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Abstract. We consider the hydrodynamics of an incompressible fluid on a 2D

periodic domain. There exists a family of stationary solutions with vorticity

given by Ω∗ = α cos(p ·x)+β sin(p ·x). This situation can be approximated as
a structure preserving finite dimensional Hamiltonian system by a truncation

introduced by [24, 26] or by the more standard Galerkin style finite element
method. We use these two truncations to analyse the linear stability of these

solutions and analytical and numerical results are compared. Following the

methods used by [17] the problem is divided into subsystems and we prove
that most subsystems are linearly stable. We derive a sufficient condition for

a subsystem to be linearly unstable and derive an explicit lower bound for the

associated real eigenvalues independent of the truncation size N . Then we
show that the corresponding eigenvectors are in `2. This together with known

stability results for the 2D periodic Euler equations allows us to conclude

that most of these stationary solutions are nonlinearly unstable. We confirm
our results with a numerical computation of the spectrum for a large, finite

truncation. Finally we discuss the essential spectrum of the full problem as

the limit of the truncated problem.

1. Introduction

In terms of the vorticity Ω(x, t) : (T2 ×R+)→ R, the 2D incompressible Euler
equations are (see [1] Appendix 2 for an overview)

(1.1)
∂Ω

∂t
+ u1

∂Ω

∂x1
+ u2

∂Ω

∂x2
= 0,

∂u1

∂x1
+
∂u2

∂x2
= 0.

Here x = (x1, x2)T and u1, u2 are the velocity components in the x1 and x2

directions respectively. We impose periodic boundary conditions Ω(π, x2, t) =
Ω(−π, x2, t) and Ω(x1, π, t) = Ω(x1,−π, t). There is a family of stationary solu-
tions given by

(1.2) Ω∗ = α cos(p · x) + β sin(p · x)

for α, β ∈ R and p ∈ Z2.
The study of stability of certain solutions of the planar Euler equations was

initiated by the seminal work by [3] on the Lie-Poisson structure of the Euler
1
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equations where he invented the Energy-Casimir method to prove stability. This is
revisited in [2], in particular Section II.4. Arnol’d discusses a slightly more general
problem where the torus has dimensions X × 2π and p = (0, 1)T , and shows that
this solution is non-linearly stable when X ≤ 2π. In [19] it was shown that any
equilibrium with p = (0, 1)T and X > 2π is linearly unstable for the viscous
problem using linear stability analysis and infinite continued fractions. That paper
also shows linear instability for p = (0,m)T , m > 1 and any X. The linear
instability of the inviscid problem for p = (0,m)T , m > 1 was proved in [5] and
discussed in [7]. Under the condition m2 6= m2

1 + m2
2 for any positive integers

m1,m2, it was shown in [10] that the steady state for p = (0,m)T is nonlinearly
unstable.

In [17] it is shown how to block-diagonalise the linearisation about the equi-
librium with general p into so-called ‘classes’, and using this approach he again
showed that p = (0, 1)T is Lyapunov stable. This is used in [16] where the essen-
tial and discrete spectrum of the linearisation of (1.1) are studied at the steady
state (1.2). They studied the full infinite system, approaching the problem from
a functional analytic perspective. They found an upper bound on the number of
non-imaginary isolated eigenvalues, and described the essential spectrum. Further-
more, they showed that the spectrum of the linearised operator is the union of the
spectrum coming from each of the classes from [17] and that the spectral mapping
theorem holds for the Euler operator linearised about Ω∗ (Theorem 2 in [16]).

In the viscous problem solutions e−νm
2t cos(mx) are called bar states in [4]. They

show that for non-zero viscosity ν, and m = 1 these bar states are ‘quasi-stationary’,
in that they decay on a slow timescale depending on the viscosity.

We combine the block-diagonalisation used by [17] with the structure preserving
finite-dimensional sine truncation [24] and the Galerkin (see [18]) finite element
truncation to prove that for a large class of p the stationary solutions (1.2) are
nonlinearly unstable. Zeitlin’s sine truncation leads to a finite dimensional Poisson
structure and the Hamiltonian structure of the original PDE and its Casimirs are
preserved in this finite-dimensional truncation. The Galerkin truncation does not
preserve these Casimirs. See [2] and [14] for a discussion of the use of Poisson
brackets in hydrodynamics. The theoretical background of Zeitlin’s sine truncation
(and a related truncation for a spherical domain) is discussed in [12], and the
concept of a “limit” of this algebra is discussed in depth in [6].

In Section 2, the problem and the associated notation are introduced. The system
is first decomposed into Fourier modes which are described by a non-canonical
infinite dimensional Hamiltonian system. Then truncation is taken to reduce to a
finite-mode approximation. We linearise around the steady state, which decouples
the problem into subsystems.

In Section 3, we reproduce the “stable disc theorem” from [17] in the truncated
setting. This theorem states that for classes whose mode numbers a satisfy |a| > |p|
the spectrum is stable. Thus most class subsystems do not contribute unstable
modes to the spectrum of the full operator. Then we prove our “unstable disc
theorem” 3.1, which states that if exactly one mode number of a given class is inside
the unstable disc then for sufficiently large N there is a positive real eigenvalue. In
our fundamental Theorem 3.5 we show that with certain additional assumptions
this real eigenvalue is bounded away from zero when N → ∞. Furthermore in
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Lemma 3.6 we show that the corresponding eigenvector of the infinite dimensional
system is in `2.

