = dy = zdf
for some z € II. In this case we claim that dj # dzs;. This is true because
otherwise we would deduce that df = zds, which is impossible (since dj,ds are
different elements in D, ). This completes the proof in Case 1.

Case 2. {(dys;) = £(dy) — 1. Then by Lemma 5.2, dys; € D,,. In this case (note
that our T} is ¢(~'7} in [22]’s notation), by [22, Lemma 2.1],

Ty, Ty =Ty, +(C— C_l)(Td; + C_zm_le'zsjEj)'
Therefore,
Ty B1 B+ By 1 T, Ty T
=Toa,, E1Es - Eap 1 ToTays; + (€ — C_l)TjodJ0E1E3 o B 1 ToTy,
(=TI BBy Eay oy Ty Ty, B
By comparing their length, we see that dos; & {d5s;,d5}. Hence
Toya, ErEs - Eap 115, Ta,s,
is not involved in
Tiyay BrBs - Eap 1 Ty Ty, + (C — C’l)T;OdJO E\E3---Eyp 1T, Ty

Note that d2sj,d2 € D,, imply that j,j + 1 are not in the same row of t"das;.
Combing this with [22, Lemma 3.4, 3.5, Proposition 3.3, 3.4], we deduce that
TdeJO ErE3 - Fay 1T5,T4,s; is not involved in

(C - C_l)C_Qm_lT;DdJO ElES e E2f—1To'Td§SjEj’

as required. This completes the proof in Case 2.
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As a consequence, we can deduce that TdeJD E\E3- - FEap 1T5,Ty,s; is always

involved in 2/Tj. Note that 2/T; € B) ﬂ(ﬂbelf ann(vp ® Uc)) and ((das;) >

£(d2). We get a contradiction to our choice of dy. This completes the proof of the
lemma. (]

Theorem 5.19. With the above notations, we have that
B ﬂ anngs  (—¢2m+1 ) (V®”) - B+,
Proof. Suppose that
B ﬂann%n(—@mﬂ,o (V®”) g BU+D,

By Lemma 5.18, we can find an element x in B(/) (anng, (—czm+1 ) (V®") of the
following form:
T=2z+Yy,
where z € BUtD 04y e U.
We write
Y=Y Adgdyoli E1Es - Eay 1T, T,

dy,da,0
where the subscripts run over all elements di,ds, o such that di,d> € D, and
di # dody,. Let X be the set of those di € D,,, such that there exist some
xz e BY) (Nanng, (—czm+1 ) (V®"),d2 €D,,0 € S(ap41,... n) satistying

Tj Er\Es- - Eyp 1T,Ty, is involved in y.

We choose dj € ¥ such that £(d}) is as big as possible.

By definition of U, d} # dody,. It follows from Lemma 5.12 that we can find
an integer j with 1 < j < n — 1, such that dis; € D, and ¢(d|s;) = £(d;) + 1.
Let x € B(f)ﬂann%n(,czmH,C)(V@”),d’z € D,,0" € Ga441,... ny be such that
T;’l EE;5--- ng,lTU/Td/2 is involved in y. Note that

T;z+Tjy=T;z € B ﬂann%n(_czm+17<) (vem, T;z e BU+D,

Our purpose is to show that there exist some d3 € D), 7 € Sa511.... n}, such that
T;,l 5 E\E5 - Eop 1T; Ty, is involved in T7'y. If this true, then we get a contradic-
tion to our choice of d}, and we are done.
We write
y=AoTy ErEs- - Eyp 1To Ty +

E Adydyo Ty, E1E3 -+ Eop 1T, Ty,,
di,d2€D,,d1#£d,
0'66{2f+1y... n}s
£(dy)<e(dh)

where 0 7é Ag € K, Adl,dg,o € K for each dl,dg S Dyf,O' S 6{2f+17...7n}.
Note that %*Tj/l E1E3 R ng_ch,/Td/Q = Tj,lsj E1E3 cee ng_lTa/Td{z . USiIlg the
same argument as in the proof of Step 2 in Lemma 5.18, we can show that
Ty E1Es - Eay 1T, Ty,

185
is not involved in T;‘le E\Es- - Eyy _1T,T,,, as required. This completes the proof
of the theorem. O

Proof of Theorem 1.5 in the case where m > n: It follows easily from Lemma
5.6, Theorem 5.19 and induction on f that

ann%n(_czm+17<) (V®n> =0.
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This proves the injectivity of p¢, and hence pc must map B, (—¢*™*+1 () isomor-
phically onto Endy, (sp, ) (V}?") in this case.

