GRADED CELLULAR BASES FOR THE CYCLOTOMIC
KHOVANOV-LAUDA-ROUQUIER ALGEBRAS OF TYPE A

JUN HU AND ANDREW MATHAS

ABSTRACT. This paper constructs an explicit homogeneous cellular basis for
the cyclotomic Khovanov—Lauda—Rouquier algebras of type A over a field.

1. INTRODUCTION

In a groundbreaking series of papers Brundan and Kleshchev (and Wang) [6—
8] have shown that the cyclotomic Hecke algebras of type G(¢,1,n), and their
rational degenerations, are graded algebras. Moreover, they have extended Ariki’s
categorification theorem [2] to show over a field of characteristic zero the graded
decomposition numbers of these algebras can be computed using the canonical bases
of the higher level Fock spaces.

The starting point for Brundan and Kleshchev’s work was the introduction of
certain graded algebras % which arose from Khovanov and Lauda’s [23, §3.4]
categorification of the negative part of quantum group of an arbitrary Kac-Moody
Lie algebra and, independently, in work of Rouquier [31]. In type A Brundan and
Kleshchev [6] proved that the (degenerate and non-degenerate) cyclotomic Hecke
algebras are Z-graded by constructing explicit isomorphisms to %Z2.

The cyclotomic Khovanov-Lauda—Rouquier algebra %2 is generated by
certain elements {¢1, ..., Yn—1}U{y1,...,yntU{e(i) | i € (Z/eZ)" } which are sub-
ject to a long list of relations (see Definition 3.1). Each of these relations is homo-
geneous, so it follows directly from the presentation that %2 is Z-graded. Unfortu-
nately, it is not at all clear from the relations how to construct a homogeneous basis
of #2, even using the isomorphism from %2 to the cyclotomic Hecke algebras.

The main result of this paper gives an explicit homogeneous basis of Z*. In
fact, this basis is cellular so our Main Theorem also proves a conjecture of Brundan,
Kleshchev and Wang [8, Remark 4.12].

To describe this basis let 2?2 be the set of multipartitions of n, which is a
poset under the dominance order. For each A € 22 let Std(A) be the set of
standard A-tableaux (these terms are defined in §3.3). For each A € 2 there is an
idempotent ex and a homogeneous element yx € K[y1,. .., yn| (see Definition 4.15).
Brundan, Kleshchev and Wang [8] have defined a combinatorial degree function
deg : ][, Std(A) — Z and for each t € Std(A) there is a well-defined element
Yay € (Y1, -+, ¥n—1). Our Main Theorem is the following.

Main Theorem. The cyclotomic Khovanov-Lauda—Rouquier algebra Z2 is a graded
cellular algebra, with respect to the dominance order, with homogeneous cellular ba-
548

{Viexyatbay | A € 2 and s,t € Std(A) }.
Moreover, deg (w;(ﬁ)@\y}\wd(t)) = degs + degt.
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We prove our Main Theorem in the two really interesting cases where %2 is
isomorphic to either a degenerate or a non-degenerate cyclotomic Hecke algebra.
In particular, these results imply that this basis is a homogeneous basis for %{} if
either e = 0 or e is a non-zero prime number. More generally, we show that over Z
the algebra %2 (Z) can have p-torsion, for a prime p, only if p divides e. This implies
that the t-basis is a homogeneous basis for the O-algebra Z2(0) = ZX(7Z) ®7 O
whenever O is commutative integral domain O in which e - 1 is invertible.

The main difficulty in proving this theorem is that the graded presentation of the
cyclotomic Khovanov-Lauda—Rouquier algebras hides many of the relations between
the homogeneous generators. To overcome this we use the Brundan-Kleshchev
isomorphism theorem to recast everything in terms of the representation theory of
the cyclotomic Hecke algebras of type G(¢,1,n). The key step is the realization
that the idempotents e(i) can be lifted to an integral form of the Hecke algebra
defined over a discrete valuation ring O, where they become natural sums of the
seminormal basis elements [28,29]. By lifting exyx to this integral form we are
able to compare these elements with the standard basis of the cyclotomic Hecke
algebras [5,12], which allows us to prove our main theorem.

In fact, we give two graded cellular bases of the cyclotomic Khovanov-Lauda-
Rouquier algebras ,@,/L\ Intuitively, one of these bases is built from the ¢rivial rep-
resentation of the Hecke algebra and the other is built from its sign representation.
We then show that these two bases are dual to each other, modulo more dominant
terms. As a consequence, we deduce that the blocks of #2 are graded symmetric
algebras (see Corollary 6.18), as conjectured by Brundan and Kleshchev [7, Re-
mark 4.7].

This paper is organized as follows. In section 2 we define and develop the repre-
sentation theory of graded cellular algebras, following and extending ideas of Gra-
ham and Lehrer [18]. Just as with the original definition of cellular algebras, graded
cellular algebras are already implicit in the literature in the work of Brundan and
Stroppel [9,10]. In section 3, following Brundan and Kleshchev [6] we define the
cyclotomic Khovanov-Lauda—Rouquier algebras of type G(¢,1,n) and recall Brun-
dan and Kleshchev’s all important graded isomorphism theorem. In section 4 we
shift gears and show how to lift the idempotents e(i) to #°, an integral form of the
non-degenerate cyclotomic Hecke algebra 2. We then use this observation to pro-
duce a family of non-trivial homogeneous elements of Z} = 2 including exyx,
for A € 22 In section 5 we lift the graded Specht modules of Brundan, Kleshchev
and Wang to give a graded basis of #* and then in section 6 we construct the
dual graded basis and use this to show that the blocks of 7" are graded symmet-
ric algebras. As an application we construct an isomorphism between the graded
Specht modules and the dual graded Specht modules, which are defined using our
second graded cellular basis of /2. In section 7 we consider the graded cellular
basis of the degenerate cyclotomic Hecke algebras H2 = 2. We then apply all
of our results to study the cyclotomic Khovanov-Lauda-Rouquier algebras %2 over
more general rings. In an appendix, which was actually the starting point for this
work, we use a different approach to explicitly describe the homogeneous elements
which span the one dimensional two-sided ideals of JZA.

2. GRADED CELLULAR ALGEBRAS

This section defines graded cellular algebras and develops their representation
theory, extending Graham and Lehrer’s [18] theory of cellular algebras. Most of
the arguments of Graham and Lehrer apply with minimal change in the graded
setting. In particular, we obtain graded cell modules, graded simple and projective
modules and a graded analogue of Brauer-Humphreys reciprocity.



GRADED CELLULAR ALGEBRAS 3

§2.1. Graded algebras. Let R be a commutative integral domain with 1. In this
paper a graded R-module is an R-module M which has a direct sum decomposi-
tion M = @ oy Mg. If m € My, for d € Z, then m is homogeneous of degree d
and we set degm = d. If M is a graded R-module let M be the ungraded R-module
obtained by forgetting the grading on M. If M is a graded R-module and s € Z
let M (s) be the graded R-module obtained by shifting the grading on M up by s;
that is, M (s)q = My_s, for d € Z.

A graded R-algebra is a unital associative R-algebra A = @,., Aq which is
a graded R-module such that AgA, C Ay, for all d,e € Z. Tt follows that 1 € Ag
and that Ay is a graded subalgebra of A. A graded (right) A-module is a graded R-
module M such that M is an A-module and MgA, C My, for all d, e € Z. Graded
submodules, graded left A-modules and so on are all defined in the obvious way.
Let A-Mod be the category of all finitely generated graded A-modules together
with degree preserving homomorphisms; that is,

Homua(M,N)={f € Homa(M,N) | f(My) CNyforalldeZ},
for all M, N € A-Mod. The elements of Hom4 (M, N) are homogeneous maps of
degree 0. More generally, if f € Hom4(M(d), N) = Homa (M, N{—d)) then f is a
homogeneous map from M to N of degree d and we write deg f = d. Set
Hom’ (M, N) = @5 Hom4 (M (d), N) = @5 Hom (M, N(—d))
dez dez
for M, N € A-Mod.

§2.2. Graded cellular algebras. Following Graham and Lehrer [18] we now de-
fine graded cellular algebras.

2.1. Definition (Graded cellular algebras). Suppose that A is a Z-graded R-algebra
which is free of finite rank over R. A graded cell datum for A is an ordered
quadruple (£, T,C,deg), where (£, >) is the weight poset, T()) is a finite set
for A € &, and
C: H T(\) x T(\) — A; (s,t) — ¢, and deg: H T\ —Z
ez AP
are two functions such that C' is injective and
(GC1) {c)|s,t€T(\),\ € £} is an R-basis of A.
(GC2) Each basis element ¢, is homogeneous of degree degc), = degs + degt, for
A€ Zand s, teT(N).
(GC3) If s,t € T(A), for some A € &, and a € A then there exist scalars r¢,(a),
which do not depend on s, such that

coa = Z e (a)cd, (mod AP
veET(N)

where A™* is the R-submodule of A spanned by { %, | 4> X and a,b € T'(u) }.
(GC4) The R-linear map #: A— A determined by (¢,)* = 3\, for all A € Z and
all s,t € &2, is an anti-isomorphism of A.

A graded cellular algebra is a graded algebra which has a graded cell datum.
The basis {c | A € & and 5,t € T(\} is a graded cellular basis of A.

If we omit (GC2) then we recover Graham and Lehrer’s definition of an (un-
graded) cellular algebra. Therefore, by forgetting the grading, any graded cellular
algebra is an (ungraded) cellular algebra in the original sense of Graham and Lehrer.
2.2. Examples a) Let A = gl,(R) be the algebra of 2 x 2 matrices over R. Let
P = {x} and T(x) = {1, 2} and set

c11 =e12, Ci2=¢€11, Cz1 =ezp and coy = eo,
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with deg(1) = 1 and deg(2) = —1. Then (£, T,C,deg) is a graded cellular basis
of A. In particular, taking R to be a field this shows that semisimple algebras can
be given the structure of a graded cellular algebra with a non-trivial grading.

b) Brundan has pointed out that it follows from his results with Stroppel that the
Khovanov diagram algebras [9, Cor. 3.3], their quasi-hereditary covers [9, Theo-
rem 4.4], and the level two degenerate cyclotomic Hecke algebras [10, Theorem 6.6]
are all graded cellular algebras in the sense of Definition 2.1. <&

2.3. Definition (Graded cell modules). Suppose that A is a graded cellular algebra
with graded cell datum (£2,T,C,deg), and fix A € &. Then the graded cell
module C? is the graded right A-module

cr=pc,
2€ZL

where C? is the free R-module with basis { ¢ | t € T()\) and degt= 2} and where
the action of A on C* is given by

by by
cra= E rw(a)cs,
veT(N)

where the scalars ry,(a) are the scalars appearing in (GC3).
Similarly, let C** be the left graded A-module which, as an R-module is equal
to C*, but where the A-action is given by a - x := za*, for a € A and z € C**.

It follows directly from Definition 2.1 that C* and C** are graded A-modules.
Let AZ* be the R-module spanned by the elements { i, | x> A and u,0 € T'(1) }.
It is straightforward to check that AZ* is a graded two-sided ideal of A and that

(2.4) APV AP = C A @p Cr 2 (B CMdegs)
s€T(N)
as graded (A, A)-bimodules for the first isomorphism and as graded right A-modules
for the second.
Let ¢t be an indeterminate over Ny. If M = @,z M, is a graded A-module

such that each M, is free of finite rank over R, then its graded dimension is the
Laurent polynomial

Dim, M =Y _(dimp Mj)t".
kEZ

2.5. Corollary. Suppose that A is a graded cellular algebra and A € &. Then
Dim = Y s,
seT(N)

Consequently, Dim; A = Z Z gdegstdegt — Z (Dith)‘)Q.
AEP 5 teT(N) AP

Suppose that 1 € &2. Then it follows from Definition 2.1, exactly as in [18,
Prop. 2.4], that there is a bilinear form ( , ), on C* which is determined by
Clcfscfb = <Cg7 c}:>ﬂcgb (mOd ADH)’

for any s,t,a,b € T(u). The next Lemma gives standard properties of this bilinear
form (, ),. Just as in the ungraded case (see, for example, [27, Prop. 2.9]) it
follows directly from the definitions.

2.6. Lemma. Suppose that p € & and that a € A, x,y € C*. Then

(T, 9)u = (Y, ), (za,y), = (z,ya"), and  xchy = (x,cf)uct,

for all s,t € T(u).
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We consider the ring R as a graded R-module with trivial grading: R = Ry.
Observe that C* @ C* is a graded A-module with degax ® y = degx + degy.

2.7. Lemma. Suppose that u € &. Then the induced map
FiCP @R CP Rz @y (2, ),
is a homogeneous map of degree zero. In particular,
radC* ={z € C* | (z,y), =0 for ally € C* }.
is a graded submodule of C*.