Section 4 provides the main Theorem 4.3 demonstrating non-linear instability of
the stationary solution (1.2) for all choices of p but a few exceptions. In Lemma 4.2
we establish when the conditions for the lower bound needed in Section 3 are met.
Zeitlin’s truncation requires some care when proving results for both stable and
unstable classes. Specifically it is not clear that the intersections between our
classes and the disc |a| < |p| behave in the way we expect. In Lemma 4.1 we show
that for most choices of p, there is an appropriate truncation size N to control the
Zeitlin truncation so that Theorem 3.5 can be applied. The other cases of p can be
treated using the Galerkin trunction.

Section 5 provides some numerical results. The numerical efficiency and accu-
racy of Zeitlin’s truncation is compared favourably to the Galerkin truncation. A
connection is made between the nature of the subsystems and the number and type
of non-imaginary eigenvalues. A discussion of the number of non-imaginary eigen-
values is included, and the accuracy of our calculated lower bound is assessed. A
brief section on the pure imaginary spectrum of our finite mode systems is included,
replicating the results in [16] via a very different method. We can show that the
pure imaginary spectrum of our finite dimensional approximation approaches the
essential spectrum of the full system. As a result we can naturally define a density
of eigenvalues in the essential spectrum.

2. Vorticity Evolution in Fourier Space, Truncation, Linearisation

2.1. Hamiltonian Formulation. The stream function Ψ is defined through its
relation to the fluid velocities by

(2.1) u1 = +
∂Ψ

∂x2
, u2 = − ∂Ψ

∂x1
.

The relationship between the stream function and the vorticity is

(2.2) Ω = −∇2Ψ

and hence the PDE can be written as

(2.3)
∂Ω

∂t
=

∂Ω

∂x1

∂Ψ

∂x2
− ∂Ω

∂x2

∂Ψ

∂x1
.

For a fixed p ∈ Z2 and Γ ∈ R we wish to analyse the steady state Ω∗ =
α cos(p · x) + β sin(p · x).

Note that we can write Ω∗ = 2Γ cos(p · x + θ), where θ = ± tan−1
(
−β
α

)
and

Γ = ±
√
α2+β2

2 . The signs of θ and Γ will depend on the signs of α and β. If

α = 0, then take θ = π
2 . Define c = θ

|p|2 p, so Ω∗ = 2Γ cos(p · (x + c)). Thus

by taking the translation x̃ = x + c we can instead just consider the steady state
Ω∗ = 2Γ cos(p · x̃) by a change of origin. Therefore for the remainder of this paper
we drop the tilde and simply consider the steady state

Ω∗ = 2Γ cos(p · x).

Expand Ω into a Fourier series with coefficients ωk(t) as

Ω(x, t) =
∑
k∈Z2

ωk(t)eik·x
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and combine (2.2) and (2.3). Then the Fourier coefficients are governed by the
ODEs

(2.4) ω̇k(t) =
∑

l∈Z2\{0}

k× l

|l|2
ω−lωk+l

(where x × y = x1y2 − x2y1 for x,y ∈ R2, and ω̇k := d
dt (ωk)). The condition

ωk = ¯ω−k is necessary for Ω to be real.
Define the ‘ideal fluid’ Poisson Bracket in Fourier Space as

(2.5) {f, g} =
∑
k,l

∂f

∂ωk

∂g

∂ωl
(k× l)ωk+l.

The corresponding infinite dimensional Poisson structure matrix is Jk,l = (k ×
l)ωk+l. Then (2.4) is a non-canonical Hamiltonian system with corresponding
Hamiltonian

(2.6) H =
∑

k∈Z2\{0}

ω+kω−k
|k|2

=
1

2

∑
k∈Z2\{0}

ω+k
2

|k|2
.

The Hamiltonian is obtained from the Kinetic energy

H =
1

2

∫
||u||2dx = −1

2

∫
ΩΨdx .

2.2. Galerkin Truncation. We now truncate to a finite mode approximation and
study the spectrum of the equilibrium corresponding to Ω∗. We will present two
approaches to this: a Galerkin-style finite element truncation, and a more sophis-
ticated Poisson structure truncation by Zeitlin.

First consider the Galerkin-style truncation (see [21]). Define the domain for our
truncated Fourier modes

(2.7) D = [−N,N ]2 ∩Z2.

Now set ωk = 0, ω̇k = 0 for all k 6 ∈D. Then the differential equations (2.4)
define a finite set of ODEs, but not a Poisson system.

2.3. Zeitlin’s Truncation. An alternative truncation is that described by [24]
(see also [20], [12]). Restrict to the set of Fourier modes to

(2.8) ωk, k ∈ D,
and whenever a mode is referenced that is outside the domain D it is mapped back

into D. For this we have the notation k̂, which for any k denotes a mode k̂ ∈ D
for which the difference k− k̂ = (2N + 1)(a, b)t for some integers a, b.