6. PROOF OF THEOREM 1.5 IN THE CASE WHERE m < n

The purpose of this section is to give a proof of Theorem 1.5 in the case where
m < n. Our strategy is similar to but technically more difficult than [10, Section
4].

Let mg be a natural number with mg > n. Let ‘7;2{ be a free &/-module of rank
2myg. Assume that Vi is equipped with a skew bilinear form (,) as well as an
ordered basis {vl, Vg« ,'Ugmo} satisfying

1, ifi+j=2mo+1andi<j;
(vi,vj) =< =1, ifi+j=2mp+1andi> j;
0 otherwise.

For any «7-algebra K, we set Vi =V ®g K. Let ¢ be the image of ¢ in K. Let
¢ be the K-linear injection from Vi into Vi defined by

2m 2m
D kivi = kivigmg-m, ki, ko € K.
=1 =1

Let 7 be the K-linear surjection from Vi into Vi defined by

2m0

2m
D kivi = > kigmg-mvi, Vk1,-c ko, € K.
=1 =1

We set v := (™, m := ("ow. We regard C as an «/-algebra by specializing ¢ to
1. As before, we identify sp(Ve) with sp,,, (C) and sp(Ve) with P2, (C). Then, ¢
induces an identification of sp,,,(C) with the Lie subalgebra of sp,,, (C) consisting
of the following block diagonal matrices:

{dlag( Oa aOa A7 07 70 ) AespZm(C)}
——— ———

(mo — m) copies (mo — m) copies
Henceforth let K be a field which is an <7-algebra, we set
E = 5p2m0 ((C)a g:= 5p2m((c)v V= VK7 ‘7 = VK'
The inclusion g C g naturally induces an injection

Ug(q)(8) = Uge) (®)

€i /= €itmo—m>y €i 77 €itmo—m, ki — ki+m0—ma 1=1,2,--- ,m.

By restriction, we get an injection Ug(g) < Uy (g). By base change, we get a
natural map Uk (g) — Uk (g). It is easy to see that

%®2n((‘7®2n)UK(E)> C (V®2n)UK(Q)'
For each integer ¢ with 1 <4 < 2m, we define

Vi ifl <i<m
Wi = i—m—1 : ~
(-1) v;, ifm+1<i<2m.
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Then the natural representation of Ug(,)(g) on V(g is given by

w, itj=i+1, "
b ] . W, fj=m+41,
€iW;j = § Wopmi1—(i41), if Jj=2m+1—1i, epw; = i
. 0, otherwise,
0, otherwise;

w , ifj=m
frw; = Q womsr—i, ifj=2m41—(i+1), frw; =4 m BI=

. 0, otherwise,
0, otherwise;

Wit1, if j =1, {
quj, ifj=diorj=2m+1—(i+1),
kiwj =< ¢ tw;, ifj=i+lorj=2m+1—i,
wj, otherwise,
quy, lfj =1m,
kmw; = ¢ ¢ twj, if j=m+1,

wj, otherwise,

where 1 <@ <m —1,1 < j < 2m. By definition (cf. [30, (8.18)]), {wi}, ., s
a canonical basis of the Ugy) (g)-module Vg, in the sense of [41]. Similarly, the

natural Ug() (g)-module Vg, has a canonical basis {{Ei such that

}1§i§2m0

w5, ifj=i+1,
€W =  Wamgt1—(i41), if j =2mo+1—14,
0, otherwise;
wi-ﬁ-h lf.] = i7
fiw; =  Wamgr1-i, if j=2mo+1~(i+1),
0, otherwise;
o @ Wiy, ifj=mo+1,
mod 0, otherwise,
~ wmo-‘rla lf] = My,
w; =
Jin®; {0, otherwise,
qu;, ifj=diorj=2mo+1—(i+1),
kiw; =< ¢ twy, ifj=i+1orj=2mo+1—1,
Wy, otherwise,
qﬁ)}, lfj = my,
kmoﬁj = q_le, lf] = Mmg + 1,

wy, otherwise,

where 1 < i < mg—1,1 < j < 2mg. Note that the subspace ‘A/Q(q) spanned by

{wi}moferlgiSmoer is stable under the action of the subalgebra Ug(,)(g), and it

is canonically isomorphic to Ug(q)(g)-module V).