Proof. By Lemma 2.6, rad C* is a submodule of C* since ( , ), is associative (with
respect to the anti-automorphism *). It remains to show that the bilinear form
defines a homogeneous map of degree zero. Suppose that f(z ® y) # 0, for some
z,y € CH. Write x =), ; and y = Zj y;, where z; and y; are both homogeneous
of degree i. Then (z;,y;), # 0 for some i and j. Now write z; = ), asct and
yj = > becy’, for as, by € R such that as # 0 only if degs = i and by # 0 only if
degt=j. Fix any v € T'(i). Then by Lemma 2.6,

<5Ei7 yj>uct:n = Z asbt<0§7 Cf>/tcl;n = Z asbtc'gscfu (mOd ADH) .

s,t s,t

Taking degrees of both sides shows that (z;,y;), # 0 only if ¢ + j = 0. That is,
(x,y), # 0 only if deg(z®y) = 0 as we wanted to show. Finally, rad C* is a graded
submodule of C* because if z = ), z; € rad C* then z; € rad C*, for all 4, since
(', ). is homogeneous. O

The Lemma allows us to define a graded quotient of C*, for p € 2.
2.8. Definition. Suppose that u € &. Let D# = C#/rad C*.

By definition, D* is a graded right A-module. Henceforth, let R = K be a field
and A = @, ., A. a graded cellular K-algebra. Exactly as in the ungraded case
(see [18, Prop. 2.6] or [27, Prop. 2.11-2.12]), we obtain the following.

2.9. Lemma. Suppose that K is a field and that D* #£ 0, for p € &. Then:

a) The right A-module D* is an absolutely irreducible graded A-module.
b) The (graded) Jacobson radical of C* is rad C*.
c) If A€ 2 and M is a graded A-submodule of C*. Then

Hom’ (C*,C* /M) # 0
only if A > u. Moreover, if A = u then
Hom’ (C*,C* /M) = Hom 4 (C*,C* /M) = K.

In particular, if M is a graded A-submodule of C'* then every non-zero homo-
morphism from C* to C*/M is degree preserving.

Let Zy = {A€ 2| D*#0}. Recall that if M is an A-module then M is the
ungraded A-module obtained by forgetting the grading.

2.10. Theorem. Suppose that K is a field and that A is a graded cellular K -algebra.

a) If p € Py then D* is an absolutely irreducible graded A-module.

b) Suppose that A\, € Py. Then D* = DH(k), for some k € Z, if and only
ifA=p and k=0.

c) {D"k)|pe Py andk € Z} is a complete set of pairwise non-isomorphic
graded simple A-modules.
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Sketch of proof. Parts (a) and (b) follow directly from Lemma 2.9. For part (c),
observe that, up to degree shift, every graded simple A-module is isomorphic to
a quotient of A by a maximal graded right ideal. The graded cellular basis of A
induces a graded filtration of A with all quotient modules isomorphic to direct sums
of shifts of graded cell modules, so it is enough to show that every composition
factor of C* is isomorphic to D*(k), for some y € y and some k € Z. Arguing
exactly as in the ungraded case completes the proof; see [18, Theorem 3.4] or [27,
Theorem 2.16]. O

In particular, just as Graham and Lehrer [18] proved in the ungraded case, every
field is a splitting field for a graded cellular algebra.

2.11. Corollary. Suppose that K is a field and A is a graded cellular algebra over K .
Then { D" | p € Py } is a complete set of pairwise non-isomorphic ungraded simple
A-modules.

Proof. By Lemma 2.7, for each A € & the submodule rad C* is independent of the
grading so the ungraded module D* is precisely the module constructed by using the
cellular basis of A obtained by forgetting the grading. Therefore, every (ungraded)
simple module is isomorphic to D* by forgetting the grading in Theorem 2.10 (or,
equivalently, by [18, Theorem 3.4]). O

§2.3. Graded decomposition numbers. Recall that t is an indeterminate over Z.
If M is a graded A-module and D is a graded simple module let [M : D{(k)] be the
multiplicity of the simple module D(k) as a graded composition factor of M, for
k € Z. Similarly, let [M : D] the multiplicity of D as a composition factor of M.

2.12. Definition (Graded decomposition matrices). Suppose that A is a graded
cellular algebra over a field. Then the graded decomposition matrix of A is the
matrix D4 () = (dx,(t)), where

dy(t) =Y _[C*: D*(k)] tF,

keZ
for A € & and p € &.

Using Lemma 2.9 we obtain the following.

2.13. Lemma. Suppose that i € Py and A € &. Then
a) dau(t) € No[t,t71];
b) dr,(1) = [C* : D*; and,
¢) duu(t) =1 and dx,(t) # 0 only if A= p.

Next we study the graded projective A-modules with the aim of describing the
composition factors of these modules using the graded decomposition matrix.

A graded A-module M has a graded cell module filtration if there exists a
filtration

O=MyCMyCM,yC---CMx=M

such that each M; is a graded submodule of M and if 1 <4 < k then M;/M; 1 =
CMk), for some A\ € & and some k € Z. By [17, Theorem 3.2, Theorem 3.3], we
know that every projective A-module is gradable.

2.14. Proposition. Suppose that P is a projective A module. Then P has a graded
cell module filtration.

Proof. Fix a total ordering > on & = {A\; = Ay > --- > Ay} which is compatible
with > in the sense that if A > p then A - p. Let A(X\;) = U, <, A2 Then
)

0CANM)CAN) C---CA(MN)=4A
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is a filtration of A by graded two-sided ideals. Tensoring with P we have
0CPRAAN)CPRsAN) C---CPoaANN) =P,

a graded filtration of P. An easy exercise in the definitions (cf. [27, Lemma 2.14]),
shows that there is a short exact sequence

0— A1) — A(N\) — AR} /AP 0,

Since P is projective, tensoring with P is exact so the subquotients in the filtration
of P above are

P4 AN)/P®a A(Ni—1) 2 P @4 (AR JAPYM) 2 Py (CN @p CN),
where the last isomorphism comes from (2.4). Hence, P has a graded cell module

filtration as claimed. ]

For each p € & let P* be the projective cover of D¥. Then for each k € Z,
P (k) is the projective cover of D* (k).
2.15. Lemma. Suppose that A € & and p € &y. Then:

a) dy,(t) = Dim; Hom5 (P*,C™).

b) Hom’ (P*,C*) = P* @4 C* as Z-graded K-modules.
Proof. Part (a) follows directly from the definition of projective covers. Part (b)

follows using essentially the same argument as in the ungraded case; see the proof
of [18, Theorem 3.7(ii)]. O

2.16. Definition (Graded Cartan matrix). Suppose that A is a graded cellular
algebra over a field. Then the graded Cartan matrix of A is the matrix C4(t) =
(exu(t)), where

exult) =Y _[P*: D(k)] E",
kez
for A\, u € .

If M = (my;) is a matrix let M* = (mj;) be its transpose.

2.17. Theorem (Graded Brauer-Humphreys reciprocity). Suppose that K is a field
and that A is a graded cellular K-algebra. Then Ca(t) = Da(t)"Da(t).

Proof. Suppose that A, u € &y. Then by Proposition 2.14 and (2.4) we have
enlt) = STIPY s D)

keZ
=Y Y (P ®aC™) @ O : DMk E*
keZve
=> ) DimP* @4 C*[CY : D*(k)] t*
k€ZveP
=) Dim P @4 C Y [CY : DH(k)] tF
veP keZ
= Z duk(t)dyu(t%
vey
where we have used Lemma 2.15 in the last step. O

Let Ko(A) be the (enriched) Grothendieck group of A. Thus, Ky(A) is the
free Z[t,t~!]-module generated by symbols [M], where M runs over the finite
dimensional graded A-modules, with relations [M (k)] = t*¥[M], for k € Z, and
[M] = [N] + [P] whenever 0 — N — M — P — 0 is a short exact sequence of
graded A-modules. Then K(A) is a free Z[t, t~"]-module with distinguished bases
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{[D*]|p€ Py} and {[C*] | p € HPy}. Similarly, let K5(A) be the (enriched)
Grothendieck group of finitely generated (graded) projective A-modules. Then
Ki(A) is free as a Z[t,t!]-module with basis {[P*] | p € ) }. Replacing Py
with & in the definition of Ky(A), gives the free Z[t,t ']-module .Z (A) which is
generated by symbols [C#] for p € &2. Theorem 2.17 then says that the following

diagram commutes:
Da(t)
—_—

K5 (4) F(4)

Ca®) D

Ko(A)

Recall from Definition 2.1 that A is equipped with a graded anti-automorphism .
Let M be a graded A-module. The contragredient dual of M is the graded A-
module

M® = Hom’ (M, K) = @ Homa (M(d), K)
deZ
where the action of A is given by (fa)(m) = f(ma*), for all f € M®, a € A
and m € M. As a vector space, Mf = Homs(M_g4, K), so Dim; M® = Dim,—1 M.

2.18. Proposition. Suppose that p € Py. Then D" = (DH)®.

Proof. By Lemma 2.7 (, ), restricts to give a non-degenerate homogeneous bilinear
form of degree zero on D*. Therefore, if d is any non-zero element of D* then
the map D* — (D*)® given by d — (d,—),, for d € DM, gives the desired
isomorphism. O

If M is a graded A-module then (M (k))® = (M®)(—k) as K-vector spaces, for
any k € Z. Consequently, contragredient duality induces a Z-linear automorphism
~: Ko(A) — Ko(A) which is determined by

tFM®] = t~F[M],
for all M € A-Mod and all k € Z.

If p € Py then [D#] = [D*] by Proposition 2.18. Define polynomials ey, (t) €
Z[t,t7'] by setting (ex,(—t)) =Da(t)"'. Then e,, =1 and

DM ="+ 3 epu(—[C"]
VEI;J;D

(Following the philosophy of the Kazhdan-Lusztig conjectures, we define the poly-
nomials ey, (—t) in the hope that ey, (t) € No[t].) A priori, dx,(t) € No[t,t~!] and
exu(t) € Z[t,t71]. In contrast, we have a ‘Kazhdan-Lusztig basis’ for Ko(A).

2.19. Proposition. There exists a unique basis {[E*] | € Py} of Ko(A) such

that if p € Py then [EF] = [E*] and
B =0+ Y fun(-0[C)

AEPy
p>A

for some polynomials f,x(t) € tZ[t], for A € Py.

Proof. Using Proposition 2.18 it is easy to see that if A € &y then there exist
polynomials ry,,(t) € Z[t,t 7], for u € P, such that

[CA = [CN+ > mu®)Ch].
HE P
ADp
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The Corollary follows from this observation using a well-known inductive argument
due to Kazhdan and Lusztig; see [22, Theorem 1.1] or [13, 1.2]. O

It seems unlikely to us that there is a mild condition on A which ensures that
[EF] = [D*#], or equivalently, d ,(t) € tNo[t] when X > p. We conclude this section
by discussing a strong assumption on A which achieves this.

A graded A-module M = @, M; is positively graded if M; = 0 whenever
i < 0. It is easy to check that a graded cellular algebra A is positively graded if
and only if degs > 0, for all s € T'(\), for A € &. Consequently, if A is positively
graded then so is each cell module of A.

A graded A-module M = @, M; is pure of degree d if M = M.

2.20. Lemma. Suppose that A is a positively graded cellular algebra over a field K
and suppose that A € &P and p € Py. Then:

a) DH is pure of degree 0; and,
b) dx.(t) € Not].

Proof. The bilinear form ( , ) on C* is homogeneous of degree 0 by Lemma 2.7.
Therefore, if 2,y € C* and (z,y), # 0 then degz + degy = 0, so that =,y € C.
This implies (a). In turn, this implies (b) because D (k) can only be a composition
factor of C* if kK > 0 (and A > i) since A is positively graded. O

In the ungraded case, Graham and Lehrer [18, Remark 3.10] observed that a
cellular algebra is quasi-hereditary if and only if & = £, which is naturally still
true in the graded setting. Conversely, any graded split quasi-hereditary algebra
that has a graded duality which fixes the simple modules is a graded cellular algebra
by the arguments of Du and Rui [14, Cor. 6.2.2]. Similarly, it is easy to see that
if A is a positively graded cellular algebra such that & = &, then A-Mod is a
positively graded highest weight category with duality as defined in [11].

If M = @,-,M; is a positive graded A-module let M = @, ,M;. If Ais
positively graded then M, is a graded A-submodule of M. Let Rad M be the
Jacobson radical of M.

As the following Lemma indicates, there do exist positively graded quasi-hereditary
cellular algebras such that, in the notation of Proposition 2.19, [D*] # [E*] for all
n e P = yo.

2.21. Lemma. Suppose that A is a positive graded quasi-hereditary cellular algebra
over a field. Then the following are equivalent:

a) Ag = A/AL is a (split) semisimple algebra;
b) Rad A = A, ;

c) radCH = C¥, for all p e Z;

d) [D*] = [E*], for all p € &; and,

e) dau(t) € tNo[t], for all X # pe 2.

Proof. As A is quasi-hereditary, if p € 2 then D* # 0 and rad C* = Rad C* by the
general theory of cellular algebras (by Lemma 2.9). Therefore, since A is positively
graded, all of the statements in the Lemma are easily seen to be equivalent to the
condition that D* = C*/C!, for all p € 2. O

3. KHOVANOV-LAUDA-ROUQUIER ALGEBRAS AND HECKE ALGEBRAS

In this section, following [6], we set our notation and define the cyclotomic
Khovanov-Lauda—Rouquier algebras of type A and recall Brundan and Kleshchev’s
graded isomorphism theorem.
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§3.1. Cyclotomic Khovanov-Lauda—Rouquier algebras. Asinsection 2, let R
be a commutative integral domain with 1.