Zeitlin gave the following Poisson bracket on the domain D:

{f, g} =
∑

k,l∈D

sin(εk× l)

ε

∂f

∂ωk

∂g

∂ωl
ω
k̂+l

,(2.9)

Jk,l =
1

ε
sin(εk× l)ω

k̂+l
(2.10)

where k, l ∈ D, and ε = 2π
2N+1 . The corresponding truncation of (2.6) is the

Hamiltonian

(2.11) H =
1

2

∑
k∈D\{0}

ω+kω−k
|k|2

,
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where only the domain of summation has changed.
The vector field under the Zeitlin truncation is thus given by

ω̇k = (J∇H)k =
∑
l∈D

Jk,l∇Hl(2.12)

=
1

ε

∑
l∈D

sin(εk× l)ω
k̂+l

ω−l
|l|2

.(2.13)

The primary theoretical advantage of the Zeitlin truncation over the Galerkin
truncation is that 2N+1 of the Casimirs present in the full system are preserved in
the Zeitlin truncated system. The disadvantage of the Zeitlin truncation is that we
must take some care when making arguments based on it (see Section 4). The two
truncations will be compared both numerically and analytically in later sections.
For details of the construction and a description of the Casimirs see [24, 26].

2.4. The Linearised system. For a fixed p ∈ D \ {0} the equilibrium point of
the PDE Ω∗ = 2Γ cos(p ·x) is an equilibrium point of the truncated ODE given by

(2.14) ω∗l =

{
Γ if l = ±p
0 otherwise.

As the original problem has symmetries x ↔ −x, y ↔ −y, and x ↔ y, let
p = (p1, p2)T with p1 ≥ p2 ≥ 0 and p1 > 0.

The Jacobian of the Galerkin truncated vector field (2.4) is

(2.15) Ja,b =

{
0 if a = b or b = 0(

1
|b|2 −

1
|b−a|2

)
b× a ωa−b.

The Jacobian of the Zeitlin truncated vector field (2.13) is

(2.16) J ′a,b =

0 if a = b or b = 0

1
ε

(
1
|b|2 sin(εb× a) + 1

|(̂b−a)|2
sin(εa× ̂(b− a))

)
ω

(̂a−b)
.

Evaluating these at the equilibrium (2.14) gives the linearised systems

(2.17) ω̇k = Γ

(
1

|p|2
− 1

|k + p|2

)
k× p ωk+p − Γ

(
1

|p|2
− 1

|k− p|2

)
k× p ωk−p

for the Galerkin truncation and

(2.18)

ω̇k =
Γ

ε

(
1

|k̂− p|2
sin(ε(k̂− p)× k) +

1

|p|2
sin(εp× k)

)
ω
k̂−p

+
Γ

2ε

(
1

|k̂ + p|2
sin(ε(k̂ + p)× k) +

1

|p|2
sin(εk× p)

)
ω
k̂+p

for the Zeitlin truncation.

2.5. Decoupling into Classes. The key observation is that ω̇k depends only
ωk±p. Thus the linearised systems can be block-diagonalised. This block-diagonalisation
is analogous to the construction in [17]. Following Li we call the individual blocks
classes, which leads to the following definition:
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A

B

p = (3, 1)

(0, 0)

Figure 2.1. The differential equations governing the set of
Fourier Coefficients decouple into ‘classes’ when linearised. For
a ∈ Z2, ω̇a depends only on ωa+p and ωa−p. Extending this idea
we get a subset of coefficients that only depend on each other, the
class led by a. These coefficients all lie on a straight line with di-
rection p. Classes that do not have an intersection with the disc
indicated are stable. Clases that intersect the shaded region indi-
cated at a lattice point have a pair of real eigenvalues (Theorem
3.1). Classes that intersect the disc but do not have intersect the
shaded region at a lattice point lead to either a complex quadruplet
or two pairs of real eigenvalues.

Definition 2.1 (Classes). For some a ∈ D (and p fixed by the choice of equilib-
rium), the class Σa ⊂ D is defined for the Galerkin truncation by

(2.19) Σa = {a + kp ∈ D | k ∈ Z}.

or equivalently for the Zeitlin truncation

(2.20) Σ′a = {â + kp ∈ D | k ∈ Z}.

Figure 2.1 illustrates this idea. Note that the Zeitlin truncated classes Σ′a ‘wrap
around’ the domain D.

[17] makes the analogous definition for the non-truncated system. In that pa-
per, the classes are infinitely large, and there are infinitely many classes. In our
definition, there are finitely many classes of finite size, which depend on the trun-
cation size N . As D is finite, Σa and Σ′a are both finite. Write p = (p1, p2)T , and
κ = gcd(p1, p2). Then

(2.21) |Σa| ≤
⌊

2N + 1

max(p1, p2)

⌋
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and

(2.22) |Σ′a| =
2N + 1

gcd(2N + 1, κ)
.

Note |Σ′a| does not depend on a, and is odd for all choices of N and p. We use this
fact many times later. For gcd(p1, p2) = 1, |Σ′a| = 2N + 1.

For Σa we can make a “canonical” choice of a by selecting a in a length |p|
strip. For Σ′a a canonical choice for a is found by restricting a to be in a |p| by

|Σ′a|
|p|

rectangle centred around 0 oriented so the sides of length |p| are parallel to p. For
the Zeitlin truncation a unique choice is not possible if κ > 1. See Section 4 and
4.1 for details.

Fixing p and a canonical choice of a we now restrict our attention to the asso-
ciated subsystems Σa and Σ′a. Introduce new notation

(2.23) ωk =

{
ωa+kp if a + kp∈D,
0 otherwise.

ω′k = ω
â+kp

,

(2.24) ρk =
1

|p|2
− 1

|â + kp|2
for k =∈ Z,

(2.25) α = Γa× p ∈ R, α′ =
Γ sin(ε(â + kp)× p)

ε
∈ R.

