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Abstract. We investigate the structure of the normaliser N in GLd(q) of the orthogonal group
Ωε

d(q), for ε ∈ {◦, +,−}. We develop algorithms to compute the spinor norm, and hence to
construct a homomorphism from N with kernel Ωε

d(q). These algorithms run in low-degree
polynomial time (with a discrete log oracle in some cases) and are implemented in Magma. We
also present similar algorithms for the normalisers of the other quasisimple classical groups.

1. Introduction

1.1. Motivation. The spinor norm is an epimorphism from the general orthogonal group GOε
d(q)

to F+
2 , originally given by decomposing elements into a product of reflections. The matrices of

determinant one and spinor norm zero form the omega group Ωε
d(q). In this paper, we investigate

the structure of the conformal group COε
d(q), which is the normaliser in GLd(q) of Ωε

d(q). We
develop an algorithm to compute the spinor norm of an element of a general orthogonal group.

Given an element g of a conformal orthogonal group, we solve two main algorithmic tasks.
First we efficiently compute the image of g under the natural quotient by the omega group, as
an element of a polycyclic group. Secondly we find a canonical coset representative of g modulo
the omega group. We also find the image of g in an extension of F×q , since this avoids a discrete
logarithm call. We then solve analogous problems for the other classical groups.

Almost all of our algorithms run in a number of finite field operations that is low-degree
polynomial in d and log q: the exception is the homomorphism to the polycyclically presented
group, which may require at most one discrete logarithm call (or two in the unitary case).

We have two main motivations for this work. First, the matrix group recognition project,
which seeks to efficiently compute composition series for finite-dimensional matrix groups over
finite fields [13]. The first stage of this computation is to find a geometry preserved by the
group, in the sense of Aschbacher’s Theorem [1], and use it to compute a normal subgroup
and its quotient. These decomposition algorithms terminate when they reach groups that lie
between a classical group in its natural representation and its normaliser in GLd(q) (Case C8),
or are almost simple modulo scalars (Case C9).

Algorithms to constructively recognise the quasisimple classical groups (and Ω+
4 (q)) in their

natural representation are known [4, 5, 14]. This paper resolves the problem that the C8 group
may properly contain the quasisimple classical group. We do not consider field or graph auto-
morphisms, as they cannot be represented linearly in the natural representation.

In [17] an algorithm is presented to calculate a chief series for a C8 group containing an
orthogonal group as a normal subgroup, using our spinor norm algorithm. It analyses the pro-
jective group and then the scalars, rather than the quotient by the quasisimple group, and hence
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to determine the index of the quasisimple group in the C8 group it is necessary to constructively
recognise the simple classical group.

Our other motivation is element conjugacy algorithms, which seek to provide low-degree
polynomial time conjugacy tests, as well as returning a conjugating element (when appropriate)
and a standard class representative. They start by considering conjugacy in the normaliser
in the general linear group of each classical group, and then consider subgroups. This paper
describes some of these subgroups, whilst canonical coset representatives are needed to find class
representatives. Note that constructive recognition is not required for this application.

1.2. Notation and forms. Let p be a prime and let q be a power of p. Let Fq be the field
of size q. Write F×q for the multiplicative group of nonzero field elements, and F×2

q for the
nonzero squares. We assume that Fq2 is constructed as Fp(ζ), where ζ is the root of the Conway
polynomial [11]. See Section 8 for a brief discussion on avoiding this assumption for large fields.
Thus ζ is a primitive element of Fq2 and ξ = ζq+1 is a primitive element of Fq.

Let V = Fd
q be the d-dimensional row space over Fq, with standard basis [v1, . . . , vd]. We

assume that d is at least 3 and that d is even if q is even. By diag[a1, a2, . . . , ad] we mean the
d× d matrix with entry ai in position (i, i) and 0 elsewhere. By antidiag[a1, a2, . . . , ad] we mean
the d× d matrix with entry ai in position (i, d− i+ 1) and 0 elsewhere.

A symmetric bilinear form is a map β : V×V → Fq such that β(v, w) = β(w, v), β(u+v, w) =
β(u,w)+β(v, w), and β(λv,w) = λβ(v, w) for all u, v, w ∈ V and λ ∈ Fq. A quadratic form is a
map Q : V → Fq such that Q(λv) = λ2Q(v) and β(u, v) = Q(u+ v)−Q(u)−Q(v) is symmetric
bilinear, for all u, v ∈ V and λ ∈ Fq. We call β the corresponding orthogonal form: if q is odd
then we can recover Q from β via Q(v) = β(v, v)/2.

The form β is nondegenerate if β(v, V ) 6= 0 for all v ∈ V \{0}. The form Q is nondegenerate
when Q(v) 6= 0 for all v 6= 0 such that β(v, V ) = 0. When q is odd, Q is nondegenerate if and
only if β is nondegenerate. We assume throughout that all quadratic forms are nondegenerate.
A vector v is singular if Q(v) = 0.

We define an upper triangular d× d matrix M over Fq such that for v = (a1, . . . , ad),

Q(v) =
∑

1≤i≤j≤d

mijaiaj .

Let F = (β(vi, vj))d×d, then β(u, v) = uFvTr and a short calculation shows that F = M +MTr.
Two quadratic forms Q1 and Q2 on V are isometric if there exists g ∈ GLd(q) such that

Q1(vg) = Q2(v) for all v ∈ V ; they are similar if there exist g ∈ GLd(q) and λ ∈ F×q such that
Q1(vg) = λQ2(v) for all v ∈ V . If two forms are similar then the groups preserving each form
are conjugate in the general linear group.

