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Abstract

In this Note, we present a complete classification of singularities of positive solutions of the equation∆u+ µ
|x|2 u = h(u)

in Ω \ {0}, whereΩ is a bounded domain ofRN, N ≥ 3, 0 ∈ Ω, and 0< µ < (N−2)2

4 . The caseµ = 0 with h(t) = tq,
q > 1 were treated by Brezis and Véron.

Résuḿe

Sur la trichotomie des solutions positives singulìeres assocíeesà l’opérateur de Hardy–Sobolev.Dans cette Note,
nous pŕesentons une classification complète des singularités de solutions positives de l’équation∆u+ µ

|x|2 u = h(u) dans

Ω \ {0}, oùΩ est un domaine borné deRN, N ≥ 3, 0 ∈ Ω, et òu 0 < µ < (N−2)2

4 . Le casµ = 0 avech(t) = tq, q > 1 a
ét́e trait́e par Brezis et V́eron.

Version française abŕeǵee

SoitΩ un domaine borńe deRN (N ≥ 3) et 0∈ Ω. Pour toutµ > 0, soitLµ l’opérateur de Hardy–Sobolev défini
par Lµ := −

(
∆ +

µ
|x|2

)
. Grâceà l’inégalit́e de Hardy (voir, par exemple, [3] et [1]), l’opérateurL−1

µ : L2(Ω) → L2(Ω)

est positif, compact et auto-adjoint pour toutµ ∈ (0, µ∗), où µ∗ := (N−2)2/4 est la meilleure constante dans l’inégalit́e
de Hardy. Soith : R→ R une fonction localement lipschitzienne tels queh > 0 sur (0,∞) eth(0) = 0.

Pour toutµ ∈ (0, µ∗), on consid̀ere le probl̀eme semilińeaireLµu+h(u) = 0 dansΩ∗ := Ω\{0} (c’est-̀a-dire (1)). On
dit queu ∈ C1(Ω∗) est une solution faible du problème (1) siu vérifie (1) au sens des distributions dansD′(Ω∗). Si l’on
suppose queh est ŕegulìere alors les estimations elliptiques standard impliquent que les solutions faibles du problème
(1) sont dansC∞(Ω∗). En utilisant le principe du maximum fort (voir [10, Théor̀eme 1.1]) on obtient que toute solution
non ńegative et non identiquement nulle est alors positive dansΩ∗. De plus, on montre que toute solution positiveu(x)
du probl̀eme (1) tend vers l’infini quand|x| tend vers źero (voir [5]). Notons que l’́equation (1) peut avoir des solutions
classiques dansΩ si la condition de Lipschitz locale surh n’est pas v́erifiée. Par exemple,u(x) := |x|λ, λ > 2 est une
telle solution pour l’́equationLµu+ (λ2 + (N − 2)λ + µ)u1−2/λ = 0 dansΩ.

On d́esigne parΦ±µ les solutions fondamentalesde l’équationLµv = 0 dansΩ∗ (voir (2)). Guerch and V́eron dans
[9, Théor̀eme 3.1] ont donńe une condition ńecessaire et suffisante surh pour l’existence des solutions faibles du
probl̀eme (1) qui v́erifient lim|x|→0 u(x)/Φ+µ (x) ∈ R. Théor̀eme 1.1 dans [9] fournit une condition suffisante surh pour
avoir une solution du problème (1) qui peut̂etre prolonǵee comme une solution de la mêmeéquation dansD′(Ω). Une
question naturelle se pose : comment les solutions faibles du problème (1) peuvent-elles se comporter au voisinage
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de źero ? Le th́eor̀eme suivant fournit la réponse sous une hypothèse devariation régulière d’indice q (q> 1) pośee
sur la fonctionh, ce qui signifie que limt→∞ h(λt)/h(t) = λq pour chaqueλ > 0, voir [11]. SoitH(t) :=

∫ t

0
h(s) dspour

t > 0. On donne une trichotomie des solutions positives du problème (1) dans le casq < q∗, où q∗ est d́efini par (3).