Throughout this paper we fix an integer e such that either e = 0 or e > 2. Let I',
be the oriented quiver with vertex set I = Z/eZ and with directed edges i — i+1,
for all ¢ € I. Thus, I'¢ is the quiver of type Ay, if e = 0, and it is the quiver of type
AWM if e > 2.

Let (a;,5)ijer be the symmetric Cartan matrix associated with I'., so that
2 ifi=j
0 ififj+l,

-1 ife#2andi=j+1,
-2 ife=2andi=j+1.

@5

Following Kac [21, Chapt. 1], let (h,II,II) be a realization of the Cartan matrix,
and {«a; |7 € I} the associated set of simple roots, { A; | i € I} the fundamental
dominant weights, and (-, -) the bilinear form determined by

(ozi,aj) = ai,j and (Ai,Oéj) = 5”, fOI‘ Z,_] S I.

Finally, let P, = @,.; NoA; be the dominant weight lattice of (h,II, IT) and let
Q+ = @;c; Noa; be the positive root lattice.

For the remainder of this paper fix positive integers n and ¢, a dominant weight
A € Py, and a sequence of integers k = (k1, ..., k) € Z* such that

(Aay)) =#{1<s</l|ks=1i (mode) }, forie I,

and ks — Ks41 > n, for 1 < s < £. All of the bases considered in this paper will
depend upon the choice of multicharge k. The assumption that ks — kKs41 > n
is used only to streamline the choice of modular systems for the cyclotomic Hecke
algebras in sections 4 and 7, respectively.

The following algebra has its origins in the work of Khovanov and Lauda [23],
Rouquier [31] and Brundan and Kleshchev [6].

3.1. Definition. The Khovanov-Lauda—Rouquier algebra %/ of weight A and
type I' is the unital associative R-algebra with generators

{’(/Jh...,’(/Jn,l}U{yh...,yn}U{e(i)|i€In}

and relations

A,y . . . . .
yee(i) = o, e(i)e(j) = dye(i), Siemmeli) =1,

yre(i) = e(i)yra 1/17,e(i) = 6(5r'i)1/).r, YrYs = YsYr,
UrYs = YsPr, if s#rr+1,
%1/15 = d’swra if ‘T‘ — S| > 1,
. yr/l,[}r‘i’lei, lf’LT:’LT. s
Drgeireli) = ( . Je(i) i =i
y?”,l/}’l“e(l)a if (73 # Tp41
. -+ De(i), if iy = dpq1,
rirtre(i) = Vot De) iy = drta
T/JTyre(l), if 1y # 41
07 lf iT = ir+1,

Pre(i) =

if i #ipp1 £ 1,

ife#2and i1 =4 + 1,
ife#2and ip4q1 =14, — 1,
ife=2and t41 =% +1
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(Vr41Ur0r 41 + De(i), ife#2and i, 9 =i, =ipp1 — 1,
(Vr+19rri1 — De(i), if e # 2 and ir42 = iy = ip41 + 1,
Ve prore(i) = ¢ (Yrp1rthrgr + yr
—2yri1 +yry2)e(i), ife=2and ipyo =i =ipp1 + 1,
UVrp1Urthryr1e(i), otherwise.

for i,j € I"™ and all admissible r, s.

It is straightforward, albeit slightly tedious, to check that all of these relations
are homogeneous with respect to the following degree function on the generators

dege(i) =0, degy, =2 and degvse(i) = —ai, i, »

for 1 <r<n,1<s<nandie€ I". Therefore, the Khovanov-Lauda—Rouquier
algebra %2 is Z-graded. From this presentation, however, it is not clear how to
construct a basis for Z2, or even what the dimension of %2 is.

§3.2. Cyclotomic Hecke algebras. Suppose now that K is a field and that ¢ € K
is a primitive e*" root of unity, if e > 0, and not a root of unity if e = 0. Note that
if K is a field of characteristic p > 0 then p does not divide e.

3.2. Definition. Suppose that ¢ € K is a primitive e'" root of unity if e > 1; or

not a root of unity if e = 0. The cyclotomic Hecke algebra " is the unital

associative K-algebra with generators Ty, T1,...,T,—1 and relations
[Tier(To — g)*e) =0, (T, + 1)(T;, — q) = 0,
ToT\ToT, = TlTOTlTo, T,.T, = TsTra if |’I" _ 3| > 1,

TST8+1TS = Ts+1TsTs+17
forl<r<nandl<s<n-1.

For use throughout this paper we now set up the notation from [6] needed to
describe the Brundan and Kleshchev’s isomorphism #2 = 2. Recall that ¢ =
>ier(A, ;). The algebra £/ is a cyclotomic Hecke algebra of type G(£,1,n).

Let &,, be the symmetric group of degree n and let s; = (i,i + 1) € &, for
1 <i<mn. Then {s1,...,8,-1} is the standard set of Coxeter generators for &,.
If w € G,, then the length of w is

lw)=min{k|w=s; ...s; for some 1 <iy,...,ip <n}.

Ifw=s; ...s, with k = {(w) then s;, ...s;, is a reduced expression for w. In
this case, set Ty, := Tj, ...T;,. Then T,, is independent of the choice of reduced
expression because the generators T1,...,T,_1 satisfy the braid relations of &,,;
see, for example, [27, Theorem 1.8]. Set L; = Ty and L;y1 = ¢ 'T;L;T;, for
i=1,...,n—1. Then Ariki and Koike [4, Theorem 3.10] showed that

{LY ... L¢"Ty |0<ay,...,a, <land w € &, }

is an K-basis of 2. This basis is not homogeneous in general.
Suppose that M is a finite dimensional .#*-module. Then, by [19, Lemma 4.7],
the eigenvalues of each L,, on M are of the form ¢* for i € I. So M decomposes as

a direct sum M = @, M; of its generalized eigenspaces, where

Mi:={veM|v(L,—q¢")f=0forr=1,2,--- ,nand k>0}.
(Clearly, we can take k = dim M here.) In particular, taking M to be the regular
A2 -module we get a system {e(i) ‘ iel "} of pairwise orthogonal idempotents in

A2 such that Me(i) = M; for each finite dimensional right #*-module M. Note
that these idempotents are not, in general, primitive. Moreover, all but finitely
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many of the e(i)’s are zero and, by the relations, their sum is the identity element
of #2.
Following Brundan and Kleshchev [6, §5] we now define elements of JZ* which

satisfy the relations of Z2. For r = 1,...,n define
yr = (1—q " Ly)e(i).
ieln

By (3.8), or less directly, [6, Lemma 2.1], y1,...,y, are nilpotent elements of £

n

SO any power series in v, ..., ¥, can be interpreted as elements of s#*. Next, for
every i € I", we set

yr() = q¢" (1= y,) € Kyy,- .., ynl,
and define formal power series P.(i) € K[y;,yr+1] by setting
) 1 if iy = iy,
P’l‘(l) = . o —1 —1 e . . i
(1 - q) (1 - yr(l)yr+1(1) ) if 28 7é rg1.

By a small generating function exercise, if 4, # 4,41 then

N ¢ Yrr — o) Yrn — gy )
(33) Pu(i) = 1— gir—irnt { + Z (1= gir—irt1)k :
k>1
Following [6] we also set
L=q—=yr+qyr1 it i = irga,

() = qyr1(D))/ (e () = yra (1)) i drpy # 4 21,
(3:4) Qr(i) = { (9o (1) = qyr1 (0)/ (D) = g1 () i e #2 and irpy = iy + 1,
qir ife#2and i,y =14, —1,
q [ (yr () — yr1 (i) ife=2and i,41 =i + 1.
Brundan and Kleshchev note that in K[y, yr+1] the numerators on the right hand
side of equations are always divisible by the corresponding denominators so by
canceling these common factors Q,.(i) can be interpreted as an element of JZ*.
Finally, forr=1,...,n — 1 set

- Z (T, + P.(1))Q. (i) te(i).
icln
We are abusing notation here because we are not distinguishing between the
generators of the cyclotomic Khovanov-Lauda—Rouquier algebra and the elements

that we have just defined in 2. This abuse is justified by the Brundan-Kleshchev
graded isomorphism theorem.

3.5. Theorem (Brundan-Kleshchev [6, §4.5]). The map #> — H™ which sends

e(i) — e(i), Yr — Yr and s — Py,

forieI", 1 <r<mnandl < s < n, ertends uniquely to an isomorphism of
algebras. An inverse isomorphism is given by

Le—= Y g —ye(i), and  Toe Y (1h.Qu() — Pu(i))e(),
ieln icIn
fori1<r<nandl <s<n.
Hereafter, we freely identify the algebras #» and £, and their generators,

using this result. In particular, we consider /" to be a Z-graded algebra. All
A2 -modules will be Z-graded unless otherwise noted.
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§3.3. Tableaux combinatorics and the standard basis. We close this section
by introducing some combinatorics and defining the standard basis of JZA.

Recall that an multipartition, or /-partition, of n is an ordered sequence A =
AD [ X®) of partitions such that [AM| 4+ .- 4+ |X| = n. The partitions
AL AD are the components of A. Let ?,fl\ be the set of multipartitions of
n. Then &2 is partially ordered by dominance where A > p if

s—1 s—1 j
SCES SIS NCIES S
t=1 =1 t=1 i=1

foralll1<s</fandall j >1. Wewrite A\> pif A> por A= p.
The diagram of an multipartition A € 222 is the set

A ={(re)|[1<c<AD r>0and1 <1<},

which we think of as an ordered /-tuple of the diagrams of the partitions A}, ... \(©),
A A-tableau is a bijective map t: [A\] — {1,2,...,n}. We think of t = (¢, ... ()
as a labeling of the diagram of A. T his allows us to talk of the rows, columns and
components of t. If t is a A-tableau then set Shape(t) = A.

A standard A-tableau is a A-tableau in which, in each component, the entries
increase along each row and down each column. Let Std(A) be the set of standard
A-tableaux. If t is a standard A-tableau let t; be the subtableau of t labeled by
1,...,kint If s € Std(A) and t € Std(p) then s dominates t, and we write s > t,
if Shape(sy) > Shape(ty), for k = 1,...,n. Again, we write s > t if s > t and
s # t. Extend the dominance partial ordering to pairs of partitions of the same
shape by declaring that (u,v) > (s,t), for (s,t) € Std(A)? and (u,v) € Std(p)?, if
(s,t) # (u,v) and either > A, or g =X and u> s and v > t.

Let t* be the unique standard A-tableau such that t* > t for all t € Std(\).
Then t* has the numbers 1, ..., n entered in order, from left to right and then top
to bottom in each component, along the rows of A. The symmetric group acts on
the set of A-tableaux. If t € Std(A) let d(t) be the permutation in &,, such that
t = tMd(t).

Recall from section 3.1 that we have fixed a multicharge k = (k1,. .., k¢) which
determines A.

3.6. Definition ([12, Definition 3.14]). Suppose that A € £2 and s,t € Std(\).
Define mgsy = Ty(sy-1maTy(), where

PSRN PN

mA:H H (Lk—q'ﬁs)- Z Tw.
5=2 k=1

weG

Here and below whenever an element of %" is indexed by a pair of standard
tableaux then these tableaux will always be assumed to have the same shape.

3.7. Theorem (The standard basis theorem [12, Theorem 3.26]). The basis
{mgc | 5,t € Std(N) for X € 221
is an ungraded cellular basis of .

Using the theory of (ungraded) cellular algebras from section 2 (or [18]), we
could now construct Specht modules, or cell modules, for %ﬁf‘. We postpone doing
this until section 5, however, where we are able to define graded Specht modules
using Theorem 5.8 and the theory of graded cellular algebras developed in section 2.

Suppose that A € 22 and v = (r, ¢, 1) € [A]. Then the content of v is cont(v) =
ki + ¢ —r € Z and the residue of v is res(vy) = cont(y) + eZ. Thus, cont(y) € Z
and res(y) € I. If tis a standard A-tableau and 1 < k < n set cont¢(k) = cont(v)
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and resy(k) = res(y), where v is the unique node in [A] such that t(y) = k. Then,
by [20, Prop. 3.7], there exist scalars ry, € K such that

(3'8) MLy = qrest(k)mst + Z TupMyy-
(u,0)>(s,t)

If t € Std(A) is a standard A-tableau then its residue sequence res(t) is the
sequence

res(t) = (res(1),...,res(n)).
We also write i' = res(t). Set Std(i) = [[ycpa { t € Std(A) | res(t) =i}.

4. THE SEMINORMAL BASIS AND HOMOGENEOUS ELEMENTS OF JZ°

The aim of this section is to give an explicit description of the non-zero idem-
potents e(i) in terms of certain primitive idempotents for the algebra JZ2 in the
semisimple case. We then use this description to construct a family of homogeneous
elements in 522 indexed by Z25.

§4.1. The Khovanov-Lauda—Rouquier idempotents. Let £ = (L;,...,L,)
be the subalgebra of J#* generated by the Jucys-Murphy elements of 7. Then
ZA is a commutative subalgebra of 2.