2. Canonical forms and groups

In this section, we define a set of canonical forms, and the groups that preserve them.
Every element of Fq2 can be written as a0 + a1ζ + · · · + am−1ζ

m−1, where pm = q2 and
ai ∈ {0, . . . , p−1}. This induces an ordering on Fq2 by lexicographically ordering the coefficients.

Theorem 2.1. [8, Theorem 8.12] A root in Fq2 for a quadratic polynomial with coefficients in
Fq can be found by a Las Vegas algorithm in O(log q) field operations.

We can fix a canonical root of a quadratic by taking the smaller root with respect to our canonical
ordering on Fq2 . Similarly, we determine whether a ∈ F×2

q and if so, define a canonical square
root

√
a. If a = ξ2i, then we write a1/2 for ξi: this may differ by a sign from

√
a. For q even,

the square root of a is unique and can be computed as aq/2 in O(log q) field operations.
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While discussing canonical field elements, we include a result which we will need in Section 6.

Proposition 2.2. Let a ∈ F×q . A canonical solution of the norm equation xq+1 = a over Fq2

can be found in Las Vegas O(log q + log2 p) field operations.

Proof. We construct a solution to the norm equation in three cases. The first is a ∈ F×2
q (which

includes all even q). Let
√
a = x, then xq+1 = x2 = a.

The second case is a 6∈ F×2
q and q ≡ 1 (mod 4). Now −1 ∈ F×2

q , so −a 6∈ F×2
q . Hence

x =
√
−a ∈ Fq2 satisfies xq+1 = (x2)(q+1)/2 = (−a)(−a)(q−1)/2 = a, as required.

The final case is a 6∈ F×2
q and q ≡ 3 (mod 4). Now −a ∈ F×2

q , so let b =
√
−a and write

p+ 1 = 2ms for s odd. Calculate c ∈ Fp in O(log2 p) field operations by

c1 = 0; ci+1 =
(
ci + 1

2

) p+1
4

(i = 1, . . . ,m− 2); c =
(
cm−1 − 1

2

) p+1
4

.

By [2], the polynomial g(X) = X2 − 2cX − 1 is irreducible over Fq. Hence −ag(X/b) =
X2 − 2bcX + a is also irreducible and its roots in Fq2 have norm a. �

Proposition 2.3. Given ζ ∈ Fq2, the following canonical elements can be constructed:
(1) for q odd, a nonsquare δ ∈ Fq in O(log q) operations;
(2) for q odd, γ ∈ Fq such that γ and 1− 4γ are nonsquares in O(log q) operations;
(3) for q even, γ ∈ Fq such that X2 +X + γ is irreducible over Fq in O(log2 q) operations;
(4) for q odd, ν ∈ Fq such that 1 + ν2 is nonsquare, in O(log q) operations.

Proof. For (1), take δ = ξ = ζq+1.
For (2), note that ζ + ζq 6= 0, as otherwise ζq−1 = −1 = ζ(q2−1)/2. Set γ = ξ/(ζ + ζq)2, then

γ ∈ Fq because γq = γ. Also, γ 6∈ F×2
q because ξ 6∈ F×2

q . Finally,

1− 4γ = 1− 4ζζq

(ζ + ζq)2
=

(
ζ − ζq

ζ + ζq

)2

6∈ F×2
q ,

since ζ−ζq

ζ+ζq is taken to its negative under taking qth powers, and so is not in Fq.
For (3), let q = 2m. If m is odd, let δ = 1. Otherwise, let m = 2rs for s odd. Define ai

recursively: a0 = 1, and ai+1 is the canonical root of X2 +X + ai in Fq. Define δ to be the first
aj for which X2 +X + aj is irreducible.

Define T : Fq → Fq by T (x) = x2 + x, and note that T (ai) = a2
i + ai = ai−1 for i ≥ 1.

It is easy to show that T 2i
(x) = x22i

+ x for all i. Now suppose a = a2r+1 ∈ Fq exists. Then

T 2r+1(a) = 1, so T 2r+1
(a) = T 2r+1−2r−1(1) = 0, and so a22r+1

= a. Hence a ∈ F
22r+1 , which

intersects Fq in F22r . This implies that a22r

= a, so T 2r
(a) = 0, which contradicts T 2r+1(a) = 1.

Therefore j ≤ 2r ≤ log q.
For (4), note that 4ζq+1/(ζ−ζq)2 ∈ F×2

q . Let ν ∈ Fq be its square root, then 1+ν2 6∈ F×2
q . �

Definition 2.4 (Standard quadratic forms). We denote these forms by Qε, ε ∈ {◦,+,−}.
◦ type: d = 2m+ 1 and V has basis (e1, . . . , em, x, fm, . . . , f1) with Q◦(ei) = Q◦(fj) = 0,
β◦(ei, fj) = δij, β◦(ei, x) = β◦(fi, x) = 0 and Q◦(x) = δ.

+ type: d = 2m and V has basis (e1, . . . , em, fm, . . . , f1) with Q+(ei) = Q+(fj) = 0 and
β+(ei, fj) = δij.

− type: d = 2m+ 2 and V has basis (e1, . . . , em, x, y, fm, . . . , f1) with Q−(ei) = Q−(fj) =
0, β−(ei, fj) = δij, β−(a, b) = 0 for a ∈ {ei, fj}, b ∈ {x, y}, (Q−(x), Q−(y), β−(x, y)) =
(1, γ, 1).
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Proposition 2.5. Every nondegenerate quadratic form is similar to one of the forms given in
Definition 2.4. When the dimension is even, the + type form is not similar to the − type form.