Théorème 0.1.Soient N≥ 3 et µ ∈ (0, µ∗), oùµ∗ = (N−2)2

4 . On suppose que h est une fonction à variation régulière
d’indice q∈ (1,q∗). Soit u∈ C1(Ω∗) une solution faible positive du problème(1). Alors, quand|x| → 0 on a :

(A) soit u(x)/Φ−µ (x) converge vers un nombre positif ;
(B) ou u(x)/Φ+µ (x) converge vers un nombre positif ;
(C) ou u(x)/Φ+µ (x) tend vers l’infini. Dans ce cas, la solution u vérifie de plus(4).

On note que (i) seules les solutions de la catégorieA sont dansW1,2(Ω) ; (ii) q∗ est l’exponentcritique pour le
Théor̀eme 0.1 : Siq > q∗, alors pour toute solution positiveu on montre que lim|x|→0 u(x)/Φ−µ (x) ∈ [0,∞). Cette
affirmation est aussi vrai pourq = q∗ si h(t) = tq (voir [5]) ; (iii) le cas N = 2 pour l’oṕerateur de HardyLµ défini par

−∆−µ
(
|x| log 1

|x|

)−2
avecµ ∈ (0, 1

4) est abord́e dans [5], òu onétablit une version de Théor̀eme 0.1 pour toutq ∈ (1,∞).

1. Introduction

Let Ω be a bounded domain ofRN, N ≥ 3 and 0 ∈ Ω. For any parameterµ > 0, let Lµ := −
(
∆ +

µ
|x|2

)
be

the Hardy–Sobolev operator. Owing to the classicalHardy inequality(see, for example, [3] and [1]), the operator
L−1
µ : L2(Ω)→ L2(Ω) is positive-definite, compact and self-adjoint, for anyµ in (0, µ∗), whereµ∗ := (N − 2)2/4 is the

best constant in the Hardy inequality. Leth : R→ R be locally Lipschitz such thath > 0 on (0,∞) andh(0) = 0.
Let µ ∈ (0, µ∗) and consider the semilinear equation

Lµu+ h(u) = 0 in Ω∗ := Ω \ {0}. (1)

We say thatu ∈ C1(Ω∗) is aweak solutionof (1) if u satisfies (1) in the sense of distributions inD′(Ω∗). If h is smooth,
by standard elliptic estimates, weak solutions of (1) areC∞(Ω∗). By the strong maximum principle (Theorem 1.1 in
[10]), any non-negative and non-trivial weak solutionu of (1) is positive inΩ∗ and lim inf|x|→0 u(x) > 0. Moreover, by
careful use of the radial solutions of (1) and the comparison principle (Lemma 2.1), we infer that any positive solution
of (1) blows-up at zero (see [5]). However, the equation (1) may admit classical solutions inΩ if the locally Lipschitz
condition onh fails. For example,u(x) := |x|λ, λ > 2 is aC2(Ω)-solution ofLµu+ (λ2 + (N − 2)λ + µ)u1−2/λ = 0 inΩ.

Throughout this Note,Φ±µ denote thefundamental solutionsof the equationLµv = 0 inΩ∗, namely

Φ±µ (x) := |x|−(
N−2

2 ±
√
µ∗−µ) for x , 0, µ ∈ (0, µ∗). (2)

Guerch and V́eron [9, Theorem 3.1] provide a necessary and sufficient condition onh for the existence of weak
solutions of (1) satisfying lim|x|→0 u(x)/Φ+µ (x) ∈ R. Among other results, Theorem 1.1 in [9] gives a sufficient con-
dition on h for which a solution of (1) can be extended as a solution of the same equation inD′(Ω). These results
raise the issue of classifying the asymptotic behavior of weak solutions of (1) near zero. We answer this question
under the assumption thath is regularly varying at infinity of index q with q> 1 (in short,h ∈ RVq), which means that

limt→∞ h(λt)/h(t) = λq for anyλ > 0, see [11]. SetH(t) :=
∫ t

0
h(s) dsfor t > 0.