For each integer ¢ with 1 < ¢ < 2m, we define w} € V), := Homy (Voy, &) by
wi(v) = (w;,v), Vv € Vy. Then {w}}?™ is an o/-basis of V%, and w} is a highest
weight vector of weight ¢;. Furthermore, the map w} — w; can be naturally
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extended to an U, (g)-module isomorphism 7 : V), =V, such that
9 = {ql_iwi, if1<i<m;
g 'w;, ifm4+1<i<2m,
where the Uz (g)-structure on V), is defined via the antipode S. In a similar way,

we can define an o/-basis {w}}>"0 of 17&*{, and an Uy (g)-module isomorphism

T ‘N/;, ~ V. Let V., be the free o7-submodule generated by
{wmo—m-i-h wmg—m-&-?a e 7'&jmo+m}-

Set V := V,y ®, K. Note that the algebra Uy (g) acts on V via the natural map
Uk (g) — Uk(g). The resulting Uk (g)-module V is naturally isomorphic to the
natural Uk (g)-module V' via the correspondence

W; — Wi—mgtm, fori=mo—m-+1,mg—m-+2,---,mog+m.
Recall our definitions of 7,7 at the beginning of this section. We define a linear

map O as follows: N
O : End(V®") — End(V®"),
Fro (7)o f o (157).
One can verify directly that
00 (Endu, (V")) € Endye(q) (V") = Endy o ) (V™).

where the last isomorphism comes from the natural Ug(g)-module isomorphism
V=V,

By Corollary 5.4, the BMW algebra 8B,,(—¢*"*!, ¢) has a basis

0 S f S [Tl/2], AF Tl*2f, (S 6{2]0_5_17.“7”},
di,ds € D,, where v := ((2/),(n — 2f)) [°

The same is true for the BMW algebra 9B,,(—¢?™° 1 ¢). To distinguish its basis
elements with those of B,,(—¢*"*1, q), we denote them by

T; BBy Eop 1T, Ty,
where i,Ez are standard generators of B, (—¢?™° 1 ¢). We define an .o7-linear

isomorphism ©; from the BMW algebra B,,(—¢*""", ) to the BMW algebra
B, (—q*>™ Tt q) . as follows:

{Td*lElEg oo Byp 1Ty Ty,

O, (i}i E\Es - E2f—1TaTd2> = q(m°+m)nT§1E1E3 e Bop 1 T,Ty,,

for each 0 < f < [n/2], A\Fn—2f, s,t € Std(\) and dy,d> € D,,. By base change,
we get a K-linear isomorphism 9B, (—¢?mo+! ¢) = B, (—¢?™+1 (), which will be
still denoted by ©;.

By the main result in last section, we know that the natural homomorphism ¢
from B,,(—¢?m0*1 () to EndUK(sme)((f/)®”) is always an isomorphism. There-
fore, in order to prove Theorem 1.5 (in the case where m < n), it suffices to prove
the following lemma.

Lemma 6.1. With the notations as above,
(1) the following diagram of maps

B, (—¢2mot () — Endy, g (VE")

o | o |

%n(_CQm—i_lv C) L EndUK (9) (V@TL)
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1s commutative;
(2) the map
©p : Endy, g (VE") — Endy, () (V")

18 surjective.

The remaining part of this section is devoted to the proof of Lemma 6.1. The
proof of Lemma 6.1 (2) is almost the same as [10, Section 4], which we just sketch
here. First, we note that the following diagram of maps

Bndy, 5 (V2") —— (Ve @ (V+)°") 0@ MZOT0 (amm)

@ol %®2nJ(

B ) (Vo7) — (VO @ (1)) 0SS (o)

Uk (g)

Uk (9)

is commutative®. Note that (by the theory of tilting modules)

<V®2n o (V®n ® (V*)@M)UK(E) >~ Endy, (g) <V®n)
)Uw(G)

)UK(Q)

= Fndu,, o) (V.5") @ K = (V5 Do K.

