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Abstract

We describe a 2-D finite difference algorithm for inverting the Pois-
son equation on an irregularly shaped domain, with mixed boundary
conditions, with the domain embedded in a rectangular Cartesian grid.
We give both linear and quadratic boundary treatments and derive 1-
D error expressions for both cases. The linear approach uses a 5-point
formulation and is first-order accurate while the quadratic treatment
uses a 9-point stencil and is second-order accurate. The key aspect
of the quadratic treatment is the use of a suitably chosen directional
derivative to find the second order accurate approximation to the nor-
mal derivative at the boundary.
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1 Introduction

In this paper, we discuss an embedding method for numerical solution of
the 2-D Poisson equation on an irregular domain subject to Robin boundary
conditions. The crucial feature of the formulation is the discretisation of the
normal derivative at the irregular boundary. Our approach for treatment
of the normal derivative is similar to that of Greenspan [5] who uses Taylor
expansions to obtain a second order accurate discretisation. By contrast, Liu,
Fedkiw and Kang [7] develop a first-order accurate symmetric discretisation
of the variable-coefficient Poisson equation in the presence of an irregular
interface. Bramble and Hubbard in [2] present first order and second order
discretisations of the normal derivative, but use of the tangential derivative
of the boundary condition is essential in their formulation. However, the
resultant coefficient matrix is an M-matrix (see Ciarlet [3]) which ensures
convergence when iterative schemes are used to carry out the inversion. More
recently, Bouchon and Peichl [1] developed a second order discretisation of
the normal derivative, avoiding the use of the tangential derivative but still
obtaining an M-matrix formulation. Our present approach also avoids the
use of tangential derivative, but does not lead to an M-matrix. The present
scheme is however more compact and also provides a clear extension to the
3-D case.

In the present scheme, the Poisson equation is discretised at each grid
point. For grid points away from the boundary the algorithm uses the stan-
dard five-point discretisation for the second derivative. For internal grid
points next to the boundary, we use either the Shortley-Weller (quadratic
boundary fit) approach [9] or the linear boundary fit of Collatz [4]. At the
boundaries, correspondingly, the normal derivative is discretised to first order
for the linear case and second order for the quadratic case respectively. To
gain insight into the nature of the overall discretisation error introduced, we
develop explicit error expressions for both boundary treatments for the 1-D
case. By contrast with the Dirichlet problem, the higher dimensional Poisson
solver cannot be built by repeated application in each dimension of the 1-D
solver, so that the predictive capability of the quantitative error in higher
dimensions using the 1-D error expressions is limited. However, we find that
the qualitative behaviour obtained using these expressions is confirmed in
2-D numerical tests.
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2 Mathematical Formulation

Our aim is to solve the Poisson equation for ψ

∇2ψ = f(x, y) (1)

on an irregular domain Ω with Robin boundary conditions

βψn + ψ = γ (2)

on the boundary ∂Ω and where β = β(x, y), γ = γ(x, y) are given.

2.1 2-D quadratic boundary treatment

Consider the North-East corner point (i, j) without loss of generality (see
Figure 1). We discretise the Poisson equation at (i, j) subject to boundary
conditions of the form (2) at boundary points 1 and 2. Let ∆x = ∆y = ∆.
The second-order accurate Shortley-Weller discretisation at (i, j) is given by
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∆2

[

−
1

(1 − αE)(2 − αE)
ψE +

(

1

1 − αE
+

1

1 − αN

)

ψi,j −
1

2 − αE
ψi−1,j

−
1

2 − αN
ψi,j−1 −

1

(1 − αN )(2 − αN)
ψN

]

= fi,j ,

(3)

where αE , αN give the distance of the two boundary points from the grid (see
Figure 1).