We reveal below a trichotomy of positive singular solutions of (1) in thesubcriticalcaseq < q∗, where

q∗ :=
N + 2+ 2

√
µ∗ − µ

N − 2+ 2
√
µ∗ − µ

. (3)

Theorem 1.1. Let N ≥ 3 andµ ∈ (0, µ∗), whereµ∗ is the Hardy constant. We assume that h is regularly varying at
infinity of index q∈ (1,q∗). Let u∈ C1(Ω∗) be a positive weak solution of(1). Then as|x| → 0, we have:

(A) either u(x)/Φ−µ (x) converges to a positive number;
(B) or u(x)/Φ+µ (x) converges to a positive number;
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(C) or u(x)/Φ+µ (x) tends to∞, in which case

lim
|x|→0

1
|x|

∫ ∞

u(x)

ds
√

H(s)
= M, M = M(µ,q,N) :=

(
2(q+ 1)

N − (N − 2)q+ µ(q− 1)2/2

)1/2

. (4)

Remarks.

(i) By the usual translation of the formv(y) := u(x + ry) for |y| < 1, wherer := |x|/2, x ∈ Ω∗, together with the
standard elliptic estimates forv, it follows that if u(x) ≤ |x|−α for someα > 0, then|∇u| ≤ C|x|−(α+1) for some
positive constantC independent ofx. This asserts that only the CategoryA solutions are inW1,2(Ω).

(ii) The exponentq∗ in (3) is critical for Theorem 1.1: Ifq > q∗, then for any positive solutionu of (1) we have
lim |x|→0 u(x)/Φ−µ (x) ∈ [0,∞), henceu ∈W1,2(Ω). This assertion is true forq = q∗ if h(t) = tq (to appear in [5]).

(iii) The 2-dimensional Hardy operatorLµ := −∆−µ
(
|x| log 1

|x|

)−2
with µ ∈ (0, 1

4) is considered in [5], where we show
that an appropriate version of the Theorem 1.1 is valid for anyq ∈ (1,∞).

The analysis of weak solutions of (1) for the caseµ = 0 has been pioneered by Brezis and Véron [4] and subse-
quently studied by many other authors. Givenq ≥ N/(N − 2) and the equation

−∆u+ uq = 0 in Ω∗, (5)

it is known from [4] that any non-negative solution can be extended as a classical solution of (5) inΩ.
For 1< q < N/(N − 2), Véron [12], [13] gives a complete classification of isolated singularities of non-negative

weak solutions of (5). More precisely, as|x| → 0 any non-negative solutionu of (5) satisfies one of the following: (i)
eitheru(x) admits a finite limit andu can be extended as aC2-solution of (5) inΩ; (ii) or |x|N−2u(x) converges to some
positive constant; (iii) or|x|2/(q−1)u(x) converges toM(0,q,N). A simpler proof were obtained by Brezis and Oswald
[2]. Recently, the above result of Véron were extended by Cı̂rstea and Du [6, Theorem 1.1] to equations of the form
−∆u+ h(u) = 0 inΩ∗ for h ∈ RVq and 1< q < N/(N − 2).

2. Proof of Theorem 1.1

For a clear exposition and the purpose of this presentation, we outline a proof for the power nonlinearityh(t) := tq.
The complete proof for general nonlinearityh will appear in [5]. A functionv ∈ C2(Ω∗) is called asub-solution
(super-solution) of (1) if Lµv+ h(v) ≤ (≥ ) 0 inΩ∗. Throughout the proof we use the following comparison principle,
which follows from Lemma 2.1 in [7].

Lemma 2.1 (Comparison principle). Let N≥ 3 and U be a smooth bounded domain inRN with U ⊂ RN \ {0}. Let
g be continuous on(0,∞) and g(t)/t be increasing in(0,∞). If v1, v2 ∈ C2(U) are positive functions such that

Lµv1 + g(v1) ≤ 0 ≤ Lµv2 + g(v2) in U,

lim sup
x→∂U

[v1(x) − v2(x)] ≤ 0, (6)

then v1 ≤ v2 in U.