Proof. This is well-known: see for instance [19, Chapter 11]. �

For odd dimension and characteristic, there are two nonisometric classes of forms, which are
similar. In all other cases, forms are similar if and only if they are isometric.

Define the conformal orthogonal, (general) orthogonal, and special orthogonal groups by

COd(q,Q) = {g ∈ GLd(q) | there exists λ ∈ F×q such that Q(vg) = λQ(v) for all v ∈ Fd
q},

GOd(q,Q) = {g ∈ GLd(q) | Q(vg) = Q(v) for all v ∈ Fd
q},

SOd(q,Q) = GOd(q,Q) ∩ SLd(q).

If Q = Qε, we denote these groups by COε
d(q), and so on. If q is odd, these groups can also be

defined in terms of β. Some authors denote GOε
d(q) by Oε

d(q).

3. Discriminants, the τ map, the spinor norm, and reflections

Define ι : F×q → F+
2 by ι(x) = 0 when x ∈ F×2

q , and ι(x) = 1 otherwise. The discriminant
of Q is ι(det(F )): this is constant on isometry types of forms. Define τ : COd(q,Q) → Fq

by Q(vx) = τ(x)Q(v) for all v ∈ V . It is well-known (see for example [12, 2.1.2]) that τ is a
homomorphism with kernel GOd(q,Q).

We give the most computationally useful of the equivalent definitions of the spinor norm:

Definition 3.1 (Spinor norm).
(1) Let q be odd and let F be the matrix of the orthogonal form corresponding to Q. Let

A(g) = {v ∈ V : ∃ n s.t. v(1 + g)n = 0}, B(g) =
⋂∞

n=1 V (1 + g)n, and

α(g) = det
(
F |A(g)

)
det

(
1+g
2

∣∣∣
B(g)

)
.

The spinor norm of g is sp(g) = ι(α(g)).
(2) For q even, the spinor norm of g is sp(g) = rank(1 + g) mod 2.

Lemma 3.2. [7, 20]
(1) sp is a homomorphism from GOd(q,Q) onto F+

2 .
(2) sp(−1) = 0 if and only if the discriminant of Q is zero.

Definition 3.3. Ωd(q,Q) = SOd(q,Q) ∩ ker(sp).

We define the omega group as in [12], however it is common in the literature to define it as the
derived group of SOd(q,Q). These definitions agree provided that d ≥ 3 and (d, q, ε) 6= (4, 2,+).
It is well-known (see for instance [12, Cor 2.10.4] that NGLd(q)(Ωd(q,Q)) = COd(q,Q).

Let v ∈ V be nonsingular, so that Q(v) 6= 0. The reflection in v is

reflv : V → V, u 7→ u− β(u, v)v/Q(v).

Lemma 3.4. Let Q be a nondegenerate quadratic form on V .
(1) All reflections are elements of GOd(q,Q).
(2) All reflections have determinant −1 and order 2.
(3) For q odd and v ∈ V nonsingular, sp(reflv) = 0 if and only if Q(v) ∈ F×2

q .
(4) For q even and v ∈ V nonsingular, sp(reflv) = 1.
(5) For q odd and u, v ∈ V nonsingular, Ωd(q,Q) reflu = Ωd(q,Q) reflv if and only if

ι(Q(u)) = ι(Q(v)).
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Proof. (1) is an easy calculation. (2) is true since reflv negates elements of 〈v〉 and fixes elements
of U = {u ∈ V | (u, v) = 0}. For (3) and (4), let g = reflv. For q odd, A(g) = 〈v〉 and B(g) = U ,
so α(g) = Q(v). For q even, rank(1 + g) = 1. (5) follows from (3) and Lemma 3.2. �

4. Presentations

We now give an explicit presentation for the quotient of COε
d(q) by Ωε

d(q). For the projective
groups, see [12, §§2.5–2.8]. Recall d ≥ 3 throughout and if q is even then d is even.

Define v0 = e1 + f1 so that Qε(v0) = 1. For q odd, let δ be as in Proposition 2.3 and define
v1 = e1 + δf1, so that Qε(v1) = δ. We can now define our canonical reflections

R0 = reflv0 and R1 = reflv1 .

For q odd, sp(Ri) = i for i ∈ F+
2 . For q even, we only define R0. Define the coset ri = Ωε

d(q)Ri.

Theorem 4.1.
(1) If q is odd, then GOε

d(q) = 〈R0, R1,Ωε
d(q)〉 and SOε

d(q) = 〈R0R1,Ωε
d(q)〉. Furthermore,

GOε
d(q)/Ω

ε
d(q) has presentation

〈r0, r1 | r20 = r21 = (r0r1)2 = 1〉.

(2) If q and d are even, then GO±
d (q) = 〈R0,Ω±d (q)〉, and GO±

d (q)/Ω±d (q) has presentation

〈r0 | r20 = 1〉.

