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Abstract. This paper constructs an explicit homogeneous cellular basis for
the cyclotomic Khovanov–Lauda–Rouquier algebras of type A over a field.

1. Introduction

In a groundbreaking series of papers Brundan and Kleshchev (and Wang) [6–
8] have shown that the cyclotomic Hecke algebras of type G(`, 1, n), and their
rational degenerations, are graded algebras. Moreover, they have extended Ariki’s
categorification theorem [2] to show over a field of characteristic zero the graded
decomposition numbers of these algebras can be computed using the canonical bases
of the higher level Fock spaces.

The starting point for Brundan and Kleshchev’s work was the introduction of
certain graded algebras RΛ

n which arose from Khovanov and Lauda’s [23, §3.4]
categorification of the negative part of quantum group of an arbitrary Kac-Moody
Lie algebra and, independently, in work of Rouquier [31]. In type A Brundan and
Kleshchev [6] proved that the (degenerate and non-degenerate) cyclotomic Hecke
algebras are Z-graded by constructing explicit isomorphisms to RΛ

n .
The cyclotomic Khovanov-Lauda–Rouquier algebra RΛ

n is generated by
certain elements {ψ1, . . . , ψn−1}∪{y1, . . . , yn}∪{ e(i) | i ∈ (Z/eZ)n } which are sub-
ject to a long list of relations (see Definition 3.1). Each of these relations is homo-
geneous, so it follows directly from the presentation that RΛ

n is Z-graded. Unfortu-
nately, it is not at all clear from the relations how to construct a homogeneous basis
of RΛ

n , even using the isomorphism from RΛ
n to the cyclotomic Hecke algebras.

The main result of this paper gives an explicit homogeneous basis of RΛ
n . In

fact, this basis is cellular so our Main Theorem also proves a conjecture of Brundan,
Kleshchev and Wang [8, Remark 4.12].

To describe this basis let PΛ
n be the set of multipartitions of n, which is a

poset under the dominance order. For each λ ∈ PΛ
n let Std(λ) be the set of

standard λ-tableaux (these terms are defined in §3.3). For each λ ∈PΛ
n there is an

idempotent eλ and a homogeneous element yλ ∈ K[y1, . . . , yn] (see Definition 4.15).
Brundan, Kleshchev and Wang [8] have defined a combinatorial degree function
deg :

∐
λ Std(λ) −→ Z and for each t ∈ Std(λ) there is a well-defined element

ψd(t) ∈ 〈ψ1, . . . , ψn−1〉. Our Main Theorem is the following.

Main Theorem. The cyclotomic Khovanov-Lauda–Rouquier algebra RΛ
n is a graded

cellular algebra, with respect to the dominance order, with homogeneous cellular ba-
sis

{ψ∗d(s)eλyλψd(t) | λ ∈PΛ
n and s, t ∈ Std(λ) } .

Moreover, deg
(
ψ∗d(s)eλyλψd(t)

)
= deg s + deg t.
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We prove our Main Theorem in the two really interesting cases where RΛ
n is

isomorphic to either a degenerate or a non-degenerate cyclotomic Hecke algebra.
In particular, these results imply that this basis is a homogeneous basis for RΛ

n if
either e = 0 or e is a non-zero prime number. More generally, we show that over Z
the algebra RΛ

n (Z) can have p-torsion, for a prime p, only if p divides e. This implies
that the ψ-basis is a homogeneous basis for the O-algebra RΛ

n (O) = RΛ
n (Z) ⊗Z O

whenever O is commutative integral domain O in which e · 1O is invertible.
The main difficulty in proving this theorem is that the graded presentation of the

cyclotomic Khovanov-Lauda–Rouquier algebras hides many of the relations between
the homogeneous generators. To overcome this we use the Brundan-Kleshchev
isomorphism theorem to recast everything in terms of the representation theory of
the cyclotomic Hecke algebras of type G(`, 1, n). The key step is the realization
that the idempotents e(i) can be lifted to an integral form of the Hecke algebra
defined over a discrete valuation ring O, where they become natural sums of the
seminormal basis elements [28, 29]. By lifting eλyλ to this integral form we are
able to compare these elements with the standard basis of the cyclotomic Hecke
algebras [5,12], which allows us to prove our main theorem.

In fact, we give two graded cellular bases of the cyclotomic Khovanov-Lauda-
Rouquier algebras RΛ

n . Intuitively, one of these bases is built from the trivial rep-
resentation of the Hecke algebra and the other is built from its sign representation.
We then show that these two bases are dual to each other, modulo more dominant
terms. As a consequence, we deduce that the blocks of RΛ

n are graded symmetric
algebras (see Corollary 6.18), as conjectured by Brundan and Kleshchev [7, Re-
mark 4.7].

This paper is organized as follows. In section 2 we define and develop the repre-
sentation theory of graded cellular algebras, following and extending ideas of Gra-
ham and Lehrer [18]. Just as with the original definition of cellular algebras, graded
cellular algebras are already implicit in the literature in the work of Brundan and
Stroppel [9, 10]. In section 3, following Brundan and Kleshchev [6] we define the
cyclotomic Khovanov-Lauda–Rouquier algebras of type G(`, 1, n) and recall Brun-
dan and Kleshchev’s all important graded isomorphism theorem. In section 4 we
shift gears and show how to lift the idempotents e(i) to H O

n , an integral form of the
non-degenerate cyclotomic Hecke algebra H Λ

n . We then use this observation to pro-
duce a family of non-trivial homogeneous elements of RΛ

n
∼= H Λ

n , including eλyλ,
for λ ∈PΛ

n . In section 5 we lift the graded Specht modules of Brundan, Kleshchev
and Wang to give a graded basis of H Λ

n and then in section 6 we construct the
dual graded basis and use this to show that the blocks of H Λ

n are graded symmet-
ric algebras. As an application we construct an isomorphism between the graded
Specht modules and the dual graded Specht modules, which are defined using our
second graded cellular basis of H Λ

n . In section 7 we consider the graded cellular
basis of the degenerate cyclotomic Hecke algebras HΛ

n
∼= RΛ

n . We then apply all
of our results to study the cyclotomic Khovanov-Lauda-Rouquier algebras RΛ

n over
more general rings. In an appendix, which was actually the starting point for this
work, we use a different approach to explicitly describe the homogeneous elements
which span the one dimensional two-sided ideals of H Λ

n .

2. Graded cellular algebras

This section defines graded cellular algebras and develops their representation
theory, extending Graham and Lehrer’s [18] theory of cellular algebras. Most of
the arguments of Graham and Lehrer apply with minimal change in the graded
setting. In particular, we obtain graded cell modules, graded simple and projective
modules and a graded analogue of Brauer-Humphreys reciprocity.
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§2.1. Graded algebras. Let R be a commutative integral domain with 1. In this
paper a graded R-module is an R-module M which has a direct sum decomposi-
tion M =

⊕
d∈Z Md. If m ∈Md, for d ∈ Z, then m is homogeneous of degree d

and we set degm = d. If M is a graded R-module let M be the ungraded R-module
obtained by forgetting the grading on M . If M is a graded R-module and s ∈ Z
let M〈s〉 be the graded R-module obtained by shifting the grading on M up by s;
that is, M〈s〉d = Md−s, for d ∈ Z.

A graded R-algebra is a unital associative R-algebra A =
⊕

d∈Z Ad which is
a graded R-module such that AdAe ⊆ Ad+e, for all d, e ∈ Z. It follows that 1 ∈ A0

and that A0 is a graded subalgebra of A. A graded (right) A-module is a graded R-
module M such that M is an A-module and MdAe ⊆Md+e, for all d, e ∈ Z. Graded
submodules, graded left A-modules and so on are all defined in the obvious way.
Let A-Mod be the category of all finitely generated graded A-modules together
with degree preserving homomorphisms; that is,

HomA(M,N) = { f ∈ HomA(M,N) | f(Md) ⊆ Nd for all d ∈ Z } ,
for all M,N ∈ A-Mod. The elements of HomA(M,N) are homogeneous maps of
degree 0. More generally, if f ∈ HomA(M〈d〉, N) ∼= HomA(M,N〈−d〉) then f is a
homogeneous map from M to N of degree d and we write deg f = d. Set

HomZ
A(M,N) =

⊕
d∈Z

HomA(M〈d〉, N) ∼=
⊕
d∈Z

HomA(M,N〈−d〉)

for M,N ∈ A-Mod.

§2.2. Graded cellular algebras. Following Graham and Lehrer [18] we now de-
fine graded cellular algebras.

2.1. Definition (Graded cellular algebras). Suppose that A is a Z-graded R-algebra
which is free of finite rank over R. A graded cell datum for A is an ordered
quadruple (P, T, C,deg), where (P,B) is the weight poset, T (λ) is a finite set
for λ ∈P, and

C :
∐
λ∈P

T (λ)× T (λ)−→A; (s, t) 7→ cλst, and deg :
∐
λ∈P

T (λ)−→Z

are two functions such that C is injective and
(GC1) { cλst | s, t ∈ T (λ), λ ∈P } is an R-basis of A.
(GC2) Each basis element cλst is homogeneous of degree deg cλst = deg s + deg t, for

λ ∈P and s, t ∈ T (λ).
(GC3) If s, t ∈ T (λ), for some λ ∈ P, and a ∈ A then there exist scalars rtv(a),

which do not depend on s, such that

cλsta =
∑

v∈T (λ)

rtv(a)cλsv (mod ABλ) ,

whereABλ is theR-submodule ofA spanned by { cµab | µ B λ and a, b ∈ T (µ) }.
(GC4) The R-linear map ∗ :A−→A determined by (cλst)

∗ = cλts, for all λ ∈P and
all s, t ∈P, is an anti-isomorphism of A.

A graded cellular algebra is a graded algebra which has a graded cell datum.
The basis { cλst | λ ∈P and s, t ∈ T (λ } is a graded cellular basis of A.

If we omit (GC2) then we recover Graham and Lehrer’s definition of an (un-
graded) cellular algebra. Therefore, by forgetting the grading, any graded cellular
algebra is an (ungraded) cellular algebra in the original sense of Graham and Lehrer.
2.2. Examples a) Let A = gl2(R) be the algebra of 2 × 2 matrices over R. Let
P = {∗} and T (∗) = {1, 2} and set

c11 = e12, c12 = e11, c21 = e22 and c22 = e21,
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with deg(1) = 1 and deg(2) = −1. Then (P, T, C,deg) is a graded cellular basis
of A. In particular, taking R to be a field this shows that semisimple algebras can
be given the structure of a graded cellular algebra with a non-trivial grading.
b) Brundan has pointed out that it follows from his results with Stroppel that the
Khovanov diagram algebras [9, Cor. 3.3], their quasi-hereditary covers [9, Theo-
rem 4.4], and the level two degenerate cyclotomic Hecke algebras [10, Theorem 6.6]
are all graded cellular algebras in the sense of Definition 2.1. 3

2.3. Definition (Graded cell modules). Suppose that A is a graded cellular algebra
with graded cell datum (P, T, C,deg), and fix λ ∈ P. Then the graded cell
module Cλ is the graded right A-module

Cλ =
⊕
z∈Z

Cλz ,

where Cλz is the free R-module with basis { cλt | t ∈ T (λ) and deg t = z } and where
the action of A on Cλ is given by

cλt a =
∑

v∈T (λ)

rtv(a)cλv ,

where the scalars rtv(a) are the scalars appearing in (GC3).
Similarly, let C∗λ be the left graded A-module which, as an R-module is equal

to Cλ, but where the A-action is given by a · x := xa∗, for a ∈ A and x ∈ C∗λ.

It follows directly from Definition 2.1 that Cλ and C∗λ are graded A-modules.
Let ADλ be the R-module spanned by the elements { cµuv | µ D λ and u, v ∈ T (µ) }.
It is straightforward to check that ADλ is a graded two-sided ideal of A and that

(2.4) ADλ/ABλ ∼= C∗λ ⊗R Cλ ∼=
⊕

s∈T (λ)

Cλ〈deg s〉

as graded (A,A)-bimodules for the first isomorphism and as graded right A-modules
for the second.

Let t be an indeterminate over N0. If M = ⊕z∈ZMz is a graded A-module
such that each Mz is free of finite rank over R, then its graded dimension is the
Laurent polynomial

DimtM =
∑
k∈Z

(dimRMk)tk.

2.5. Corollary. Suppose that A is a graded cellular algebra and λ ∈P. Then

DimtC
λ =

∑
s∈T (λ)

tdeg s.

Consequently, DimtA =
∑
λ∈P

∑
s,t∈T (λ)

tdeg s+deg t =
∑
λ∈P

(
DimtC

λ
)2.

Suppose that µ ∈ P. Then it follows from Definition 2.1, exactly as in [18,
Prop. 2.4], that there is a bilinear form 〈 , 〉µ on Cµ which is determined by

cµasc
µ
tb ≡ 〈c

µ
s , c

µ
t 〉µc

µ
ab (mod ABµ) ,

for any s, t, a, b ∈ T (µ). The next Lemma gives standard properties of this bilinear
form 〈 , 〉µ. Just as in the ungraded case (see, for example, [27, Prop. 2.9]) it
follows directly from the definitions.

2.6. Lemma. Suppose that µ ∈P and that a ∈ A, x, y ∈ Cµ. Then

〈x, y〉µ = 〈y, x〉µ, 〈xa, y〉µ = 〈x, ya∗〉µ and xcµst = 〈x, cµs 〉µc
µ
t ,

for all s, t ∈ T (µ).
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We consider the ring R as a graded R-module with trivial grading: R = R0.
Observe that Cµ ⊗ Cµ is a graded A-module with deg x⊗ y = deg x+ deg y.

2.7. Lemma. Suppose that µ ∈P. Then the induced map

f :Cµ ⊗R Cµ−→R;x⊗ y 7→ 〈x, y〉µ

is a homogeneous map of degree zero. In particular,

radCµ = {x ∈ Cµ | 〈x, y〉µ = 0 for all y ∈ Cµ } .

is a graded submodule of Cµ.

Proof. By Lemma 2.6, radCµ is a submodule of Cµ since 〈 , 〉µ is associative (with
respect to the anti-automorphism ∗). It remains to show that the bilinear form
defines a homogeneous map of degree zero. Suppose that f(x ⊗ y) 6= 0, for some
x, y ∈ Cµ. Write x =

∑
i xi and y =

∑
j yj , where xi and yi are both homogeneous

of degree i. Then 〈xi, yj〉µ 6= 0 for some i and j. Now write xi =
∑

s asc
µ
s and

yj =
∑

t btc
µ
t , for as, bt ∈ R such that as 6= 0 only if deg s = i and bt 6= 0 only if

deg t = j. Fix any v ∈ T (µ). Then by Lemma 2.6,

〈xi, yj〉µcµvv =
∑
s,t

asbt〈cµs , c
µ
t 〉µc

µ
vv ≡

∑
s,t

asbtc
µ
vsc

µ
tv (mod ABµ) .

Taking degrees of both sides shows that 〈xi, yj〉µ 6= 0 only if i + j = 0. That is,
〈x, y〉µ 6= 0 only if deg(x⊗y) = 0 as we wanted to show. Finally, radCµ is a graded
submodule of Cµ because if x =

∑
i xi ∈ radCµ then xi ∈ radCµ, for all i, since

〈 , 〉µ is homogeneous. �

The Lemma allows us to define a graded quotient of Cµ, for µ ∈P.

