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Chapter 1

Algebraic Curves

1.1 Motivation

Given a constant parameter g2, consider the ordinary differential equation
(ODE)

w′′ = 6w2 − g2

2
, (1.1)

where w is a function of t ∈ C and primes denote derivatives with respect to
t.

Multiplying Equation (1.1) by w′ and integrating once, we obtain

w′2 = 4w3 − g2w − g3 (1.2)

where g3 is another constant parameter. Integrating once more, by separation
of variables, we obtain the well known solutions:

w(t) = ℘
(
t− t0; g2, g3

)
(1.3)

which are functions of two arbitrary parameters t0 and g3.
Here, ℘ is the Weierstrass elliptic function, a doubly periodic, meromorphic

function of order 2, which has a double pole at the origin. The equivalent
notation ℘(t) = ℘

(
t; g2, g3

)
is often used for conciseness, when the dependence

on g2 and g3 is assumed. Below, we use the fact that it is an even function,
i.e., ℘(−t) = ℘(t). (For further information, see a reference on the theory of
analytic functions of one complex variable, such as Ahlfors [1].)

Equation (1.2) defines a curve

y2 = 4x3 − g2 x− g3 (1.4)

called an elliptic curve (or Weierstrass’ cubic curve), which is parameterised
by

x = w(t), y = w′(t),

where w(t) is given by Equation (1.3).
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Figure 1.1: Weierstrass cubic curve

Let the roots of the cubic on the right of (1.4) be e1, e2, e3. If they are real,
assume without loss of generality that e1 ≤ e2 ≤ e3. In the real case, the graph
of y as a function of x, given by (1.4) for generic values of ei, i ∈ {1, 2, 3}, is
shown in Figure 1.1.

But solutions of the ODE (1.1) vary as its accompanying initial data vary.
Such initial data determine the values of g3 and t0, i.e., the values of e1, e2,
e3 and a starting point on the corresponding curve, such as the one in Figure
1.1. The values of g3 give a family of level curves of the polynomial

f(x, y) = y2 − 4x3 + g2 x (1.5)

The collection of corresponding curves, a subset of which is depicted in Figure
1.2, is called a pencil of curves.

As g3 varies, two of the roots e1, e2, e3 may coincide. An example is given
below.

Example 1.1.1. Take g2 = 2, g3 = −
(
2/3
)3/2

and transform variables in
Equation (1.4) to

x =
ξ√
6
, y =

(
2

33

)1/4

η

Then the curve becomes

η2 = (ξ − 1)2 (ξ + 2)

whose graph is depicted in Figure 1.3.
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Figure 1.2: A pencil of Weierstrass cubic curves
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Figure 1.3: Singular Weierstrass cubic curve
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Figure 1.4: Addition on Weierstrass cubic curve

The Weierstrass elliptic function ℘(t−t0) parametrizes the curve (1.4) as a
function of a continuous variable t. But, there is also a discrete mapping that
parametrizes this curve as a function of a discrete variable n. Geometrically,
this mapping is given by taking two distinct points P1 and P2 on the curve
and finding a third point P3 also on the curve constructed as follows.

Take the straight line passing through P1 and P2. (We assume below that
the x coordinates of these points are distinct1.) As we show below, this line
must intersect with the curve again. Take the resulting point of intersection
and reflect this point across the x-axis to obtain P3. This construction is
depicted graphically in Figure 1.4.

We provide an analytic proof here that the image of this mapping can be
expressed rationally in terms of the coordinates of P1 and P2. Let 2ω1 and
2ω2 be the (smallest) periods of ℘(t). (By the definition of ℘(t), ω1 and i ω2

are real.) Denote the fundamental period parallelogram with vertices at the
origin, 2ω1, 2ω2 and 2 (ω1 +ω2) by Π. The integer linear combinations of 2ω1

and 2ω2 generate a lattice L in the complex plane. A typical such L and Π is
drawn in Figure 1.5.

Choose t1, t2 ∈ C but not in L and assume t1 6= t2 mod L. Let a, b ∈ C
1P3 can also be constructed when P1 and P2 have the same x-coordinate. But, in this

case, the line containing these points is vertical and P3 will lie at infinity.
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Figure 1.5: A period lattice

such that

℘′(t1) = a℘(t1) + b

℘′(t2) = a℘(t2) + b

That is, y = a x+ b is the line through Pi =
(
℘(ti), ℘

′(ti)
)
, i = 1, 2.

For any elliptic function F (t) with period lattice L and a fundamental
period parallelogram Π, we have

1

2π i

∮
Π
t
F ′(t)

F (t)
dt =

∑
i

(zi − pi) = 0

by Cauchy’s residue theorem, where zi and pi are respectively zeroes and poles
of F in Π. We take

F (t) = ℘′(t)− a℘(t)− b

which is an elliptic function of order 3, with a triple pole at the origin. So
if t1, t2 are zeroes of F (t), then (because the pole is located at the origin), a
third zero must exist at t3 = − (t1 + t2) modulo L. So we have

℘′(t3) = a℘(t3) + b.

Note that this shows that the straight line y = ax + b must intersect the
Weierstrass cubic curve (1.2) a third time.

At such an intersection between the curve given by (1.2) and the straight
line y = ax+ b, we also have

4x3 − g2 x− g3 − (a x+ b)2 = 0 (1.6)
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which has three roots given by ℘(t1), ℘(t2), ℘(t3). So we get

4 (x− ℘(t1)) (x− ℘(t2)) (x− ℘(t3)) = 0. (1.7)

Comparing the coefficient of x2 between Equations (1.6-1.7), we get

℘(t1) + ℘(t2) + ℘(t3) =
a2

4
(1.8)

But also, because a is the slope of the line through the two points Pi =(
℘(t1), ℘′(ti)

)
, i = 1, 2, we have

a =
℘′(t1)− ℘′(t2)

℘(t1)− ℘(t2)
. (1.9)

Moreover, ℘(t3) = ℘
(
−(t1 + t2)

)
= ℘(t1 + t2) by the evenness of ℘(t) and

b = ℘′(t1)− a℘(t1). We find therefore from Equation (1.8) that

℘(t1 + t2) = −℘(t1)− ℘(t2) +
1

4

(
℘′(t1)− ℘′(t2)

℘(t1)− ℘(t2)

)2

. (1.10)

and

−℘′(t1 + t2) = a℘(t1 + t2) + ℘′(t1)− a℘(t1)

= ℘′(t1) +
℘′(t1)− ℘′(t2)

℘(t1)− ℘(t2)
(℘(t1 + t2)− ℘(t1)) (1.11)

If we write y = ℘′(t1 + t2), y = ℘′(t1), y0 = ℘′(t2), x = ℘(t1 + t2), x = ℘(t1),
x0 = ℘(t2), then these equations become x = 1

4

(
y − y0
x− x0

)2
− x− x0

y = −y −
(
y − y0
x− x0

)
(x− x)

(1.12)

which provides a discrete mapping on the Weierstrass cubic curve.
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