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1.4 Projective Geometry

Suppose f(x, y) is a polynomial. In this section, we introduce concepts asso-
ciated with complex curves defined by f = 0 in projective space of dimension
two.

Definition 1.4.1 (homogeneity). A polynomial fk(x, y) is called a homoge-
neous polynomial of degree k ∈ N if for all λ ∈ C it satisfies

fk(λx, λ y) = λk f(x, y). (1.24)

Definition 1.4.2 (degree). The degree of the algebraic curve C given by

f(x, y) = 0 (1.25)

is equal to the degree of f .

Any polynomial can be written as a sum of terms of homogeneous poly-
nomials

f(x, y) = fn(x, y) + fn−1(x, y) + . . .+ f0, (1.26)

where n ∈ N is the degree of f and fk(x, y) is a homogeneous polynomial of
degree k, where k = 0, 1, . . . , n.

Let L be a straight line in C2. Without loss of generality, we assume that
it passes through the origin. (If not, we can always transform x, y so that it
does so.) That is, we assume L is defined by{

x = α t
y = β t

(1.27)

for some complex constants α and β.
How many times does L intersect with C? Substituting Equations (1.27)

into the equation for the curve, we get

fn(α, β) tn + fn−1(α, β) tn−1 + . . .+ f0 = 0 (1.28)

If fn(α, β) 6= 0, this equation has exactly n roots in C2. But, if

fn(α, β) = fn−1(α, β) = . . . = fm+1(α, β) = 0 (1.29)

with fm(α, β) 6= 0 for some 0 < m < n, then there are only m roots in C2.
Where are the remaining roots?

Consider t = 1/s. Then Equation (1.28) becomes

fn(α, β) + fn−1(α, β) s+ . . .+ f0 s
n = 0 (1.30)

If Equation (1.29) holds, then we have

fm(α, β) sn−m + . . .+ f0 s
n = 0

so, s = 0 is a multiple root with multiplicity n−m. These intersection points
lie at infinity in the original variables (x, y).
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Figure 1.7: Intersections of a curve and a line

Example 1.4.1. Consider a curve C given by f = 0, where f(x, y) = y2 +
x2 y − x3 + 2x. Then

f(x, y) = f3(x, y) + f2(x, y) + f1(x, y),

where
f3(x, y) = x2 y − x3, f2(x, y) = y2, f1(x, y) = 2x.

The line L and the curve C intersect where

α2 (β − α) t3 + β2 t2 + 2α t = 0

1. If α 6= 0 and β 6= α, we get three roots: t = 0 and t1, t2 given by roots
of the quadratic α2 (β − α) t2 + β2 t+ 2α = 0.

2. On the other hand, if α = β, β 6= 0, there are only two roots in the finite
domain: t = 0 and t1 = −2/α. The remaining root lies at infinity. That
is, the line y = x intersects C twice at the origin (i.e., with multiplicity
two) and once at infinity.

3. In the case β = 0, with non-zero α (i.e., the y-axis), we get three finite
intersections: the origin and the points t = ±

√
2/α.

4. Finally, in the case α = 0, with non-zero β (i.e., L is the y-axis), we
get only one finite root, namely t = 0 with multiplicity two. The third
intersection point lies at infinity.
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To account for and describe roots that lie at infinity, we use coordinates
that allow us to describe a line at infinity.

Definition 1.4.3 (homogeneous coordinates). A point (x, y) ∈ C2 is said to
be represented by homogeneous coordinates [u, v, w], when x = u

w , y = v
w .

When the homogeneous coordinates satisfy an equivalence ∼ under non-zero
multiplication:

[u, v, w] = [λu, λ v, λw], ∀λ ∈ C\{0}

we denote the corresponding quotient space as CP2, or more succinctly P2,
where

CP2 =
(
C3\{[0, 0, 0}

)/
∼

A point in P2 is then said to have affine coordinates (x, y) or equivalently
homogeneous coordinates [u, v, w].

Definition 1.4.4 (points at infinity). The point at infinity in the direction
u/v is given by w = 0. The set of points at infinity in each direction is called
the line at infinity and denoted L∞.

If we had started with one-complex-dimension, with affine coordinate x ∈
C, the equivalent homogeneous coordinates would be [x, 1] = [u/v, 1] = [u, v]
and the corresponding projective space would be denoted by CP1 or P1, where

P1 =
(
C2\ {[0, 0}

)/
∼

Note that the direct product P1×P1 provides another method of describing a
point in two-dimensional complex space. In this case, we have homogeneous
coordinates

(x, y) ∼
(
[x, 1], [y, 1]

)
=
(
[u/v, 1], [w/z, 1]

)
=
(
[u, v], [w, z]

)
(1.31)

In homogeneous coordinates in P2, a polynomial f(x, y) becomes F (u, v, w)
where

F (u, v, w) = fn(u, v) + fn−1(u, v)w + . . .+ f0w
n

= wn f(u/w, v/w)

To describe points on a curve, we can use either affine coordinates or homoge-
neous coordinates. However, it is important to keep in mind that more than
one coordinate chart may be needed to describe all possible points on the
curve. Below, we use the following three coordinate charts:

[x, y, 1] =: [w011, w012, 1] (1.32)[
1,
y

x
,

1

x

]
=: [1, w022, w021] (1.33)[

x

y
, 1,

1

y

]
=: [w031, 1, w032] (1.34)
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Consider the Weierstrass curve (1.4) again, now in P2. In these charts, the
equation for the curve becomes respectively

w2
012 = 4w3

011 − g2w011 − g3

w021w
2
022 = 4− g2w

2
021 − g3w

3
021

w032 = 4w031 − g2w031w
2
032 − g3w

3
032 (1.35)

On the other hand, the ODE (1.1) or its equivalent first-order system becomes{
w′012 = 6w2

011 −
g2
2

w′011 = w012{
w′021 = −w021w022

w′022 = 6
w021

− g2
2 w021 − w2

022{
w′031 = 1− 6

w3
031

w032
+ g2

2 w031w032

w′032 = 6w2
031 + g2

2 w
2
032

(1.36)

Note that the right side of the first equation in the system (1.36) in the (0, 3)
chart is not well defined when w031 = 0, w032 = 0 simultaneously.

Consider the equation for the curve in the same chart. Rewriting the pencil
of curves given by Equation (1.35) as

g3w
3
032 = 4w031 − g2w031w

2
032 − w032 (1.37)

it is easy to see that an intersection point of all of these curves (which are
each given by choosing a different value of g3) occurs only if we have

w3
032 = 0 and 4w031 − g2w031w

2
032 − w032 = 0

which implies (w031, w032) = (0, 0). This is a base point of this pencil. Note
that this point lies at infinity in the original coordinates.

That is, the problematic point where the definition of a solution of the
system (1.36) fails is equivalent to a base point of the pencil of curves that
arises as an integral of the system.

.