The following simple Lemma indicates the difficulties of working with the homo-
geneous presentation of s#*: we do not know how to prove this result without re-
course to Brundan and Kleshchev’s graded isomorphism %/ = 7#* (Theorem 3.5).

4.1. Lemma. Suppose that e(i) # 0, for i€ I™. Then:
a) e(i) is the unique idempotent in S such that He(i) = 694, for j € I";
b) e(i) is a primitive idempotent in L2 ; and,
¢) i=res(t) for some standard tableau t.

Thus, the idempotents {e(i) | i € I™ } \ {0} are the (central) primitive idempotents
of L.

Proof. By definition, #e(i) = 0;;74 so (a) follows since e(i) € s e(i). Next,
observe that every irreducible representation of .Z/* is one dimensional since £ is a
commutative algebra over a field. Further, modulo more dominant terms, L acts on
the standard basis element mg; as multiplication by ¢*¢st(%) by (3.8). Therefore, the
standard basis of /" induces an .Z*-module filtration of /" and the irreducible
representations of #* are indexed by the residue sequences res(t) € I", for t a
standard A-tableau for some A € 222, Consequently, the decomposition JZ* =
@ 44 is nothing more than the decomposition of JZ* into a direct sum of block
components when 7 is considered as an .Z*-module by restriction. Parts (b)
and (c) now follow. O

4.2. Corollary. As (graded) subalgebras of >, L> = (y1,... yn,e(i) i€ ™).

Proof. By Theorem 3.5, if 1 < 7 < n then y, € £ and L, € (y1,...,Yn,e(i) |
i € I"). Further, by Lemma 4.1, e(i) € Z2, for i € I". Combining these two
observations proves the Corollary. O

§4.2. Idempotents and the seminormal form. Lemma 4.2 of [30] explicitly
constructs a family of idempotents in /" which are indexed by the residue se-
quences of standard tableaux. As we now recall, these idempotents are defined by
‘modular reduction’ from the semisimple case.

Let x be an indeterminate over k and let O = K|x](, be the localization of K[x]
at £ = 0. Then O is a discrete valuation ring with maximal ideal 7 = . Note
that 4+ ¢ is invertible in O since ¢ # 0. Let X = K (x) and consider O as a subring
of K.
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Let #° be the Hecke algebra of type G(¢,1,n) with parameters x + ¢ and
Qs = (v 4 q), for 1 < s < . That is, #° is the unital associative O-algebra

with generators Ty, 77, ...,T,—1 and relations
(To — (z+q)™)...(To — (z +¢)™) =0,
(T, +1)(T —x—q)=0, ToThToTy = TAToTh To,

T5T5+1Ts = Ts+1TsTs+1 and T, T, = TsT'm

for 1 <r <mnand 1l < s < n—1 and where in the last equation |r — s| > 1.
Exactly as in section 3.2, we can define elements T, and L; of jﬂo, for w € 6,, and
1 < i < n, and the main result of [4] says that /2 is free as an O-module with basis
{L{ ... L% Ty |0< a1,...,a, < £ and w € &, }. Moreover, " = #° @0 K.
Finally, let X := #° @0 %. Then X is a split semisimple algebra by Ariki’s
semisimplicity criterion [1] because in section 3.1 we fixed a multicharge x with
the property that k; — k;41 > n, for 1 < i < £. We abuse notation and write Ty,
Ly and mg for the elements of the three algebras J£° «— X and J#) as the
meaning should always be clear from context.
By [20, Prop. 3.7], the analogue of (3.8) for the algebras /£ and J£X is

(43) MmgeLy, = (.I + Q)Cont‘(k)mst + Z TupMyyp-
(u,0)>(s,t)

This equation motivates the following definition.

4.4. Definition ( [29, Defn 2.4]). Suppose that A € 22 and s,t € Std(A). Define

- Ly — (z+q)*
Fi = H H conti(k - c %K’
b g o<y T (z + g)conte(k) — (z 4 q)
c#cont (k)

and set fo = FamsiFy.

By (4.3), fst = mg + Z(um)b(m) TweMyyp, for some 1, € XK. Therefore,
{ fot | s,t € Std(A) for A € 22}

is a basis of #X. This basis is the seminormal basis of JX; see [29, Theo-
rem 2.11]. The next definition, which is the key to what follows, allows us to write
Fy in terms of the seminormal basis and hence connect these elements with the
graded representation theory.

Let A be a multipartition. The node a = (r,¢,l) € [A] is an addable node of A
if a ¢ [A] and [A] U {a} is the diagram of a multipartition. Similarly, p € [A] is a
removable node of A if [A] \ {p} is the diagram of a multipartition. Given two
nodes o = (r,¢,1) and B = (s,d,m) then « is below g if either [ > m, or [ = m
and r > s.

4.5. Definition ( [20, Defn. 3.15] and [29, (2.8)]). Suppose that A € &2 and t €
Std(A). For k =1,...,n let #(k) be the set of addable nodes of the multipartition
Shape(ty) which are below t~'(k). Similarly, let Z(k) be the set of removable
nodes of Shape(t;) which are below t~!(k). Now define

n cont¢(k) _ cont(a
D)+ H | I ((z + g)eomsetF) — (a4 g)eont(@))
et Hpe%(k) ((a: + g)eonte(k) — (z + q)cont(p))

where §(A) = %Zi:l 21210\55) - 1))‘55)-

Y= (7 +4q) € X,

It is an easy exercise in the definitions to check that the terms in the denominator
of ¢ are never zero so that ~; is a well-defined element of K. As the algebra X
is semisimple we have the following.
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4.6. Lemma ( [29, Theorem 2.15)). Suppose that X € 22 and t € Std(\). Then
Fi= %ftt is a primitive idempotent in J,X.

For any standard tableau t and an integer k, with 1 < k < n, define sets <7 (k)
and Z (k) by
AMk) = {a € (k) | res(a) = resi(k) }
and  ZM(k) = {p € Z(k) | res(p) = resi(k) } .

Using this notation we can give a non-recursive definition of the Brundan-Kleshchev-
Wang degree function on standard tableaux.

4.7. Definition (Brundan, Kleshchev and Wang [8, Defn. 3.5]). Suppose that A €
22 and that t is a standard A-tableau. Then

degt=">" (|4 (k)| — 2L (W) )
k=1
The next result connects the graded representation theory of £ with the semi-
normal basis.

4.8. Proposition. Suppose that e(i) # 0, for some i € I"™ and let

e = > ifﬁgejf;ﬁ.

seStd(i) '°
Then e(i)© € H#° and e(i) = e(i)® ®p 1k

Proof. Tt is shown in [30, Lemma 4.2] that e(i)© is an element of 52°. Therefore,
we can reduce e(i)® modulo 7 to obtain an element of 72 let é(i) = e(i)° ®o 1.
Then {é(j) |j € I™} is a family of pairwise orthogonal idempotents in #* such
that 1, = _; é(i) by [30, Cor. 4.7].

As in [30, Defn. 4.3], for every pair (s,t) of standard tableaux of the same
shape define go¢ = é(i®)ms¢é(it). Then {gs} is a (cellular) basis of J£* by [30,
Theorem 4.5]. Moreover, by [30, Prop. 4.4], if 1 < k < n then

gst(Lk - qrest(k)) = § TuoJuo,
(u,0)>>(s,t)
u€Std(i®) and veStd(i)

for some 7y, € K. It follows that ge((Ly — ¢***))N =0 for N > 0. Therefore,

M= Y Kguw =)
u standard
veStd(i)

Hence, e(i) = é(i) by Lemma 4.1(a) as required. O

§4.3. Positive tableaux. The idempotents e(i) in the graded presentation of J#A =
Z hide a lot of important information about the algebra. Proposition 4.8 gives
us a way of accessing this information.

Ifi = (i1,...,4,) € I" then set i, = (i1,...,4x) so that i, € I*, for 1 < k < n.

4.9. Definition. Suppose that i € I"™ and that s € Std(i). Then s is a positive
tableau if, for k =1,...,n —1:
a) ZMk+1) =0, and,
b) if a € P (k), where t € Std(ix) and t > s, then a € @/ (k) whenever « is
below s~ (k + 1).
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Let Std* (i) = {5 € Std(i) | s is positive }. If s € Std™ (i) then define

n
A2k
yEZHy]L; o )‘E%{\'
k=1
By definition, degs > 0 whenever s is positive. The converse is false because

there are many standard tableau t which are not positive such that degt > 0.
4.10. Examples (a) Suppose that e = 3, £ = 1 and i = (0,1,2,2,0,1,1,2,0).
Then the positive tableaux in Std(i) are:

1[2]3 1[2[3]5]6]8] [1]2]3][5]6]8]9]
4]5]6], [4]9 . 4] .
7[819] [7] 7]

(b) Suppose that e =3, £ =1 and let t = 2[4]5]6] 7‘. Then deg t = 0, however,

the tableau t is not positive.
(c) Suppose that e =2 and i = (0,1,1,0,1,0) and let

W=

2[4[5]

t= and s =

[o]es]=

1
3

14

5]

Then s and t both belong to Std(i) and Z2(k) = 0, for 1 < k < 6. However, s is
not a positive tableau because the node (3,1) = t~1(6) is below (2,2) = s71(6) and
(3,1) is not an addable node of ss. <&

Recall from section 3.2 that t* is the unique standard A-tableau such that t* > ¢,
for all t € Std(X). The tableaux t*, for X € ﬁfl‘, are the most important examples
of positive tableaux.

4.11. Lemma. Suppose that X € L. Then t* is positive.

Proof. By definition, 22 (k) = 0 for 1 < k < n, so it remains to check condition (b)
in Definition 4.9. Let § = (r,¢,l) be the lowest removable node of A, so that
t*(8) = n. By induction on n it suffices to show that a € @2 (n — 1) whenever
a = (r',¢,1') is below 3 and there exists a standard tableau t € Std(i}_;) such
that t > t*_; and a € Z(n — 1).

Let p = Shape(t). Since t > t}_; we have that pu®) = (0) for k¥ > I. Conse-
quently, o € Azf/t‘; (n—1)ifl’ > I. As ais below [ this leaves only the case when I’ = [
in which case we have that ' > 7. Since t > t}_; this forces a = (r +1,1,1) to be
the addable node of A in first column of the row directly below 3, so a € #A(n—1)
as required. O

Suppose that s is a positive tableau. To work with e(i®)ys we have to choose the
correct lift of it to J#°. Perhaps surprisingly, we choose a lift which depends on the
tableau s rather than choosing a single lift for each of the homogeneous elements

Yis-- - Yn-

4.12. Definition. Suppose that i € I"™ and s € Std™ (i). Define y© = Yoyl
where
vor= I (=@+q L) e’
acd (k)
for k=0,...,n (by convention, empty products are 1).

By definition, y© € J#°. Moreover, e(i*)ys = e(i*)9y? ®o 1 € H .

4.13. Lemma. Suppose that i € I™ and that s € Std™ (i) and t € Std(i). Then:
a) Ift=s5 then fosy® = us fos, for some unit u® € O.
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b) If t # s then there exists an integer di > degs and an invertible element
u® € O such that
Ogdif, ift>s
uy , ,
ftty? = { ‘ "

0, otherwise,

and where d; = degs whenever X is a field of characteristic zero.

Proof. By [29, Prop. 2.6, if 1 < k < n then fyLy = (z + q)°®) fi in X, so
fuy? is a scalar multiple of fi; and it remains to determine the multiple.

(a) Observe that Zs(k) = 0 for 1 < k < n. Further, if o € (k) and o ¢
(k) then the factor that a contributes to 7, is a unit in @. Therefore, applying
Definition 4.5 and Definition 4.12 shows that

n
fssy? = H H (1 - (1‘ + Q)mnts (k)_cont(a)) o5 = U?’stssv

k=1aca/2 (k)

for some invertible element uS € O, proving (a).
(b) Suppose that 1 < k < n. Then we claim that
@) o _ {u?kxdkftt, if t, > sy,
s Ysk = ’ .
0, otherwise,

where di > degsy and u?k € O is invertible. If £ = 0 then there is nothing to
prove so we may assume by induction that the claim is true for fttygl e yfk and
consider f&ygl .. .yg,H_I.

If t, % s; then, by induction, both sides of the claim are zero, so we may assume
that t; > 55 Let p = t71(k+ 1) be the node labeled by k+1 in t and 3 be the node
labeled by £+ 1 in s.

Suppose first that ty11 P k1. As t > s this can happen if and only if p
is below 3. However, since s is positive, every addable node of t; below ( is an
addable node of ;. Hence, p € &7 (k+1) and, consequently (since res(s) = res(t)),
cont¢(k + 1) = cont(a), for some o € > (k+1). Therefore, the coefficient of f in
f“yfl . yng is zero, as we needed to show.

Next, suppose that tyy1 > sgy1. Then p is not below 3. Consequently, if
a € Mk +1) then (1 — (x4 g)eonte(kt)—cont(@)) — 454 for some d > 1 and some
unit u € O, since res(a) = resy(k + 1). This shows that fuyS, .. .yfkﬂ can be
written in the required form and so proves the claim and completes the proof of
the Lemma. O

4.14. Theorem. Suppose that i € I"™ and that s € Std*(i). Then there exists a
non-zero scalar ¢ € K such that

e(i)yﬁ = CMss + Z TuoMuyv,
(u,0)>(s,s)

some ry, € K. In particular, ys is a non-zero homogeneous element of degree
2degs.