Let u be a positive weak solution ofLµv+vq = 0 inΩ∗ with q ∈ (1,q∗). We haveu ∈ C2(Ω∗) and lim|x|→0 u(x) = ∞.
Without loss of generality, we can assume that the closed unit ball is strictly contained inΩ. Set

f ±(x) :=
u(x)
Φ±µ (x)

for x ∈ B∗1(0) := B1(0) \ {0}.

The above functions play a crucial role in our analysis. If lim sup|x|→0 f +(x) = c ∈ (0,∞), from Guerch–V́eron [9,
Theorem 2.1] it follows thatf +(x) converges toc as|x| → 0. Henceu is of CategoryB in Theorem 1.1. We next prove
that the CategoryA andC in Theorem 1.1 correspond to the remaining two cases, respectively:

I . lim sup
|x|→0

f +(x) = 0; II . lim sup
|x|→0

f +(x) = ∞.
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This will be achieved via several steps. We first obtain a sharp upper-bound for|x|2/(q−1)u(x) by devising a family of
super-solutions of (1) and using Lemma 2.1. Then we provide a positive radially symmetric solutionw∞ of Lµv+vq = 0
in B∗1/2(0) such thatcu≤ w∞ ≤ u in B∗1/2(0) for some constantc > 0. Step 3–Step 5 are concerned with positive radial
solutions. In Step 3 we show that limr→0 f ±(r) exists in [0,∞]. We prove that solutions of TypeI andII above are
of CategoryA andC, respectively: We argue with radial solutions in Steps 4 and 5, then in the general case we use
a reduction to radial symmetry (see Steps 6 and 7). The reduction procedure relies on Step 3 and the construction of
w∞ in Step 2. We devise the super-solutions (sub-solutions) in Step 1 (Step 5) inspired by the work in [6] forµ = 0.

Step 1.Sharp upper-bound for|x|2/(q−1)u(x): Let M be given by (4). We show that

lim sup
|x|→0

|x|
2

q−1 u(x) ≤ M̃, where M̃ = M̃(q) :=

 2
√

q+ 1

M(q− 1)

2/(q−1)

. (7)

By direct calculation, we see thatψ(x) := M̃ |x|−
2

q−1 for x ∈ B∗1(0) satisfiesLµv + vq = 0 in B∗1(0). Sinceq < q∗, we
have lim|x|→0 |x|2/(q−1)Φ+µ (x) = 0. Thus to conclude (7), it is enough to prove that

u(x) ≤ ψ(x) +CΦ+µ (x) for 0 < |x| < 1, where C := max
|y|=1

u(y). (8)

SinceLµΦ+µ = 0 in B∗1(0), the functionψ(x)+CΦ+µ (x) is a super-solution ofLµv+vq = 0 in B∗1(0). Fixλ > 0 sufficiently
large. Letε ∈ (0,1) be small enough and defineψε : (ε,1)→ (0,∞) by

ψε(r) := M̃ε (r − ε)−
2

q−1

(
1+ λ

log(1/ε)

)
for ε < r < 1, M̃ε > 0.

By careful computations, there exists̃Mε > 0 such that̃Mε ↗ M̃ asε→ 0 andLµψε + (ψε)q ≥ 0 for ε < |x| < 1. Since
limr↘ε ψε(r) = ∞, by the comparison principle in Lemma 2.1, we infer thatu(x) ≤ ψε(|x|) +CΦ+µ (x) for ε < |x| < 1.
By lettingε→ 0, we obtain (8) and conclude the proof of (7).