The value of the coefficient ρk is related to the distance of the lattice point â + kp
from the boundary of the disc of radius |p|, where negative values of ρk correspond
to lattice points inside the disc. Note that α does not depend on k. Also note that

(2.26) lim
N→∞

α′ = lim
ε→0

α′ = Γa× p = α.

Noting that sin(ε(k̂ + p)×k) = sin(εp×k) and rewriting (2.17) and (2.18) with
the new notation gives a compact form of the linear systems

ω̇k = α(ρk+1ωk+1 − ρk−1ωk−1),(2.27)

ω̇′k = α′(ρk+1ω
′
k+1 − ρk−1ω

′
k−1).(2.28)

All indices in (2.28) are written modulo |Σ′a|.
Let m1,m2 ∈ Z be such that a−m1p ∈ D, a− (m1 +1)p 6 ∈D and a+m2p ∈ D,

a + (m2 + 1)p 6 ∈D. If we write ω =
(
ω−m1 , ω−m1+1, ..., ω−1, ω0, ω+1, ..., ωm2

)T
,

then ω̇ = αAω where

(2.29) A =



0 +ρ−m1+1 0 · · · 0 0 0
−ρ−m1

0 +ρ−m1+2 · · · 0 0 0
0 −ρ−m1+1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 +ρm2−1 0
0 0 0 · · · −ρm2−2 0 +ρm2

0 0 0 · · · 0 −ρm2−1 0


.
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If we write ω′ =
(
ω′0, ω

′
1, ..., ω

′
n−1

)T
, then ω̇′ = α′A′ω′ where

(2.30) A′ =



0 +ρ1 0 0 · · · 0 −ρn−1

−ρ0 0 +ρ2 0 · · · 0 0
0 −ρ1 0 +ρ3 · · · 0 0
0 0 −ρ2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 +ρn−1

+ρ0 0 0 0 · · · −ρn−2 0


.

If a = 0 or a is parallel to p, α = α′ = 0. Thus the associated class only
contributes zero eigenvalues and will not contribute to the linear instability of the
system. We can thus ignore the classes with α = α′ = 0.

Note that A can be written as A = JS where
(2.31)

J =



0 +1 0 · · · 0 0
−1 0 +1 · · · 0 0
0 −1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 +1
0 0 0 · · · −1 0


, S =


ρ−m1

0 0 · · · 0
0 ρ−m1+1 0 · · · 0
0 0 ρ−m1+2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ρm2

 .

A similar construction can be made for A′ = J ′S′. As J and J ′ are skew-
symmetric and S and S′ are symmetric, these are (non-canonical) Hamiltonian
systems. For both systems, H =

∑
k ρkω

2
k.1 From this it follows that if λ is an

eigenvalue of A or A′ then −λ, λ̄ and −λ̄ are also eigenvalues. Note that det(J ′) = 0
as J ′ has odd size, and therefore J ′ is not symplectic with a one-dimensional kernel.
J is symplectic if and only if |Σa| is even.

We now focus on the behaviour of the eigenvalues of A and A′ as a function of
the ρk values. Note that there is a symmetry in a. For every class Σa or Σ′a, the
class Σ−a or Σ′−a generates the same set of eigenvalues. It is worth noting that
α(−a) = −α(a) and α′(−a) = −α′(a), but as all eigenvalues occur in ± pairs, this
does not affect the spectrum. Thus for the full system rather than a particular class
all eigenvalues occur with even multiplicity.

Definition 2.2 (The Unstable Disc). Introduce the disc Dp

(2.32) Dp = {x ∈ D | |x| < |p|}.

This disc is shown in figure 2.1. A simple but important observation is

Lemma 2.3. A lattice point is inside the unstable disc if and only if the corre-
sponding ρ is negative:

(2.33) â + kp ∈ Dp ⇐⇒ ρk < 0.

Proof. This is true as ρk < 0 if and only if |a + kp| < |p| from (2.24), which is

exactly the condition that â + kp ∈ Dp. �

1As J ′ is circulant, one could write down its eigensystem explicitly by applying a discrete
Fourier transform (see [13]) and therefore find a set of canonical coordinates (see [8]). This will

not be used in this paper, but may be of interest.
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This is illustrated in figure 2.1. The point a inside the disc corresponds to ρ0 < 0
and the other points correspond to ρk > 0. Also note that

â + kp ∈ ∂Dp ⇐⇒ ρk = 0.

3. Stability and Instability of Classes

3.1. Stable Classes. The matrices A and A′ are similar to skew-symmetric ma-
trices by conjugation.

(3.1) T =


√
ρ−m1

0 0 · · · 0
0

√
ρ−m1+1 0 · · · 0

0 0
√
ρ−m1+2 · · · 0

...
...

...
. . .

...
0 0 0 · · · √ρm2

 ,

(3.2)

TAT−1 =


0 +

√
ρ−m1

ρ−m1+1 0 · · · 0
−√ρ−m1

ρ−m1+1 0 +
√
ρ−m1+1ρ−m1+2 · · · 0

0 −√ρ−m1+1ρ−m1+2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 .

A very similar construction exists for A′.
If ρk > 0 for all k, this transformation is real and thus A and A′ are similar

to real skew-symmetric matrices. Thus all eigenvalues are purely imaginary and
A and A′ can be diagonalised and so the class is linearly stable. By (2.33) this
condition is true exactly if

(3.3) Σa ∩Dp = ∅.