Proof. To prove the theorem we work in s£° and in J£X. By Lemma 4.13, inside
X we have

. 1 o _dy
e = Y —fuwd =udfut D, fu
testag) 1t testd(i)

t>s
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for some invertible elements u € O and where d; > degs for each t. Rewriting
this equation in terms of the standard basis we see that

e(i)oy? = Ufmss + Z TuoMyy,
(u,0)>(s5)

for some 7y, € K. However, e(i)%y® € J°, by Proposition 4.8, and my, € J#°
for all (u,v). So, in fact, ry, € O for all (u,v) > (s,s) and reducing this equation
modulo 7w = 2O gives the first statement in the Theorem.

Finally, since ys # 0 we have that degys = 2degs by Definition 4.7 — recall
that s is positive only if Z2(k) = (), for 1 < k < n. O

By Lemma 4.11, the tableau t* is positive for any A € 2. Therefore, we have
the following important special case of Definition 4.9.

4.15. Definition. Suppose that A € 222, Set ex = e(i*) and ya = Y.

As in section 2, if A € 22 let S>> be the two-sided ideal spanned by the mygy,
where s,t € Std(u) for some p € P2 with p > .
Then using Theorem 4.14 we obtain:

4.16. Corollary. Suppose that X € 2. Then yx is a non-zero homogeneous
element of degree 2degt®. Moreover, there exists a non-zero scalar cx € K such
that exyx = camx (mod SP) .

Equivalently, exyx = caeamaex (mod #>*). From small examples it is plau-
sible that exmaex € ZA, for all A € 222, This would give a partial explanation
for the last result.

5. A GRADED CELLULAR BASIS OF J#*

In this section we build on Theorem 4.14 to prove our Main Theorem which
shows that " is a graded cellular algebra. Brundan, Kleshchev and Wang [8]
have already constructed a graded Specht module for sZ*. The main result of this
section essentially ‘lifts’ the Brundan, Kleshchev and Wang’s construction of the
graded Specht modules to a graded cellular basis of JZ2.

§5.1. Lifting the graded Specht modules to #*. As Brundan and Kleshchev
note [7, §4.5], it follows directly from Definition 3.1 that 22 has a unique K-linear
anti-automorphism * which fixes each of the graded generators. We warn the reader
that, in general, x is different from the anti-automorphism of " determined by
the (ungraded) cellular basis {ms}.

Inspired partly by Brundan, Kleshchev and Wang’s [8, §4.2] construction of the
graded Specht modules we make the following definition.

5.1. Definition. Suppose that A € &2 and s,t € Std(\) and fix reduced expres-
sions d(s) = s;, ...s;, and d(t) = s, ...s;,, for d(s) and d(t), respectively. Define
Vst = Vg(s)exyata(y)

where wd(s) = wil ‘e wik and ¢d(t) = wjl .o ¢]m

An immediate and very useful consequence of this definition and the homoge-
neous relations of JZ* is the following.

5.2. Lemma. Suppose that s,t € Std(X), for A € 2

n’

and that i,j € I™. Then

Vs, ifres(s) =1 and res(t) =j,
0, otherwise.

e(i)vsee(j) = {
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The next two results combine Corollary 4.16 with Brundan, Kleshchev and
Wang’s results for the graded Specht modules to describe the homogeneous ele-
ments Ps;.

5.3. Lemma (cf. [8, Cor. 3.14]). Suppose that X € P2 and s,t € Std(X). Then
deg sy = degs + degt.

Proof. By [8, Cor. 3.14], if d(s) = sy, ... s, is a reduced expression for d(s) then
degs — deg t* = deg(ext)s). Therefore,

deg s = deg(vieayathy) = deg(exts) + degyx + deg(eatyy) = degs + degt,
where the last equality follows because degyx = 2degt* by Corollary 4.16. (]

We note that it is possible to prove Lemma 5.3 directly by induction on the
dominance ordering on standard tableaux. We now show that s is non-zero.

5.4. Lemma (cf. [8, Prop. 4.5]). Suppose that A € 222 and that s5,t € Std(\).
Then there exists a non-zero scalar ¢ € K, which does not depend upon the choice
of reduced expressions for d(s) and d(t), such that

Pst = Mgy + Z TuoMyyp,
(u,0)>(s,t)

for some ry, € K.

Proof. This is an immediate consequence of Corollary 4.16 and [8, Theorem 4.10a],
however, we sketch the proof as this result is central to this paper.

Let d(s) = si, ...s;, and d(t) = s;, ...s;,, be the reduced expressions for d(s)
and d(t), respectively, that we fixed in Definition 5.1.

By Corollary 4.16, exya is a homogeneous element of 7 and

exyatay = cama (mod 7).

Using Theorem 3.5 and the homogeneous relations of /" it is easy to prove that
extq(y) is equal to a linear combination of terms of the form ex fu, (y)Tw, where
fu(y) € Klyi,...,yn] for some w € &, with w < d(t), and where fqq(y) is
invertible. By (3.8), may, = maeay, = 0 (mod S£>*), for 1 < r < n. Now
if w € &,, then, modulo J£>*, m\T, can be written as a linear combination of
elements of the form m,, where v € Std(\) and d(v) < w, by Theorem 3.7.
Therefore, just as in [8, Prop. 4.5], we obtain

eaxyaacy = mpng + Z ToMiry
veStd(A)
o>t
for some ¢’,r, € K with ¢’ # 0. The scalar ¢’ depends only on t and A, and not on
the choice of reduced expression for d(t), by [8, Prop. 2.5(i)]. Similarly, multiplying
the last equation on the left with ¢;(5)€Aa and again using (3.8) and the fact that

{muy} is a cellular basis, we obtain

o = emei+ Y Ty (mod )

u,0€Std(N)
(u,0)>(s,t)

for some 7y, € K and some non-zero scalar ¢ € K which depends only on d(s), d(t)
and A. This completes the proof. O

Recall from section 4.3 that s> is the two-sided ideal of s with basis the
of standard basis elements {my,, }, where u, v € Std(u) and p > A.
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5.5. Corollary. Suppose that A € ZZ2. Then H#>> is a homogeneous two-sided
ideal of S with basis { Yy | 1,0 € Std(p), for u € PN with > \}.

As the next example shows, the elements 15, do, in general, depend upon the
choice of the reduced expressions for d(s) and d(t).
5.6. Example Suppose that e =3, A = Ag and n = 9 so that we are considering
the Iwahori-Hecke algebra of &g at a third root of unity (for any suitable field).
Take A\ = (4,3,1%) and set

2[3719] 2[3[7]

t= and u=

‘@‘U\ =

1
4

15

7]

Then d(t) = $48557565557S857 = S45557565588575s. Now, res((7) = resy(9) so apply-
ing the last relation in Definition 3.1 (the graded analogue of the braid relation),

exyAaths s Yrshr = exya (VatsYrbethshsthris + Yatbsthribeis).

Consequently, if s € Std(A\) and we define 1 using the first reduced expression
for d(t) above and et using the second reduced expression then s = &st + Yg.
Therefore, different choices of reduced expression for d(t) can give different ele-
ments g, for any s € Std(A). &

We do not actually need the next result, but given Example 5.6 it is reassuring.
Brundan, Kleshchev and Wang prove an analogue of this result as part of their
construction of the graded Specht modules [8, Theorem 4.10]. They have to work
much harder, however, as they have to simultaneously prove that the grading on
their modules is well-defined.

5.7. Lemma (cf. [8, Theorem. 4.10a]). Suppose that 1 and Vet are defined using
different reduced expressions for d(s) and d(t), where s,t € Std(X) for some A € Z.
Then X
st — Vst = Z SuvPuv,
(u,0)>>(s,t)
where sy, # 0 only if res(u) = res(s), res(v) = res(t) and degu + degv = degs +
deg t.

Proof. Using two applications of (5.4), we can write

Pep — e = Z TupMyp = Z Suo®uv,

(u,0)>>(s,t) (u,0)>>(s,t)

for some 7y, 8y € K. Multiplying on the left and right by e(i*) and e(i'), re-
spectively, and using Lemma 5.2, shows that sy, 7# 0 only if res(u) = res(s) and
res(v) = res(t). Finally, by Lemma 5.4, the v, appearing on the right hand are
all linearly independent and s and 1/;5t are non-zero homogeneous elements of the
same degree by Lemma 5.3. Therefore, so if s,, # 0 then degu+degv = deg )y, =
deg ¥s¢ = degs + degt, as required. O

We can now prove the main result of this paper. The existence of a graded cellular
basis for #” was conjectured by Brundan, Kleshchev and Wang [8, Remark 4.12)]

5.8. Theorem (Graded cellular basis). The algebra £ is a graded cellular algebra
with weight poset (22, >) and graded cellular basis { V¢ | 5,t € Std(X) for X € P2 }.

ny=—

In particular, degibs¢ = degs + degt, for all 5,t € Std(X), A € 2.

Proof. By (5.4), the transition matrix between the set {¢s¢} and the standard basis
{ms} is an invertible triangular matrix (when suitably ordered!). Therefore, {15}
is a basis of #2* giving (GC1) from Definition 2.1. By definition 15 is homogeneous
and deg i = degs + degt, by Lemma 5.3, establishing (GC2).
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To prove (GC4), recall that * is the unique anti-isomorphism of " which
fixes each of the graded generators. By definition, (exyx)* = exya since ex and
yx commute. Therefore, 1}, = 1, for all s and t. Consequently, the anti-
automorphism of A induced by the basis {1)s¢}, as in (GC4), coincides with
the anti-isomorphism *. In particular, (GC4) holds.

It remains then to check that the basis {1} satisfies (GC3), for s,t € Std(A)
and A € 2. By definition, 15 = ¢2<5)¢t*t- Suppose that h € #*. Using
Lemma 5.4 twice, together with Corollary 5.5 and the fact that {m,,} is a cellular
basis of £, we find

bath = Yy hindh = Ve > romngh (mod )

o>t

= Yie) Z SpMery (mod J7™)
bEStd(A)

1/)2(5) Z tothixy (mod %D)‘)
vEStd(A)

Z toPsu (mod janA)

veStd(A)

for some scalars 7y, sy,t, € K. Hence, {1s¢} is a graded cellular basis and 7 is
a graded cellular algebra, as required. O

Applying Corollary 2.5, we obtain the graded dimension of J#*

R I
AEPA s,teStd(A)

This result is due to Brundan and Kleshchev [7, Theorem 4.20]. See also [8, Re-

mark 4.12]. This can be further refined to compute Dimye (i) e(j), for i,j € I,

using Lemma 5.2.

§5.2. The graded Specht modules. Now that {1} is known to be a graded
cellular basis we can define the graded cell modules S* of A, for A € 22,

5.9. Definition (Graded Specht modules). Suppose that A € Z). The graded
Specht module S* is the graded cell module associated with A as in Definition 2.3.

Thus, S* has basis {9 | t € Std(X\) } and the action of S£* on S* comes from
its action on JZZA /AP,

In the absence of a graded cellular basis Brundan, Kleshchev and Wang [8] have
already defined a graded Specht module Sy, for A € 22, The two notions of
graded Specht modules coincide.

5.10. Corollary. Suppose that X € 2. Then S* = SgKW as Z-graded -
modules.

Proof. Brundan, Kleshchev and Wang [8] actually define the graded left module
SE?}(W, however, it is an easy exercise to switch their notation to the right. Mirror-
ing the notation of [8, §4.2], set Ux = exyn+H#> = Y+, By Theorem 5.8
the graded right module 9x 7" has basis { oAt | t € Std(A) }. Comparing this
construction with [8, §4.2] and Definition 2.3 it is immediate that

SArw = AN (— deg ) = SN,
In the notation of [8], the first isomorphism is given by v¢ = Ux9g, for t €

Std(\). There is a degree shift for the middle term because deg vy = 2degt* by
Corollary 4.16. O
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By Lemma 5.4 and Corollary 5.5, the ungraded module S* coincides with the
ungraded Specht module determined by the standard basis (Theorem 3.7), because
the transition matrix between the graded cellular basis and the standard basis is
unitriangular.

Let D* be the ungraded simple 2 -module which is defined using the standard
basis of X, for p € 2. Define a multipartition p to be A-Kleshchev if D # 0.
Although we will not need it, there is an explicit combinatorial characterization
of the A-Kleshchev multipartitions; see [3] or [7, (3.27)] (where they are called
restricted multipartitions).

By Theorem 2.10, and the remarks of the last paragraph, the graded irreducible
2 -modules are naturally labeled by the A-Kleshchev multipartitions of n. Notice,
however, that this does not immediately imply that D# is non-zero if and only if p
is a A-Kleshchev multipartition: the problem is that the homogeneous bilinear form
on the graded Specht module, which is induced by the graded basis (see Lemma 2.6),
could be different to the bilinear form on the ungraded Specht module, which is
induced by the standard basis. Our next result shows, however, that these two
forms are essentially equivalent because their radicals coincide.

The following result is almost equivalent to [7, Theorem 5.10].