Step 2. Construction of w∞: Using essentially the Harnack inequality [8, Theorem 8.20] and Step 1, it follows
that there exists a constantK > 1, which is independent ofu, such that

max
|x|=r

u(x) ≤ K min
|x|=r

u(x) for every 0< r < 1/2. (9)

We construct below a positive radial solutionw∞ of Lµv+ vq = 0 in B∗1/2(0) such that

u/K ≤ w∞ ≤ u in B∗1/2(0). (10)

By the sub/super-solutions method, for every integern ≥ 3 there exists a positive solutionwn of Lµv+ vq = 0 in An := {x ∈ RN : 1/n < |x| < 1/2},

v(x) = min
|y|=|x|

u(y) for x ∈ ∂An.
(11)

By Lemma 2.1,wn is a unique solution to (11). Owing to the rotation symmetry ofLµ and the boundary condition,
wn is radially symmetric. By (9) we haveu/K ≤ wn on ∂An for everyn ≥ 3. Sinceu/K is a sub-solution of (11),
it follows from the comparison principle thatu/K ≤ wn ≤ u andwm ≤ wn in An for anym ≥ n ≥ 3. Thus, up to a
subsequence,wn converges to somew∞ in C2

loc(B
∗
1/2(0)) asn→ ∞. Thisw∞ satisfies the above-mentioned properties.

In Step 3–Step 5 we assume thatu is a positive radial solution ofLµv+ vq = 0 in B∗1(0).

Step 3.Existence oflimr→0 f ±(r) ∈ [0,∞]: If we assume the contrary, then lim supr→0 f ±(r) > 0 and there exists
c > 0 such that 0≤ lim inf r→0 f ±(r) < c < lim supr→0 f ±(r). Let (rn)n≥1 be a sequence that decreases to 0 asn→ ∞
and satisfies limn→∞ f ±(rn) = lim inf r→0 f ±(r). Then for sufficiently largen0 ∈ N, we haveu(rn) ≤ cΦ±µ (rn) for all
n ≥ n0. Observe that forn > n0 we haveLµu + uq ≤ 0 ≤ LµΦ±µ + (Φ±µ )q in rn < |x| < rn0. Thus by the comparison
principle,u(r) ≤ cΦ±µ (r) for all r ∈ (0, rn0). This being a contradiction with the choice ofc, we conclude Step 3.

Step 4.Radial solutions of TypeI are of CategoryA: Let u be a positive radial solution ofLµv+ vq = 0 in B∗1(0)
such that limr→0 f +(r) = 0. We conclude that limr→0 f −(r) ∈ (0,∞) by showing the following: (i)d

dr ( f −(r)) is positive
on (0,1); (ii) the assumption limr→0 f −(r) = 0 would lead to limr→0 u(r) = 0, which would contradict limr→0 u(r) = ∞.
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To this end, we setγ := N/2 +
√
µ∗ − µ andg(r) := r2γ+1−N d

dr ( f −(r)) for r ∈ (0,1). Since limr→0 f +(r) = 0 and
limr→0 u(r) = ∞, we conclude that limr→0 g(r) = 0. Moreover,u satisfiesg′(r) = rγuq in (0,1). By integrating this
equation and multiplying it byrN−1−2γ, we get

d
dr

( f −(r)) = b(r) > 0, where b(r) := rN−1−2γ
∫ r

0
sγuq(s) ds for r ∈ (0,1). (12)

Hence limr→0 f −(r) exists in [0,∞). Assuming that limr→0 f −(r) = 0, then we have: (a) for everyε > 0 there exists
rε > 0 such thatu ≤ εΦ−µ in (0, rε]; (b) integrating (12) yieldsu(r) = Φ−µ (r)

∫ r

0
b(s) dsfor everyr ∈ (0,1).