This is the finite-dimensional analogue of Li’s Unstable Disc Theorem (Theorem
III.1) in [17], though the method of proof used in that paper is naturally very
different. A discussion of the details such as choice of p and N required for (3.3)
to hold follows in Section 4. Because of this result, only classes with a ∈ Dp can
contribute linear instability. Also a = 0 implies α = α′ = 0 and so this class cannot
contribute linear instability.

3.2. Unstable Classes. For classes with a ∈ Dp, there are two primary possibili-
ties to consider:

i) There is exactly one intersection between the class and the disc (ie, Σa∩Dp =
{a}). This can only occur when a is chosen to be in the shaded area indicated
in figure 2.1.

ii) There are exactly two consecutive intersections between the class and the disc
(ie,
Σa ∩Dp = {a,a + p} or Σa ∩Dp = {a,a − p}). This occur when a ∈ Dp is
chosen outside the shaded area indicated in figure 2.1.

For the Zeitlin style truncation, there is also a third possibility we must consider:

iii) There are at least two non-consecutive intersections between the class and

the disc (ie, a ∈ Σ′a ∩Dp and â + kp ∈ Σa ∩Dp for some k 6= −1, 0, 1).
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Note that points on the boundary are treated as being outside the disc. Also note
that it is not possible for three consecutive lattice points in a class to be in the
unstable disc. If a, a − p and a + p were are all in Dp, they would lie along a

diameter as Dp has diameter 2|p| and the distance from a − p to a + p is 2|p|.
Therefore a = (0, 0) and a ± p ∈ ∂Dp. This is the only possibility to have three

consecutive lattice point in Dp, and hence Dp can at most contain two consecutive
lattice points. Figure 2.1 makes this idea clear.

From our numerical and analytical results we can categorise the spectrum of the
class in these three cases:

i) The spectrum has a single pair of real eigenvalues and all other eigenvalues on
the imaginary axis. This is proved in Theorem 3.1.

ii) The spectrum typically corresponds to a quartet of complex eigenvalues ±α±
βi, and all other eigenvalues on the imaginary axis. It can also correspond to
two pairs of real eigenvalues, though seems to be less common.

iii) This corresponds to the class ‘wrapping around’ the truncated domain of lattice
points and intersecting the disc again; see 4.1. The spectrum is a combination
of case (i) and case (ii) according to how successive intersections with the disc
occur.

This last case is atypical and does not occur with the Galerkin truncation. Usually
this case can be avoided by a proper choice of N , however when both entries of p
are even, it cannot be avoided. This is discussed in detail in Section 4, particularly
Lemma 4.1.

All our numerical evidence is consistent with the result in [16] that the number of
eigenvalues with non-zero real part is ≤ 2|Dp| (twice the number of interior lattice
points in the unstable disc), and our observation is that this is the exact number of
hyperbolic eigenvalues.

For case (i), Theorem 3.1 proves that this case always leads to non-zero real
eigenvalues. For some p and a leading to case (i), Theorem 3.5 describes an explicit
lower bound which is independent of the truncation size N for the real eigenvalues.
This agrees with numerically observed results, eg the ε = 0 inviscid result shown in
Figure 2 of [15]. It should be noted that our methods do not preclude the possibility
that there are other eigenvalues with non-zero real part unaccounted for; we simply
assert that there is at least one eigenvalue with positive real part. This together
with the results from [10], [16], and [22] is sufficient to conclude nonlinear instability
for the whole system.

For the following section, we consider a general set of parameters (a0, a1, ..., an−1)
instead of ρk. Introduce a tridiagonal matrix

(3.4) T βα =



0 aα+1 0 0 · · · 0 0
−aα 0 aα+2 0 · · · 0 0

0 −aα+1 0 aα+3 · · · 0 0
0 0 −aα+2 0 · · · 0 0
0 0 0 −aα+3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 aβ
0 0 0 0 · · · −aβ−1 0


,
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and its characteristic polynomial

(3.5) T βα (x) = det(xI − T βα )

for some integers 0 ≤ α < β ≤ n − 1. Then T βα (x) can be recursively defined by
expansion from top left to bottom right

T αα (x) = 1, T α+1
α (x) = x2 + aα+1aα,

T βα (x) = xT β−1
α (x) + aβaβ−1T β−2

α (x).(3.6)

or by expansion from bottom right to top left

T ββ (x) = 1, T ββ−1(x) = x2 + aβ−1aβ ,

T βα (x) = xT βα+1(x) + aαaα+1T βα+2(x).(3.7)

Note that

(3.8) ak > 0 for all α ≤ k ≤ β =⇒ T βα (x) > 0 for all x > 0.

This can be seen by the recursive definitions; all terms are positive. 2

The following is also useful:

(3.9) T βα (0) =

{∏β
k=α ak if β − α is odd,

0 if β − α is even.

(3.10)
d

dx
T βα (x)

∣∣∣∣
x=0

=

0 if β − α is odd,∑ β−α
2

k=0

(∏β
j=α; j 6=α+2k aj

)
if β − α is even.

These can be proved by simple induction arguments.
Introduce similar notation for (2.30)

(3.11) A′ =



0 +a1 0 0 · · · 0 −an−1

−a0 0 +a2 0 · · · 0 0
0 −a1 0 +a3 · · · 0 0
0 0 −a2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 +an−1

+a0 0 0 0 · · · −an−2 0


,

with the characteristic polynomial

(3.12) A(x) = det(xI −A).