To complete the formulation, expressions for the boundary values ψE , ψN

are required. (Contrast this with the Dirichlet case, where these values are
given.) In order to do this the normal derivative at the boundary must be
approximated. Consider for instance the normal derivative at the Eastern
boundary point (boundary point 1)

ψE
n = ψE

x n
E
x + ψE

y n
E
y , (4)

with nE = (nE
x , n

E
y ) the outward normal at that point. Here the x-component

of ψE
n aligns with the grid and therefore can be approximated directly in terms

of ψE , ψi,j and ψi−1,j as

ψE
x =

1

∆

[

−
2 − αE

1 − αE

ψi,j +
1 − αE

2 − αE

ψi−1,j +
3 − 2αE

(1 − αE)(2 − αE)
ψE

]

. (5)

However, a different approach is needed for the y-component.
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Figure 1: Diagram of a North-East corner point, filled circle are interior
points, open circle are exterior points, the boxes on the solid curve are bound-
ary points, while the point B and C are used temporarily to determine the
second order accurate formulation.

The derivative ψ
′

E in the direction of the line passing through the grid
point (i − 1, j − 1) and boundary point 1 can also be resolved into two
components in the x- and y-directions. Substituting the y-component of the
derivative at E in the normal derivative leads to an expression in terms of
ψE

n , ψE
x and ψ

′

E , i.e.

√

(1 + (2 − αE)2)ψ
′

E =

(

2 − αE −
nE

x

nE
y

)

ψE
x +

1

nE
y

ψE
n . (6)

But ψ
′

E can be expressed in terms of ψi−1,j−1, ψE and the value at the tem-
porary point ψB as

√

(1 + (2 − αE)2)∆ψ
′

E = (1−αE)ψi−1,j−1−
(2 − αE)2

1 − αE
ψB +

3 − 2αE

1 − αE
ψE . (7)

Then we can eliminate ψB by expanding in terms of ψN and the two internal
values ψi,j and ψi,j−1

(2 − αE)2

1 − αE
ψB = −

1

(1 − αN)(2 − αN)
ψN +

(

1

1 − αE
+

2 − αN

1 − αN

)

ψi,j

+

(

1 − αE +
1 − αN

2 − αN

)

ψi,j−1.

(8)
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Combining all these results in the boundary condition at boundary point
1 leads to an equation for ψE and ψN in terms of the four internal values
ψi,j , ψi−1,j, ψi,j−1 and ψi−1,j−1:
[

1 +
βE(3 − 2αE)

∆(1 − αE)(2 − αE)
nE

x

]

ψE +
βEn

E
y

∆(1 − αN)(2 − αN )
ψN

=
βE

∆

{

[

2 − αE

1 − αE
nE

x −

(

2 − αE −
1

1 − αN

)

nE
y

]

ψi,j − (1 − αE)nE
y ψi−1,j−1

−

[

1 − αE

2 − αE
nE

x − (1 − αE)nE
y

]

ψi−1,j +

[

1 − αE +
1 − αN

2 − αN

]

nE
y ψi,j−1

}

+ γE .

(9)

Similarly, consideration of the boundary condition at the Northern bound-
ary point (boundary point 2) gives a second relation between ψE and ψN .
The resulting equations can be solved simultaneously to give expressions for
ψE and ψN in terms of the four internal grid points marked with solid circles
in Figure 1. Substituting this result in the Shortley-Weller formula (3) com-
pletes the discretisation of the Poisson equation at the point (i, j) subject to
the two Robin boundary conditions at boundary points 1 and 2. We note
that the 2-D Taylor series approach of Greenspan [5] for the approximation
for the normal derivative leads to the same result as in equation (9).

Finally, the 3-D extension of our approach follows directly from the 2-D
scheme above. For example, considering the normal derivative at a bound-
ary point where only the x-component aligns with the grid, we use the 2-D
approach in the x − y plane by considering a directional derivative to elim-
inate the y-components of the normal derivative and similarly by using a
directional derivative in the x− z plane to eliminate the z-component of the
normal derivative. For the general case of three such boundary points adja-
cent to an internal grid point, this will give rise to a 3 × 3 matrix system to
be inverted for the values of ψ at these three boundary points. With more
effort, a 3-D Taylor series expansion gives the same result [6].