Setm0 :=
√
µ∗ − µ − N−2

2 < 0. Using (a) and (b), we find a constantC > 0 independent ofε such that

u(r) ≤ C εq r2+qm0 for every r ∈ (0, rε). (13)

Let mk := 2+ q mk−1 for any integerk ≥ 1 and̃q := 2/(q− 1). We defineq# as follows

q# :=
N + 2− 2

√
µ∗ − µ

N − 2− 2
√
µ∗ − µ

. (14)

Note thatq∗ < q#. Usingq < q#, we deduce thatmk > mk−1 andmk = −q̃+ (̃q+m0) qk for every integerk ≥ 1. Since
q > 1 and the coefficient ofqk is positive, it follows that limk→∞mk = ∞. Therefore,mj > 0 for sufficiently large j.
Sinceε > 0 is arbitrary, (13) yields that limr→0 u(r)/rm1 = 0. If m1 ≥ 0, it follows that limr→0 u(r) = 0. If m1 < 0,
by using (13) in (b) we iterate the above arguments and find that limr→0 u(r)/rmj = 0 for somemj > 0. Thus both the
cases lead to limr→0 u(r) = 0, which is a contradiction. Henceu is of CategoryA for everyq ∈ (1,q#).

Step 5.Radial solutions of TypeII are of CategoryC: Let u be a positive radial solution ofLµv+ vq = 0 in B∗1(0)
such that lim supr→0 f +(r) = ∞. By Step 3 we have limr→0 u(r)/Φ+µ (r) = ∞. Proving thatu is of Category C means

that limr→0 r2/(q−1)u(r) = M̃ with M̃ given by (7). By Step 1, it remains to show that lim infr→0 r2/(q−1) u(r) ≥ M̃. This
will be achieved by establishing the following inequality

M̃r−2/(q−1) ≤ u(r) + M̃Φ+µ (r) for every r ∈ (0,1). (15)

Since limr→0 r−2/(q−1)/Φ+µ (r) = ∞, we cannot directly conclude (15) forr close to zero. The idea is to fixε > 0 small
and devise a suitable family of sub-solutionsϕε of Lµv+ vq = 0 in B∗1(0) such that:

(P1) ϕε(r) increases tõMr−2/(q−1) asε decreases to 0;
(P2) ϕε(r) ≤ u(r) + M̃Φ+µ (r) for everyr ∈ (0,1).
The construction ofϕε completes Step 5. Indeed, lettingε→ 0 in (P2) and using (P1) yields (15).
Let α > 0 to be specified in (17) and defineϕε by

ϕε(r) :=
(
M̃−

(q−1)
2 r + (εrα)

q−1
2

)− 2
q−1

for everyr ∈ (0,1). (16)

For sufficiently smallτ = τ(N, µ) > 0, we can choose a smaller positive numberν that is independent ofq such that
Lµϕε + (ϕε)q ≤ 0 in B∗1(0) for the particular choice ofα given by

α :=

 (N − 2)/2+
√
µ∗ − µ if q∗ − τ < q < q∗,

2/(q− 1+ ν) if 1 < q ≤ q∗ − τ.
(17)

We see that (P1) holds forϕε in (16). We only need to prove (P2). The key ingredient is to establish that

lim
r→0

rαw(r) = ∞ for any positive radial solutionw of Lµv+ vq = 0 in B∗1(0), subject to lim
r→0

v(r)/Φ+µ (r) = ∞. (18)

Assuming the validity of (18), we verify (P2) and complete Step 5. Indeed, (18) implies in particular thatrαu(r)→
∞ asr → 0. Thus for somerε > 0 we haver−α/ε ≤ u(r) for everyr ∈ (0, rε]. From (16) we haveϕε(r) ≤ r−α/ε for
r ∈ (0,1). Hence the inequality in (P2) holds for everyr ∈ (0, rε]. Sinceϕε(1) ≤ M̃ andu+ M̃Φ+µ is a super-solution
of Lµv+ vq = 0 in B∗1(0), by the comparison principle, (P2) holds in [rε,1). This proves the validity of (P2).
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Proof of (18). Sinceν > 0, there exists a large integerm> 0 such thatν = (q∗ − τ − 1)/m. Set

J0 := (q∗ − τ,q∗) and Ji := (q∗ − τ − iν,q∗ − τ − (i − 1)ν] for i = 1,2, . . . ,m.