2.8. Definition. Suppose that µ ∈P. Let Dµ = Cµ/ radCµ.

By definition, Dµ is a graded right A-module. Henceforth, let R = K be a field
and A =

⊕
z∈Z Az a graded cellular K-algebra. Exactly as in the ungraded case

(see [18, Prop. 2.6] or [27, Prop. 2.11-2.12]), we obtain the following.

2.9. Lemma. Suppose that K is a field and that Dµ 6= 0, for µ ∈P. Then:

a) The right A-module Dµ is an absolutely irreducible graded A-module.
b) The (graded) Jacobson radical of Cµ is radCµ.
c) If λ ∈P and M is a graded A-submodule of Cλ. Then

HomZ
A(Cµ, Cλ/M) 6= 0

only if λ D µ. Moreover, if λ = µ then

HomZ
A(Cµ, Cµ/M) = HomA(Cµ, Cµ/M) ∼= K.

In particular, if M is a graded A-submodule of Cµ then every non-zero homo-
morphism from Cµ to Cµ/M is degree preserving.

Let P0 = {λ ∈P | Dλ 6= 0 }. Recall that if M is an A-module then M is the
ungraded A-module obtained by forgetting the grading.

2.10. Theorem. Suppose that K is a field and that A is a graded cellular K-algebra.

a) If µ ∈P0 then Dµ is an absolutely irreducible graded A-module.
b) Suppose that λ, µ ∈ P0. Then Dλ ∼= Dµ〈k〉, for some k ∈ Z, if and only

if λ = µ and k = 0.
c) {Dµ〈k〉 | µ ∈P0 and k ∈ Z } is a complete set of pairwise non-isomorphic

graded simple A-modules.
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Sketch of proof. Parts (a) and (b) follow directly from Lemma 2.9. For part (c),
observe that, up to degree shift, every graded simple A-module is isomorphic to
a quotient of A by a maximal graded right ideal. The graded cellular basis of A
induces a graded filtration of A with all quotient modules isomorphic to direct sums
of shifts of graded cell modules, so it is enough to show that every composition
factor of Cλ is isomorphic to Dµ〈k〉, for some µ ∈ P0 and some k ∈ Z. Arguing
exactly as in the ungraded case completes the proof; see [18, Theorem 3.4] or [27,
Theorem 2.16]. �

In particular, just as Graham and Lehrer [18] proved in the ungraded case, every
field is a splitting field for a graded cellular algebra.

2.11. Corollary. Suppose that K is a field and A is a graded cellular algebra over K.
Then {Dµ | µ ∈P0 } is a complete set of pairwise non-isomorphic ungraded simple
A-modules.

Proof. By Lemma 2.7, for each λ ∈P the submodule radCλ is independent of the
grading so the ungraded moduleDµ is precisely the module constructed by using the
cellular basis of A obtained by forgetting the grading. Therefore, every (ungraded)
simple module is isomorphic to Dµ by forgetting the grading in Theorem 2.10 (or,
equivalently, by [18, Theorem 3.4]). �

§2.3. Graded decomposition numbers. Recall that t is an indeterminate over Z.
If M is a graded A-module and D is a graded simple module let [M : D〈k〉] be the
multiplicity of the simple module D〈k〉 as a graded composition factor of M , for
k ∈ Z. Similarly, let [M : D] the multiplicity of D as a composition factor of M .

2.12. Definition (Graded decomposition matrices). Suppose that A is a graded
cellular algebra over a field. Then the graded decomposition matrix of A is the
matrix DA(t) =

(
dλµ(t)

)
, where

dλµ(t) =
∑
k∈Z

[Cλ : Dµ〈k〉] tk,

for λ ∈P and µ ∈P0.

Using Lemma 2.9 we obtain the following.

2.13. Lemma. Suppose that µ ∈P0 and λ ∈P. Then
a) dλµ(t) ∈ N0[t, t−1];
b) dλµ(1) = [Cλ : Dµ]; and,
c) dµµ(t) = 1 and dλµ(t) 6= 0 only if λ D µ.

Next we study the graded projective A-modules with the aim of describing the
composition factors of these modules using the graded decomposition matrix.

A graded A-module M has a graded cell module filtration if there exists a
filtration

0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mk = M

such that each Mi is a graded submodule of M and if 1 ≤ i ≤ k then Mi/Mi−1
∼=

Cλ〈k〉, for some λ ∈ P and some k ∈ Z. By [17, Theorem 3.2, Theorem 3.3], we
know that every projective A-module is gradable.

2.14. Proposition. Suppose that P is a projective A module. Then P has a graded
cell module filtration.

Proof. Fix a total ordering � on P = {λ1 � λ2 � · · · � λN} which is compatible
with B in the sense that if λ B µ then λ � µ. Let A(λi) =

⋃
j≤iA

Dλi . Then

0 ⊂ A(λ1) ⊂ A(λ2) ⊂ · · · ⊂ A(λN ) = A
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is a filtration of A by graded two-sided ideals. Tensoring with P we have

0 ⊆ P ⊗A A(λ1) ⊆ P ⊗A A(λ2) ⊆ · · · ⊆ P ⊗A A(λN ) = P,

a graded filtration of P . An easy exercise in the definitions (cf. [27, Lemma 2.14]),
shows that there is a short exact sequence

0→ A(λi−1)→ A(λi)→ ADλi/ABλi → 0.

Since P is projective, tensoring with P is exact so the subquotients in the filtration
of P above are

P ⊗A A(λi)/P ⊗A A(λi−1) ∼= P ⊗A
(
ADλi/ABλi

) ∼= P ⊗A (C∗λi ⊗R Cλi),
where the last isomorphism comes from (2.4). Hence, P has a graded cell module
filtration as claimed. �

For each µ ∈ P0 let Pµ be the projective cover of Dµ. Then for each k ∈ Z,
Pµ〈k〉 is the projective cover of Dµ〈k〉.

2.15. Lemma. Suppose that λ ∈P and µ ∈P0. Then:
a) dλµ(t) = Dimt HomZ

A(Pµ, Cλ).
b) HomZ

A(Pµ, Cλ) ∼= Pµ ⊗A C∗λ as Z-graded K-modules.

Proof. Part (a) follows directly from the definition of projective covers. Part (b)
follows using essentially the same argument as in the ungraded case; see the proof
of [18, Theorem 3.7(ii)]. �

2.16. Definition (Graded Cartan matrix). Suppose that A is a graded cellular
algebra over a field. Then the graded Cartan matrix of A is the matrix CA(t) =(
cλµ(t)

)
, where

cλµ(t) =
∑
k∈Z

[Pλ : Dµ〈k〉] tk,

for λ, µ ∈P0.

If M = (mij) is a matrix let M tr = (mji) be its transpose.

2.17. Theorem (Graded Brauer-Humphreys reciprocity). Suppose that K is a field
and that A is a graded cellular K-algebra. Then CA(t) = DA(t)trDA(t).

Proof. Suppose that λ, µ ∈P0. Then by Proposition 2.14 and (2.4) we have

cλµ(t) =
∑
k∈Z

[Pλ : Dµ〈k〉] tk

=
∑
k∈Z

∑
ν∈P

[(Pλ ⊗A C∗ν)⊗R Cν : Dµ〈k〉] tk

=
∑
k∈Z

∑
ν∈P

DimtP
λ ⊗A C∗ν [Cν : Dµ〈k〉] tk

=
∑
ν∈P

DimtP
λ ⊗A C∗ν

∑
k∈Z

[Cν : Dµ〈k〉] tk

=
∑
ν∈P

dνλ(t)dνµ(t),

where we have used Lemma 2.15 in the last step. �

Let K0(A) be the (enriched) Grothendieck group of A. Thus, K0(A) is the
free Z[t, t−1]-module generated by symbols [M ], where M runs over the finite
dimensional graded A-modules, with relations [M〈k〉] = tk[M ], for k ∈ Z, and
[M ] = [N ] + [P ] whenever 0 → N → M → P → 0 is a short exact sequence of
graded A-modules. Then K0(A) is a free Z[t, t−1]]-module with distinguished bases
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{ [Dµ] | µ ∈P0 } and { [Cµ] | µ ∈P0 }. Similarly, let K∗0 (A) be the (enriched)
Grothendieck group of finitely generated (graded) projective A-modules. Then
K∗0 (A) is free as a Z[t, t−1]-module with basis { [Pµ] | µ ∈P0) }. Replacing P0

with P in the definition of K0(A), gives the free Z[t, t−1]-module F (A) which is
generated by symbols JCµK for µ ∈P. Theorem 2.17 then says that the following
diagram commutes:

K∗0 (A) F (A)

K0(A)

-DA(t)

@
@

@
@@R

CA(t)

?

DA(t)tr

Recall from Definition 2.1 that A is equipped with a graded anti-automorphism ∗.
Let M be a graded A-module. The contragredient dual of M is the graded A-
module

M~ = HomZ
A(M,K) =

⊕
d∈Z

HomA(M〈d〉,K)

where the action of A is given by (fa)(m) = f(ma∗), for all f ∈ M~, a ∈ A
and m ∈M . As a vector space, M~

d = HomA(M−d,K), so DimtM
~ = Dimt−1M .

2.18. Proposition. Suppose that µ ∈P0. Then Dµ ∼= (Dµ)~.

Proof. By Lemma 2.7 〈 , 〉µ restricts to give a non-degenerate homogeneous bilinear
form of degree zero on Dµ. Therefore, if d is any non-zero element of Dµ then
the map Dµ −→ (Dµ)~ given by d 7→ 〈d,−〉µ, for d ∈ Dµ, gives the desired
isomorphism. �

If M is a graded A-module then (M〈k〉)~ ∼= (M~)〈−k〉 as K-vector spaces, for
any k ∈ Z. Consequently, contragredient duality induces a Z-linear automorphism

:K0(A)−→K0(A) which is determined by

tk[M~] = t−k[M ],

for all M ∈ A-Mod and all k ∈ Z.
If µ ∈ P0 then [Dµ] = [Dµ] by Proposition 2.18. Define polynomials eλµ(t) ∈

Z[t, t−1] by setting (eλµ(−t)) = DA(t)−1. Then eµµ = 1 and

[Dµ] = [Cµ] +
∑
ν∈P0
µBν

eµν(−t)[Cν ].

(Following the philosophy of the Kazhdan-Lusztig conjectures, we define the poly-
nomials eλµ(−t) in the hope that eλµ(t) ∈ N0[t].) A priori, dλµ(t) ∈ N0[t, t−1] and
eλµ(t) ∈ Z[t, t−1]. In contrast, we have a ‘Kazhdan-Lusztig basis’ for K0(A).

2.19. Proposition. There exists a unique basis { [Eµ] | µ ∈P0 } of K0(A) such
that if µ ∈P0 then [Eµ] = [Eµ] and

[Eµ] = [Cµ] +
∑
λ∈P0
µBλ

fµλ(−t)[Cλ],

for some polynomials fµλ(t) ∈ tZ[t], for λ ∈P0.

Proof. Using Proposition 2.18 it is easy to see that if λ ∈ P0 then there exist
polynomials rλµ(t) ∈ Z[t, t−1], for µ ∈P0, such that

[Cλ] = [Cλ] +
∑
µ∈P0
λBµ

rλµ(t)[Cµ].
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The Corollary follows from this observation using a well-known inductive argument
due to Kazhdan and Lusztig; see [22, Theorem 1.1] or [13, 1.2]. �

It seems unlikely to us that there is a mild condition on A which ensures that
[Eµ] = [Dµ], or equivalently, dλ,µ(t) ∈ tN0[t] when λ B µ. We conclude this section
by discussing a strong assumption on A which achieves this.

A graded A-module M =
⊕

iMi is positively graded if Mi = 0 whenever
i < 0. It is easy to check that a graded cellular algebra A is positively graded if
and only if deg s ≥ 0, for all s ∈ T (λ), for λ ∈P. Consequently, if A is positively
graded then so is each cell module of A.

A graded A-module M =
⊕

iMi is pure of degree d if M = Md.

2.20. Lemma. Suppose that A is a positively graded cellular algebra over a field K
and suppose that λ ∈P and µ ∈P0. Then:

a) Dµ is pure of degree 0; and,
b) dλµ(t) ∈ N0[t].

Proof. The bilinear form 〈 , 〉 on Cµ is homogeneous of degree 0 by Lemma 2.7.
Therefore, if x, y ∈ Cµ and 〈x, y〉µ 6= 0 then deg x + deg y = 0, so that x, y ∈ Cµ0 .
This implies (a). In turn, this implies (b) because Dµ〈k〉 can only be a composition
factor of Cλ if k ≥ 0 (and λ D µ) since A is positively graded. �

In the ungraded case, Graham and Lehrer [18, Remark 3.10] observed that a
cellular algebra is quasi-hereditary if and only if P = P0, which is naturally still
true in the graded setting. Conversely, any graded split quasi-hereditary algebra
that has a graded duality which fixes the simple modules is a graded cellular algebra
by the arguments of Du and Rui [14, Cor. 6.2.2]. Similarly, it is easy to see that
if A is a positively graded cellular algebra such that P = P0 then A-Mod is a
positively graded highest weight category with duality as defined in [11].

If M =
⊕

i≥0Mi is a positive graded A-module let M+ =
⊕

i>0Mi. If A is
positively graded then M+ is a graded A-submodule of M . Let RadM be the
Jacobson radical of M .

As the following Lemma indicates, there do exist positively graded quasi-hereditary
cellular algebras such that, in the notation of Proposition 2.19, [Dµ] 6= [Eµ] for all
µ ∈P = P0.

2.21. Lemma. Suppose that A is a positive graded quasi-hereditary cellular algebra
over a field. Then the following are equivalent:

a) A0
∼= A/A+ is a (split) semisimple algebra;

b) RadA = A+;
c) radCµ = Cµ+, for all µ ∈P;
d) [Dµ] = [Eµ], for all µ ∈P; and,
e) dλµ(t) ∈ tN0[t], for all λ 6= µ ∈P.

Proof. As A is quasi-hereditary, if µ ∈P then Dµ 6= 0 and radCµ = RadCµ by the
general theory of cellular algebras (by Lemma 2.9). Therefore, since A is positively
graded, all of the statements in the Lemma are easily seen to be equivalent to the
condition that Dµ ∼= Cµ/Cµ+, for all µ ∈P. �

3. Khovanov-Lauda–Rouquier algebras and Hecke algebras

In this section, following [6], we set our notation and define the cyclotomic
Khovanov-Lauda–Rouquier algebras of type A and recall Brundan and Kleshchev’s
graded isomorphism theorem.
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§3.1. Cyclotomic Khovanov-Lauda–Rouquier algebras. As in section 2, letR
be a commutative integral domain with 1.

Throughout this paper we fix an integer e such that either e = 0 or e ≥ 2. Let Γe
be the oriented quiver with vertex set I = Z/eZ and with directed edges i −→ i+1,
for all i ∈ I. Thus, Γe is the quiver of type A∞ if e = 0, and it is the quiver of type
A

(1)
e if e ≥ 2.
Let (ai,j)i,j∈I be the symmetric Cartan matrix associated with Γe, so that

ai,j =


2 if i = j,

0 if i 6= j ± 1,
−1 if e 6= 2 and i = j ± 1,
−2 if e = 2 and i = j + 1.