Proof. (1) The group defined by the given presentation has order 4. By [12, §2.1], the index
[GOε

d(q) : Ωε
d(q)] = 4, so it suffices to show that r0 and r1 satisfy the given relations, and that

they are distinct and nontrivial. The relations r20 = r21 = 1 hold by Lemma 3.4.2, which also
shows that r0 6= 1 6= r1. If g = (R0R1)2 then det(g) = 1, and sp(g) = 2 sp(R0R1) = 0, so
(r0r1)2 = 1. Finally, sp(R0) 6= sp(R1) so r0 6= r1 by Lemma 3.4.5.
(2) This is similar, since [GOε

d(q) : Ωε
d(q)] = 2 for q even [12, §2.1]. �

Let λ ∈ F×q . For even q, define C±(λ) = λq/2Id. For odd q, define

C◦(λ) = λ2Im ⊕ (λ)⊕ Im, for d = 2m+ 1 odd;

C+(λ) = λIm ⊕ Im, for d = 2m even;

C−(λ) = λ2Im ⊕ λI2 ⊕ Im, for d = 2m+ 2 even;

C−0 = γIm ⊕ antidiag[1, γ]⊕ Im for d = 2m+ 2 even.

It is easy to check that Cε(λ) ∈ COε
d(q) and C−0 ∈ CO−

d (q). Note that τ(Cε(λ)) = λ2 when q is
odd and ε is ◦ or −; whilst τ(Cε(λ)) = λ in all other cases. Also, we check that(

0 1
γ 0

) (
2 1
1 2γ

) (
0 γ
1 0

)
= γ

(
2 1
1 2γ

)
,

and so τ(C−0 ) = γ. Let c(λ) be the coset Ωε
d(q)C

ε(λ), and let c0 be Ω−d (q)C−0 .

Theorem 4.2.
(1) If q is even, then CO±

d (q) = 〈R0, C
±(ξ),Ω±d (q)〉. Furthermore, CO±

d (q)/Ω±d (q) has pre-
sentation G±(q) with generators r0, c(λ) for all λ ∈ F×q and relations

c(λ)c(µ) = c(λµ), r20 = 1, r0c(λ) = c(λ)r0.
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(2) The group CO◦
d(q) = 〈R0, R1, C

◦(ξ),Ω◦d(q)〉. Furthermore, CO◦
d(q)/Ω

◦
d(q) has presenta-

tion G◦(q) with generators r0, r1, c(λ) for all λ ∈ F×q and relations

c(λ)c(µ) = c(λµ), r20 = r21 = (r0r1)2 = 1, ric(λ) = c(λ)ri, c(−1) = r1.

(3) If q is odd then CO+
d (q) = 〈R0, R1, C

+(ξ),Ω+
d (q)〉. Furthermore, CO+

d (q)/Ω+
d (q) has

presentation G+(q) with generators r0, r1, c(λ) for all λ ∈ F×q and relations

c(λ)c(µ) = c(λµ), r20 = 1, r21 = (r0r1)2 = 1, rc(λ)
i = r(i+ι(λ)) mod 2.

(4) If q is odd then CO−
d (q) = 〈R0, R1, C

−(ξ), C−0 ,Ω
−
d (q)〉. Furthermore, CO−

d (q)/Ω−d (q) has
presentation G−(q) with generators r0, r1, c0, c(λ) for all λ ∈ F×q and relations

c(λ)c(µ) = c(λµ), r20 = r21 = (r0r1)2 = 1, ric(λ) = c(λ)ri,

rc0
i = r(i+1) mod 2, c0c(λ) = c(λ)c0, c20 = c(γ), c(−1) = r0r1.

Proof. The kernel of τ on COε
d(q) is GOε

d(q), and its image is F×q if d is even, and F×2
q otherwise

[12, §2.1]. For d odd, τ(C◦(ξ)) = ξ2 generates F×2
q . If ε is + or q is even, then τ(Cε(ξ)) = ξ

generates F×q . Finally, if ε is − and q is odd, then τ(C−(ξ)) = ξ2 and τ(C−1 ) = γ generate F×q ,
since γ is nonsquare. Hence by Theorem 4.1, COε

d(q) is generated by the given elements.
For q even, G±(q) = 〈c(ξ)〉 × 〈r0〉 ∼= F×q × F+

2 . The group G◦(q) is a direct product of
〈r0〉 ∼= F+

2 and 〈c(ξ)〉 ∼= F×q . For q odd, G+(q) is an extension of 〈r0, r1〉 ∼= (F+
2 )2 by 〈c(ξ)〉 ∼= F×q ,

whilst G−(q) is an extension of 〈r0, r1〉 ∼= (F+
2 )2 by 〈c(ξ), c1〉 ∼= F×q . Hence Gε(q) has the same

order as COε
d(q)/Ω

ε
d(q) [12, § 2.1]. It therefore suffices to show that the relations hold.

All relations involving only r0 and r1 hold by Theorem 4.1. For the relations involving
r0 or r1 conjugated by c(λ) or c0, note that reflg

v = reflvg for v ∈ V and g ∈ COε
d(q). For q

even, all reflections are in the same coset of Ω±d (q), and so rc(λ)
0 = r0. For q odd, ι(Q(vg)) =

ι(Q(v)) + ι(τ(g)). For the relations involving products and powers of c(λ) and c0, one checks
that Cε(λ)Cε(µ) = Cε(λµ) and so c(λ)c(µ) = c(λµ). Now, C◦2m+1(−1) = Im⊕(−1)⊕Im = reflx,
and since Q◦(x) = δ we deduce c(−1) = r1. Finally, C−(λ) commutes with C−0 ; (C−0 )2 = C−(γ);
and C−(−1) = Im ⊕−I2 ⊕ Im = reflx refly, so c(−1) = r0r1. �

By setting c = c(ξ), or c = c(
√
ξγ−1)c0, we get equivalent PC presentations:

Corollary 4.3. The group CO◦
d(q)/Ω

◦
d(q) has presentation

H◦(q) = 〈r0, r1, c | r20 = r21 = (r0r1)2 = 1, rc
0 = r0, r

c
1 = r1,c

(q−1)/2 = r1〉.