Then, if n is odd,

A(x) = xT n−2
0 (x) + an−1an−2T n−3

0 (x) + an−1a0T n−2
1 (x)

= T n−1
0 (x) + a0an−1T n−2

1 (x)(3.13)

This can be demonstrated by expanding by minors along the last row and column
of xI − A. Recall that n is odd for the relevant problem (n = |Σa| from equation
(2.22)).

2Note that the (3.6) and (3.7) satisfy the condition for Favard’s theorem (see [9]) . Thus the
polynomials T (x; a1, ...aj) are orthogonal for j = 1, 2, 3, ... with respect to an inner product with

some weight function (see [23]). However, as the αk terms may be negative this weight function
will not always be positive. This will not be used here, but may be useful in future work for
describing the imaginary part of the spectrum.
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We first show that in case (i) there is some non-zero real eigenvalue. Because
of the Hamiltonian nature of the system this means there is a plus/minus pair of
eigenvalues and so there is linear instability. This is then extended to show that
under certain conditions there is pair of real eigenvalues with an explicit lower
bound independent of N .

Theorem 3.1 (Real Eigenvalues in case (i)). If ρ0 < 0, and ρk ≥ 0 for all k =
1, 2, ..., n− 1 and ρk = 0 for at most one of k = 1, 2, ..., n− 1, then for sufficiently
large N , (2.30) has a non-zero real eigenvalue.

Proof. The characteristic polynomial A for odd n has leading term xn and constant
term 0. By combining (3.13) and (3.10) (noting that n is odd, so n− 1 and n− 3
are even), the linear coefficient is given by

dA
dx

∣∣∣∣
x=0

=
d

dx
T n−1

0 (x)

∣∣∣∣
0

+ a0an−1 T n−2
1 (x)

∣∣
0

=

n−1
2∑

k=0

 n−1∏
j=0; j 6=2k

aj

+

n−3
2∑

k=0

 n−2∏
j=1; j 6=1+2k

aj


=

n−1∑
k=0

 n−1∏
j=0; j 6=k

aj

(3.14)

=

n−1∏
j=0

aj

(n−1∑
k=0

1

ak

)
.(3.15)

Note that (3.15) is only valid for ak 6= 0 for all k, but (3.14) is always valid 3 . Now

let ak = ρk. First assume ρk > 0 for all k 6= 0. As ρk → 1
|p|2 > 0 as |â + kp| → ∞

and the size n of the classes grows linearly with N ,
∑n−1
j=0

1
aj

=
∑n−1
j=0

1
ρj
> 0 for

sufficiently large N (where ρk = ak). However
∏n−1
j=0 aj < 0 as a0 < 0, aj > 0 for

all j = 1, .., n− 1, and hence the linear coefficient of the characteristic polynomial
is less than zero.

If ρk = 0 for exactly one k, then (3.14) consists of only one term,
∏n−1
j=0; j 6=k ρj .

This is less than zero as ρ0 < 0 and ρj > 0 for all j 6= 0, k.
If ρk = 0 for more than one value of k, then the linear term is zero and we cannot

apply this argument.
As the constant term is zero, and the linear term is non-zero, then the lowest

order non-zero coefficient of the polynomial is negative.
We now argue by contradiction. Assume all roots of the polynomial are imag-

inary (say iωk) or complex (γj + iδj) or zero. Then because eigenvalues occur in

3The expression in equation (3.14) is the so-called n-1st elementary symmetric polynomial in
the variables aj
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positive and negative pairs as well as conjugate pairs the polynomial has the form

A(x) =

(3.16)

xn1

n2∏
k=1

(x− iωk)(x+ iωk)

n3∏
j=1

[(x− γj − iδj)(x− γj + iδj)(x+ γj − iδj)(x+ γj + iδj)]

= xn1

n2∏
k=1

(x2 + ω2
k)

n3∏
j=1

(
x4 − 2x2(γ2

j − δ2
j ) + (γ2

j + δ2
j )2
)
.

(3.17)

The lowest order non-zero coefficient (of xn1) is
∏n2

k=1(ω2
k)
∏n3

j=1

(
(γ2
j + δ2

j )2
)
> 0.

Thus by contradiction there must be some real eigenvalue, which will occur in a
plus and minus pair.

�

For the Galerkin case (3.4), although the result is the same we cannot apply the
same proof. Since we were not able to show that these eigenvalues remain bounded
away from the imaginary axis when N → ∞ we now show in a different way that
for both truncations there are eigenvalues whose real part is bounded away from
zero for N →∞. These proofs have stricter conditions on the ρk then Theorem 3.1,
but we will see that they can be met for most p.

Lemma 3.2 (Lower Bound for Real Eigenvalue (Zeitlin)). If a0 < 0, and ak > 0
for all k 6= 0, and a0 + a2 < 0, then

(3.18) A(
√
−a1(a0 + a2)) < 0.

Proof. By expanding (3.13) using (3.7),

A(x) =(x3 + (a0a1 + a1a2)x)T n−1
3 (x)(3.19)

+ (x2 + a0a1)a2a3T n−1
4 (x)

+ a0an−1T n−2
1 (x).

Thus

A(
√
−a1(a0 + a2)) =− a1a

2
2a3T n−1

4 (
√
−a1(a0 + a2))(3.20)

+ a0an−1T n−2
1 (

√
−a2(a1 + a3)).