Following Kac [21, Chapt. 1], let (h,Π, Π̌) be a realization of the Cartan matrix,
and {αi | i ∈ I } the associated set of simple roots, {Λi | i ∈ I } the fundamental
dominant weights, and (·, ·) the bilinear form determined by

(αi, αj) = ai,j and (Λi, αj) = δij , for i, j ∈ I.

Finally, let P+ =
⊕

i∈I N0Λi be the dominant weight lattice of (h,Π, Π̌) and let
Q+ =

⊕
i∈I N0αi be the positive root lattice.

For the remainder of this paper fix positive integers n and `, a dominant weight
Λ ∈ P+, and a sequence of integers κ = (κ1, . . . , κ`) ∈ Z` such that

(Λ, αi) = # { 1 ≤ s ≤ ` | κs ≡ i (mod e) } , for i ∈ I,
and κs − κs+1 ≥ n, for 1 ≤ s < `. All of the bases considered in this paper will
depend upon the choice of multicharge κ. The assumption that κs − κs+1 ≥ n
is used only to streamline the choice of modular systems for the cyclotomic Hecke
algebras in sections 4 and 7, respectively.

The following algebra has its origins in the work of Khovanov and Lauda [23],
Rouquier [31] and Brundan and Kleshchev [6].

3.1. Definition. The Khovanov-Lauda–Rouquier algebra RΛ
n of weight Λ and

type Γe is the unital associative R-algebra with generators

{ψ1, . . . , ψn−1} ∪ {y1, . . . , yn} ∪ { e(i) | i ∈ In }
and relations

y
(Λ,αi1 )
1 e(i) = 0, e(i)e(j) = δije(i),

∑
i∈Ine(i) = 1,

yre(i) = e(i)yr, ψre(i) = e(sr·i)ψr, yrys = ysyr,
ψrys = ysψr, if s 6= r, r + 1,

ψrψs = ψsψr, if |r − s| > 1,

ψryr+1e(i) =

{
(yrψr + 1)e(i), if ir = ir+1,

yrψre(i), if ir 6= ir+1

yr+1ψre(i) =

{
(ψryr + 1)e(i), if ir = ir+1,

ψryre(i), if ir 6= ir+1

ψ2
re(i) =



0, if ir = ir+1,

e(i), if ir 6= ir+1 ± 1,
(yr+1 − yr)e(i), if e 6= 2 and ir+1 = ir + 1,
(yr − yr+1)e(i), if e 6= 2 and ir+1 = ir − 1,
(yr+1 − yr)(yr − yr+1)e(i), if e = 2 and ir+1 = ir + 1
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ψrψr+1ψre(i) =



(ψr+1ψrψr+1 + 1)e(i), if e 6= 2 and ir+2 = ir = ir+1 − 1,
(ψr+1ψrψr+1 − 1)e(i), if e 6= 2 and ir+2 = ir = ir+1 + 1,(
ψr+1ψrψr+1 + yr

−2yr+1 + yr+2

)
e(i), if e = 2 and ir+2 = ir = ir+1 + 1,

ψr+1ψrψr+1e(i), otherwise.

for i, j ∈ In and all admissible r, s.

It is straightforward, albeit slightly tedious, to check that all of these relations
are homogeneous with respect to the following degree function on the generators

deg e(i) = 0, deg yr = 2 and degψse(i) = −ais,is+1 ,

for 1 ≤ r ≤ n, 1 ≤ s < n and i ∈ In. Therefore, the Khovanov-Lauda–Rouquier
algebra RΛ

n is Z-graded. From this presentation, however, it is not clear how to
construct a basis for RΛ

n , or even what the dimension of RΛ
n is.

§3.2. Cyclotomic Hecke algebras. Suppose now that K is a field and that q ∈ K
is a primitive eth root of unity, if e > 0, and not a root of unity if e = 0. Note that
if K is a field of characteristic p > 0 then p does not divide e.

3.2. Definition. Suppose that q ∈ K is a primitive eth root of unity if e > 1; or
not a root of unity if e = 0. The cyclotomic Hecke algebra H Λ

n is the unital
associative K-algebra with generators T0, T1, . . . , Tn−1 and relations∏

i∈I(T0 − qi)(Λ,αi) = 0, (Tr + 1)(Tr − q) = 0,

T0T1T0T1 = T1T0T1T0, TrTs = TsTr, if |r − s| > 1,
TsTs+1Ts = Ts+1TsTs+1,

for 1 ≤ r < n and 1 ≤ s < n− 1.

For use throughout this paper we now set up the notation from [6] needed to
describe the Brundan and Kleshchev’s isomorphism RΛ

n
∼= H Λ

n . Recall that ` =∑
i∈I(Λ, αi). The algebra H Λ

n is a cyclotomic Hecke algebra of type G(`, 1, n).
Let Sn be the symmetric group of degree n and let si = (i, i + 1) ∈ Sn, for

1 ≤ i < n. Then {s1, . . . , sn−1} is the standard set of Coxeter generators for Sn.
If w ∈ Sn then the length of w is

`(w) = min { k | w = si1 . . . sik for some 1 ≤ i1, . . . , ik < n } .

If w = si1 . . . sik with k = `(w) then si1 . . . sik is a reduced expression for w. In
this case, set Tw := Ti1 . . . Tik . Then Tw is independent of the choice of reduced
expression because the generators T1, . . . , Tn−1 satisfy the braid relations of Sn;
see, for example, [27, Theorem 1.8]. Set L1 = T0 and Li+1 = q−1TiLiTi, for
i = 1, . . . , n− 1. Then Ariki and Koike [4, Theorem 3.10] showed that

{La1
1 . . . Lann Tw | 0 ≤ a1, . . . , an < ` and w ∈ Sn }

is an K-basis of H Λ
n . This basis is not homogeneous in general.

Suppose that M is a finite dimensional H Λ
n -module. Then, by [19, Lemma 4.7],

the eigenvalues of each Lm on M are of the form qi for i ∈ I. So M decomposes as
a direct sum M =

⊕
i∈InMi of its generalized eigenspaces, where

Mi := { v ∈M | v(Lr − qir )k = 0 for r = 1, 2, · · · , n and k � 0 } .

(Clearly, we can take k = dimM here.) In particular, taking M to be the regular
H Λ
n -module we get a system

{
e(i)

∣∣ i ∈ In
}

of pairwise orthogonal idempotents in
H Λ
n such that Me(i) = Mi for each finite dimensional right H Λ

n -module M . Note
that these idempotents are not, in general, primitive. Moreover, all but finitely
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many of the e(i)’s are zero and, by the relations, their sum is the identity element
of RΛ

n .
Following Brundan and Kleshchev [6, §5] we now define elements of H Λ

n which
satisfy the relations of RΛ

n . For r = 1, . . . , n define

yr =
∑
i∈In

(1− q−irLr)e(i).

By (3.8), or less directly, [6, Lemma 2.1], y1, . . . , yn are nilpotent elements of H Λ
n ,

so any power series in y1, . . . , yn can be interpreted as elements of H Λ
n . Next, for

every i ∈ In, we set

yr(i) := qir (1− yr) ∈ KJy1, . . . , ynK,

and define formal power series Pr(i) ∈ KJyr, yr+1K by setting

Pr(i) =

{
1 if ir = ir+1,

(1− q)
(
1− yr(i)yr+1(i)−1

)−1 if ir 6= ir+1.

By a small generating function exercise, if ir 6= ir+1 then

(3.3) Pr(i) =
1− q

1− qir−ir+1

{
1 +

∑
k≥1

qir−ir+1(yr+1 − yr)(yr+1 − qir−ir+1yr)k−1

(1− qir−ir+1)k

}
.

Following [6] we also set

(3.4) Qr(i) =



1− q − yr + qyr+1 if ir = ir+1,

(yr(i)− qyr+1(i)))/(yr(i)− yr+1(i)) if ir+1 6= ir ± 1,
(yr(i)− qyr+1(i))/(yr(i)− yr+1(i))2 if e 6= 2 and ir+1 = ir + 1,
qir if e 6= 2 and ir+1 = ir − 1,
qir/(yr(i)− yr+1(i)) if e = 2 and ir+1 = ir + 1.

Brundan and Kleshchev note that in KJyr, yr+1K the numerators on the right hand
side of equations are always divisible by the corresponding denominators so by
canceling these common factors Qr(i) can be interpreted as an element of H Λ

n .
Finally, for r = 1, . . . , n− 1 set

ψr =
∑
i∈In

(Tr + Pr(i))Qr(i)−1e(i).

We are abusing notation here because we are not distinguishing between the
generators of the cyclotomic Khovanov-Lauda–Rouquier algebra and the elements
that we have just defined in H Λ

n . This abuse is justified by the Brundan-Kleshchev
graded isomorphism theorem.

3.5. Theorem (Brundan–Kleshchev [6, §4.5]). The map RΛ
n −→H Λ

n which sends

e(i) 7→ e(i), yr 7→ yr and ψs 7→ ψs,

for i ∈ In, 1 ≤ r ≤ n and 1 ≤ s < n, extends uniquely to an isomorphism of
algebras. An inverse isomorphism is given by

Lr 7→
∑
i∈In

qir (1− yr)e(i), and Ts 7→
∑
i∈In

(ψsQs(i)− Ps(i))e(i),

for 1 ≤ r ≤ n and 1 ≤ s < n.

Hereafter, we freely identify the algebras RΛ
n and H Λ

n , and their generators,
using this result. In particular, we consider H Λ

n to be a Z-graded algebra. All
H Λ
n -modules will be Z-graded unless otherwise noted.
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§3.3. Tableaux combinatorics and the standard basis. We close this section
by introducing some combinatorics and defining the standard basis of H Λ

n .
Recall that an multipartition, or `-partition, of n is an ordered sequence λ =

(λ(1), . . . , λ(`)) of partitions such that |λ(1)| + · · · + |λ(`)| = n. The partitions
λ(1), . . . , λ(`) are the components of λ. Let PΛ

n be the set of multipartitions of
n. Then PΛ

n is partially ordered by dominance where λ B µ if
s−1∑
t=1

|λ(t)|+
j∑
i=1

λ
(s)
i ≥

s−1∑
t=1

|µ(t)|+
j∑
i=1

µ
(s)
i

for all 1 ≤ s ≤ ` and all j ≥ 1. We write λ D µ if λ B µ or λ = µ.
The diagram of an multipartition λ ∈PΛ

n is the set

[λ] = { (r, c, l) | 1 ≤ c ≤ λ(l)
r , r ≥ 0 and 1 ≤ l ≤ ` } ,

which we think of as an ordered `-tuple of the diagrams of the partitions λ(1), . . . , λ(`).
A λ-tableau is a bijective map t : [λ]−→{1, 2, . . . , n}. We think of t = (t(1), . . . , t(`))
as a labeling of the diagram of λ. T his allows us to talk of the rows, columns and
components of t. If t is a λ-tableau then set Shape(t) = λ.

A standard λ-tableau is a λ-tableau in which, in each component, the entries
increase along each row and down each column. Let Std(λ) be the set of standard
λ-tableaux. If t is a standard λ-tableau let tk be the subtableau of t labeled by
1, . . . , k in t. If s ∈ Std(λ) and t ∈ Std(µ) then s dominates t, and we write s D t,
if Shape(sk) D Shape(tk), for k = 1, . . . , n. Again, we write s B t if s D t and
s 6= t. Extend the dominance partial ordering to pairs of partitions of the same
shape by declaring that (u, v) B (s, t), for (s, t) ∈ Std(λ)2 and (u, v) ∈ Std(µ)2, if
(s, t) 6= (u, v) and either µ B λ, or µ = λ and u D s and v D t.

Let tλ be the unique standard λ-tableau such that tλ D t for all t ∈ Std(λ).
Then tλ has the numbers 1, . . . , n entered in order, from left to right and then top
to bottom in each component, along the rows of λ. The symmetric group acts on
the set of λ-tableaux. If t ∈ Std(λ) let d(t) be the permutation in Sn such that
t = tλd(t).

Recall from section 3.1 that we have fixed a multicharge κ = (κ1, . . . , κ`) which
determines Λ.

3.6. Definition ([12, Definition 3.14]). Suppose that λ ∈ PΛ
n and s, t ∈ Std(λ).

Define mst = Td(s)−1mλTd(t), where

mλ =
∏̀
s=2

|λ(1)|+···+|λ(s−1)|∏
k=1

(Lk − qκs) ·
∑
w∈Sλ

Tw.

Here and below whenever an element of H Λ
n is indexed by a pair of standard

tableaux then these tableaux will always be assumed to have the same shape.

3.7. Theorem (The standard basis theorem [12, Theorem 3.26]). The basis

{mst | s, t ∈ Std(λ) for λ ∈PΛ
n }

is an ungraded cellular basis of H Λ
n .

Using the theory of (ungraded) cellular algebras from section 2 (or [18]), we
could now construct Specht modules, or cell modules, for H Λ

n . We postpone doing
this until section 5, however, where we are able to define graded Specht modules
using Theorem 5.8 and the theory of graded cellular algebras developed in section 2.

Suppose that λ ∈PΛ
n and γ = (r, c, l) ∈ [λ]. Then the content of γ is cont(γ) =

κl + c − r ∈ Z and the residue of γ is res(γ) = cont(γ) + eZ. Thus, cont(γ) ∈ Z
and res(γ) ∈ I. If t is a standard λ-tableau and 1 ≤ k ≤ n set contt(k) = cont(γ)
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and rest(k) = res(γ), where γ is the unique node in [λ] such that t(γ) = k. Then,
by [20, Prop. 3.7], there exist scalars ruv ∈ K such that

(3.8) mstLk = qrest(k)mst +
∑

(u,v)B(s,t)

ruvmuv.

If t ∈ Std(λ) is a standard λ-tableau then its residue sequence res(t) is the
sequence

res(t) =
(

rest(1), . . . , rest(n)
)
.

We also write it = res(t). Set Std(i) =
∐

λ∈PΛ
n
{ t ∈ Std(λ) | res(t) = i }.

4. The seminormal basis and homogeneous elements of H Λ
n

The aim of this section is to give an explicit description of the non-zero idem-
potents e(i) in terms of certain primitive idempotents for the algebra H Λ

n in the
semisimple case. We then use this description to construct a family of homogeneous
elements in H Λ

n indexed by PΛ
n .

§4.1. The Khovanov-Lauda–Rouquier idempotents. Let L Λ
n = 〈L1, . . . , Ln〉

be the subalgebra of H Λ
n generated by the Jucys-Murphy elements of H Λ

n . Then
L Λ
n is a commutative subalgebra of H Λ

n .
The following simple Lemma indicates the difficulties of working with the homo-

geneous presentation of H Λ
n : we do not know how to prove this result without re-

course to Brundan and Kleshchev’s graded isomorphism RΛ
n
∼= H Λ

n (Theorem 3.5).

4.1. Lemma. Suppose that e(i) 6= 0, for i ∈ In. Then:
a) e(i) is the unique idempotent in H Λ

n such that Hje(i) = δijHi, for j ∈ In;
b) e(i) is a primitive idempotent in L Λ

n ; and,
c) i = res(t) for some standard tableau t.

Thus, the idempotents { e(i) | i ∈ In } \ {0} are the (central) primitive idempotents
of L Λ

n .