Therefore, to prove Lemma 6.1(2), it suffices to show that
%®2n((‘7®2n)UK(§)) _ (V®2n)UK(Q)

equivalently, to show that

(6.2) %®2n((‘7§2n)Ug¢(§)) _ (V§2n)Ud(g)_

Let M := (Vg(q))®*". By [41, (27.3)], the Ug(q)(g)-module M is a based module.
There is a canonical basis B of M, in Lusztig’s notation ([41, (27.3.2)]), where
each element in B is of the form w;, ow;,o---ow;,, , and w;,o---ow;, Iis equal
to wi;, ® -+ ® w;,, plus a linear combination of elements w;, ® --- ® wy,, with
(wj,, -+ wj,,) < (wiy, - ,w;,,) and with coefficients in v *Z[v™!], where 7 < 7
is a partial order defined in [41, (27.3.1)]. In particular, B is an «/-basis of V.S".
By [41, (27.2.1)], there is a partition

B= || B.
rex+
Let

B#0:= || BN, M#0,:= > b
0£AEX+ be B[£0]
By [41, (27.1),(27.2)] and the discussion in [10, Section 4], we know that the iso-

morphism (7*1)®2n L VER (V;;)mn o (V§2")* induces an isomorphism

(V2o = (VSQ”/M[# O]ﬂ)*.

All the above have a counterpart with respect to ‘7, which we will just put the sym-
bol “~”. Therefore, we have the notations M := (V@(q))®2”, B, W;, Wi, - - - SW;,,

M]|# 0], and we also have an isomorphism
T@2n\Ue (8) o [ Tr@2n /77 i
(7)< = (Vg i ol )

3This is the point where we have to use the isomorphisms 7,7 instead of m, ¢.
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Lemma 6.3. With the notations as above, the following diagram of maps
) ® = (Vg o) —— (75)

roun | (o) |
v —=— (v prigo.) —— (v)

is commutative. In particular, we have

T2 (M[# 0]r) € M[# 0]y

*

*

Proof. This follows from direct verification. O

Therefore, to prove (6.2), it suffices to show that

(6.4 ) (/31 01)") = (V2 /T 0)”

Let
Jo = {(il,"' ,ign) S I(2m,2n) ’ Wiy OO W4, € B[O]},

Jo = {(z’l,--~ vian) € I(2mo, 2n) | @550, € E[o]}.
Lemma 6.5. ([10, Corollary 4.5]) With the above notation, the set
{wil ® - @ Wiy, + M[# ey | (i1, ,i2n) € Jo}
forms an o -basis of VS*" /M[# 0], and the set

{ﬁ)il ® - @iy, + M# e | (i1, ion) € JO}

forms an <f -basis of ngn/ﬂ[# 0]z -
We set

Jo[mo—m} = {(mo—m+i1,-~- ,mo—m—f—ign) ‘ (il,'-' ,i2n> S Jo}

Theorem 6.6. With the above notation, Jo[mg —m] C Jo.

Proof. This is proved by using the same argument as in the proof of [10, Theorem
4.7)). O

Now Lemma 6.5 and Theorem 6.6 imply that 72" maps V.5*" /M[# 0], onto
an «/-direct summand of ‘752" /M[# 0] . Tt follows that

()" ((V?Q”/M# om*) = (VE™ /M 0])",

which proves (6.4). This completes the proof of Lemma 6.1 (2).

It remains to prove Lemma 6.1 (1). From now on and until the end of this paper
we shall set, for any integer i with 1 < i < 2my,

i =2mgo+1—i.

Note that both ©y and ©1 are in general not algebra maps. Let f be an integer
with 0 < f < [n/2]. By definition,

@1 (Elﬁg PN EQf—l) — C(m0+m)nE1E3 . E2f—1-
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Therefore,
90091(E1Eg : "EZf—l) = (lmotminge (ElEB e E2f—1>
= (Mot oo (B o (Bs) -+ o (Bag-1)
= 6o (soc(E1)<Pc(Es) o ¢C(Eszl))
= Oypc (E1E3 : "EQf—1>7

where the third equality follows from the fact that different @c(Egi_l) acts on
pairwise non-intersected positions.

Let 0 € Sqapq1,.. ny, V1= ((29), (n —2f)), d1,d> € D,. Our purpose is to show
that

wcO1 (i}‘l E\Es - EQf—lfang) = Oypc (T§1§1E3 e Ezf—lfaib)

Equivalently,
(6.7)

e (Th, BrBs - Bzp 1T, Ta,) = ™ Ogpc (T, EvEs -+ By 1Ty T, )

We divide the proof into four steps:

Step 1. We want to prove that ¢-0, (fw> = Oypc (fw) for any w € &,,.
We set

I(2m,n) = {ieI(2m,n)|mo—m+1<i, <mg+m for each t}.