If q is odd then CO±
d (q)/Ω±d (q) has presentation

H±(q) = 〈r0, r1, c | r20 = r21 = (r0r1)2 = 1, rc
0 = r1, r

c
1 = r0,c

q−1 = 1〉.

If q is even then CO±
d (q)/Ω±d (q) has presentation

H±(q) = 〈r0, c | r20 = 1, rc
0 = r0, c

q−1 = 1〉.

From the theory of PC presentations [9], an element of Hε(q) can be written uniquely as:

qd odd: ri
0r

j
1c

k with i, j ∈ {0, 1} and k ∈ {0, . . . , (q − 3)/2};
q odd, d even: ri

0r
j
1c

k with i, j ∈ {0, 1} and k ∈ {0, . . . , q − 2};
q even: ri

0c
k with i ∈ {0, 1} and k ∈ {0, . . . , q − 2}.
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5. Algorithms for orthogonal groups

We start this section by introducing various basic algorithms for later use. Recall the
results about finite fields in Section 2. We do not assume the availability of discrete logarithms
or primitive field elements, unless explicitly stated.

We define ω to be the exponent of matrix multiplication, so that multiplication of two d×d
matrices is O(dω) field operations. The current best known bounds for ω are 2 ≤ ω ≤ 2.236.
The following results on complexity of matrix operations are standard and can be found in [6].

Theorem 5.1. Computing the rank, the nullspace, the characteristic polynomial and the deter-
minant of a d× d matrix over Fq requires O(dω) field operations.

A quadratic form Q is given by its matrix M (or equivalently F for odd q). Given vectors
u, v ∈ V , we can compute Q(v) or β(u, v) in O(d2) field operations.

There is an algorithm in [10] to construct an isometry between symmetric bilinear forms in
Las Vegas O(d3 + d log q) field operations for q odd. However, it returns different isometries if
called more than once. Since we require an isometry to construct coset representatives, we now
present a canonical isometry algorithm. For odd d, if two forms are similar rather than isometric,
then replacing one form matrix by a nonsquare scalar multiple will produce two isometric forms
without changing the groups concerned.

Theorem 5.2. For odd q, let ζ ∈ Fq2 and isometric forms F and F1 be given. We construct a
canonical isometry between F and F1 in Las Vegas O(d3 + d log q) field operations.

Proof. We show how to convert F into a diagonal matrix that for d odd is either Id or ξId, and
for d even is either Id or Diag[1, . . . , 1, ξ], depending on the discriminant of F .

By replacing v1 by vj or v1 + vj for some j if necessary (an O(d) operation) we may assume
without loss of generality that f11 6= 0. For 2 ≤ i ≤ d we replace vi by f−1

1i vi − f−1
11 v1. For each

i this requires O(d) field operations, so O(d2) in total. After this, if i 6= 1 then f1i = fi1 = 0.
Repeating for 2 ≤ i ≤ d we transform F into a diagonal matrix in O(d3) field operations.

In Las Vegas O(d log q) field operations we transform F to a diagonal matrix whose diagonal
entries are equal to 1 if fii ∈ F×2

q , or ξ if fii 6∈ F×2
q .

We finish by transforming the diagonal entries in pairs from ξ to 1, unless d is odd in which
case if there are an even number of 1s we transform the diagonal entries in pairs from 1 to ξ. To
do this we select two equal entries, say fii and fjj . We replace vi by vi + νvj and vj by νvj − vi,
where ν is from Proposition 2.3.4. Since ν2 6= −1, these two vectors are linearly independent,
and a short calculation shows that this has the effect of multiplying fii and fjj by (1 + ν2), a
nonsquare. To finish, we transform the new entries to either 1 or ξ as before. �

Proposition 5.3. Given Q, a canonical nonsingular vector v can be constructed in O(d) field
operations. For odd q, given F and ζ, canonical vectors w0, w1 with Q(w0) = 1 and Q(w1) = δ
can be constructed in O(d2 + log q) field operations. Reflections in these vectors can then be
constructed in O(d2) field operations.

Proof. If we require only v we look for the smallest i such that mii 6= 0, and let v = vi. If none
exists, let j be minimal subject to m1j 6= 0, and let v = v1 + vj .

To find w0, w1 we first check the diagonal entries of M to see if one is square and the other
nonsquare. If so, we are done. Failing this we follow a similar procedure to Theorem 5.2 to find
an isometry such that the top 3× 3 block of F is diagonal: this requires O(d) operations. If at
this stage at least one entry is square and another is nonsquare, we are done. So assume without
loss of generality that all are squares. We follow Theorem 5.2 to make an isometry mapping
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all three entries to 1 in Las Vegas O(log q). Let X be the resulting sequence of isometries.
Construct ν from Proposition 2.3 in O(log q) operations. Then v1X and (v1 +νv2)X are vectors
of square and nonsquare norm.

To calculate reflw, we first compute Q(w) in O(d2) operations. Next we note that wFvTr
i can

be computed in O(d), as Fvi is the ith row of F . Then row i of reflw is vi−(wFvTr
i )Q(w)−1v. �

Corollary 5.4. Let Q be a nondegenerate quadratic form of dimension d over the field of size
q. Let g be an element of GOd(q,Q). Then τ(g) can be computed in O(d2) field operations.