Proof. By definition, Hje(i) = δijHi so (a) follows since e(i) ∈ H Λ
n e(i). Next,

observe that every irreducible representation of L Λ
n is one dimensional since L Λ

n is a
commutative algebra over a field. Further, modulo more dominant terms, Lk acts on
the standard basis element mst as multiplication by qrest(k) by (3.8). Therefore, the
standard basis of H Λ

n induces an L Λ
n -module filtration of H Λ

n and the irreducible
representations of L Λ

n are indexed by the residue sequences res(t) ∈ In, for t a
standard λ-tableau for some λ ∈ PΛ

n . Consequently, the decomposition H Λ
n =⊕

Hi is nothing more than the decomposition of H Λ
n into a direct sum of block

components when H Λ
n is considered as an L Λ

n -module by restriction. Parts (b)
and (c) now follow. �

4.2. Corollary. As (graded) subalgebras of H Λ
n , L Λ

n = 〈y1, . . . , yn, e(i) | i ∈ In〉.

Proof. By Theorem 3.5, if 1 ≤ r ≤ n then yr ∈ L Λ
n and Lr ∈ 〈y1, . . . , yn, e(i) |

i ∈ In〉. Further, by Lemma 4.1, e(i) ∈ L Λ
n , for i ∈ In. Combining these two

observations proves the Corollary. �

§4.2. Idempotents and the seminormal form. Lemma 4.2 of [30] explicitly
constructs a family of idempotents in H Λ

n which are indexed by the residue se-
quences of standard tableaux. As we now recall, these idempotents are defined by
‘modular reduction’ from the semisimple case.

Let x be an indeterminate over k and let O = K[x](x) be the localization of K[x]
at x = 0. Then O is a discrete valuation ring with maximal ideal π = xO. Note
that x+q is invertible in O since q 6= 0. Let K = K(x) and consider O as a subring
of K .
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Let H O
n be the Hecke algebra of type G(`, 1, n) with parameters x + q and

Qs = (x + q)κs , for 1 ≤ s ≤ `. That is, H O
n is the unital associative O-algebra

with generators T0, T1, . . . , Tn−1 and relations

(T0 − (x+ q)κ1) . . . (T0 − (x+ q)κ`) = 0,
(Tr + 1)(Tr − x− q) = 0, T0T1T0T1 = T1T0T1T0,

TsTs+1Ts = Ts+1TsTs+1 and TrTs = TsTr,

for 1 ≤ r < n and 1 ≤ s < n − 1 and where in the last equation |r − s| > 1.
Exactly as in section 3.2, we can define elements Tw and Li of H O

n , for w ∈ Sn and
1 ≤ i ≤ n, and the main result of [4] says that H O

n is free as anO-module with basis
{La1

1 . . . Lann Tw | 0 ≤ a1, . . . , an < ` and w ∈ Sn }. Moreover, H Λ
n
∼= H O

n ⊗O K.
Finally, let H K

n := H O
n ⊗O K . Then H K

n is a split semisimple algebra by Ariki’s
semisimplicity criterion [1] because in section 3.1 we fixed a multicharge κ with
the property that κi − κi+1 ≥ n, for 1 ≤ i < `. We abuse notation and write Tw,
Lk and mst for the elements of the three algebras H O

n ↪→ H K
n and H Λ

n as the
meaning should always be clear from context.

By [20, Prop. 3.7], the analogue of (3.8) for the algebras H O
n and H K

n is

(4.3) mstLk = (x+ q)contt(k)mst +
∑

(u,v)B(s,t)

ruvmuv.

This equation motivates the following definition.

4.4. Definition ( [29, Defn 2.4]). Suppose that λ ∈PΛ
n and s, t ∈ Std(λ). Define

Ft =
n∏
k=1

∏
κ`−n<c<κ1+n
c6=contt(k)

Lk − (x+ q)c

(x+ q)contt(k) − (x+ q)c
∈H K

n ,

and set fst = FsmstFt.

By (4.3), fst = mst +
∑

(u,v)B(s,t) ruvmuv, for some ruv ∈ K . Therefore,

{ fst | s, t ∈ Std(λ) for λ ∈PΛ
n }

is a basis of H K
n . This basis is the seminormal basis of H K

n ; see [29, Theo-
rem 2.11]. The next definition, which is the key to what follows, allows us to write
Ft in terms of the seminormal basis and hence connect these elements with the
graded representation theory.

Let λ be a multipartition. The node α = (r, c, l) ∈ [λ] is an addable node of λ
if α /∈ [λ] and [λ] ∪ {α} is the diagram of a multipartition. Similarly, ρ ∈ [λ] is a
removable node of λ if [λ] \ {ρ} is the diagram of a multipartition. Given two
nodes α = (r, c, l) and β = (s, d,m) then α is below β if either l > m, or l = m
and r > s.

4.5. Definition ( [20, Defn. 3.15] and [29, (2.8)]). Suppose that λ ∈PΛ
n and t ∈

Std(λ). For k = 1, . . . , n let At(k) be the set of addable nodes of the multipartition
Shape(tk) which are below t−1(k). Similarly, let Rt(k) be the set of removable
nodes of Shape(tk) which are below t−1(k). Now define

γt = (x+ q)`(d(t))+δ(λ)
n∏
k=1

∏
α∈At(k)

(
(x+ q)contt(k) − (x+ q)cont(α)

)∏
ρ∈Rt(k)

(
(x+ q)contt(k) − (x+ q)cont(ρ)

) ∈ K ,

where δ(λ) = 1
2

∑`
s=1

∑
i≥1(λ(s)

i − 1)λ(s)
i .

It is an easy exercise in the definitions to check that the terms in the denominator
of γt are never zero so that γt is a well-defined element of K . As the algebra H K

n

is semisimple we have the following.



16 JUN HU AND ANDREW MATHAS

4.6. Lemma ( [29, Theorem 2.15]). Suppose that λ ∈ PΛ
n and t ∈ Std(λ). Then

Ft = 1
γt
ftt is a primitive idempotent in H K

n .

For any standard tableau t and an integer k, with 1 ≤ k ≤ n, define sets A Λ
t (k)

and RΛ
t (k) by

A Λ
t (k) = {α ∈ At(k) | res(α) = rest(k) }

and RΛ
t (k) = { ρ ∈ Rt(k) | res(ρ) = rest(k) } .

Using this notation we can give a non-recursive definition of the Brundan-Kleshchev-
Wang degree function on standard tableaux.

4.7. Definition (Brundan, Kleshchev and Wang [8, Defn. 3.5]). Suppose that λ ∈
PΛ
n and that t is a standard λ-tableau. Then

deg t =
n∑
k=1

(
|A Λ

t (k)| − |RΛ
t (k)|

)
,

The next result connects the graded representation theory of H Λ
n with the semi-

normal basis.

4.8. Proposition. Suppose that e(i) 6= 0, for some i ∈ In and let

e(i)O :=
∑

s∈Std(i)

1
γs
fss ∈H K

n .

Then e(i)O ∈H O
n and e(i) = e(i)O ⊗O 1K .

Proof. It is shown in [30, Lemma 4.2] that e(i)O is an element of H O
n . Therefore,

we can reduce e(i)O modulo π to obtain an element of H Λ
n : let ê(i) = e(i)O⊗O 1K .

Then { ê(j) | j ∈ In } is a family of pairwise orthogonal idempotents in H Λ
n such

that 1H =
∑

j ê(i) by [30, Cor. 4.7].
As in [30, Defn. 4.3], for every pair (s, t) of standard tableaux of the same

shape define gst = ê(is)mstê(it). Then {gst} is a (cellular) basis of H Λ
n by [30,

Theorem 4.5]. Moreover, by [30, Prop. 4.4], if 1 ≤ k ≤ n then

gst(Lk − qrest(k)) =
∑

(u,v)B(s,t)

u∈Std(is) and v∈Std(it)

ruvguv,

for some ruv ∈ K. It follows that gst(Lk − qrest(k))N = 0 for N � 0. Therefore,

Hi =
∑

u standard
v∈Std(i)

Kguv = H Λ
n ê(i).

Hence, e(i) = ê(i) by Lemma 4.1(a) as required. �

§4.3. Positive tableaux. The idempotents e(i) in the graded presentation of H Λ
n
∼=

RΛ
n hide a lot of important information about the algebra. Proposition 4.8 gives

us a way of accessing this information.
If i = (i1, . . . , in) ∈ In then set ik = (i1, . . . , ik) so that ik ∈ Ik, for 1 ≤ k ≤ n.

4.9. Definition. Suppose that i ∈ In and that s ∈ Std(i). Then s is a positive
tableau if, for k = 1, . . . , n− 1:

a) RΛ
s (k + 1) = ∅, and,

b) if α ∈ A Λ
t (k), where t ∈ Std(ik) and t B sk, then α ∈ A Λ

s (k) whenever α is
below s−1(k + 1).
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Let Std+(i) = { s ∈ Std(i) | s is positive }. If s ∈ Std+(i) then define

ys =
n∏
k=1

y
|A Λ

s (k)|
k ∈H Λ

n .

By definition, deg s ≥ 0 whenever s is positive. The converse is false because
there are many standard tableau t which are not positive such that deg t ≥ 0.
4.10. Examples (a) Suppose that e = 3, ` = 1 and i = (0, 1, 2, 2, 0, 1, 1, 2, 0).
Then the positive tableaux in Std(i) are:

1 2 3
4 5 6
7 8 9

,
1 2 3 5 6 8
4 9
7

,
1 2 3 5 6 8 9
4
7

.

(b) Suppose that e = 3, ` = 1 and let t = 1 2 4 5 6 7
3

. Then deg t = 0, however,

the tableau t is not positive.
(c) Suppose that e = 2 and i = (0, 1, 1, 0, 1, 0) and let

t =
1 2 4 5
3
6

and s =
1 2
3 6
4
5

.

Then s and t both belong to Std(i) and RΛ
s (k) = ∅, for 1 ≤ k ≤ 6. However, s is

not a positive tableau because the node (3, 1) = t−1(6) is below (2, 2) = s−1(6) and
(3, 1) is not an addable node of s5. 3

Recall from section 3.2 that tλ is the unique standard λ-tableau such that tλ D t,
for all t ∈ Std(λ). The tableaux tλ, for λ ∈PΛ

n , are the most important examples
of positive tableaux.

4.11. Lemma. Suppose that λ ∈PΛ
n . Then tλ is positive.

Proof. By definition, RΛ
tλ(k) = ∅ for 1 ≤ k ≤ n, so it remains to check condition (b)

in Definition 4.9. Let β = (r, c, l) be the lowest removable node of λ, so that
tλ(β) = n. By induction on n it suffices to show that α ∈ A Λ

tλ(n − 1) whenever
α = (r′, c′, l′) is below β and there exists a standard tableau t ∈ Std(iλn−1) such
that t B tλn−1 and α ∈ A Λ

t (n− 1).
Let µ = Shape(t). Since t B tλn−1 we have that µ(k) = (0) for k > l. Conse-

quently, α ∈ A Λ
tλ(n−1) if l′ > l. As α is below β this leaves only the case when l′ = l

in which case we have that r′ > r. Since t B tλn−1 this forces α = (r + 1, 1, l) to be
the addable node of λ in first column of the row directly below β, so α ∈ A Λ

tλ(n−1)
as required. �

Suppose that s is a positive tableau. To work with e(is)ys we have to choose the
correct lift of it to H O

n . Perhaps surprisingly, we choose a lift which depends on the
tableau s rather than choosing a single lift for each of the homogeneous elements
y1, . . . , yn.

4.12. Definition. Suppose that i ∈ In and s ∈ Std+(i). Define yOs = yOs,1 . . . y
O
s,n,

where
yOs,k =

∏
α∈A Λ

s (k)

(
1− (x+ q)− cont(α)Lk

)
∈H O

n ,

for k = 0, . . . , n (by convention, empty products are 1).

By definition, yOs ∈H O
n . Moreover, e(is)ys = e(is)OyOs ⊗O 1K ∈H Λ

n .

4.13. Lemma. Suppose that i ∈ In and that s ∈ Std+(i) and t ∈ Std(i). Then:
a) If t = s then fssy

O
s = uOs γsfss, for some unit uOs ∈ O.
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b) If t 6= s then there exists an integer dt ≥ deg s and an invertible element
uOt ∈ O such that

ftty
O
s =

{
uOt x

dtftt, if t B s,

0, otherwise,

and where dt = deg s whenever K is a field of characteristic zero.

Proof. By [29, Prop. 2.6], if 1 ≤ k ≤ n then fttLk = (x + q)contt(k)ftt in H K
n , so

ftty
O
s is a scalar multiple of ftt and it remains to determine the multiple.

(a) Observe that Rs(k) = ∅ for 1 ≤ k ≤ n. Further, if α ∈ As(k) and α /∈
A Λ

s (k) then the factor that α contributes to γs is a unit in O. Therefore, applying
Definition 4.5 and Definition 4.12 shows that

fssy
O
s =

n∏
k=1

∏
α∈A Λ

s (k)

(
1− (x+ q)conts(k)−cont(α)

)
· fss = uOs γsfss,

for some invertible element uOs ∈ O, proving (a).
(b) Suppose that 1 ≤ k ≤ n. Then we claim that

ftty
O
s,1 . . . y

O
s,k =

{
uOt,kx

dkftt, if tk D sk,

0, otherwise,

where dk ≥ deg sk and uOt,k ∈ O is invertible. If k = 0 then there is nothing to
prove so we may assume by induction that the claim is true for ftty

O
s,1 . . . y

O
s,k and

consider ftty
O
s,1 . . . y

O
s,k+1.

If tk 6D sk then, by induction, both sides of the claim are zero, so we may assume
that tk D sk Let ρ = t−1(k+ 1) be the node labeled by k+ 1 in t and β be the node
labeled by k + 1 in s.

Suppose first that tk+1 6D sk+1. As tk D sk this can happen if and only if ρ
is below β. However, since s is positive, every addable node of tk below β is an
addable node of sk. Hence, ρ ∈ A Λ

s (k+1) and, consequently (since res(s) = res(t)),
contt(k+ 1) = cont(α), for some α ∈ A Λ

s (k+ 1). Therefore, the coefficient of ftt in
ftty

O
s,1 . . . y

O
s,k+1 is zero, as we needed to show.

Next, suppose that tk+1 D sk+1. Then ρ is not below β. Consequently, if
α ∈ A Λ

s (k+ 1) then (1− (x+ q)contt(k+1)−cont(α)) = uxd, for some d ≥ 1 and some
unit u ∈ O, since res(α) = ress(k + 1). This shows that ftty

O
s,1 . . . y

O
s,k+1 can be

written in the required form and so proves the claim and completes the proof of
the Lemma. �

4.14. Theorem. Suppose that i ∈ In and that s ∈ Std+(i). Then there exists a
non-zero scalar c ∈ K such that

e(i)ys = cmss +
∑

(u,v)B(s,s)

ruvmuv,

some ruv ∈ K. In particular, ys is a non-zero homogeneous element of degree
2 deg s.

Proof. To prove the theorem we work in H O
n and in H K

n . By Lemma 4.13, inside
H K
n we have

e(i)OyOs =
∑

t∈Std(i)

1
γt
ftty

O
s = uOs fss +

∑
t∈Std(i)

tBs

uOt,nx
dt

γt
ftt.
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for some invertible elements uOt ∈ O and where dt ≥ deg s for each t. Rewriting
this equation in terms of the standard basis we see that

e(i)OyOs = uOs mss +
∑

(u,v)B(ss)

ruvmuv,

for some ruv ∈ K . However, e(i)OyOs ∈ H O
n , by Proposition 4.8, and muv ∈ H O

n

for all (u, v). So, in fact, ruv ∈ O for all (u, v) B (s, s) and reducing this equation
modulo π = xO gives the first statement in the Theorem.