As a1, a2, a3, an−1 > 0, a0 < 0 and the T terms are positive by (3.8) the result
follows. �

We make a similar case for the Galerkin truncation

Lemma 3.3 (Lower Bound for Real Eigenvalue (Galerkin)). If β > 0, a0 < 0, and
ak > 0 for all k 6= 0, and a0 + a2 < 0, then

(3.21) T βα (
√
−a1(a0 + a2)) < 0.

Proof. Begin by noting that

(3.22) T γα (
√
−a1(a0 + a2)) ≥ 0
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for all γ < 0 by (3.8). By expanding (3.7),

T 1
α (x) = (x2 + a1a0)T −1

α (x) + a0a−1xT −2
α (x)(3.23)

T 1
α (
√
−a1(a0 + a2)) = −a1a2T −1

α (
√
−a1(a0 + a2))(3.24)

+ a0a−1

√
−a1(a0 + a2)T −2

α (
√
−a1(a0 + a2)).

As a0 < 0, ak > 0 for all k 6= 0, and T −1
α , T −2

α take positive values for positive

arguments, T 1
α (
√
−a1(a0 + a2)) < 0.

Now similar to the proof of 3.2,

T 2
α (
√
−a1(a0 + a2)) =(x2 + a1(a0 + a2))xT −1

α (
√
−a1(a0 + a2))(3.25)

+ (x2 + a2a1)a0a−1T −2
α (

√
−a1(a0 + a2))

= −a1a
2
0a−1T −2

α (
√
−a1(a0 + a2)).

As a1, a−1 > 0, a0 < 0 and the T terms are positive by (3.8) it follows that

T 2
α (
√
−a1(a0 + a2)) < 0.

Now if γ > 2, we can make a recursive argument:

(3.26) T γα (x) = xT γ−1
α (x) + aγaγ−1T γ−2

α (x).

Now x =
√
−a1(a0 + a2) > 0 and aγaγ−1 > 0 (as γ > 2). By inductive reasoning,

as T 1
α < 0, T 2

α < 0, then T γα < 0 for all γ > 2. Therefore T βα (
√
−a1(a0 + a2)) <

0. �

We can also make a similar construction if a0 < 0, ak ≥ 0 for all k 6= 0 and
a0 + an−2 < 0. In this case, A(

√
−an−1(a0 + an−2)) ≤ 0.

Lemma 3.4. Assuming the same conditions as Lemma 3.2 and Lemma 3.3, there
exists some

x∗1, x
∗
2 >

√
−a1(a0 + a2)

such that T βα (x∗1) = 0, A(x∗2) = 0.

Proof. The leading order term of A(x) is always xn regardless of a0, ..., an−1, and

A(x) is real for real x. Thus limx→∞A(x) > 0. But by Lemma 3.2A(
√
−a1(a0 + a2)) <

0, and the result follows by the intermediate value theorem.
The same argument can be applied to T βα (x), with the equivalent result. �

We now turn our attention back to the context of our problem.

Theorem 3.5 (Lower Bound for Real Eigenvalues in case (i)). If a ∈ Dp and

a + kp 6 ∈D̄p (equivalently â + kp 6 ∈D̄p) for k = 1, 2, .., n− 1 and

(3.27) λ† =
√
−ρ1(ρ0 + ρ2)

is real, there exist λ1, λ2 > λ† such that λ1 is an eigenvalue of (2.29) and λ2 is an
eigenvalue of (2.30).

Similarly if λ† =
√
−ρn−1(ρ0 + ρn−2) is real there exist λ1, λ2 > λ† such that λ1

is an eigenvalue of (2.29) and λ2 is an eigenvalue of (2.30).

Proof. This follows from the previous three lemmas, letting ρi = ai and making
note of (2.33). �
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Section 4 clarifies under what conditions λ† is real, and Theorem 3.5 holds. For
example, when p = (1, 1)T then a = (0, 1)T leads to a case (i) class, so Theorem 3.1
holds, but the reality conditions in Theorem 3.5 are not satisfied. It is also possible
that λ† = 0, so the real eigenvalue could be zero, so we also require that λ† > 0. A
sufficient condition on a for this to hold is given in Lemma 4.2.

3.3. Associated Eigenvector. We must also consider whether this eigenvalue is
“valid” in the sense that the corresponding eigenfunction in the full system is in
fact a function in L2(T2), the square integrable function on the torus. For this we
need to show that the Fourier coefficients are in `2. In this section we are going to
work with the infinite dimensional system. The reason for this is that although the
truncations are useful in the calculation of eigenvalues, it is simpler to analyse the
corresponding eigenvectors in the full system. Thus our approach is to use the finite
dimensional Zeitlin truncation to compute the eigenvalues, then take the limit as
N →∞, and then study the decay of the corresponding eigenvector.

Consider the linearised matrix for the full system

(3.28) M =



. . .
...

...
...

...
. . .

· · · 0 ρ0 0 0 · · ·
· · · −ρ−1 0 ρ1 0 · · ·
· · · 0 −ρ0 0 ρ2 · · ·
· · · 0 0 −ρ1 0 · · ·
. . .

...
...

...
...

. . .


.

This is the limit in some sense of the matrices (2.29) and (2.30) which corresponds
to the limit of the Hamiltonian systems A = JS and A′ = J ′S′ with Hamiltonian
H(ω) =

∑
k ρkω

2
k.

Lemma 3.6. The infinite dimensional linearised system given by (3.28) has a
positive real eigenvalue λ under the same conditions as Theorem 3.5. Furthermore,
the associated eigenvector is in `2.