Proof. Let v be a nonsingular vector, as in Proposition 5.3. Then τ(g) = Q(vg)/Q(v) can be
computed in O(d2) field operations. �

Recall A(g) and B(g) from Section 3. The following lemma is elementary linear algebra:

Lemma 5.5. Let g ∈ GLd(q), and write the characteristic polynomial of g + 1 in the form
xef(x) with f(0) 6= 0. Then A(g) = ker((g + 1)e) and B(g) = ker(f(g + 1)).

Here is the main result on computing the spinor norm.

Theorem 5.6. Let g ∈ GOd(q,Q), then sp(g) can be found in O(dω) field operations if q is
even, and Las Vegas O(d3 + log q) field operations if q is odd.

Proof. If q is even we calculate sp(g) = rank(g − Id) in O(dω) operations by Theorem 5.1.
If q is odd, we compute a := g+ Id in O(d). We then compute the characteristic polynomial

C(a) in Fq[x] of a in O(dω) field operations by Theorem 5.1. We factorise C(a) = xep(a), where
p(1) 6= 0, in O(d) operations.

Computing ae, where e ≤ d, requires O(dω log d) field operations. We compute A(g) in
O(dω) operations as the nullspace of ae by Lemma 5.5. We find dA := det(F |A(g)) in O(dω).

If e < d then following [14] we conjugate a to Frobenius normal form in O(d3) operations
[18]. After this, matrix multiplication is O(d2), so we evaluate p(a) in O(d3) field operations. We
then compute B(g), namely the nullspace of p(a), in O(dω). Calculating dB := det(a/2 |B(g))
requires O(dω) field operations.

Finally we test whether dAdB is a square in Las Vegas O(log q) field operations. �
Next we consider the natural homomorphism from GOd(q,Q) to F+

2 or (F+
2 )2.

Proposition 5.7. Let Q be a nondegenerate quadratic form, and let g ∈ GOd(q,Q). Then the
image of g under the natural homomorphism to F+

2 (q even) or (F+
2 )2 (q odd) can be found in

O(dω) (q even) or Las Vegas O(d3 + log q) (q odd) field operations.
A canonical coset representative for g can then be constructed in O(d2) field operations if q

is even and, given ζ, in Las Vegas O(d2 + log q) field operations otherwise.

Proof. If q is even then we calculate the homomorphism to F+
2 as sp(g) in O(dω) field operations.

For the coset representative we return reflsp(g)
v as in Proposition 5.3.

Next let q be odd. We compute det(g) in O(dω) and sp(g) in O(d3 + log q) operations.
The image of g is (a, sp(g)), where a = sp(g) if det(g) = 1 and a = sp(g) + 1 mod 2 otherwise.
We find R1 and R2 in O(d2 + log q) as in Proposition 5.3. If the image of g is (a, b) then a
representative is Ra

1R
b
2. �

Recall Gε(q) and Hε(q) from Theorem 4.2 and Corollary 4.3. Discrete logs can be computed
in subexponential time [16], but we view them as an oracle. We can now give our main result.

Theorem 5.8. Let g be an element of COd(q,Q), and if q is odd and d is even let ζ be given.
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(1) The image of g under the natural homomorphism to Gε(q) can be computed in O(dω)
field operations if q is even, by a Las Vegas algorithm in O(d3 + log q) field operations if
qd is odd, and by a Las Vegas algorithm in O(d3 + d log q) field operations otherwise.

(2) The image of g as a standard word in Hε(q) can be calculated in the same number of
field operations as (1), plus one discrete logarithm call. If q is odd and Q is of − type,
we assume that the discrete log of γ has been precomputed.

(3) A canonical representative of the coset Ωd(q,Q)g can be computed in the same number
of field operations as (1).

Proof for q even. By Theorem 4.2, Gε(q) = 〈r0〉 × 〈c(ξ)〉 ∼= F+
2 × F×q . If g 7→ ri

0c(λ), then
λ = τ(g), hence i = sp(gCε(λ)−1). We find τ(g) in O(d2) operations by Corollary 5.4, and
then compute c(λ) = λq/2Id in O(d2 + log q) operations. We find i in O(dω) by Theorem 5.6.
The image of g in Hε(q) is ri

0c
j where j = logξ λ. We use Proposition 5.3 to find a canonical

reflection R0, then a canonical coset representative of g is Ri
0C

ε(λ). �

Proof for q odd, d odd. By Theorem 4.2, G◦(q) = 〈r1〉 × 〈c(ξ)〉 ∼= F+
2 ×F×q . Let α =

√
τ(g), and

define the map ψ : g 7→ ri
0c(λ) where

λ = λ(g) = α det(gα−1) and i = i(g) = sp(gλ(g)−1).

We first show that this is the natural homomorphism to G◦(q). Let α1 =
√
τ(g1), α2 =√

τ(g2) and α3 =
√
τ(g1g2). Then α3 = tα1α2 for t = ±1, so

λ(g1g2) = α3 det(g1g2α−1
3 )

= tα1α2 det(g1g2)det(t−1) det(α−1
1 α−1

2 )

= t1−dα1 det(g1α−1
1 )α2 det(g2α−1

2 ) = λ(g1)λ(g2)

since 1 − d is even, and λ is a homomorphism. Then g 7→ i(g) is a homomorphism since
τ(det(gα−1)) = (±1)2 = 1, so λ has kernel SOd(q,Q) and sp is a homomorphism on SOd(q,Q).

We find α in Las Vegas O(log q) operations, then set λ = α det(gα−1) and i = sp(gλ(g)−1)
in O(d3 + log q) operations, so (1) follows.