Finally, since ys 6= 0 we have that deg ys = 2 deg s by Definition 4.7 — recall
that s is positive only if RΛ

s (k) = ∅, for 1 ≤ k ≤ n. �

By Lemma 4.11, the tableau tλ is positive for any λ ∈PΛ
n . Therefore, we have

the following important special case of Definition 4.9.

4.15. Definition. Suppose that λ ∈PΛ
n . Set eλ = e(iλ) and yλ = ytλ .

As in section 2, if λ ∈PΛ
n let H Bλ

n be the two-sided ideal spanned by the mst,
where s, t ∈ Std(µ) for some µ ∈PΛ

n with µ B λ.
Then using Theorem 4.14 we obtain:

4.16. Corollary. Suppose that λ ∈ PΛ
n . Then yλ is a non-zero homogeneous

element of degree 2 deg tλ. Moreover, there exists a non-zero scalar cλ ∈ K such
that eλyλ ≡ cλmλ (mod H Bλ

n ) .

Equivalently, eλyλ ≡ cλeλmλeλ (mod H Bλ
n ) . From small examples it is plau-

sible that eλmλeλ ∈ L Λ
n , for all λ ∈ PΛ

n . This would give a partial explanation
for the last result.

5. A graded cellular basis of H Λ
n

In this section we build on Theorem 4.14 to prove our Main Theorem which
shows that H Λ

n is a graded cellular algebra. Brundan, Kleshchev and Wang [8]
have already constructed a graded Specht module for H Λ

n . The main result of this
section essentially ‘lifts’ the Brundan, Kleshchev and Wang’s construction of the
graded Specht modules to a graded cellular basis of H Λ

n .

§5.1. Lifting the graded Specht modules to H Λ
n . As Brundan and Kleshchev

note [7, §4.5], it follows directly from Definition 3.1 that H Λ
n has a unique K-linear

anti-automorphism ∗ which fixes each of the graded generators. We warn the reader
that, in general, ∗ is different from the anti-automorphism of H Λ

n determined by
the (ungraded) cellular basis {mst}.

Inspired partly by Brundan, Kleshchev and Wang’s [8, §4.2] construction of the
graded Specht modules we make the following definition.

5.1. Definition. Suppose that λ ∈ PΛ
n and s, t ∈ Std(λ) and fix reduced expres-

sions d(s) = si1 . . . sik and d(t) = sj1 . . . sjm for d(s) and d(t), respectively. Define

ψst = ψ∗d(s)eλyλψd(t),

where ψd(s) = ψi1 . . . ψik and ψd(t) = ψj1 . . . ψjm .

An immediate and very useful consequence of this definition and the homoge-
neous relations of H Λ

n is the following.

5.2. Lemma. Suppose that s, t ∈ Std(λ), for λ ∈PΛ
n , and that i, j ∈ In. Then

e(i)ψste(j) =

{
ψst, if res(s) = i and res(t) = j,
0, otherwise.
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The next two results combine Corollary 4.16 with Brundan, Kleshchev and
Wang’s results for the graded Specht modules to describe the homogeneous ele-
ments ψst.

5.3. Lemma (cf. [8, Cor. 3.14]). Suppose that λ ∈PΛ
n and s, t ∈ Std(λ). Then

degψst = deg s + deg t.

Proof. By [8, Cor. 3.14], if d(s) = si1 . . . sik is a reduced expression for d(s) then
deg s− deg tλ = deg(eλψs). Therefore,

degψst = deg(ψ∗seλyλψt) = deg(eλψs) + deg yλ + deg(eλψt) = deg s + deg t,

where the last equality follows because deg yλ = 2 deg tλ by Corollary 4.16. �

We note that it is possible to prove Lemma 5.3 directly by induction on the
dominance ordering on standard tableaux. We now show that ψst is non-zero.

5.4. Lemma (cf. [8, Prop. 4.5]). Suppose that λ ∈ PΛ
n and that s, t ∈ Std(λ).

Then there exists a non-zero scalar c ∈ K, which does not depend upon the choice
of reduced expressions for d(s) and d(t), such that

ψst = cmst +
∑

(u,v)B(s,t)

ruvmuv,

for some ruv ∈ K.

Proof. This is an immediate consequence of Corollary 4.16 and [8, Theorem 4.10a],
however, we sketch the proof as this result is central to this paper.

Let d(s) = si1 . . . sik and d(t) = sj1 . . . sjm be the reduced expressions for d(s)
and d(t), respectively, that we fixed in Definition 5.1.

By Corollary 4.16, eλyλ is a homogeneous element of H Λ
n and

eλyλψd(t) ≡ cλmλ (mod H Bλ
n ) .

Using Theorem 3.5 and the homogeneous relations of H Λ
n it is easy to prove that

eλψd(t) is equal to a linear combination of terms of the form eλfw(y)Tw, where
fw(y) ∈ K[y1, . . . , yn] for some w ∈ Sn with w ≤ d(t), and where fd(t)(y) is
invertible. By (3.8), mλyr ≡ mλeλyr ≡ 0 (mod H Bλ

n ) , for 1 ≤ r ≤ n. Now
if w ∈ Sn then, modulo H �λ

n , mλTw can be written as a linear combination of
elements of the form mtλv, where v ∈ Std(λ) and d(v) ≤ w, by Theorem 3.7.
Therefore, just as in [8, Prop. 4.5], we obtain

eλyλψd(t) ≡ c′mtλt +
∑

v∈Std(λ)
vBt

rvmtλv

for some c′, rv ∈ K with c′ 6= 0. The scalar c′ depends only on t and λ, and not on
the choice of reduced expression for d(t), by [8, Prop. 2.5(i)]. Similarly, multiplying
the last equation on the left with ψ∗d(s)eλ, and again using (3.8) and the fact that
{muv} is a cellular basis, we obtain

ψst ≡ cmst +
∑

u,v∈Std(λ)
(u,v)B(s,t)

ruvmuv (mod H Bλ
n )

for some ruv ∈ K and some non-zero scalar c ∈ K which depends only on d(s), d(t)
and λ. This completes the proof. �

Recall from section 4.3 that H Bλ
n is the two-sided ideal of H Λ

n with basis the
of standard basis elements {muv}, where u, v ∈ Std(µ) and µ B λ.
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5.5. Corollary. Suppose that λ ∈ PΛ
n . Then H Bλ

n is a homogeneous two-sided
ideal of H Λ

n with basis {ψuv | u, v ∈ Std(µ), for µ ∈PΛ
n with µ B λ }.

As the next example shows, the elements ψst do, in general, depend upon the
choice of the reduced expressions for d(s) and d(t).
5.6. Example Suppose that e = 3, Λ = Λ0 and n = 9 so that we are considering
the Iwahori-Hecke algebra of S9 at a third root of unity (for any suitable field).
Take λ = (4, 3, 12) and set

t =
1 2 3 9
4 6 8
5
7

and u =
1 2 3 7
4 6 8
5
9

.

Then d(t) = s4s5s7s6s5s7s8s7 = s4s5s7s6s5s8s7s8. Now, rest(7) = rest(9) so apply-
ing the last relation in Definition 3.1 (the graded analogue of the braid relation),

eλyλψ4ψ5ψ7ψ6ψ5ψ7ψ8ψ7 = eλyλ
(
ψ4ψ5ψ7ψ6ψ5ψ8ψ7ψ8 + ψ4ψ5ψ7ψ6ψ5

)
.

Consequently, if s ∈ Std(λ) and we define ψst using the first reduced expression
for d(t) above and ψ̂st using the second reduced expression then ψst = ψ̂st + ψsu.
Therefore, different choices of reduced expression for d(t) can give different ele-
ments ψst, for any s ∈ Std(λ). 3

We do not actually need the next result, but given Example 5.6 it is reassuring.
Brundan, Kleshchev and Wang prove an analogue of this result as part of their
construction of the graded Specht modules [8, Theorem 4.10]. They have to work
much harder, however, as they have to simultaneously prove that the grading on
their modules is well-defined.

5.7. Lemma (cf. [8, Theorem. 4.10a]). Suppose that ψst and ψ̂st are defined using
different reduced expressions for d(s) and d(t), where s, t ∈ Std(λ) for some λ ∈P.
Then

ψst − ψ̂st =
∑

(u,v)B(s,t)

suvψuv,

where suv 6= 0 only if res(u) = res(s), res(v) = res(t) and deg u + deg v = deg s +
deg t.

Proof. Using two applications of (5.4), we can write

ψst − ψ̂st =
∑

(u,v)B(s,t)

ruvmuv =
∑

(u,v)B(s,t)

suvψuv,

for some ruv, suv ∈ K. Multiplying on the left and right by e(is) and e(it), re-
spectively, and using Lemma 5.2, shows that suv 6= 0 only if res(u) = res(s) and
res(v) = res(t). Finally, by Lemma 5.4, the ψuv appearing on the right hand are
all linearly independent and ψst and ψ̂st are non-zero homogeneous elements of the
same degree by Lemma 5.3. Therefore, so if suv 6= 0 then deg u+deg v = degψuv =
degψst = deg s + deg t, as required. �

We can now prove the main result of this paper. The existence of a graded cellular
basis for H Λ

n was conjectured by Brundan, Kleshchev and Wang [8, Remark 4.12]

5.8. Theorem (Graded cellular basis). The algebra H Λ
n is a graded cellular algebra

with weight poset (PΛ
n ,D) and graded cellular basis {ψst | s, t ∈ Std(λ) for λ ∈PΛ

n }.
In particular, degψst = deg s + deg t, for all s, t ∈ Std(λ), λ ∈PΛ

n .

Proof. By (5.4), the transition matrix between the set {ψst} and the standard basis
{mst} is an invertible triangular matrix (when suitably ordered!). Therefore, {ψst}
is a basis of H Λ

n giving (GC1) from Definition 2.1. By definition ψst is homogeneous
and degψst = deg s + deg t, by Lemma 5.3, establishing (GC2).



22 JUN HU AND ANDREW MATHAS

To prove (GC4), recall that ∗ is the unique anti-isomorphism of H Λ
n which

fixes each of the graded generators. By definition, (eλyλ)∗ = eλyλ since eλ and
yλ commute. Therefore, ψ∗st = ψts, for all s and t. Consequently, the anti-
automorphism of H Λ

n induced by the basis {ψst}, as in (GC4), coincides with
the anti-isomorphism ∗. In particular, (GC4) holds.

It remains then to check that the basis {ψst} satisfies (GC3), for s, t ∈ Std(λ)
and λ ∈ PΛ

n . By definition, ψst = ψ∗d(s)ψtλt. Suppose that h ∈ H Λ
n . Using

Lemma 5.4 twice, together with Corollary 5.5 and the fact that {muv} is a cellular
basis of H Λ

n , we find

ψsth = ψ∗d(s)ψtλth ≡ ψ∗d(s)

∑
vDt

rvmtλvh (mod H Bλ
n )

≡ ψ∗d(s)

∑
v∈Std(λ)

svmtλv (mod H Bλ
n )

≡ ψ∗d(s)

∑
v∈Std(λ)

tvψtλv (mod H Bλ
n )

≡
∑

v∈Std(λ)

tvψsv (mod H Bλ
n )

for some scalars rv, sv, tv ∈ K. Hence, {ψst} is a graded cellular basis and H Λ
n is

a graded cellular algebra, as required. �

Applying Corollary 2.5, we obtain the graded dimension of H Λ
n

DimtH
Λ
n =

∑
λ∈PΛ

n

∑
s,t∈Std(λ)

tdeg s+deg t.

This result is due to Brundan and Kleshchev [7, Theorem 4.20]. See also [8, Re-
mark 4.12]. This can be further refined to compute Dimte(i)H Λ

n e(j), for i, j ∈ In,
using Lemma 5.2.

§5.2. The graded Specht modules. Now that {ψst} is known to be a graded
cellular basis we can define the graded cell modules Sλ of H Λ

n , for λ ∈PΛ
n .

5.9. Definition (Graded Specht modules). Suppose that λ ∈ PΛ
n . The graded

Specht module Sλ is the graded cell module associated with λ as in Definition 2.3.

Thus, Sλ has basis {ψt | t ∈ Std(λ) } and the action of H Λ
n on Sλ comes from

its action on H Dλ
n /H Bλ

n .
In the absence of a graded cellular basis Brundan, Kleshchev and Wang [8] have

already defined a graded Specht module Sλ
BKW , for λ ∈ PΛ

n . The two notions of
graded Specht modules coincide.

5.10. Corollary. Suppose that λ ∈ PΛ
n . Then Sλ ∼= Sλ

BKW as Z-graded H Λ
n -

modules.

Proof. Brundan, Kleshchev and Wang [8] actually define the graded left module
S∗λBKW , however, it is an easy exercise to switch their notation to the right. Mirror-
ing the notation of [8, §4.2], set v̇λ = eλyλ+H Bλ

n = ψtλtλ +H Bλ
n . By Theorem 5.8

the graded right module v̇λH Λ
n has basis { v̇λψd(t) | t ∈ Std(λ) }. Comparing this

construction with [8, §4.2] and Definition 2.3 it is immediate that

Sλ
BKW

∼= v̇λH Λ
n 〈−deg tλ〉 ∼= Sλ.

In the notation of [8], the first isomorphism is given by vt 7→ v̇λψd(t), for t ∈
Std(λ). There is a degree shift for the middle term because deg v̇λ = 2 deg tλ by
Corollary 4.16. �
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By Lemma 5.4 and Corollary 5.5, the ungraded module Sλ coincides with the
ungraded Specht module determined by the standard basis (Theorem 3.7), because
the transition matrix between the graded cellular basis and the standard basis is
unitriangular.

Let Ḋµ be the ungraded simple H Λ
n -module which is defined using the standard

basis of H Λ
n , for µ ∈PΛ

n . Define a multipartition µ to be Λ-Kleshchev if Ḋµ 6= 0.
Although we will not need it, there is an explicit combinatorial characterization
of the Λ-Kleshchev multipartitions; see [3] or [7, (3.27)] (where they are called
restricted multipartitions).

By Theorem 2.10, and the remarks of the last paragraph, the graded irreducible
H Λ
n -modules are naturally labeled by the Λ-Kleshchev multipartitions of n. Notice,

however, that this does not immediately imply that Dµ is non-zero if and only if µ
is a Λ-Kleshchev multipartition: the problem is that the homogeneous bilinear form
on the graded Specht module, which is induced by the graded basis (see Lemma 2.6),
could be different to the bilinear form on the ungraded Specht module, which is
induced by the standard basis. Our next result shows, however, that these two
forms are essentially equivalent because their radicals coincide.

The following result is almost equivalent to [7, Theorem 5.10].

5.11. Corollary. Suppose that µ ∈PΛ
n . Then Ḋµ = Dµ, for all µ ∈PΛ

n . Conse-
quently, Dµ 6= 0 if and only if µ is a Λ-Kleshchev multipartition.