5.11. Corollary. Suppose that p € P2, Then D* = D, for all u € P2. Conse-
quently, D* # 0 if and only if p is a A-Kleshchev multipartition.

Proof. We argue by induction on dominance. If g is minimal in the dominance
order then D* = S* and D* = S* by Lemma 2.13(c). Hence, D* = D* in
this case. Now suppose that p is not minimal with respect to dominance. Using
Lemma 2.13(c) again, D¥* = 0 if and only if every composition factor of S* is
isomorphic to DY for some multipartition v with g > v. Similarly, D+ = 0 if
and only if every composition factor of S¥ is isomorphic to D¥, where p > v. By
induction, D¥ = DY so the result follows. O

§5.3. The blocks of #*. We now show how Theorem 5.8 restricts to give a
basis for the blocks, or the indecomposable two-sided ideals, of ##A. Recall that
Q1+ = @,c; Noay is the positive root lattice. Fix 3 € Q4 with >, (A, 8) = n
and let
IP={iel"|ay+ - +a;, =06}.
Then I? is an &,,-orbit of I™ and it is not hard to check that every &,-orbit can
be written uniquely in this way for some § € Q4. Define
%%A = eg 0, where eg = Z e(i).

iels

Then by the main result of [25], %”BA is a block of /7. That is,
ar= P A
peI™, I8#£D

is the decomposition of /A into a direct sum of indecomposable two-sided ideals.
Let L@[’} ={Aec 2 |i* € IP}. Tt follows from the combinatorial classification of

the blocks of #* that [[;.;s Std(i) = HAG,@Q Std(A). Hence, by Lemma 5.2 and
Theorem 5.8 we obtain the following.

5.12. Corollary. Suppose that 8 € Q4. Then
{wst | 5,t € Std(A) for X € 25 }

is a graded cellular basis of %A. In particular, %A s a graded cellular algebra.
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6. A DUAL GRADED CELLULAR BASIS AND A HOMOGENEOUS TRACE FORM

In this section we construct a second graded cellular basis {¢.,} for the alge-
bras " and jfﬁA. Using both the 1)-basis and the v’-basis we then show that
%A is a graded symmetric algebra, proving another conjecture of Brundan and
Kleshchev [7, Remark 4.7].

§6.1. The dual Murphy basis. The main idea is that the v-basis is, via the
standard basis {mg}, built from the trivial representation of s#*. The new basis
that we will construct is, via the {ng} basis defined below, modeled on the sign
representation of S22

6.1. Definition (Du and Rui [15, (2.7)]). Suppose that A € 22 and s, t € Std(X).
Define ngy = (—q)_z(d(g))_e(d(t))Td(s)fln)\Td(t), where

-1 ‘A(l)‘+,,_+|)\((—s)|
=1l I1 (Ly —q™) - Y (—9)" )T
= =t weS

(The normalization of ng by a power of —¢g~! is for compatibility with the results

from [29] that we use below. The asymmetry in the definitions of the basis elements
msy and ng; arises because the relations (7, — ¢)(T- + 1) = 0, for 1 < r < n are
asymmetric. Renormalizing these relations to (1} —v) (T, 4+v~1) = 0, where ¢ = v2,
makes the definition of these elements symmetric; see, for example, [28, §3].)

It follows from Theorem 3.7 that {ns} is a cellular basis of JZ2; see [29, (3.1)].
We now recall how Lq,..., L, acts on this basis. To describe this requires some
more notation.

If A = (A1, A2,...) is a partition then its conjugate is the partition X =
(A1, Ah,...), where A, = #{j>1|X; >4}. If tis a standard A-tableau let '
be the standard X-tableau given by t'(r,¢) = t(c,r). Pictorially, N and t' are
obtained by interchanging the rows and the columns of A\ and t, respectively.

Similarly, if X = (A1), ..., A®)) is a multipartition then the conjugate multi-
partition is the multipartition X = (A®’, ... AM"). If t is a standard A-tableau
then the conjugate tableau t' is the standard M'-tableau given by t'(r,¢,1) =
t(e,r, £ —1+1).

By [29, Prop. 3.3], if s,t € Std(A) and 1 < k < n then there exist scalars r, € K
such that

(6'2) Nege Ly = qresu(k)nst + Z TupNyp -
(u,0)1>(s,t)

As in section 4.2, fix a modular system (%, O, K) for 2. Until noted otherwise
we will work in SZX. Following Definition 4.4, define fl, = FonqFy, for s,t €
Std(M), A € 2. Moreover, by (6.2), if s,t € Std(\), for A € 22| then

/
f5t = Nst + § Tuv Mo,

(u,0)>(s,1)

for some ry, € K. Therefore, {f,} is a basis of %, as was noted in [29, §3].

We now retrace our steps from section 4.2 replacing the fs¢ basis with the fl,
basis.

Recall from section 4.2 that if & = (r,¢,1) and 8 = (s,d, m) are two nodes then
a is below g if either | > m, or [ = m and r > s. Dually, we say that g is above
«a. With this notation we can define a ‘dual’ version of the scalars v € X.

6.3. Definition (cf. Definition 4.5). Suppose that A € 22 and t € Std(\). For
k=1,...,nlet & (k)" be the set of addable nodes of the multipartition Shape(t)
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which are above t~1(k). Similarly, let %(k)" be the set of removable nodes of

Shape(tx) which are above t~1(k). Now define

—E(d(0)~5() ﬁ e, gy ((@+ @) ®) — (@ 4 g)eont@))
i1 oea vy (@ + g)onte®) — (2 + g)cont(e))

Suppose that i € I"™ and that Std(i) # (. Define i’ = res(s’), where s is any

element of Std(i). Then i’ € I"™ and i’ is independent of the choice of s.
Recall that Proposition 4.8 defines the idempotent e(i)® € #°, for i € I".

6.4. Lemma. Suppose that i € I"™ with e(i) # 0. Then, in H#°,
. 1
6(1/)0 = Z Tfsfs
s€Std(i) Ts

Proof. By [29, Remark 3.6], if s € Std(i) then %fés = lefsfs/ in SX. So, the
result is just a rephrasing of Proposition 4.8. (Note that 7{, as defined in Defini-

tion 6.3, is the specialization at the parameters of X of the element ~; defined
in [29, §3]; see the remarks before [29, Prop. 3.4].) O

Y= (= +q) € x.

Definition 4.9 defines a homogeneous element y, € £ for each positive tableau
s € Std(i), i € I". To construct the dual basis we lift e(i')ys to J£°.

6.5. Definition. Suppose that s € Std(i) is a positive tableau. Let @Z%(k) =
{a € oy (k) | res(or) = resq (k) } and define (.)€ = (y,1)° ... (y4,)C where

W)= T (—(@+q L) en?,
aE%ﬁA, (k)
fork=1,...,n.

Observe that if 5 € Std(i) is a positive tableau then e(i’)ys = e(i’)°(y.)° ®o 1k
because |2 (k)| = |2 (k)'|, for 1 < k < n. Note, however, that (y,)° # y© in
general.

The following two results are analogues of Lemma 4.13 and Theorem 4.14, respec-
tively. We leave the details to the reader because they can be proved by repeating

the arguments from section 4, the only real difference being that Lemma 6.4 is used
instead of Proposition 4.8.

6.6. Lemma. Suppose that s,t € Std(i), where i € I", and that s is a positive
tableau. Then:
a) Ift=s then fl,(y.)° = uP~.fl., for some unit u® € O.
b) If t # s then there exists an integer di > degs and an invertible element
u? € O such that

O ,.d}, 1 ;
uy x® fl, ift> s,
ft/t(y;)o { t tt

0, otherwise,
and where di = degs whenever X is a field of characteristic zero.

As a consequence, we can repeat the proof of Theorem 4.14 to deduce the fol-
lowing.

6.7. Proposition. Suppose that s € Std™ (i) is a positive tableau, for i € I™. Then
there exists a non-zero ¢ € K such that

e(il)yﬁ = CNgs + Z TuoNyv,
(u,0)>>(s,5)

for some ryy € K.
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§6.2. The dual graded basis. If A € 22 then t* is a positive tableau by
Lemma 4.11. Recall that ey = e(i*). Define e} = e(i’), where i = i*. Then
as a special case of Proposition 6.7, there is a non-zero ¢ € K such that

(68) €/>\Z/>\ =cnx + Z TuoNuv,
(u,0)>(tX,t)

for some 7y, € K. This is what we need to define the dual graded basis of %‘le.

6.9. Definition. Suppose that A € 22 and s,t € Std(\) and recall that we have
fixed reduced expressions d(s) = s;, ...s;, and d(t) = sj, ...s;,, for d(s) and d(t),
respectively. Define ¢, = ¥, ... U e\yathy, ... ;..

By definition, ., is a homogeneous element of 8. Just as with 1, the
element v, will, in general, depend upon the choice of reduced expressions for d(s)
and d(t). Arguing just as in section 5.1 we obtain the following facts. We leave the
details to the reader.

6.10. Proposition. Suppose that s,t € Std(\), for some A € 2. Then
a) Ifi,j € I™ then

) . Y, ifres(s) =1 and res(t) = j,
el yleli) = § Vo Tr) ”
0, otherwise.

b) degis, = degs + degt.
c) YL, = cng + Z TuoNuv, for some ry, € K and 0 # ¢ € K.
(u,0)>>(s,t)

d) If L, is defined using a different choice of reduced expressions for d(s) and

d(t) then

¢;{ - djgt = Z rubqp:ma
(u,0)>>(s,t)

where 1y, € K is non-zero only if res(u) = res(s), res(v) = res(t) and degu+

degbv = degs + degt.
Using Proposition 6.10, and arguing exactly as in the proof of Theorem 5.8 we

obtain the graded dual basis of 2.

6.11. Theorem. The basis {1, | s,t € Std(X) for X € 22} is a graded cellular
basis of AN,

The basis {1} is the dual graded basis of /. We note that the unique
anti-isomorphism of #* which fixes the homogeneous generators of /" coincides
with the graded anti-isomorphisms coming from both the graded cellular basis and
the dual graded cellular basis, via (GC4) of Definition 2.1.

As with the graded basis, the dual graded basis restricts to give a graded cellular
basis for the blocks of JZA.

6.12. Corollary. Suppose that § € Q4. Then
{Wl | s,teStd(X) for X € 25}
is a graded cellular basis of %A.

§6.3. Graded symmetric algebras. Recall that a trace form on a K-algebra
A is a K-linear map 7: A — K such that 7(ab) = 7(ba), for all a,b € A. The
algebra A is symmetric if A is equipped with a non-degenerate symmetric bilinear
form 6 : A x A — K which is associative in the following sense:

O(xy, z) = 0(x,yz), forall z,y,z € A.
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Define a trace form 7 : A — K on A by setting 7(a) = 6(a,1) for any a € A.
Note that ker 7 cannot contain any non-zero left or right ideals because 6 is non-
degenerate. We leave the next result for the reader.

6.13. Lemma. Suppose that A is a finite dimensional K -algebra which is equipped
with an anti-automorphism o of order 2. Then A is symmetric if and only if there
is a non-degenerate symmetric bilinear form (, ): Ax A— K which is associative
in the sense (ab,c) = (a,cb?) for any a,b,c € A.

A graded algebra A is a graded symmetric algebra if there exists a homoge-
neous non-degenerate trace form 7: A— K. Apart from providing a second graded
cellular basis of ##*, the dual graded basis of /" is useful because we can use it
to show that the algebras %A, for § € @4, are graded symmetric algebras.

Following Brundan and Kleshchev [8, (3.4)], if 5 € Q4 then the defect of [ is

def 8 = (A, 8) — %(@ﬂ),

where (, ) is the non-degenerate pairing on the root lattice introduced in section 3.1.
If £ = 1 then def § is the e-weight of the block %A. If ¢ > 1 then def § coincides
with Fayers [16] definition of weight for the algebras 7.

In what follows, the following result of Brundan, Kleshchev and Wang’s will be
very important. (In [8, §3], degs’ is called the codegree of s.)

6.14. Lemma (Brundan, Kleshchev and Wang [8, Lemma 3.12]). Suppose that
[T 3%\ and that s € Std(p). Then degs + degs’ = def .

To define the homogeneous trace form 73 on %%A recall that, by the main result
of [26], S£2 is a symmetric algebra with induced trace form 7: £* — K, where 7
is the K-linear map determined by

(L3 LT,y = b == e =0mdw=1,
0, otherwise,

where 0 < a1,...,a, < £ and w € G,,. In general, the map 7 is not homogeneous,
however, we can use 7 to define a homogeneous trace form on %%A since %A is a

subalgebra of 2.

6.15. Definition (Homogeneous trace). Suppose that § € Q4. Then 7g: %A — K
is the map which on a homogeneous element a € %%A is given by

(@) 7(a), if deg(a) = 2def g,
T3(a) =
K 0, otherwise.

It is an easy exercise to verify that 73 is a trace form on %A. By definition, 7 is
homogeneous of degree —2 def 3. To show that 75 is induced from a non-degenerate
symmetric bilinear form on %%A we need the following fact.