2.2 1-D error analysis of the Robin boundary condi-

tion problem

This analysis follows the work of [8]. Consider the 1-D Poisson equation
on an interval (xL, xR) with Robin boundary conditions applied. The error
ξ = ψ − ψe, where ψe is the exact solution, satisfies

Lξ = τ, −βL
dξ

dx

∣

∣

∣

∣

x=xL

+ ξL = 0, βR
dξ

dx

∣

∣

∣

∣

x=xR

+ ξR = 0. (10)
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where αL, αR play analogous roles to the 2-D case, τ is the truncation error,
L is the discrete second derivative, and βL, βR are constants. Solving (10)
for ξ using the quadratic boundary treatment, we obtain

ξk = ∆2

[

(k − αL +
βL

∆
)
HM−1/2

∆
−

M−1
∑

j=2

(j − αL +
βL

∆
)τj −

M−1
∑

j=k+1

(k − j)τj

−
(1 − αL)(2 − αL)∆ + βL(3 − 2αL)

2∆
τ1

]

for 1 ≤ k ≤M − 1,

(11)

with

HM−1/2 = ∆2

{ M−1
∑

j=2

(

j − αL +
βL

∆

)

τj +
αR(1 − αR)∆ − βR(1 − 2αR)

2∆
τM−1

+
(1 − αL)(2 − αL) + βL(3 − 2αL)

2∆
τ1

}

× [(M − αL − αR)∆ + βL + βR]−1

(12)

and

τ1 = −
∆

3
αLψ

′′′

1 −
βL(1 − αL)(2 − αL)∆

3 [(1 − αL)(2 − αL)∆ + βL(3 − 2αL)]
ψ′′′

L , (13)

τM−1 =
∆

3
αRψ

′′′

M−1 +
βR(1 − αR)(2 − αR)∆

3 [(1 − αR)(2 − αR)∆ + βR(3 − 2αR)]
ψ′′′

R , (14)

τk = −
(∆)2

12
ψ

(4)
k , 2 ≤ k ≤M − 2 . (15)

Turning to the linear boundary treatment, the error expression is given by

ξk = ∆

[

(

βL + (k − αL)∆

(M − αL − αR)∆ + βL + βR

− 1

) M−1
∑

j=1

(βL + (j − αL)∆) τj

− ∆

M−1
∑

j=k+1

(k − j)τj

]

for 1 ≤ k ≤M − 1,

(16)

where

τ1 =
αL

2
ψ

′′

1−
βL(1 − αL)

2(βL + (1 − αL)∆)
ψ

′′

L, τM−1 =
αR

2
ψ

′′

M−1−
βR(1 − αR)

2(βR + (1 − αR)∆)
ψ

′′

R .

(17)
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The internal truncation errors τi, i = 2, · · · ,M − 1 are O(∆2). However,
the boundary truncation errors τ1, τM−1 are O(1) for the linear boundary
treatment and O(∆) for the quadratic boundary treatment respectively. In
the Dirichlet case (β = 0) the corresponding boundary errors ξ1, ξM−1 are
then O(∆2) for the linear boundary treatment and O(∆3) for the quadratic
boundary treatment, as is to be expected since inverting the Poisson operator
corresponds to integrating twice. This means that when taken together with
the internal errors of O(∆2) either approach gives rise to a uniformly O(∆2)
method, although the coefficient of error is significantly larger with the linear
boundary treatment (see e.g. [8]).

By contrast, with Robin boundary conditions, the boundary and internal
errors ξk are O(β∆) for the linear boundary treatment and O(β∆2) for the
quadratic boundary treatment. Therefore, with the restriction that β ≪

M = O(1/∆), the linear case gives rise to a uniformly O(∆) method, while
the quadratic approach gives a uniformly O(∆2) method. Thus in practice
the quadratic treatment is preferred for Robin boundary conditions.