Proof. We argue by induction on dominance. If µ is minimal in the dominance
order then Dµ = Sµ and Ḋµ = Sµ by Lemma 2.13(c). Hence, Ḋµ = Dµ in
this case. Now suppose that µ is not minimal with respect to dominance. Using
Lemma 2.13(c) again, Dµ = 0 if and only if every composition factor of Sµ is
isomorphic to Dν for some multipartition ν with µ B ν. Similarly, Ḋµ = 0 if
and only if every composition factor of Sµ is isomorphic to Ḋν , where µ B ν. By
induction, Ḋν = Dν so the result follows. �

§5.3. The blocks of H Λ
n . We now show how Theorem 5.8 restricts to give a

basis for the blocks, or the indecomposable two-sided ideals, of H Λ
n . Recall that

Q+ =
⊕

i∈I N0αi is the positive root lattice. Fix β ∈ Q+ with
∑
i∈I(Λi, β) = n

and let
Iβ = { i ∈ In | αi1 + · · ·+ αin = β } .

Then Iβ is an Sn-orbit of In and it is not hard to check that every Sn-orbit can
be written uniquely in this way for some β ∈ Q+. Define

H Λ
β = eβH

Λ
n , where eβ =

∑
i∈Iβ

e(i).

Then by the main result of [25], H Λ
β is a block of H Λ

n . That is,

H Λ
n =

⊕
β∈In, Iβ 6=∅

H Λ
β .

is the decomposition of H Λ
n into a direct sum of indecomposable two-sided ideals.

Let PΛ
β = {λ ∈PΛ

n | iλ ∈ Iβ }. It follows from the combinatorial classification of
the blocks of H Λ

n that
∐

i∈Iβ Std(i) =
∐

λ∈PΛ
β

Std(λ). Hence, by Lemma 5.2 and
Theorem 5.8 we obtain the following.

5.12. Corollary. Suppose that β ∈ Q+. Then

{ψst | s, t ∈ Std(λ) for λ ∈PΛ
β }

is a graded cellular basis of H Λ
β . In particular, H Λ

β is a graded cellular algebra.
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6. A dual graded cellular basis and a homogeneous trace form

In this section we construct a second graded cellular basis {ψ′st} for the alge-
bras H Λ

n and H Λ
β . Using both the ψ-basis and the ψ′-basis we then show that

H Λ
β is a graded symmetric algebra, proving another conjecture of Brundan and

Kleshchev [7, Remark 4.7].

§6.1. The dual Murphy basis. The main idea is that the ψ-basis is, via the
standard basis {mst}, built from the trivial representation of H Λ

n . The new basis
that we will construct is, via the {nst} basis defined below, modeled on the sign
representation of H Λ

n .

6.1. Definition (Du and Rui [15, (2.7)]). Suppose that λ ∈PΛ
n and s, t ∈ Std(λ).

Define nst = (−q)−`(d(s))−`(d(t))Td(s)−1nλTd(t), where

nλ =
`−1∏
s=1

|λ(1)|+···+|λ(`−s)|∏
k=1

(Lk − qκs) ·
∑
w∈Sλ

(−q)−`(w)Tw.

(The normalization of nst by a power of −q−1 is for compatibility with the results
from [29] that we use below. The asymmetry in the definitions of the basis elements
mst and nst arises because the relations (Tr − q)(Tr + 1) = 0, for 1 ≤ r < n are
asymmetric. Renormalizing these relations to (T̂r−v)(T̂r+v−1) = 0, where q = v2,
makes the definition of these elements symmetric; see, for example, [28, §3].)

It follows from Theorem 3.7 that {nst} is a cellular basis of H Λ
n ; see [29, (3.1)].

We now recall how L1, . . . , Ln acts on this basis. To describe this requires some
more notation.

If λ = (λ1, λ2, . . . ) is a partition then its conjugate is the partition λ′ =
(λ′1, λ

′
2, . . . ), where λ′i = # { j ≥ 1 | λj ≥ i }. If t is a standard λ-tableau let t′

be the standard λ′-tableau given by t′(r, c) = t(c, r). Pictorially, λ′ and t′ are
obtained by interchanging the rows and the columns of λ and t, respectively.

Similarly, if λ = (λ(1), . . . , λ(`)) is a multipartition then the conjugate multi-
partition is the multipartition λ′ = (λ(`)′ , . . . , λ(1)′). If t is a standard λ-tableau
then the conjugate tableau t′ is the standard λ′-tableau given by t′(r, c, l) =
t(c, r, `− l + 1).

By [29, Prop. 3.3], if s, t ∈ Std(λ) and 1 ≤ k ≤ n then there exist scalars ruv ∈ K
such that

(6.2) nstLk = qrest′ (k)nst +
∑

(u,v)B(s,t)

ruvnuv.

As in section 4.2, fix a modular system (K ,O,K) for H Λ
n . Until noted otherwise

we will work in H K
n . Following Definition 4.4, define f ′st = Fs′nstFt′ , for s, t ∈

Std(λ), λ ∈PΛ
n . Moreover, by (6.2), if s, t ∈ Std(λ), for λ ∈PΛ

n , then

f ′st = nst +
∑

(u,v)B(s,t)

ruvnuv,

for some ruv ∈ K. Therefore, {f ′st} is a basis of H K
n , as was noted in [29, §3].

We now retrace our steps from section 4.2 replacing the fst basis with the f ′st

basis.
Recall from section 4.2 that if α = (r, c, l) and β = (s, d,m) are two nodes then

α is below β if either l > m, or l = m and r > s. Dually, we say that β is above
α. With this notation we can define a ‘dual’ version of the scalars γt ∈ K .

6.3. Definition (cf. Definition 4.5). Suppose that λ ∈ PΛ
n and t ∈ Std(λ). For

k = 1, . . . , n let At(k)′ be the set of addable nodes of the multipartition Shape(tk)
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which are above t−1(k). Similarly, let Rt(k)′ be the set of removable nodes of
Shape(tk) which are above t−1(k). Now define

γ′t = (x+ q)−`(d(t))−δ(λ)
n∏
k=1

∏
α∈At′ (k)′

(
(x+ q)contt′ (k) − (x+ q)cont(α)

)∏
ρ∈Rt′ (k)′

(
(x+ q)contt′ (k) − (x+ q)cont(ρ)

) ∈ K .

Suppose that i ∈ In and that Std(i) 6= ∅. Define i′ = res(s′), where s is any
element of Std(i). Then i′ ∈ In and i′ is independent of the choice of s.

Recall that Proposition 4.8 defines the idempotent e(i)O ∈H O
n , for i ∈ In.

6.4. Lemma. Suppose that i ∈ In with e(i) 6= 0. Then, in H O
n ,

e(i′)O =
∑

s∈Std(i)

1
γ′s
f ′ss.

Proof. By [29, Remark 3.6], if s ∈ Std(i) then 1
γ′s
f ′ss = 1

γs′
fs′s′ in H K

n . So, the
result is just a rephrasing of Proposition 4.8. (Note that γ′t, as defined in Defini-
tion 6.3, is the specialization at the parameters of H K

n of the element γ′t defined
in [29, §3]; see the remarks before [29, Prop. 3.4].) �

Definition 4.9 defines a homogeneous element ys ∈H Λ
n for each positive tableau

s ∈ Std(i), i ∈ In. To construct the dual basis we lift e(i′)ys to H O
n .

6.5. Definition. Suppose that s ∈ Std(i) is a positive tableau. Let A Λ
s′ (k)′ =

{α ∈ As′(k)′ | res(α) = ress′(k) } and define (y′s)O = (y′s,1)O . . . (y′s,n)O where

(y′s,k)O =
∏

α∈A Λ
s′ (k)′

(1− (x+ q)− cont(α)Lk) ∈H O
n ,

for k = 1, . . . , n.

Observe that if s ∈ Std(i) is a positive tableau then e(i′)ys = e(i′)O(y′s)O ⊗O 1K
because |A Λ

s (k)| = |A Λ
s′ (k)′|, for 1 ≤ k ≤ n. Note, however, that (y′s)O 6= yOs in

general.
The following two results are analogues of Lemma 4.13 and Theorem 4.14, respec-

tively. We leave the details to the reader because they can be proved by repeating
the arguments from section 4, the only real difference being that Lemma 6.4 is used
instead of Proposition 4.8.

6.6. Lemma. Suppose that s, t ∈ Std(i), where i ∈ In, and that s is a positive
tableau. Then:

a) If t = s then f ′tt(y
′
s)O = uOs γ

′
sf
′
ss, for some unit uOs ∈ O.

b) If t 6= s then there exists an integer dt ≥ deg s and an invertible element
uOt ∈ O such that

f ′tt(y
′
s)O =

{
uOt x

d′tf ′tt, if t B s,

0, otherwise,

and where d′t = deg s whenever K is a field of characteristic zero.

As a consequence, we can repeat the proof of Theorem 4.14 to deduce the fol-
lowing.

6.7. Proposition. Suppose that s ∈ Std+(i) is a positive tableau, for i ∈ In. Then
there exists a non-zero c ∈ K such that

e(i′)ys = cnss +
∑

(u,v)B(s,s)

ruvnuv,

for some ruv ∈ K.
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§6.2. The dual graded basis. If λ ∈ PΛ
n then tλ is a positive tableau by

Lemma 4.11. Recall that eλ = e(iλ). Define e′λ = e(i′), where i = iλ. Then
as a special case of Proposition 6.7, there is a non-zero c ∈ K such that

(6.8) e′λyλ = cnλ +
∑

(u,v)B(tλ,tλ)

ruvnuv,

for some ruv ∈ K. This is what we need to define the dual graded basis of H Λ
n .

6.9. Definition. Suppose that λ ∈ PΛ
n and s, t ∈ Std(λ) and recall that we have

fixed reduced expressions d(s) = si1 . . . sik and d(t) = sj1 . . . sjm for d(s) and d(t),
respectively. Define ψ′st = ψik . . . ψi1e

′
λyλψj1 . . . ψjm .

By definition, ψ′st is a homogeneous element of H Λ
n . Just as with ψst, the

element ψ′st will, in general, depend upon the choice of reduced expressions for d(s)
and d(t). Arguing just as in section 5.1 we obtain the following facts. We leave the
details to the reader.

6.10. Proposition. Suppose that s, t ∈ Std(λ), for some λ ∈PΛ
n . Then

a) If i, j ∈ In then

e(i′)ψ′ste(j
′) =

{
ψ′st, if res(s) = i and res(t) = j,
0, otherwise.

b) degψ′st = deg s + deg t.
c) ψ′st = cnst +

∑
(u,v)B(s,t)

ruvnuv, for some ruv ∈ K and 0 6= c ∈ K.

d) If ψ̂′st is defined using a different choice of reduced expressions for d(s) and
d(t) then

ψ′st − ψ̂′st =
∑

(u,v)B(s,t)

ruvψ
′
uv,

where ruv ∈ K is non-zero only if res(u) = res(s), res(v) = res(t) and deg u+
deg v = deg s + deg t.

Using Proposition 6.10, and arguing exactly as in the proof of Theorem 5.8 we
obtain the graded dual basis of H Λ

n .

6.11. Theorem. The basis {ψ′st | s, t ∈ Std(λ) for λ ∈PΛ
n } is a graded cellular

basis of H Λ
n .

The basis {ψ′st} is the dual graded basis of H Λ
n . We note that the unique

anti-isomorphism of H Λ
n which fixes the homogeneous generators of H Λ

n coincides
with the graded anti-isomorphisms coming from both the graded cellular basis and
the dual graded cellular basis, via (GC4) of Definition 2.1.

As with the graded basis, the dual graded basis restricts to give a graded cellular
basis for the blocks of H Λ

n .

6.12. Corollary. Suppose that β ∈ Q+. Then

{ψ′st | s, t ∈ Std(λ) for λ′ ∈PΛ
β }

is a graded cellular basis of H Λ
β .

§6.3. Graded symmetric algebras. Recall that a trace form on a K-algebra
A is a K-linear map τ :A −→ K such that τ(ab) = τ(ba), for all a, b ∈ A. The
algebra A is symmetric if A is equipped with a non-degenerate symmetric bilinear
form θ : A×A→ K which is associative in the following sense:

θ(xy, z) = θ(x, yz), for all x, y, z ∈ A.
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Define a trace form τ : A → K on A by setting τ(a) = θ(a, 1) for any a ∈ A.
Note that ker τ cannot contain any non-zero left or right ideals because θ is non-
degenerate. We leave the next result for the reader.

6.13. Lemma. Suppose that A is a finite dimensional K-algebra which is equipped
with an anti-automorphism σ of order 2. Then A is symmetric if and only if there
is a non-degenerate symmetric bilinear form 〈 , 〉 :A×A−→K which is associative
in the sense 〈ab, c〉 = 〈a, cbσ〉 for any a, b, c ∈ A.

A graded algebra A is a graded symmetric algebra if there exists a homoge-
neous non-degenerate trace form τ :A−→K. Apart from providing a second graded
cellular basis of H Λ

n , the dual graded basis of H Λ
n is useful because we can use it

to show that the algebras H Λ
β , for β ∈ Q+, are graded symmetric algebras.

Following Brundan and Kleshchev [8, (3.4)], if β ∈ Q+ then the defect of β is

def β = (Λ, β)− 1
2

(β, β),

where ( , ) is the non-degenerate pairing on the root lattice introduced in section 3.1.
If ` = 1 then def β is the e-weight of the block H Λ

β . If ` > 1 then def β coincides
with Fayers [16] definition of weight for the algebras H Λ

β .
In what follows, the following result of Brundan, Kleshchev and Wang’s will be

very important. (In [8, §3], deg s′ is called the codegree of s.)

6.14. Lemma (Brundan, Kleshchev and Wang [8, Lemma 3.12]). Suppose that
µ ∈PΛ

β and that s ∈ Std(µ). Then deg s + deg s′ = def β.

To define the homogeneous trace form τβ on H Λ
β recall that, by the main result

of [26], H Λ
n is a symmetric algebra with induced trace form τ : H Λ

n −→K, where τ
is the K-linear map determined by

τ(La1
1 . . . Lann Tw) =

{
1, if a1 = · · · = an = 0 and w = 1,
0, otherwise,

where 0 ≤ a1, . . . , an < ` and w ∈ Sn. In general, the map τ is not homogeneous,
however, we can use τ to define a homogeneous trace form on H Λ

β since H Λ
β is a

subalgebra of H Λ
n .

6.15. Definition (Homogeneous trace). Suppose that β ∈ Q+. Then τβ : H Λ
β −→K

is the map which on a homogeneous element a ∈H Λ
β is given by

τβ(a) =

{
τ(a), if deg(a) = 2 def β,
0, otherwise.

It is an easy exercise to verify that τβ is a trace form on H Λ
β . By definition, τ is

homogeneous of degree −2 def β. To show that τβ is induced from a non-degenerate
symmetric bilinear form on H Λ

β we need the following fact.

6.16. Lemma ( [28, Lemma 5.4 and Theorem 5.5]). Suppose that a, b ∈ Std(µ)
and c, d ∈ Std(ν), for µ,ν ∈PΛ

β . Then mabncd 6= 0 only if c′ D b. Further, there
exists a non-zero scalar uλ ∈ K, which depends only on λ, such that

τ(mabndc) =

{
uλ, if (c′, d′) = (a, b),
0, if (c′, d′) 6D (a, b).

Define a homogeneous bilinear form 〈 , 〉β on H Λ
β of degree −2 def β by

〈a, b〉β = τβ(ab∗).