6.16. Lemma ( [28, Lemma 5.4 and Theorem 5.5]). Suppose that a,b € Std(u)
and ¢,0 € Std(v), for p,v € 3%\ Then mapney # 0 only if ¢ = b. Further, there
exists a non-zero scalar ux € K, which depends only on A, such that

_jux, lf (C/7al) = (aa b)7
“mwmd‘{a i (¢,0) ¥ (0,b).
Define a homogeneous bilinear form (, )3 on %”BA of degree —2def 8 by
(a,b)g = 1(ab™).

By definition, ( , )g is symmetric and associative in the sense that (a,bc)s =
(ac*,b)g for any a,b,c € %ﬂﬁA.
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6.17. Theorem. Suppose that 3 € Q and that A, pu € @g If s,t € Std(A) and
u,v € Std(p) then

u, if (W,0") = (s,t),

<"/}5£aw{m>5 = {O, if (W,0") B (s,t),

for some non-zero scalar u € K.

Proof. By Lemma 5.4 and Proposition 6.10(c), there exist non-zero scalars ¢, ¢’ € K
and 7qp, 5. € K such that

B = (et Y ) (@t Y o).

(a,0)>>(s,t) (2,6)>>(0,u)
Therefore, (s,),)3 = 0 unless v’ > t by Lemma 6.16. Now,

<¢5U ¢1{m>ﬂ = Tﬁ(wﬂwézu) = Tﬁ(wguwﬂ) = Tﬁ(wfﬁw:m) = <wt5a w;u>5’

where we have used the easily checked fact that 7g(h) = 73(h*) for the third
equality. Combined with (}), this shows that (¢s¢,9},)s = 0 unless (v, 0”) &> (s, t).

To complete the proof it remains to consider the case when (u/,v’) = (s,t). By
Lemma 6.16, () now reduces to the equation ¢y, = cc’men},,,. By Lemma 5.3,
Proposition 6.10(b) and Lemma 6.14, we have

deg(Vsy ) = degs + deg t + degs’ + degt’ = 2def 3,
Therefore, we can replace 74 with 7 and use Lemma 6.16 to obtain

T8(VstWie) = T(Wstpg) = ¢ T(Monys ) = cc'un.

As cc'uy # 0 this completes the proof. O

Applying Lemma 6.13, we deduce that ‘%ﬂﬁA is a graded symmetric algebra. This
was conjectured by Brundan and Kleshchev [7, Remark 4.7],

6.18. Corollary. Suppose that 5 € Q4. Then %%A is a graded symmetric algebra
with homogeneous trace form 7g of degree —2 def 3.

We remark that the two graded bases {¢s} and {¢/,} are almost certainly
not dual with respect to ( , ). We call {¢,} the dual graded basis because
Theorem 6.17 shows that these two bases are dual modulo more dominant terms.
As far as we are aware, if £ > 2 then there are no known pairs of dual bases for JZ2,
even in the ungraded case.

§6.4. Dual graded Specht modules. Using the graded cellular basis {1s} we
defined the graded Specht module S*. Similarly, if A € #2 then the dual graded
Specht module S, is the graded cell module associated with A, via Defini-
tion 2.3, using the dual graded basis {¢,}. Thus, Sx has a homogeneous basis
{9% | 5 € Std(A) }, with the action of Z#* being induced by its action on the dual
graded basis.

By [28, Cor. 5.7], it was shown that S* and Sy, are dual to each other with
respect to the contragredient duality induced on Z*-Mod by the cellular algebra
anti-isomorphism defined by the standard cellular basis {ms¢}. We generalize this
result to the graded setting.

Let /"> = (14 | u,0 € Std(u) where p > A) ¢ be the graded two-sided ideal
of " spanned by the elements of the cellular basis {1/} of more dominant shape.
Then /> is also spanned by the elements {n,,}, where u, v € Std(u) and p > A
by Proposition 6.10(c).

6.19. Proposition. Suppose that A € @é\ Then S = Sf), (def B) as graded 4%”6/\—
modules.
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Proof. By Theorem 6.17 the graded two-sided ideals %D)‘ and jfﬁ"»‘/ of %%A are

~J

orthogonal with respect to the trace form ( , )s. By construction S*(degt*
(Yagr + PN AN and Sy (degty) = (w:xt” + PN AN where ty = (H1).
Therefore, ( , )3 induces an homogeneous associative bilinear form

() )pa:SMdeg ) x Sx(deg ta) — K (a + A2 b+ APN )53 = (a,b) 5.
In particular, if s,t' € Std(X) then, by Theorem 6.17,

’ u lf 5 = tl
+%>A7 / +%/>A _ ’ )
<¢95 n wtklt n >/8,/\ 0’ unless t/ E s,

for some 0 # u € K. Therefore, (, )g x is a homogeneous non-degenerate pairing
of degree —2def 3 and, since taking duals reverses the grading,

S* = §F (2def B — deg tys — deg t*) = S5 (def 3),
since def 3 = deg t* + deg txs by Lemma, 6.14. (|

During the proof of Theorem 6.17 we showed that mgings = cthsit)y,,, for some

non-zero constant ¢ € K. Hence, we have the following interesting fact.

6.20. Corollary (of Theorem 6.17). Suppose that X € @é\ and that s,t € Std(\).
Then mgnys is a homogeneous element of 2 of degree 2 def 3.

Let A € 2%. Recall that by definition, ex = e(i™) and €}, = e(i'*), where
th = (tx)'. Let wyx = d(tx) and define zx = mxTy, na.

6.21. Corollary. Suppose that X € 95\ Then

/ /
ZXN = EXZNEN = Ce)xy)\wu»\ Yn = Cy)\wwxy)\’e)\’a

for some 0 # ¢ € K. In particular, zx is a homogeneous element of > of degree
def 3 + deg(t*) + deg(t).

Proof. By Corollary 4.16 and (6.8) there exist 0 # ¢ € K such that

eaxyatwy = CexMxg, + Z atexmng (mod FP)
teStd(N)
£(d(4))<t(wx)

for some a¢ € K. Further, ej,yx = e} nx (mod %”n’b)‘l), for some non-zero
¢ € K, by Proposition 6.7. By definition t > ty for all t € Std(A), so if t # ty then
mana = 0 by Lemma 6.16 since (£*')’ = ty ¥ t. Hence, multiplying these two
equations together gives the Corollary. O

There may well be a more direct proof of the last two results because these
elements are already well-known in the representation theory of J#. Note that

Mty s = Tgy—rmaTgTaw)y-1nxTasy = Tys)-123Taes )
because d(t)d(t') =1 = wy, with the lengths adding; see, for example, [28, Lemma 5.1].
It follows from [29, Prop. 4.4] that (Tys)-12aTus))? = 7Tys)-123T(s), for some
r € K, such that r # 0 if and only if the Specht module S* is projective. If r = 0

then these elements are nilpotent and they belong the radical of /2. We invite
the reader to check that the map

Sx(def B+ deg t*) — ZA%Aé Py — Z>\¢¢,1(t)’
for t € Std(X\’), is a isomorphism of graded #*-modules. Similarly, there is a
graded isomorphism S*(def 3 + deg t)"> AN naTw,, mA%A. By Corollary 6.21,
z5 = cexthu,, ex is homogeneous of degree def 8 + deg(t*) + deg(#*), for some
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non-zero ¢ € K. Arguing as in Corollary 6.21 shows that z} = nx/Ty,,, mx. Conse-
quently, on the elements zy, for A € 22 the graded cellular anti-automorphism *
of 2 coincides with the ungraded cellular algebra anti-isomorphism which is in-
duced by the standard basis {m,,} of 7.

7. THE DEGENERATE AND INTEGRAL KHOVANOV-LAUDA-ROUQUIER ALGEBRAS

The Khovanov-Lauda-Rouquier algebras %2 are defined over an arbitrary com-
mutative integral domain R, however, so far we have produced a cellular basis for
%{l‘ only when R = K is a field of characteristic coprime to e. In this section we
extend Theorem 5.8 to a more general class of rings. Before we can do this, how-
ever, we need to reprove Theorem 5.8 for the degenerate cyclotomic Hecke algebras
of type A.

§7.1. The degenerate cyclotomic Hecke algebra. For this section, suppose
that p is prime, or zero, and let K be a field of characteristic p. In this section we
set e = p so that I = Z/pZ.

The degenerate cyclotomic Hecke algebra H,’L\ is the K-algebra generated

by x1,...,x, and t1,...,t,_1 subject to the relations
[Lier(a1 - i) =0, =1,
tststits = tstatstsyn, titi, = tyti, if [i — k| > 1,
tirivr = xit; + 1, tixg =zt if |0 — k| > 1,

TiTlk = TiTk,

forl1<k<n,1<s<n-—1land1l<i<n.

The generators tq,...,t,_1 satisfy the braid relations of &,,. Therefore, if w €
G, and w = s;, ...s;, is a reduced expression then element ¢, = ¢;, ...%;, depends
only on w and not on the choice of reduced expression. By [5, Theorem 6.1]
or [24, Theorem 7.5.6], {z{* ... 2%, |0 < a; < ¢ and w € &, } is a basis of H2.

Next, following Brundan and Kleshchev [6, §3.2], for 1 <r <nand 1 <s<mn
define elements of HT’L\

b= S+ pe g @ e(l) and gy = 3 (2, — e,
ieln ieIn
where p,.(i) and ¢, (i) are power series in K[y, yr+1] with similar definitions to the
elements P, (i) and Q, (i) given by (3.3) and (3.4); for the precise details see [6, 3.22
and 3.30]
As in the non-degenerate case, by [24, Lemma 7.1.2] there exists a family of
idempotents {e(i) | i€ I" } in H2 such that if M is any H2-module then

M; = Me(i) = {m e M| m(z, —i,)* =0for k>0},

and M = @ M; is the decomposition of M into a direct sum of general-

il
ized eigenspaces for the commutative subalgebra (zq,...,z,) of H2. Just as
in Lemma 4.1 it follows that the non-zero e(i) are the primitive idempotents in
(X1, Zn).

Brundan and Kleshchev’s graded isomorphism in the degenerate case is the fol-
lowing.

7.1. Theorem (Brundan—Kleshchev [6, §3.5]). Suppose that e = p is prime. Then
the map #> — HA which sends

e(i) — e(i), Yr — Yr and s — Py,

forieI™" 1 <r <nandl < s < n, extends uniquely to an isomorphism of
algebras.
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Following [5, §6], and paralleling the notation introduced for the non-degenerate
case in Definition 3.6, for A € 222 and s,t € Std(\) define mg = tas)-1matae),
where

¢ ‘)\(1)‘+...+|,\(S*1)‘

mA:H H xkffis Z toy-

s=2 k=1 weBG
Then {mg | 5,t € Std(A), A € 22} is a cellular basis of H2 by [5, Theorem 6.3].
(The multicharge k = (k1, ..., k) is defined in section 3.1.)

These elements behave very similarly to the standard basis elements of JZ (see
Theorem 3.7), which is why we use the same notation for them. In particular,
if 5,t € Std(X), for A € &2, then by [5, Lemma 6.6]

meury, = res((k)msc+ > TuoMu,
(u,0)>>(s,t)
for some scalars ry, € K.

Next we want to introduce a seminormal basis for H2. To do this we need an
integral form of HT/L\ To define this we have to assume that e = p is prime and
that K is a field of characteristic p > 0 because we do not know how to define an
integral form for H directly when e = 0. (We can do this indirectly, however,
because if e = 0 then H is isomorphic to a non-degenerate cyclotomic Hecke
algebra by [6, Cor. 2], so we are back in the situation considered in section 5.)

Suppose then that e = p is prime and that K is a field of characteristic p. In fact,
we can assume that K is the field with p elements since every field is a splitting
field for H2 by cellularity (see the remarks after Theorem 2.10). Let O = Z, be
the localization of Z at the prime p and let HY be the associative unital Z-algebra
with generators x1,...,2y,t1,...,t,—1 which satisfy the same relations as above
except that

(371 — /@1)(.%‘1 — 1'62) PN (.271 — Kg) =0.
Then H is free as an O-module, H?} =~ H?P ®o K and HY = HS ®0 Q is
semisimple.

The point of the relation for z; in HY is that the content functions cont(k)
(see above 3.8), separate the standard tableaux: that is, conts(k) = cont(k), for
1 <k <mn,if and only if s = t. Once again, the analogous elements {ms} give a
basis of HY and we have

Mewk = cont()mse + > SuoMn,
(u,0)>>(s,t)
for sy, € Z. Hence, we can define a seminormal basis for HZ: define
. T —C
T e
conty (k) — ¢
k=1kre—n<c<ki+n
c#cont (k)

and set fs¢ = FymsFy. Then {fs} is a basis of H2 by [5, Prop. 6.8].
Recall that in Definition 4.5 we defined certain sets <7 (k) and Z(k) for each
standard tableau t and each integer k, with 1 <k < mn.

7.2. Definition (cf. Definition 4.5). Suppose that A € 22 and t € Std(X). Define

[ocon (cont(k) — cont(a))
H HpGﬂ (k) (Contt(k) — cont(p)) €Q

We have that Fy = W fi in HY by [5, Prop. 6.8] and an easy inductive argument
using [5, Lemma 610]. This brings us to the analogue of Proposition 4.8.
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7.3. Proposition. Suppose that e(i) # 0, for some i € I"™ and let

e(i)? = Z if55 € H2.

sestd(i) '°
Then e(1)® € HY and e(i) = e(i)° ®0o k.