Note that, by definition, ©4 (Tw) = ((motm)nT for each w € &,,. Hence it suffices
to show that for any w € &,,,

(6.8) vc (Tw) = ¢~ (motmingype (fw>

Let w € 6, 1 < k < n—1, such that f(ws,) = £(w) + 1. Let i € I(2m,n),
j € 1(2mg,n), such that v; is involved in v;T,s,. We claim that

(A) for any 1 € I(2mqg, n) such that v; is involved in v;7T,, and v; is involved in

0Tk, if Iy = (lg+1)’, and mg —m +1 < I, < mg+m whenever b # k, k+ 1,
then Il > mg —m + 1.

If £(w) = 0, there is nothing to prove. Assume ¢(w) = a > 1. We fix a reduced

expression of w as follows:
W= 8q;8g; """ Sqa-
We set g1 = k. By assumption, v is involved in viTy, --- Ty, . It follows that
there exist
j[O]“j[l}’ . ,j[a+1] e I(2mg, n)

such that

(1) O =4, jlo =1, jle+1] = j;

(2) for each integer 1 <t < a+ 1, vy is involved in ’Uj[t—l]fqt.
For each integer 2 <t < a+ 1, we set

Wt = Sq1 8¢z """ Squ 1~
For any integer ¢t with 2 <t < a 4+ 1, we define
A = Z (Ww;t, By = Z (b)yw;?,
1<b<n 1<b<n
1Sjl[,t_1]<mo—m+l m0+m<j([,t_1]§2m0

Ct = At - Bt.
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We claim that
(6.9) 0<Cy <C3 <o < Cgyr.

Recall by definition that qu acts only on the (g, ¢: + 1) positions of the simple

tensor vji.—1) in the same way as the operator 3" acts on U e ®vle-1 . To compare
qt+1
C; with Ci41, it suffices to check the simple tensors 1nvolved in

(U [t—1] ®'U]t 1]>ﬁ/.

q¢+1

By the explicit definition of the operator 3’, we need only consider the following
six possibilities:

Case 1. {j [t 1],]([;_‘_3],]([1&],]%_‘_1} {mo —m+1,myg—m+2,--- ,myg —l—m}. In this
case, it is clear that Cy = Cyy;.

1 [t—1]N/ . 1 1
Case 2. j[t ] # (jlgi+1]) . Then we have either (]([Ii ]7‘]([Itt+1]) (]I[Ii]+1,j¢[1€])
(jc[]tt ”,]}ifﬂ) (]([lt],j([zi]+1) In both cases, we still get that C; = Cy41q.

Case 3. ][t U= (]5:_11]) > mg + m. Then we must have

i = (Jl[zi]+1) < jg;ll] <mg—m+ 1
In this case, since
(a)s;' =ae+1, (ae+1)s,' =aq,
]([;Jrll], G < mo—m—+1, 5~ 1]7]([1)“ > mg +m.

and (b)s_*

5 =bforany b ¢ {q:,q; + 1}, it follows easily that C; = Cy41.

Case 4. m07m+1<][t U_ (]([IttJrll]) < mg+m, and

il = (],Ett]ﬂ) <mog—m+1.
In this case, since £(wys,,) = £(w;) + 1, it follows that
(qt)w;r11 = (‘Jt + 1)“};1 > (Qt)wfl = (Qt + 1)w;+11.
and (b) s;tl = b for any b ¢ {q:, q: + 1}, it follows that
Ct+1 =C; + ((qt)wt_jl (qt + 1)wt+1> > (.
Case 5. j[t U= (jr[;j_ll])/ <mgp—m+1, and (]Ei 1],.]([;_,'_11]) #* (j([]i],j([li]+1). In this
case, we must have j[t] (]([1 ]+1) . Since £(wesgq,) = £(we) + 1, it follows that

1

(Qt)w;‘rl = (Qt + 1)“1; > (%)wfl = (Qt + 1)w[+11.

and (b)s,' = b for any b ¢ {q¢,q + 1}. If j[] > mg + m, then it is clear that
Cy = Cyyq; if jl[ft] < mg—m+ 1, then

Cror = Cr = ((a)wi = (o i) + ((@)wih = (@ + Duith) > G
ifmo—m+1§j,[£] < mg + m, then

Ciy1=C — ((Qt)wt_l — (@ + 1)wt_1> > C4.