By definition, 〈 , 〉β is symmetric and associative in the sense that 〈a, bc〉β =
〈ac∗, b〉β for any a, b, c ∈H Λ

β .
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6.17. Theorem. Suppose that β ∈ Q+ and that λ,µ ∈ PΛ
β . If s, t ∈ Std(λ) and

u, v ∈ Std(µ) then

〈ψst, ψ
′
uv〉β =

{
u, if (u′, v′) = (s, t),
0, if (u′, v′) 6D (s, t),

for some non-zero scalar u ∈ K.

Proof. By Lemma 5.4 and Proposition 6.10(c), there exist non-zero scalars c, c′ ∈ K
and rab, r

′
dc ∈ K such that

(†) ψstψ
′
vu =

(
cmst +

∑
(a,b)B(s,t)

rabmab

)(
c′nvu +

∑
(d,c)B(v,u)

r′dcndc

)
.

Therefore, 〈ψst, ψ
′
uv〉β = 0 unless v′ D t by Lemma 6.16. Now,

〈ψst, ψ
′
uv〉β = τβ(ψstψ

′
vu) = τβ(ψ′vuψst) = τβ(ψtsψ

′
uv) = 〈ψts, ψ

′
vu〉β ,

where we have used the easily checked fact that τβ(h) = τβ(h∗) for the third
equality. Combined with (†), this shows that 〈ψst, ψ

′
uv〉β = 0 unless (u′, v′) D (s, t).

To complete the proof it remains to consider the case when (u′, v′) = (s, t). By
Lemma 6.16, (†) now reduces to the equation ψstψ

′
t′s′ = cc′mstn

′
t′s′ . By Lemma 5.3,

Proposition 6.10(b) and Lemma 6.14, we have

deg(ψstψ
′
t′s′) = deg s + deg t + deg s′ + deg t′ = 2 def β,

Therefore, we can replace τβ with τ and use Lemma 6.16 to obtain

τβ(ψstψ
′
t′s′) = τ(ψstψ

′
t′s′) = cc′τ(mstnt′s′) = cc′uλ.

As cc′uλ 6= 0 this completes the proof. �

Applying Lemma 6.13, we deduce that H Λ
β is a graded symmetric algebra. This

was conjectured by Brundan and Kleshchev [7, Remark 4.7],

6.18. Corollary. Suppose that β ∈ Q+. Then H Λ
β is a graded symmetric algebra

with homogeneous trace form τβ of degree −2 def β.

We remark that the two graded bases {ψst} and {ψ′uv} are almost certainly
not dual with respect to 〈 , 〉β . We call {ψ′uv} the dual graded basis because
Theorem 6.17 shows that these two bases are dual modulo more dominant terms.
As far as we are aware, if ` > 2 then there are no known pairs of dual bases for H Λ

n ,
even in the ungraded case.

§6.4. Dual graded Specht modules. Using the graded cellular basis {ψst} we
defined the graded Specht module Sλ. Similarly, if λ ∈PΛ

n then the dual graded
Specht module Sλ is the graded cell module associated with λ, via Defini-
tion 2.3, using the dual graded basis {ψ′st}. Thus, Sλ has a homogeneous basis
{ψ′s | s ∈ Std(λ) }, with the action of H Λ

n being induced by its action on the dual
graded basis.

By [28, Cor. 5.7], it was shown that Sλ and Sλ′ are dual to each other with
respect to the contragredient duality induced on H Λ

n -Mod by the cellular algebra
anti-isomorphism defined by the standard cellular basis {mst}. We generalize this
result to the graded setting.

Let H ′Bλ
n = 〈ψuv | u, v ∈ Std(µ) where µ B λ〉K be the graded two-sided ideal

of H Λ
n spanned by the elements of the cellular basis {ψ′uv} of more dominant shape.

Then H ′Bλ
n is also spanned by the elements {nuv}, where u, v ∈ Std(µ) and µ B λ

by Proposition 6.10(c).

6.19. Proposition. Suppose that λ ∈PΛ
β . Then Sλ ∼= S~

λ′〈def β〉 as graded H Λ
β -

modules.
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Proof. By Theorem 6.17 the graded two-sided ideals H Bλ
β and H ′Bλ′

β of H Λ
β are

orthogonal with respect to the trace form 〈 , 〉β . By construction Sλ〈deg tλ〉 ∼=
(ψtλtλ + H Bλ

n )H Λ
n and Sλ′〈deg tλ′〉 ∼= (ψ′

tλ′ t
λ′ + H ′Bλ

n )H Λ
n , where tλ′ = (tλ)′.

Therefore, 〈 , 〉β induces an homogeneous associative bilinear form

〈 , 〉β,λ :Sλ〈deg tλ〉 × Sλ′〈deg tλ′〉−→K; 〈a+ H Bλ
n , b+ H ′Bλ′

n 〉β,λ = 〈a, b〉β .
In particular, if s, t′ ∈ Std(λ) then, by Theorem 6.17,

〈ψtλs + H Bλ
n , ψ′tλ′ t

+ H ′Bλ′

n 〉β,λ =

{
u, if s = t′,

0, unless t′ D s,

for some 0 6= u ∈ K. Therefore, 〈 , 〉β,λ is a homogeneous non–degenerate pairing
of degree −2 def β and, since taking duals reverses the grading,

Sλ ∼= S~
λ′〈2 def β − deg tλ′ − deg tλ〉 = S~

λ′〈def β〉,

since def β = deg tλ + deg tλ′ by Lemma 6.14. �

During the proof of Theorem 6.17 we showed that mstnt′s′ = cψstψ
′
t′s′ , for some

non-zero constant c ∈ K. Hence, we have the following interesting fact.

6.20. Corollary (of Theorem 6.17). Suppose that λ ∈ PΛ
β and that s, t ∈ Std(λ).

Then mstnt′s′ is a homogeneous element of H Λ
n of degree 2 def β.

Let λ ∈ PΛ
β . Recall that by definition, eλ = e(it

λ

) and e′λ′ = e(itλ), where
tλ = (tλ

′
)′. Let wλ = d(tλ) and define zλ = mλTwλ

nλ′ .

6.21. Corollary. Suppose that λ ∈PΛ
β . Then

zλ = eλzλe
′
λ′ = ceλyλψwλ

yλ′ = cyλψwλ
yλ′e

′
λ′ ,

for some 0 6= c ∈ K. In particular, zλ is a homogeneous element of H Λ
n of degree

def β + deg(tλ) + deg(tλ
′
).

Proof. By Corollary 4.16 and (6.8) there exist 0 6= c ∈ K such that

eλyλψwλ
≡ ceλmtλtλ

+
∑

t∈Std(λ)
`(d(t))<`(wλ)

ateλmtλt (mod H Bλ
n ) ,

for some at ∈ K. Further, e′λ′yλ′ ≡ c′e′λ′nλ′ (mod H ′
n

�λ′) , for some non-zero
c′ ∈ K, by Proposition 6.7. By definition t D tλ for all t ∈ Std(λ), so if t 6= tλ then
mtλtnλ′ = 0 by Lemma 6.16 since (tλ

′
)′ = tλ 6D t. Hence, multiplying these two

equations together gives the Corollary. �

There may well be a more direct proof of the last two results because these
elements are already well-known in the representation theory of H Λ

n . Note that

mstnt′s′ = Td(s)−1mλTd(t)Td(t′)−1nλ′Td(s′) = Td(s)−1zλTd(s′),

because d(t)d(t′)−1 = wλ, with the lengths adding; see, for example, [28, Lemma 5.1].
It follows from [29, Prop. 4.4] that (Td(s)−1zλTd(s))2 = rTd(s)−1zλTd(s), for some
r ∈ K, such that r 6= 0 if and only if the Specht module Sλ is projective. If r = 0
then these elements are nilpotent and they belong the radical of H Λ

n . We invite
the reader to check that the map

Sλ′〈def β + deg tλ〉 ∼−→ zλH Λ
n ;ψ′t 7→ zλψ

′
d(t),

for t ∈ Std(λ′), is a isomorphism of graded H Λ
n -modules. Similarly, there is a

graded isomorphism Sλ〈def β + deg tλ
′〉 ∼−→ nλ′Twλ′mλH Λ

n . By Corollary 6.21,
z∗λ = ceλ′ψwλ′ eλ is homogeneous of degree def β + deg(tλ) + deg(tλ

′
), for some
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non-zero c ∈ K. Arguing as in Corollary 6.21 shows that z∗λ = nλ′Twλ′mλ. Conse-
quently, on the elements zλ, for λ ∈PΛ

n , the graded cellular anti-automorphism ∗
of H Λ

n coincides with the ungraded cellular algebra anti-isomorphism which is in-
duced by the standard basis {muv} of H Λ

n .

7. The degenerate and integral Khovanov-Lauda–Rouquier algebras

The Khovanov-Lauda–Rouquier algebras RΛ
n are defined over an arbitrary com-

mutative integral domain R, however, so far we have produced a cellular basis for
RΛ
n only when R = K is a field of characteristic coprime to e. In this section we

extend Theorem 5.8 to a more general class of rings. Before we can do this, how-
ever, we need to reprove Theorem 5.8 for the degenerate cyclotomic Hecke algebras
of type A.

§7.1. The degenerate cyclotomic Hecke algebra. For this section, suppose
that p is prime, or zero, and let K be a field of characteristic p. In this section we
set e = p so that I = Z/pZ.

The degenerate cyclotomic Hecke algebra HΛ
n is the K-algebra generated

by x1, . . . , xn and t1, . . . , tn−1 subject to the relations∏
i∈I(x1 − i)(Λ,αi) = 0, t2i = 1,

tsts+1ts = ts+1tsts+1, titk = tkti, if |i− k| > 1,

tixi+1 = xiti + 1, tixk = xkti if |i− k| > 1,
xixk = xixk,

for 1 ≤ k ≤ n, 1 ≤ s < n− 1 and 1 ≤ i < n.
The generators t1, . . . , tn−1 satisfy the braid relations of Sn. Therefore, if w ∈

Sn and w = si1 . . . sik is a reduced expression then element tw = ti1 . . . tik depends
only on w and not on the choice of reduced expression. By [5, Theorem 6.1]
or [24, Theorem 7.5.6], {xa1

1 . . . xann tw | 0 ≤ ai < ` and w ∈ Sn } is a basis of HΛ
n .

Next, following Brundan and Kleshchev [6, §3.2], for 1 ≤ r < n and 1 ≤ s ≤ n
define elements of HΛ

n

ψr =
∑
i∈In

(tr + pr(i))qr(i)−1e(i) and ys =
∑
i∈In

(xs − is)e(i),

where pr(i) and qr(i) are power series in KJyr, yr+1K with similar definitions to the
elements Pr(i) and Qr(i) given by (3.3) and (3.4); for the precise details see [6, 3.22
and 3.30]

As in the non-degenerate case, by [24, Lemma 7.1.2] there exists a family of
idempotents { e(i) | i ∈ In } in HΛ

n such that if M is any HΛ
n -module then

Mi = Me(i) = {m ∈M | m(xr − ir)k = 0 for k � 0 } ,

and M =
⊕

i∈InMi is the decomposition of M into a direct sum of general-
ized eigenspaces for the commutative subalgebra 〈x1, . . . , xn〉 of HΛ

n . Just as
in Lemma 4.1 it follows that the non-zero e(i) are the primitive idempotents in
〈x1, . . . , xn〉.

Brundan and Kleshchev’s graded isomorphism in the degenerate case is the fol-
lowing.

7.1. Theorem (Brundan–Kleshchev [6, §3.5]). Suppose that e = p is prime. Then
the map RΛ

n −→ HΛ
n which sends

e(i) 7→ e(i), yr 7→ yr and ψs 7→ ψs,

for i ∈ In, 1 ≤ r ≤ n and 1 ≤ s < n, extends uniquely to an isomorphism of
algebras.
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Following [5, §6], and paralleling the notation introduced for the non-degenerate
case in Definition 3.6, for λ ∈ PΛ

n and s, t ∈ Std(λ) define mst = td(s)−1mλtd(t),
where

mλ =
∏̀
s=2

|λ(1)|+···+|λ(s−1)|∏
k=1

(xk − κs) ·
∑
w∈Sλ

tw.

Then {mst | s, t ∈ Std(λ),λ ∈PΛ
n } is a cellular basis of HΛ

n by [5, Theorem 6.3].
(The multicharge κ = (κ1, . . . , κ`) is defined in section 3.1.)

These elements behave very similarly to the standard basis elements of H Λ
n (see

Theorem 3.7), which is why we use the same notation for them. In particular,
if s, t ∈ Std(λ), for λ ∈PΛ

n , then by [5, Lemma 6.6]

mstxk = rest(k)mst +
∑

(u,v)B(s,t)

ruvmuv,

for some scalars ruv ∈ K.
Next we want to introduce a seminormal basis for HΛ

n . To do this we need an
integral form of HΛ

n . To define this we have to assume that e = p is prime and
that K is a field of characteristic p > 0 because we do not know how to define an
integral form for HΛ

n directly when e = 0. (We can do this indirectly, however,
because if e = 0 then HΛ

n is isomorphic to a non-degenerate cyclotomic Hecke
algebra by [6, Cor. 2], so we are back in the situation considered in section 5.)

Suppose then that e = p is prime and that K is a field of characteristic p. In fact,
we can assume that K is the field with p elements since every field is a splitting
field for HΛ

n by cellularity (see the remarks after Theorem 2.10). Let O = Z(p) be
the localization of Z at the prime p and let HOn be the associative unital Z-algebra
with generators x1, . . . , xn, t1, . . . , tn−1 which satisfy the same relations as above
except that

(x1 − κ1)(x1 − κ2) . . . (x1 − κ`) = 0.

Then HOn is free as an O-module, HΛ
n
∼= HOn ⊗O K and HQ

n = HOn ⊗O Q is
semisimple.

The point of the relation for x1 in HOn is that the content functions contt(k)
(see above 3.8), separate the standard tableaux: that is, conts(k) = contt(k), for
1 ≤ k ≤ n, if and only if s = t. Once again, the analogous elements {mst} give a
basis of HOn and we have

mstxk = contt(k)mst +
∑

(u,v)B(s,t)

suvmuv,

for suv ∈ Z. Hence, we can define a seminormal basis for HQ
n : define

Ft =
n∏
k=1

∏
κ`−n<c<κ1+n
c6=contt(k)

xk − c
contt(k)− c

∈ HQ
n ,

and set fst = FsmstFt. Then {fst} is a basis of HQ
n by [5, Prop. 6.8].

Recall that in Definition 4.5 we defined certain sets At(k) and Rt(k) for each
standard tableau t and each integer k, with 1 ≤ k ≤ n.

7.2. Definition (cf. Definition 4.5). Suppose that λ ∈PΛ
n and t ∈ Std(λ). Define

γt =
n∏
k=1

∏
α∈At(k)

(
contt(k)− cont(α)

)∏
ρ∈Rt(k)

(
contt(k)− cont(ρ)

) ∈ Q.

We have that Ft = 1
γt
ftt in HQ

n by [5, Prop. 6.8] and an easy inductive argument
using [5, Lemma 610]. This brings us to the analogue of Proposition 4.8.
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7.3. Proposition. Suppose that e(i) 6= 0, for some i ∈ In and let

e(i)O :=
∑

s∈Std(i)

1
γs
fss ∈ HQ

n .

Then e(i)O ∈ HOn and e(i) = e(i)O ⊗O 1K .