For (2) we let k = logξ λ. If k < (q − 1)/2 we map g to ri
0r

i
1c

k, whereas if k ≥ (q − 1)/2
we map g to r1+i

0 ri
1c

k−(q−1)/2. For (3), we calculate R0, R1 in Las Vegas O(d2 + log q) field
operations by Proposition 5.3. We represent g by αRa

0R
b
1, where b = sp(α−1g) and a = b if

det(α−1g) = 1 and b+ 1 otherwise. �

Proof for q odd, d even, + type. For (1), we first find a canonical isometry X from the standard
form to F , in O(d3 + d log q) operations, by Theorem 5.2. We compute λ = τ(g) in O(d2), by
Proposition 5.3. We calculate h = gx−1

C+(λ)−1 in O(dω), and find a = det(h) and b = sp(h) in
O(d3 + log q) field operations. If a = 1, let b′ = b, otherwise b′ = b+ 1. Map g to rb′

0 r
b
1c(λ).

For (2), we find k = logξ λ and map g to rb′
0 r

b
1c

k. For (3) we write down the canonical
elements R0, R1 from §4 in O(d2 + log q), then represent g by (Rb′

0 R
b
1C

+(λ))X . �

Proof for q odd, d even, − type. For (1), we first find a canonical isometry X from the standard
form to F in O(d3 +d log q) field operations. We compute τ(g) in O(d2) field operations. If τ(g)
is a square, we take λ =

√
τ(g), z = c(λ) and C = C−(λ). Otherwise we take λ =

√
τ(g)γ−1,

z = c0c(λ), and C = C−0 C
−(λ). We then let h = gx

−1
C−1, find a = det(h) and b = sp(h) in

O(d3 +log q) field operations. We map g to rb′
0 r

b
1z, where b′ = b if a = 1 and b′ = b+1 otherwise.
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For (2) we find k = logξγ λ = log λ
log γ+1 with a discrete log call, and map g to rb′

0 r
b
1c

k. For (3)
we write down R0 and R1 from §4 in O(d2 + log q), then the representative is (Rb′

0 R
b
1C)X . �

Note that similar, but faster, algorithms can be given for COd(q,Q)/GOd(q,Q).

6. Algorithms for other classical groups

In this section, we briefly present similar algorithms for other classical groups.

Proposition 6.1. The image of g ∈ GLd(q) under the natural map to GLd(q)/SLd(q) ∼= F×q
can be computed in O(dω) field operations. The image of g in the polycyclically presented group
〈c | cq−1〉 can be then computed in one discrete log call, given a primitive field element. A
canonical coset representative can also be constructed in O(dω) field operations.

Proof. The image of g in F×q is det(g). To represent det(g) as an element of the polycyclic group
we calculate its discrete logarithm. A canonical coset representative is diag[det(g), 1, . . . , 1]. �

For the symplectic and unitary groups, let Sd(q, F ) denote Spd(q, F ) or SUd(q, F ) respec-
tively. All groups of the same type are isometric. We let u = 1 for the symplectic groups and
u = 2 otherwise. We define Nd(q, F ) := NGLd(qu)(Sd(q, F )), and define τ : Nd(q, F ) → F×qu by
F (ug, vg) = τ(g)F (u, v), for all u, v ∈ V .

Lemma 6.2. The map τ is a homomorphism from Nd(q, F ) to F×qu with kernel Spd(q, F ) or
GUd(q, F ), respectively. Given g ∈ Nd(q, F ) and F we calculate τ(g) in O(d2) field operations.

Proof. The first claim is proved in [12, 2.1.2(ii)]. We compute τ(g) by first calculating v1F in
O(d) field operations, as it is the first row of F . Let the first nonzero entry of v1F be α in
position i. Then F (v1, vi) = α 6= 0. We compute v1g, vig in O(d) since they each consist of a
row of g. We calculate β := (v1g)F (vig)Tr in O(d2) field operations, then τ(g) = α/β. �

The standard symplectic form is Fd := antidiag[1, 1, . . . , 1,−1, . . . ,−1], with d/2 entries 1.

Proposition 6.3. Let F be a symplectic form over Fd
q with d ≥ 3, then Nd(q, F )/Spd(q, F ) ∼= F×q .

The image of g ∈ Nd(q, F ) in F×q can be computed in O(d2) field operations. The image of g in
〈c | cq−1〉 then requires a single discrete logarithm call, given ξ. A coset representative can be
constructed in O(d3) field operations if q is odd and O(d2 + log q) field operations if q is even.

Proof. Note that τ(ξId) = ξ2, which gives the first claim for even q. For q odd, with respect to
Fd the element h = diag[ξ, . . . , ξ, 1, . . . , 1] satisfies τ(h) = ξ, so the first claim follows.

The image of g in F×q is τ(g), which is calculated in O(d2) field operations by Lemma 6.2.
We represent τ(g) as an element of a polycyclic group with one discrete log call.

If q is even then a canonical coset representative is τ(g)q/2Id. If q is odd then we use [10]
to find a canonical isometry X from F to Fd in O(d3) field operations. A coset representative
is diag[τ(g), . . . , τ(g), 1, . . . , 1]X . �

Now we consider the unitary groups. We take the standard unitary form to be Id. Recall
that ζ is a primitive element of Fq2 . First we describe the structure of Nd(q, F ).