Case 6. jii~1 = (j:[;i:rll])l < mo—m+ 1, and (]étf ”,j,&iﬁﬂ) (jé,],jl[;i]_,'_l) Since
Uwysq,) = L(wy) + 1, it follows that

(a)wily = (@ +Dw ' > (q)w; ' = (@ + D wgy.
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and (b) sg." = b for any b ¢ {q:, q: + 1}. Therefore

Crer = €= (@) = (an+ Vi) + (@)l = (@ + i) > C
as required. This proves our claim (6.9).
Since {(wat15k) = l(we1) + 1, it follows that (k)w;&l < (k + 1)w;_&1. Now
suppose that I, < mg—m + 1. Then by our assumption on 1, it is easy to see that
Cat1 = (K)wg iy — (k+ Dwg <0,

which contradicts to (6.9). It follows that [, > mg — m + 1. This completes the
proof of our claim (A).

Now we use induction on ¢(w) and the results (A) to prove our claim (6.8). If
{(w) = 0, there is nothing to prove. Let w = usy with ¢(w) = ¢(u) + 1. Suppose

~

ot (Tu> = ¢~ (motm)Ingy g (Tu) Then for each i € I(2m,n), we can write

vifu = & (vi_m0+mTu) + Z Aj v,
1€1(2mo,n)\T(2m,n)
where A;; € K for each 1, and
i—mo+m:=(iy —mg+m,-- i, —mg+m).
Therefore,

vifw = <L®n (vimoerTu))fk + Z Ai’lvlfk'
1e1(2mo,n)\I(2m,n)

Note that A;; # 0 implies that v; is involved in ’uif -
We claim that 7®" (vlTk) = 0 whenever A;; # 0. In fact, by the definition of 5’

and the fact that 1 € I(2mg,n)\ 1(2m,n), it is easy to sce that 7&" (vlfk) # 0 only

if Iy = (lg41) <mo—m+1and mg—m—+1 <1, <my+m whenever b # k, k+ 1.

Applying our result (A), we know that this is impossible. This proves our claim.
Note also that

<L®n (Ui—m0+mTu)> j:k =" (vi—mo+mTuTk) + Z Ag7jv.i’
jeI(2mo,n)\I(2m,n)

where A;,j € K for each j. As a consequence, we get that

7T®" (’UiTw) = Ui—m0+mTw~

Equivalently, ¢c (Tw) = ¢~ (motm)ng o, (fw), as required. This completes the
proof of our claim (6.8). As a direct consequence, it is easy to see that for any
0 € 62741, n}s

(610) (pc@l (Elég e EZf—lfa) = @o(pc (E1E3 e ng_ng) .

Step 2. We claim that for any d; € D,,,
©cO1 (fjl E\E;3-- EQf-lﬁ—) = Oopc (T§1E1E3 - 'EQf—lfa)-

By deﬁnition, @1 (le E1E3 cee ng_lfg) = C(m0+m)nT;1 E1E3 cee E2f—1To- There-

fore, our claim is equivalent to

(6.11)  »c (T;1E1E3 : "E2f—1Ta> = ¢~(motming o (TL}‘lElEg . ~-E2f_1f,).
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o~

By (6.10), for any i € I(2m,n),
uiTy = O™ (VimmgrmTy,) + Z Aj o,
le](2m0,7l)\f(2m,n)

where /Ti,l € K for each 1.
To prove (6.11), it suffices to show that

(6.12) ls(ly,- -+ ,lay) < f whenever E“ # 0.

It remains to prove (6.12). By [10, Lemma 3.8], we can write dy = dy1ds, where
dy1 € Dy, J € Py. Then,
Ty =1T3,T;, = Td;lel—ll.
Since dﬁl € Gy, the action of le—ll does not change the symplectic length of
the first (2f) parts of any simple n-tensor. Therefore, using (6.8), we can assume

without loss of generality that di; = 1, and hence dy = d; € D(af,,—25). With this
assumption, we claim that

(6.13) vifjJ = 1% (Vicmo4mTy,) + Z 121\1,11)1,
IEI(QmU,n)\f(Qm,n)

where /AliJ € K for each 1, and A\L] # 0 only if
{11,”- ,lgf}ﬂ{mo+m+1,mo+m+2,-~- ,2m0} =0,

and either [y or I belongs to {1,2,---,mo—m}. If this is true, then it is clear that

A;y # 0 only if £,(1) < f and hence (6.12) follows.
Let J = (j1,J2, - ,J25). Then 1 < j; < jo < --- < joy <mn. By Lemma 5.8,

(85117 5281)(8jp—1 "+ 8382) +* (Sjay 1 —1 """ S2£827—1)(Sjpp—1" " S2f+152f)
is a reduced expression of d;l. If f =1, then
T; = (Tj-1 - T (Tj—1 - TsTo).