Proof. The degenerate cyclotomic Hecke algebras fit into the general framework
considered in [30], so e(i)O ∈ HOn by [30, Lemma 4.2]. The proof can be completed
by repeating the argument of Proposition 4.8. �

For each positive tableau s define ys =
∏n
k=1 y

|A Λ
t (k)|

k ∈ HΛ
n , where we are implic-

itly using the Brundan-Kleshchev graded isomorphism theorem in the degenerate
case. If s ∈ Std(i) is positive then lift e(i)ys to HOn by defining

e(i)OyOs = e(i)O
n∏
k=1

∏
α∈A Λ

s (k)

(
xk − conts(α)

)
.

Then, by repeating the argument of Theorem 4.14 we find that, in HΛ
n ,

e(i)ys = cmss +
∑

(u,v)B(s,s)

ruvmuv,

for some 0 6= c, ruv ∈ K. In particular, eλyλ is equal to a multiple of mλ plus a
linear combination of more dominant terms.

Defining the elements ψst ∈ HΛ
n , for s, t ∈ Std(λ), λ ∈PΛ

n exactly as before (see
Definition 5.1), we can now repeat the proof of Theorem 5.8 to obtain the following.

7.4. Theorem. Suppose that e = p is prime and that K is a field of characteristic
p > 0. Then the degenerate Hecke algebra HΛ

n is a graded cellular algebra with
graded cellular basis {ψst | s, t ∈ Std(λ),λ ∈PΛ

n }.

Using the results in this section, and those in section 5.3, it is an easy exercise to
show that if e = p is prime then {ψ′st | s, t ∈ Std(λ),λ′ ∈PΛ

β } is a graded cellular
basis of H Λ

β , for β ∈ Q+. The argument of Corollary 6.18 can now be repeated to
show that HΛ

n
∼= RΛ

n is a graded symmetric algebra. We leave the details to the
reader.

§7.2. Integral forms. The Khovanov-Lauda–Rouquier algebras RΛ
n can be defined

over any commutative integral domain. So far we have produced graded cellular
bases only when RΛ

n , via the Brundan-Kleshchev isomorphism theorems, is isomor-
phic to a degenerate or non-degenerate cyclotomic Hecke algebra over certain fields.
We now consider more general rings.

Throughout this section, let RΛ
n (Z) be the Khovanov-Lauda–Rouquier algebra

of type Γ = Γe defined over Z, and let R̂Λ
n (Z) be the torsion free part of RΛ

n (Z).
Unlike in the last section, e ∈ {0, 2, 3, 4, . . . } is not necessarily prime. If O is any
commutative integral domain let RΛ

n (O) ∼= RΛ
n (Z)⊗Z O be the Khovanov-Lauda–

Rouquier algebra over O.
The following result is implicit in [6, Theorem 6.1]. It arose out of discussions

with Alexander Kleshchev.

7.5. Lemma. a) Suppose that e = 0 or that e is prime. Then RΛ
n (Z) = R̂Λ

n (Z)
is a free Z-module of rank `nn!.

b) Suppose that e > 0 is not prime. Then RΛ
n (Z) has p-torsion, for a prime p,

only if p divides e.
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Proof. First, observe that by Theorem 3.5

rank R̂Λ
n (Z) = dimQ(RΛ

n (Z)⊗Z Q) = dimQ RΛ
n (Q) = `nn!,

where we take q to be a primitive eth root of unity in C if e 6= 0 and not a root of
unity if e = 0.

Next suppose that e = 0 and p is any prime. Let K be an infinite field of
characteristic p and let q ∈ K be a transcendental element of K. Then H Λ

n
∼=

RΛ
n (K) ∼= RΛ

n (Z)⊗Z K by Theorem 3.5, so that RΛ
n (Z) has no p-torsion.

Now suppose that e > 0 and that p is prime not dividing e. Let K be a field of
characteristic p which contains a primitive eth root of unity q and let H Λ

n be the
non-degenerate cyclotomic Hecke algebra with parameter q. Then H Λ

n
∼= RΛ

n (K) ∼=
RΛ
n (Z) ⊗Z K by Brundan and Kleshchev’s isomorphism Theorem (3.5). Hence,

RΛ
n (Z) has no p-torsion.
Finally, consider the case when e = p is prime and let K be a field of character-

istic p. Then HΛ
n
∼= RΛ

n (K) ∼= RΛ
n (Z)⊗Z K, so once again RΛ

n (Z) has no p-torsion.
Hence, RΛ

n (Z) can have p-torsion only if e > 0 is not prime and p divides e. �

The graded cellular basis {ψst} is defined in terms of the generators of RΛ
n (Z).

Moreover, if e = 0 and K is any field, or if e > 0 and K is a field containing a
primitive eth root of 1, then {ψst ⊗ 1K} is a graded cellular basis of the algebra
RΛ
n (K) ∼= H Λ

n . Further, if e = p is prime then {ψst ⊗Z 1K} is a graded cellular
basis of RΛ

n (K) ∼= HΛ
n whenever K is a field of characteristic p. Hence, applying

Lemma 7.5, Theorem 5.8 and Theorem 7.4, we obtain our final result.

7.6. Theorem. Let O be a commutative integral domain and suppose that either
e = 0, e is non-zero prime, or that e · 1O is invertible in O. Then RΛ

n (O) ∼=
RΛ
n (Z)⊗Z O is a graded cellular algebra with graded cellular basis

{ψst ⊗ 1O | s, t ∈ Std(λ) and λ ∈PΛ
n } .

It seems likely to us that the ψ-basis is a graded cellular basis of RΛ
n (Z).

Appendix A. One dimensional homogeneous representations

Using Theorem 5.8 it is straightforward to give an explicit homogeneous basis
for the one dimensional two-sided ideals of H Λ

n . In this appendix, which may be
of independent interest, we give a proof of this result without appealing to The-
orem 5.8. We consider the non-degenerate case only and leave easy modifications
required in the degenerate case for the reader.

We remark that it is possible to prove an analogue of Theorem 5.8 using the
ideas in this appendix. However, using these techniques we were only able to show
that the basis {ψst} was a graded cellular basis with respect to the lexicographic
order on PΛ

n .

A1. Definition. Suppose that 1 ≤ s ≤ e and (Λ, αs) > 0 and set

un,s =
∏
i∈I

(
(L1 − qi) . . . (Ln − qi)

)(Λ,αi)−δis
,

x(n) =
∑
w∈Sn

Tw and x′(n) =
∑
w∈Sn

(−q)−`(w)Tw.

Finally, define z+,s
n = un,sx(n) and z−,sn = un,sx

′
(n), for 1 ≤ s ≤ e.

The following result is well-known and easily verified.

A2. Lemma. Suppose that 1 ≤ s ≤ e and that ε ∈ {+,−}. Then

Twz
ε,s
n = zε,sn Tw = (−1)

1
2 (1−ε1)`(w)q

1
2 (1+ε1)`(w)zε,sn ,

Lkz
ε,s
n = zε,sn Lk = qs+ε(k−1)zε,sn ,
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for all w ∈ Sn and 1 ≤ k ≤ n. In particular, Kz±,sn is a one dimensional two-sided
ideal of H Λ

n . Moreover, every one dimensional two-sided ideal is isomorphic to
Kzε,sn , for some s, and

Kzε,sn =

{
h ∈H Λ

n

∣∣∣∣∣ T0h = qsh = hT0 and
Tih = hTi = (−1)

1
2 (1−ε1)q

1
2 (1+ε1)h for 1 ≤ i < n

}
.

A3. Proposition. Suppose that Kz is a two sided ideal RΛ
n , for some non-zero

element z ∈H Λ
n . Then z is homogeneous.

Proof. Write z =
∑
i∈Z zi, where zi is a homogeneous element of degree i, for each

i ∈ Z, with only finitely many zi being non-zero. Let h ∈H Λ
n be any homogeneous

element. Then hz = fz, for some f ∈ K, so that∑
i∈Z

fzi = hz =
∑
i∈Z

hzi.

By assumption, either hzi = 0 or deg(hzi) = deg h + deg zi, for each i. Therefore,
if deg h > 0 and hz 6= 0 then hzi = fzj for some j > i, which is a contradiction
since this forces hz = fz to have fewer homogeneous summands than z. Therefore,
hz = 0 if deg h > 0. Similarly, hz = 0 if deg h < 0. Therefore, for any h ∈ H Λ

n

we have that hzi = fzi, for all i ∈ Z, so that zi = z±,sn , for some s by Lemma A2.
Since the non-zero zi have different degrees they must be linearly independent, so it
follows from Lemma A2 that z = zi for a unique i. In particular, z is homogeneous
as claimed. �

The following definition will be used to give the degree of the elements zεn,s and
to explicitly describe them as a product of the homogeneous generators of H Λ

n .
We extend our use of the Kronecker delta by writing, for any statement S, δS = 1

if S is true and δS = 0 otherwise.

A4. Definition (cf. Definition 4.9). Suppose that 1 ≤ s ≤ e and let ε ∈ {+,−}.
Let iε,sn = (iε,s1 , . . . , iε,sn ) ∈ In, where iε,sk = s+ ε(k− 1) (mod e) . For 1 ≤ k ≤ n set

dε,sk = # { 1 ≤ t ≤ ` | iε,sk = t and (Λ, αt) > δst }+ δe|k.

Finally, define yε,sn =
∏n
k=1 y

dε,sk
k .

Brundan, Kleshchev and Wang [8, (4.5)] note that the natural embedding H Λ
n ↪→

H Λ
n+1 is an embedding of graded algebras. Explicitly, the graded embedding is

determined by

(A5) ψs 7→ ψs, yr 7→ yr, and e(i) 7→
∑
j∈I

e(i ∨ j),

where 1 ≤ r ≤ n, 1 ≤ s < n, i ∈ In and i ∨ i = (i1, . . . , in, i).
We can now explicitly describe zε,sn as a product of homogeneous elements and

hence determine its degree.

A6. Theorem. Suppose that 1 ≤ s ≤ e, (Λ, αs) > 0 and that ε ∈ {+,−}. Then

zε,sn = Ce(iε,sn )yε,sn ,

for some non-zero constant C ∈ K. In particular, deg zε,sn = 2(dε,s1 + · · ·+ dε,sn ).

Proof. As Kzε,sn is a two-sided ideal we have that e(iε,sn )zε,sn e(iε,sn ) ∈ Kzε,sn . Further,
it is well-known and easy to check (cf. [28, §4]), that Kzε,sn ∼= S(λ), where λ =
(λ(1), . . . , λ(`)) and

λ(t) =


(n), if t = s and ε = +,
(1n), if t = s and ε = −,
(0), otherwise.
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Therefore, as iε,sn = iλ it follows from the construction of the graded Specht modules
in section 5.2 (or [8, Theorem 4.10]), that zε,sn e(iε,sn ) 6= 0, so we see that zε,sn =
e(iε,sn )zε,sn = zε,sn e(iε,sn ) = e(iε,sn )zε,sn e(iε,sn ) as claimed.

It remains to write zε,sn as a product of homogeneous elements. To ease the
notation we treat only the case when ε = + and we write zn = zε,sn , in = iε,sn and
dn = dε,sn . The case when ε = − follows by exactly the same argument (and, in
fact, the same constants appear below), the only difference is that the products
Tn−1 . . . Tj must be replaced by (−q)j−nTn−1 . . . Tj below.

Suppose, first, that n = 1. By definition, d1 = (Λ, αs) − 1. Recall that L1 =∑
i q
i1(1− y1)e(i) by Theorem 3.5. Therefore, we have

z1e(in) =
∏
t∈I

(L1 − qt)(Λ,αt)−δste(in) =
∏
t∈I

(qs − qt − qsy1)(Λ,αt)−δste(in)

=
∏
t6=s

(qs − qt − qsy1)(Λ,αt)e(in) · (−qsy1)(Λ,αs)−1e(in)

=
∏
t6=s

(qs − qt)(Λ,αt) · (−qsy1)(Λ,αs)−1e(in)

where the last equality follows because the ‘cyclotomic relation’ y(Λ,αs)
1 e(in) = 0,

holds in RΛ
n . Thus, the Theorem holds when n = 1.

Now suppose that n > 1 and that the Theorem holds for smaller n. Then, using
the definitions,

zn = e(in)
∏
t∈I

(Ln − qt)(Λ,αt)−δst · zn−1 ·
(

1 +
n−1∑
j=1

Tn−1 . . . Tj

)
e(in)

=
∏
t∈I

(Ln − qt)(Λ,αt)−δst · e(in)zn−1 ·
(

1 +
n−1∑
j=1

Tn−1 . . . Tj

)
e(in).

By induction and (A5), there exists a scalar non-zero C ∈ K such that

e(in)zn−1 = zn−1e(in) = Cyε,sn−1

∏
i∈I

e(in−1 ∨ i) · e(in)

= Cyε,sn−1e(in)

Let d′n = dn − δe|n. Then there exist constants C ′a ∈ K, for a ≥ d′n, such that∏
t∈I

(Ln−qt)(Λ,αt)−δst · e(in)zn−1

= C
∏
t∈I

(
qs+(n−1)(1− yn)− qt

)(Λ,αt)−δst · yε,sn−1e(in)

= e(in)yε,sn−1

∑
a≥d′n

Cay
a
n,

with Cd′n = C(−q)(s+(n−1))d′n
∏
t(q

s+(n−1)−qt)(Λ,αt)−δst , where the product is over
those t ∈ I with t 6≡ s + (n − 1) (mod eZ) . In particular, Cd′n 6= 0. Next, recall
from Theorem 3.5 that

Tke(in) =
(
ψkQk(in)− Pk(in)

)
e(in),

for 1 ≤ k ≤ n. Applying the relations in (3.1), if 1 ≤ k1 < · · · < kp < n then

e(in)ψkp . . . ψk1e(in) = ψkp . . . ψk1e(sk1 . . . skp · in)e(in) = 0.

Moreover, by the proof of Proposition A3 we know that zn−1yi = 0, for 1 ≤ i < n.
Therefore, when we expand Pj(in) as a power series in KJy1, . . . , ynK only those
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terms in KJynK contribute to zn. Putting all of this together we find that

zn = e(in)yε,sn−1

∑
a≥d′n

C ′ay
a
n

for some C ′a ∈ K. Notice that only one of these terms can survive since zn is
homogeneous by Proposition A3. By (3.3) the constant term of Pj(in) is −(1 −
q)/(1− q−1) = q, so

C ′d′n
Cd′n

= 1 +
n−1∑
j=1

qt = 1 + q + · · ·+ qn−1.

Therefore, C ′d′n 6= 0 if and only if e - n, which is exactly the case when d′n = dn so
the Theorem holds when e - n.

Finally, suppose that e|n. Then C ′d′n = 0, by what we have just shown, and
dn = d′n + 1, so we need to show that C ′d′n+1 6= 0. This time the degree one term
of Pn(in) and the degree zero terms of Pj(in), for 1 ≤ j < n, contribute to C ′d′n+1.
Using (3.3) again, we find that

C ′d′n+1

Cd′n
=

q

q − 1
(
q + q2 + · · ·+ qn−1) =

q

1− q
6= 0.

This completes the proof of the Theorem. �

We remark that we do not know how to prove Theorem A6 using the relations
directly. One problem, for example, is that it is not clear from the proof of The-
orem A6 that Cd′n+1 = 0 when e - n – note that if Cd′n+1 6= 0 then zn would not
be homogeneous since Cd′n 6= 0 when e - n. We are able to prove Theorem A6 only
because we already know that zn is homogeneous by Proposition A3.
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