Hence (1,q∗) = ∪m
i=0Ji . To achieve (18) for anyq ∈ (1,q∗), we proceed by induction.

(i) If q ∈ J0, then the assertion of (18) follows from the definition ofα in (17) and limr→0 w(r)/Φ+µ (r) = ∞.

(ii) Let i ∈ {0,1, . . . ,m− 1} and assume that (18) is true for anyq ∈ Ji . We prove that (18) is true for anyq ∈ Ji+1.

To this aim, letq ∈ Ji+1 andw be an arbitrary positive radial solution of the problem in (18). From the definition
of α in (17), we haveα = 2/(q − 1 + ν). We chooseq1 ∈ Ji such thatq1 < q + ν. Sincew(r) → ∞ asr → 0, there
exists 0< r1 < 1 such that (w(r))q ≤ (w(r))q1 for everyr ∈ (0, r1). By [9, Remark 3.1], for eachk ∈ N there exists a
unique positive solutionvk of the following equation

v′′(r) +
N − 1

r
v′(r) +

µ

r2
v(r) = vq1(r), 0 < r < r1

subject to limr→0 v(r)/Φ+µ (r) = k andv(r1) = 0. By the comparison principle,vk is non-decreasing ink andvk ≤ w in
(0, r1). Let v∞(r) := limk→∞ vk(r) for r ∈ (0, r1), so thatv∞ ≤ w in (0, r1). Standard regularity arguments show that, up
to a subsequence,vk → v∞ in C2

loc(0, r1) ask→ ∞ andv∞ is a positive radial solution ofLµv+ vq1 = 0 in B∗1(0) with
limr→0 v∞(r)/Φ+µ (r) = ∞. Sinceq1 ∈ Ji , by the induction hypothesis applied tov∞ and the argument after (18), we

have limr→0 r2/(q1−1)v∞(r) = M̃(q1) > 0. Usingq1 < q+ ν, we find limr→0 r2/(q−1+ν)w(r) = ∞. This concludes Step 5.

Step 6.Reduction to radial symmetry for TypeI solutions:We show that any positive solution ofLµu+ uq = 0 in
Ω∗ with lim |x|→0 f +(x) = 0 must be of CategoryA. Let SN−1 be the unit sphere inRN and (r, σ) ∈ (0,∞)×SN−1 denote
the polar coordinates inRN \ {0}. For any functionv(r, σ), its spherical meanv(r) is defined by

v(r) :=
1
|SN−1|

∫
SN−1

v(r, σ) dσ.

By averaging the equationLµu+ uq = 0 in B∗1(0) and using Jensen’s inequality, we findLµu = −(uq) ≤ −(u)q in (0,1).
By Step 3 applied to the sub-solutionu, we know that limr→0 u(r)/Φ−µ (r) exists in [0,∞]. By Lemmas 2.1 and 2.3 in
[9], the ratio(u(r, σ) − u(r)) /Φ−µ (r) converges to 0 asr → 0, uniformly inσ ∈ SN−1. Henceu(r, σ)/Φ−µ (r) admits a
limit in [0 ,∞] asr → 0, uniformly inσ ∈ SN−1. Consequently, lim|x|→0 f −(x) exists in [0,∞]. To conclude Step 6, we
apply Step 4 tow∞ constructed in Step 2.

Step 7.Reduction to radial symmetry for TypeII solutions:Let u be a positive solution ofLµv+vq = 0 inΩ∗ such
that lim sup|x|→0 f +(x) = ∞. We constructw∞ as in Step 2. By (10) and Step 3, we find limr→0 w∞(r)/Φ+µ (r) = ∞.
Applying Step 5 tow∞, together with (10) and Step 1, it follows thatu must be of categoryC. 2
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[13] L. Véron, Weak and strong singularities of nonlinear elliptic equations, Nonlinear functional analysis and its applications, Part 2 (Berkeley,

Calif., 1983), Proc. Sympos. Pure Math. 45, 477–795, Amer. Math. Soc., Providence, RI, 1986.

6