In this case, suppose that v; is involved in vifjJ, where i € 1 (2m,n). Then, there
must exist
1000 0 bt =3l o I(2mg,n)
such that
(1) 1007 = 4, 1ln+52=3] — 1
(2) for each 1 <t < j; — 1, vy is involved in vi(fjl,l . 'fjrtﬂfjrt)%
(3) for each j; <t < ji + j2 — 3, vy is involved in

Vi(Tj -1 ToT)(Tjy—1 - Tyt Tjo -t 51 1)
(4) for each 1 <t < j; — 1, vy is involved in Ul[t—l]jv-jjl_t;
(5) for each ji1 <t < ji +j2 — 3, vy is involved in vye-1 Ty, 45, —¢—1-

~

Now suppose 1 € 1(2mg,n) \ I(2m,n). If there exists an integer 1 < b < j; such
that

mo—m+1< l;ﬁj} = (li:lb]ﬂ)l < mo+m, l;ﬁ]fb = (lg'li]*bﬂ)/ <mo—m+1,
then we choose such a b which is maximal. By (5.13), we have |} = lgjl_l] <

mo—m+1and [y < lj[-irl] < mg + m. If there does not exist such a b, then there
must exist an integer j; < ¢ < j1 4 jo — 3 such that

[e—1] _ (qle—1] /
mo —m+1< lj1+j2_c_1 - (lj1+j2—c) <mo +m,
[] _ (ld /
lj1+jz—c—1 - (lj1+j2—c) <mp—m+ 1.
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We choose such a ¢ which is maximal. By (5.13), la < mg —m + 1. The non-
existence of b implies that mg — m + 1 < Iy < mg + m. This proves our claim in
the case f = 1.

Now we assume that f > 2. We use induction on n — 2f. If n —2f = 0, then
dj = 1, there is nothing to prove. We set

C/I\J — (82f7182f . e Sj2f71*1)(82f*282f*1 e Sj2f72*1) e (5152 ... Sjlfl)'
Then d;' = d;l(sm—l “+Sap4152y) and
0(d;) = 0(d;Y) + jay — 2f.

If joy < n—1, then d; € Doy n_1-2y), and we are done by induction hypothesis.
If joy = n, then by induction hypothesis, we have

uls; = L&n (UifmoerTt’;]) + Z B vy,

leI(2mg,n)\I(2m,n)

where B\i,l € K for each 1, and Ei,l = 0 only if

(1) mp—m+1<I, <mp+m; and
(2) {llv"' 712f}m{m0+m+13m0+m+25 ,2m0} :Qa and
(3) either I or I belongs to {1,2,~~ ,mgy — m}.

It remains to check the simple tensors involved in vlfn,lfn,g . TQ ¢ as well as in
LB (Ui—m0+mT§J)Tn—1Tn—2 VTR

Since the action of fn,lfn,g e fgf does not change the first (2f — 1) positions,
it follows from (5.13) and the fact mg —m + 1 <1, < mg + m that

~ ~ ~ =,
L®n (Ui7m0+mT5])TnflTn72 o T2f = L®n (Ui7m0+de*J) + Z Bi’uvuv
uel(2mo,n)

where E:u € K for each u, and Ei,u # 0 only if

{ula"' 7u2f}m{m0+m+lam0+m+27"' 72m0}:®7

and either u; or us belongs to {1,2, cee L Mg — m}. By the same reason, we can
deduce that
uly1Typ—o-Top1 = Z Bilyvu,
uel(2mo,n)

where E{’u € K for each u, and E:u # 0 only if
{Ul,"' ,uzf}m{m0+m+l,m0—|—m+2,~-- a2m0} :®a

and either u; or us belongs to {1,2, cee L myg — m}. This completes the proof of
(6.13), and hence the proof of (6.11).

Step 3. We want to show that for any dz € D,,,
e (BuBy - oy 1T,T0) = O0pc (B Boy 1T
As before, it is equivalent to show that
6.14) e (E1E3 . ng_lTaTdZ) — (~(motming (Elﬁg . EQf_li,TdQ).