Proposition 6.4. Let F be a unitary form over Fd
q2, with d ≥ 3, then Nd(q, F ) = 〈GUd(q, F ),F×

q2〉.
The quotient Ud,q = Nd(q, F )/SUd(q, F ) has presentation 〈a, b|aq−1 = bd, bq+1 = 1, ba = b〉.

Let g ∈ Nd(q, F ), then a canonical coset representative for g can be computed in O(d3 +
d(log q + log2 p)) operations. Given a discrete log oracle and ζ, the image of g in Ud,q can be
computed in Las Vegas O(dω + log q + log2 p) field operations, plus two uses of the oracle.
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Proof. The first claim follows from the fact that all linear outer automorphisms PSUd(q, F ) lie in
PGUd(q, F ), so Nd(q, F ) only contains GUd(F ) and scalars. For the second claim, first note that
τ(F×

q2) = F×q , and ζq−1Id ∈ GUd(q, F ). Since det(ζq−1Id) = ζd(q−1) and GUd(q, F )/SUd(q, F ) ∼=
〈ζq−1〉, the structure of Ud,q is as stated.

We compute τ(g) in O(d2) field operations, by Lemma 6.2. Next we find a canonical µ such
that µq+1 = τ(g) in O(log q + log2 p) by Proposition 2.2, and then calculate δ = µ−d Det(g).

To compute the coset representative we use the algorithms from [10], upgraded to use the
canonical solution to the norm equation, to find a canonical siometry X from F to Id in Las
Vegas O(d3 + d(log q + log2 p)). Since 〈SUd(q),diag[ζq−1, 1, . . . , 1]〉 = GUd(q), a canonical coset
representative is diag[µδ, µ, . . . , µ]X .

To find the image of g in Ud,q, we use the oracle to find x = (logζ τ(g))/(q + 1): note x ∈ N
since τ(g) ∈ Fq. We find y = logζ(det(g)ζ−xd)/(q − 1). Finally, we map g to axby ∈ Ud,q. �

7. Timings

In this section we present various tables of timings data for a Magma v2.14-9 [3] implemen-
tation of our algorithms. We tested our spinor norm algorithm on GOd(q,Q) on all five cases:
odd dimension and odd characteristic, and both types of form in even dimensions in both even
and odd characteristic. In each case we computed the spinor norm of a random element of a
random conjugate of the general orthogonal group.

Next we tested the canonical coset representative algorithms on all five cases. We took a
random conjugate of the conformal orthogonal group, and then selected a random element. The
time required to find coset representatives for elements of the general orthogonal group will be
between these two times.

The experiments were carried out on a 1.5 GHz PowerPC G4 processor. The machine has
1.25GB of RAM, but memory was not a factor. All times are given in milliseconds, and are the
average of 50 trials; the symbol – indicates that the average time was less than 1 millisecond.

As we would expect, the time required grows extremely slowly with q, and somewhat more
quickly with d. Far less time is required for even q than odd q, and much less time is required
to calculate the spinor norm of an element than to decompose the element. Notice however that
the representation of the field is more significant than its size, as 316 is only about four times
larger than 10000019, yet the tests always take far longer. Notice also that for q odd there is not
much difference between the time required to calculate sp(g) and the time to find a canonical
coset representative, whilst for even q the latter task takes almost twice as long.

8. Large fields

In this section, we briefly discuss how to deal with large fields, in particular fields of size
q = pa for which the Conway polynomial of degree 2a and characteristic p is not known. A
list of all known Conway polynomials is at [15], and these polynomials are also available in
Magma. The main problem in this case is that the primitive element ζ in Fq2 is not known,
so the canonical elements δ and γ cannot be computed as in Proposition 2.3. Needless to say,
discrete logarithms are also completely infeasible when the primitive element is unknown.

The easiest fix for this problem is to find random elements for δ and γ. For q odd, the
field Fq contains (q− 1)/2 nonsquares, and it is not hard to prove that roughly a quarter of the
elements have the property required for γ. Once the elements are found, they can be fixed for
the remainder of that computation. This means that our canonical coset representatives from
different runs would not be comparable.
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Table 1. Spinor norm on GOε
d(q,Q), q odd

p 3i

Type d 5 17 47 73 10000019 36 311 316

◦ 15 1 1 2 2 1 2 5 21
35 4 11 11 10 9 29 103 553
55 10 38 37 37 40 157 646 3686
75 26 97 97 97 101 529 2143 15408
95 47 181 182 182 281 1343 5728 46955

+ 20 2 2 3 2 3 4 12 58
40 6 16 14 15 12 47 180 913
60 14 48 49 49 47 220 894 5384
80 30 114 117 115 125 679 2902 20779
100 63 215 214 213 329 1645 7339 88168

− 20 1 3 2 3 1 4 15 62
40 5 15 16 13 12 46 211 943
60 12 49 48 50 50 222 1021 5175
80 30 119 117 118 134 687 3254 19366
100 63 225 236 239 384 1647 7341 81668

Table 2. Spinor norm on GOε
d(q,Q), q even

Type + −
q 25 210 220 240 280 25 210 220 240 280

d 20 − − − 4 4 − − − 4 3
40 1 1 4 19 24 − − 2 18 25
60 − 1 12 60 78 − 1 12 60 82
80 2 4 27 143 193 1 3 29 146 197

100 2 7 57 311 413 4 7 56 289 390

An alternative would be to find canonical elements without the use of a primitive element.
For example, we can find a canonical δ by an argument similar to Proposition 2.3. We do not
know how to do this for odd q however. Canonical isometries can be found without the use of
primitive elements, using a more complicated algorithm than the one in Theorem 5.2.
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