Proof. The degenerate cyclotomic Hecke algebras fit into the general framework
considered in [30], so e(i)® € HY by [30, Lemma 4.2]. The proof can be completed
by repeating the argument of Proposition 4.8. U

For each positive tableau s define y, = []}_, yL‘Q{‘A(k)I € H2, where we are implic-
itly using the Brundan-Kleshchev graded isomorphism theorem in the degenerate
case. If 5 € Std(i) is positive then lift e(i)ys to HY by defining

e(1)%98 = e(i)? H H (z1, — conts(a)).

k=1 aca/2 (k)

Then, by repeating the argument of Theorem 4.14 we find that, in H2,

e(i)yﬁ = CMss + Z Tuo My,
(u,0)1>(s,8)

for some 0 # ¢, ry, € K. In particular, exyy is equal to a multiple of my plus a
linear combination of more dominant terms.

Defining the elements s € H2, for 5,t € Std(X), A € 22 exactly as before (see
Definition 5.1), we can now repeat the proof of Theorem 5.8 to obtain the following.

7.4. Theorem. Suppose that e = p is prime and that K is a field of characteristic
p > 0. Then the degenerate Hecke algebra H2 is a graded cellular algebra with
graded cellular basis { s | 5,t € Std(X), A € 22}

Using the results in this section, and those in section 5.3, it is an easy exercise to
show that if e = p is prime then {4}, | s,t € Std(A), X € 22} } is a graded cellular
basis of #72, for 3 € Q.. The argument of Corollary 6.18 can now be repeated to
show that H? = %2 is a graded symmetric algebra. We leave the details to the
reader.

§7.2. Integral forms. The Khovanov-Lauda-Rouquier algebras #2 can be defined
over any commutative integral domain. So far we have produced graded cellular
bases only when %2, via the Brundan-Kleshchev isomorphism theorems, is isomor-
phic to a degenerate or non-degenerate cyclotomic Hecke algebra over certain fields.
We now consider more general rings.

Throughout this section, let #2(Z) be the Khovanov-Lauda-Rouquier algebra
of type I' = I, defined over Z, and let %2 (Z) be the torsion free part of Z)(Z).
Unlike in the last section, e € {0,2,3,4,...} is not necessarily prime. If O is any
commutative integral domain let Z2(0) = %#X(Z) @z O be the Khovanov-Lauda-
Rouquier algebra over O.

The following result is implicit in [6, Theorem 6.1]. It arose out of discussions
with Alexander Kleshchev.

7.5. Lemma. a) Suppose that e = 0 or that e is prime. Then ZMZ) = %N (Z)
18 a free Z-module of rank {™n!.
b) Suppose that e > 0 is not prime. Then Z2(Z) has p-torsion, for a prime p,
only if p divides e.
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Proof. First, observe that by Theorem 3.5
rank Z2(Z) = dimg(#2(Z) @7 Q) = dimg Z2(Q) = !,

where we take ¢ to be a primitive e root of unity in C if e # 0 and not a root of
unity if e = 0.

Next suppose that e = 0 and p is any prime. Let K be an infinite field of
characteristic p and let ¢ € K be a transcendental element of K. Then A =
FN(K) = %#(Z) @7 K by Theorem 3.5, so that 2 (Z) has no p-torsion.

Now suppose that e > 0 and that p is prime not dividing e. Let K be a field of
characteristic p which contains a primitive et root of unity ¢ and let 7" be the
non-degenerate cyclotomic Hecke algebra with parameter g. Then £ =~ %M K) =
#2(Z) ®7 K by Brundan and Kleshchev’s isomorphism Theorem (3.5). Hence,
%2 (Z) has no p-torsion.

Finally, consider the case when e = p is prime and let K be a field of character-
istic p. Then H2 =~ %K) = %2 (Z) ®7 K, so once again Z(Z) has no p-torsion.
Hence, #(7) can have p-torsion only if e > 0 is not prime and p divides e. (]

The graded cellular basis {15} is defined in terms of the generators of %2 (Z).
Moreover, if e = 0 and K is any field, or if e > 0 and K is a field containing a
primitive e!® root of 1, then {15 ® 1x} is a graded cellular basis of the algebra
FN(K) = ™. Further, if e = p is prime then {1y ®7 1x} is a graded cellular
basis of Z2(K) = H? whenever K is a field of characteristic p. Hence, applying
Lemma, 7.5, Theorem 5.8 and Theorem 7.4, we obtain our final result.

7.6. Theorem. Let O be a commutative integral domain and suppose that either
e = 0, e is non-zero prime, or that e - 1o is invertible in O. Then %,’}((’)) ~
FN(Z) @7 O is a graded cellular algebra with graded cellular basis

{het @10 | 5, € Std(A) and A € 22},
It seems likely to us that the 1-basis is a graded cellular basis of Z2(Z).

APPENDIX A. ONE DIMENSIONAL HOMOGENEOUS REPRESENTATIONS

Using Theorem 5.8 it is straightforward to give an explicit homogeneous basis
for the one dimensional two-sided ideals of ij{\ In this appendix, which may be
of independent interest, we give a proof of this result without appealing to The-
orem 5.8. We consider the non-degenerate case only and leave easy modifications
required in the degenerate case for the reader.

We remark that it is possible to prove an analogue of Theorem 5.8 using the
ideas in this appendix. However, using these techniques we were only able to show
that the basis {15} was a graded cellular basis with respect to the lezicographic
order on 22,

Al. Definition. Suppose that 1 < s < e and (A, as) > 0 and set
; iny (A, i) —dis
un,s:H((Ll_qz)“'(Ln_qz))( %) )
icl
T(n) = Z T, and () = Z (—q)~*)T,,
wes, weS,
Finally, define ;7% = Un,sT(n) and 2z, = umsxzn), forl1 <s<e.
The following result is well-known and easily verified.
A2. Lemma. Suppose that 1 < s < e and that ¢ € {+,—}. Then

Twzz’s — Z;:‘L,sTw — (_1)%(1_81)€(w)q%(1+81)€(w)22737

€,8 _ ,E,S _ . ste(k—1) ¢e,s
Lpz)® =2,°Ly, =q ( )zn ,
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forallw € &, and 1 < k <n. In particular, Kz,jﬁs is a one dimensional two-sided
ideal of ™. Moreover, every one dimensional two-sided ideal is isomorphic to
Kz5%, for some s, and

n

£,5 __ A
Kz>° = {h IS Tih = hT; = (_1>%(1—51)q%(1+61)h for1<i<n

Toh = ¢°h = hTy and }

A3. Proposition. Suppose that Kz is a two sided ideal %%, for some non-zero
element z € z%”nA. Then z is homogeneous.
Proof. Write z =3, _,

i € Z, with only finitely many z; being non-zero. Let h € £ be any homogeneous
element. Then hz = fz, for some f € K, so that

Zfzi =hz = thi.

i€Z i€EZ

zi, where z; is a homogeneous element of degree i, for each

By assumption, either hz; = 0 or deg(hz;) = deg h + deg z;, for each i. Therefore,
if degh > 0 and hz # 0 then hz; = fz; for some j > 4, which is a contradiction
since this forces hz = fz to have fewer homogeneous summands than z. Therefore,
hz = 0 if degh > 0. Similarly, hz = 0 if degh < 0. Therefore, for any h € #*
we have that hz; = fz;, for all i € Z, so that z; = z?ﬁs, for some s by Lemma A2.
Since the non-zero z; have different degrees they must be linearly independent, so it
follows from Lemma A2 that z = z; for a unique 4. In particular, z is homogeneous
as claimed. ]

The following definition will be used to give the degree of the elements z;, ; and
to explicitly describe them as a product of the homogeneous generators of JZ.

We extend our use of the Kronecker delta by writing, for any statement S, g = 1
if S is true and dg = 0 otherwise.

A4. Definition (cf. Definition 4.9). Suppose that 1 < s < e and let € € {+, —}.
Let i5% = (47°°,...,i5%) € I", where i;)° = s +e(k—1) (mod e). For 1 <k < n set
d =#{1<t<l]i° =tand (A ap) > 0g } + Ol

Finally, define y5° = [],_; y,f’i’é
Brundan, Kleshchev and Wang [8, (4.5)] note that the natural embedding /" «—
%M}H is an embedding of graded algebras. Explicitly, the graded embedding is

n

determined by

(A5) s > s, Yr = Yr, and €(i> = Ze(i \/j)7
jel
where 1 <r <n,1<s<n,i€l™andiVi=(i1,...,0n,1).

We can now explicitly describe z5° as a product of homogeneous elements and
hence determine its degree.

A6. Theorem. Suppose that 1 < s <e, (A,as) >0 and that € € {+,—}. Then

o = Celiy i
for some non-zero constant C € K. In particular, deg 25° = 2(d7° + - -+ + d5%).
Proof. As Kz is a two-sided ideal we have that e(i5°)25%e(i5®) € K=z5°. Further,
it is well-known and easy to check (cf. [28, §4]), that Kz5° = S(X), where A =
D A®) and

(n), ift=sande=+,

AD =™, ift=sande=—,

(0), otherwise.
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Therefore, as i* = i* it follows from the construction of the graded Specht modules
in section 5.2 (or [8, Theorem 4.10]), that z5%e(i%®) # 0, so we see that z5° =
e(i5%)z5° = 25%(i5?®) = e(i57)25%e(i5®) as claimed.

It remains to write z;° as a product of homogeneous elements. To ease the
notation we treat only the case when ¢ = + and we write z, = 2, i, = i;® and
dn, = d;®°. The case when ¢ = — follows by exactly the same argument (and, in
fact, the same constants appear below), the only difference is that the products
Ty—1...T; must be replaced by (—¢)?~"T),—1 ... T} below.

Suppose, first, that n = 1. By definition, d; = (A, ;) — 1. Recall that Ly =
3¢ (1 —y1)e(i) by Theorem 3.5. Therefore, we have

srefin) = [[ (51— a) @00 e(i) = [[(a° — g — a°p) M2 ~Pove(in)

tel tel
=TI@ — ¢ — ¢*s)Melin) - (—a°y) ™) e(in)
t#s
=TT =)™ () ) (i)
t#£s

where the last equality follows because the ‘cyclotomic relation’ yEA’a*‘)e(in) =0,

holds in %’fl\ Thus, the Theorem holds when n = 1.
Now suppose that n > 1 and that the Theorem holds for smaller n. Then, using
the definitions,

n—1
2 = e(ln) H(Ln o qt)(/\,at)—tsst CZp_q (]_ —+ Z Th_1... Tj>e(in)

tel
71_[ N Aat)5t.(1nzn1 (1+2Tn1 )( )
tel

By induction and (A5), there exists a scalar non-zero C' € K such that

e(in)zn—1 = zn—1e(in) = He in—1Vi)-e(iy)
iel

= Cy,” e(in)
Let d;, = dp, — d¢jn- Then there exist constants C, € K, for a > dj,, such that

[T(Zn—g") 0% - e(in) 2z

tel
s+(n— A,ap)—0st ,8 .
= CT[ (@ 01— ya) — ) M7 2 (i)
tel
= e(in)y’y Z Caln»

a>d!,

with Cgr = C(—q)H=1)d5 T, (g5 T (=) — gt)(Ae)=3st where the product is over
those t € I with ¢t # s+ (n — 1) (mod eZ). In particular, Cq. # 0. Next, recall
from Theorem 3.5 that

Tke(in) = (kak(in) - Pk(in))e(in)7
for 1 < k < n. Applying the relations in (3.1), if 1 <k; <--- <k, < n then
e(in)’L/Jkp e wkle(in) = ’lﬁkp e wkle(skl e Skp . in)e(ln) =0.

Moreover, by the proof of Proposition A3 we know that z,_1y; =0, for 1 <i < n.
Therefore, when we expand P;(i,) as a power series in K[yi,...,y,] only those
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terms in K[y,] contribute to z,. Putting all of this together we find that
Zn = €(ln)y,€{fl Z Ozlzy;lL
a>d,

for some C/ € K. Notice that only one of these terms can survive since z, is
homogeneous by Proposition A3. By (3.3) the constant term of P;(i,) is —(1 —

q)/(1—q ') =gq,s0

(o =
gl =gtk
d! -

n j=1

Therefore, C, # 0 if and only if e { n, which is exactly the case when d), = d,, so
the Theorem holds when e fn.

Finally, suppose that e/n. Then C’, = 0, by what we have just shown, and
d, = d + 1, so we need to show that &é,nH # 0. This time the degree one term
of P, (i,) and the degree zero terms of P;(i,), for 1 < j < n, contribute to C/iﬁ-l'
Using (3.3) again, we find that

Cl 41 q

9 2 n—1 q

Cor q_l(q+q+ +4¢" ) 1_q7é

This completes the proof of the Theorem. O

We remark that we do not know how to prove Theorem A6 using the relations
directly. One problem, for example, is that it is not clear from the proof of The-
orem A6 that Cyg: 11 = 0 when e { n — note that if Ca, +1 # 0 then 2, would not
be homogeneous since Cqr # 0 when e { n. We are able to prove Theorem A6 only
because we already know that z, is homogeneous by Proposition A3.
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