Recall that V" has a basis consists of all the simple n-tensors v;, where i €
I(2mg,n). We ordered the elements of this basis as X7, Xo,- - - » X (2m)~ such that
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the subset {X1, X2, -+, X(am)» } is a basis of :"(V®"). With this ordered ba-
sis {X1, -+, X(2mo)~} in mind, we identify Endg (\7®”) with full matrix algebra
M (21m0)7 x (2mo)= (), and identify the homomorphism

ot (Ba(=C"0F ()P — Endge (VE")
with a homomorphism
gt (B (=0t 0)P = Mgy x 2mo)n (K)-

We claim that for any o € B,,(—¢*m0*1 (),

t

(6.15) oo (x*) = (polx)),

where (goc(x))t means the transpose of the matrix pc(z), and “*” denotes the
algebra anti-automorphism of B,,(—¢?m0*1 ()) defined in Section 5.

In fact, by direct verification, it is easy to see that for each 1 <i < n — 1, both
wo(T;) and @c(E;) are symmetric matrices (with respect to the above ordered
basis). Since B,,(—¢?™0*1 () is generated by T;, E;,i = 1,2,--- ,n — 1 and p¢ is
an algebra homomorphism, the claim (6.15) follows immediately.

The above argument applies equally well to V€™, For each integer ¢ with 1 <
i < (2m)", let Y; := 7®"(X;). Then, {Y1,---,Yamn} is a basis of V€™, With the
ordered basis {Y7," -+, Y(2m)=} in mind, we identify Endg (V") with full matrix
algebra M (2;,,)n x (2m)» (K), and identify the homomorphism

ot (Ba(=C*"H, Q) — Endg (V")
with a homomorphism
Po - (%7L(_42m+17 C))Op - M(2m)"><(2m)" (K)

As before, for any x € B,,(—(*™ 1, ()), we have pc (z*) = (goc(x))t.

We define a linear map ©f from M gm,g)n x (2me)n (K) 10 M(2p)nx (2m)n (K) as
follows: for any M € M2mq)n x (2mo)n (), ©p(M) is the submatrix of M in the
upper-left corner, obtained from M by deleting the last (2mg)™ — (2m)™ rows and
the last (2mg)™ — (2m)™ columns. Then, it is clear that

(6.16) o) (M) = (0p(M))".

With the ordered bases {X1, Xa, -+, X(2mg)»} and {Y1,---,Y(gmm)~} in mind, it
is easy to check that we can identify the linear map ©¢ as the restriction of
C(mo—ﬁ—m)n@(y



QUANTIZED SCHUR WEYL DUALITY IN TYPE C 57
Applying (6.15), (6.16) and (6.11), we get that
C*(moer)n@O(pc (E’1E3 . EQf—lfafcb)
= @6900 (EIEIS T E?fflfofdQ)
= @6@0 ((f&;ElE?) e EQf—lfo"l) >
SO _ _ ¢

- @6((@C(T52E1E3 : --Ezf,lT(,fl)) )

o N N t
= (96%* (T52E1E3 e E2f—1Tal)>

t
- ((pc (T;2E1E3-.-E2f_1Tgl)>
= o (T3, BBy Bap 1 T,0)")

= pc <E1E3 B E2f—1TaTd2>a

as required. This completes the proof of (6.14).

~

Step 4. We are now in a position to prove (6.7). Let i € I(2m,n), 0 € & 2541,... n},
vi=((21),(n —2f)), d1,da € D,. It suffices to show that

0Ty EvEy - By 1Ty Ty, = 1" (Vicmgtm T, B1Es -+ Eap 1T, Ta,)
+ > Aigos
JeI(2mo,n)\I(2m,n)

where E;J € K for each j.
By (6.12),

Ty, = 12" (Vicmg+m Ty, ) + Z Aj o,
leI(2mo,n)\I(2m,n)
Ls(ly,lap)<f

where gi’l € K for each 1. Therefore,
’Uif;lﬁlﬁg s E‘Qf,lfgf,b = L®" (Ui,m0+mT;1)E1E3 ce ngflfafdz.
Now we use (6.14), it follows that
[/®n (Ui—7rL0+7nT;1)EIE3 e EQf—lfa'ng
= 19" (Vicmotm T4, E1 B3 -+ Bap 1 Ty Tay ) + > A oy,
je€I(2mo,n)\I(2m,n)

where /AliJ € K for each j, as required. This completes the proof of (6.7). Hence
we complete the proof of Lemma 6.1 (1).
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