3 Numerical results

In this section, we present numerical results for two test cases. First we
treat a representative 1-D problem and demonstrate that the analytical er-
ror estimates are quantitatively accurate in this case (a range of other test
cases show similar agreement). We then consider a 2-D problem that shows
qualitatively similar behaviour. For all results shown here we used direct
inversion of the coefficient matrix. However iterative methods can also be
used without any problems.

The left-hand panel of Figure 2 shows the numerical error (solid lines)
compared with the theoretical error (open circles) for both quadratic and
linear boundary treatments of the case with the exact solution ψ = cosx, for
M = 100. For the same test problem the right panel shows the RMS error
(solid lines) and maximum absolute error (dash-dotted lines) for both linear
and quadratic boundary treatments with M = 40, 80, 160 and 320. Errors
converge like O(∆2) for the quadratic boundary treatment as against O(∆)
for the linear boundary treatment, as expected from the error analysis.

Figure 3 shows contours of the error for both linear and quadratic bound-
ary treatment and β = 1 for the Poisson equation ∇2ψ = −5 cos 3θ −

40r cos 7θ on a ‘five-leaf’ shape, with Robin boundary conditions and us-
ing M = 100. Outside the irregular shape we set ψ = 0. The domain is
embedded in a square domain of side length 1.5. The maximum absolute
error for the linear case is approximately 6 times larger than the maximum
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Figure 2: The error in solving the 1-D problem d2ψ/dx2 = − cosx, with boundary

conditions
dψ

dx
+ ψ = γ for x = ±(1 − 5∆

4
) respectively, with γ = cosx ∓ sinx. In the

left-hand panel the numerical errors for M = 100 are shown with solid curves for both the
quadratic and linear boundary treatments and compared with the corresponding analytic
error expressions (open circles) for the quadratic (11), or linear (16) cases respectively.
The RMS errors (solid lines) and maximum absolute errors (dash-dotted lines) for the
linear and quadratic boundary treatments are displayed in the right-hand panel.

absolute error for the quadratic case: there is no particular tendency for er-
rors to be maximal at the boundary. In the left-hand panel of Figure 4 we
compare the RMS errors (solid lines) and maximum absolute errors (dash-
dotted lines) for the same problem for a range of values of M for both the
linear and quadratic boundary treatments. The right-hand panel shows cor-
responding results for β = 10 (note how the error scales with β, as predicted
by the 1-D analysis). In summary the observed errors for this 2-D problem
show similar convergence properties to the 1-D cases, and we have found
similar results for a broad range of test problems. By contrast with simi-
lar problems with Dirichlet boundary conditions, one must necessarily use a
quadratic boundary treatment in order to obtain O(∆2) convergence.

4 Conclusion

In this paper we present a simple geometric derivation of a second order
accurate solution for the Poisson equation on an irregular domain subject to
Robin boundary conditions. A 1-D error analysis suggests that the quadratic
boundary treatment method leads to a uniformly O(∆2) accurate method as
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Figure 3: The 2-D problem ∇2ψ = −5 cos 3θ − 40r cos 7θ, (M + 1)∆ = 1.5 and
M = 100 subject to ∂ψ

∂n
+ ψ = γ on the boundary of the five-leaf shape described by

r = 0.5+0.15 cos5θ and with ψ = 0 elsewhere. γ is given by the exact boundary values of
the left hand side of the boundary conditions. Contours of the error for the linear bound-
ary treatment shown in the left-hand panel are compared with those for the quadratic
boundary treatment in the right-hand panel.

opposed to O(∆) for the linear boundary treatment method. This agrees with
numerical results for 2-D test cases. In addition, the 1-D analysis shows that
with Robin boundary conditions, a linear boundary treatment gives uniform
O(∆) error as opposed to the O(∆2) error found with a quadratic treatment.
Thus when an embedding method is used to deal with irregular boundaries,
it is necessary to use the quadratic approach in order to match the standard
O(∆2) internal error. This is in contrast to the Dirichlet problem, where a
linear boundary treatment is sufficient to maintain the O(∆2) error. Finally,
the extension of the present scheme to 3-D is straightforward as indicated in
the body of the paper.
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