Proof. According to Theorem 3.5, there exist positive real eigenvalues with some
lower bound (independent of N) of (2.30) (and (2.29)) for any N and either choice
of truncation. By taking N → ∞ we can conclude there exists some positive real
eigenvalue λ of (3.28).

Now consider an eigenvector associated with this eigenvalue, v = (..., v−1, v0, v1, v2, ...)
T .

For this to correspond to a real L2 eigenfunction of the full problem (that is, for the
Fourier series to converge), we need these Fourier coefficients to decay sufficiently
fast: they need to be a sequence in `2.

The entries of the (infinite dimensional) eigenvector vk of (3.28) corresponding
to eigenvalues λ satisfy the recursion relation

(3.29) λvk = ρk+1vk+1 − ρk−1vk−1.

Since all ρk 6= 0 this can be rewritten as

(3.30) vk+1 =
λ

ρk+1
vk +

ρk−1

ρk+1
vk−1.

Consider the limiting behaviour as k → ∞. then ρk → 1
|p|2 . In this limit

solutions to (3.30) behave like solutions to

(3.31) vk+1 = λ|p|2vk + vk−1,
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see, e.g., [11].
This linear recurrence has the general solution

(3.32) vk = C1µ
k
1 + C2µ

k
2

where C1, C2 ∈ R are constants and µ1, µ2 are solutions to µ2 − λ|p|2µ − 1 = 0.
Thus µ1µ2 = −1 and without loss of generality |µ1| < 1, |µ2| > 1 (note that we
cannot have |µ1| = |µ2| = 1 as λ|p|2 6= 0).

Now as v is an eigenvector associated with a real eigenvalue, the span of the
eigenvector is an invariant subspace of the Hamiltonian system with Hamiltonian
H(ω) =

∑
k ρkω

2
k. In fact, let ω(0) = v, then ω(t) = eλtv. As the Hamiltonian

is an integral of the motion, H(v) = H(eλtv). By taking the limit t → −∞,
H(v) = H(0) = 0.

Therefore,

(3.33) H(v) =
∑
k

ρkv
2
k = 0;

(3.34)
∑
k 6=0

ρkv
2
k = −ρ0v

2
0 .

Now, if C2 6= 0,

(3.35)
∑
k 6=0

ρkv
2
k ∼

∑
k 6=0

ρk(C2µ
k
2)2 →∞,

recalling that ρk → 1
|p|2 and ρk > 0 for all k 6= 0. But |ρ0| < 1 and vk is finite,

so there is a contradiction. Thus C2 = 0 and vk = C1µ
k
1 in the asymptotic limit,

where |µ1| < 1. This is exponential decay, which is sufficient for the Fourier series
to converge.

Similarly for k → −∞, the limiting behaviour is governed by

(3.36) vk−1 = −λ|p|2vk + vk−1.

Again, this means vk is asymptotic to C1µ
k
1 + C2µ

k
2 for |µ1| < 1, |µ2| > 1. By

the same argument as above, we can conclude that C1 = 0 and so vk = C2µ
k
2 as

k → ∞. Thus the Fourier coefficients decay exponentially on both sides with |k|,
and hence v is in `2. �

4. Instability of Equilibria

To prove instability of an equilibrium for a given p we need to find at least one
unstable class Σa/Σ

′
a. A necessary condition for a lattice point a to lead to an

unstable class is to be inside the unstable disc. More precisely we desire a lattice
point a that leads to a class of case (i) as this is the simplest situation for us to
deal with. Theorem 3.5 asserts that there is a real eigenvalue with an explicit lower
bound under some certain conditions. The goal now is to determine for which p
there exists a lattice point a such that the conditions of Theorem 3.5 are satisfied.

There are a number of other considerations when we take Zeitlin’s truncation.
Although this preserves the geometric structure and the Casimirs of the original
problem, it introduces a problem that is not present in [17]. This has already been
mentioned in the classification of classes; it is the appearance of case (iii), in which a
class intersects the unstable disc at non-consecutive points. This may occur because
now we have periodic boundary conditions not only in physical space, but also in
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2N+1
|p|

a

â + kp

a

̂a + (k + 1)p

a + p

Figure 4.1. For fixed p and a, there are some concerns with the
wrapping of the Zeitlin truncation and the way this affects the
intersection Σa ∩ Dp. These situations are discussed in Lemma
4.1.
Left: the shortest distance between a and some non-consecutive

â + kp is at least 2N+1
|p| . As we are interested in the limit N →∞,

this distance can be made arbitrarily large, so that 2N+1
|p| > 2|p|.

This ensures that a and â + kp cannot both be in the disc Dp.

Right: The situation where there exists k ∈ R such that â + kp
lies on the line segment between a and a+p. This causes problems

for our values of ρ. For â + kp to lie at a lattice point on the line
segment, gcd(p1, p2) > 1. If gcd(p1, p2) is odd, we can avoid this
situation by choosing N per Equation (4.1); if p1 and p2 are both
even this situation is unavoidable.

Fourier space. There are two distinct problems caused by this, as illustrated in
figure 4.1.

The lattice points of a class lie on parallel line segments with direction vector p in
the domain of Fourier modes. In the Zeitlin truncation there is more than one such
line segment in the domain. The first problem appears when the distance between
these line segments is so small that more than one line segment intersects the
unstable disc. This can be fixed by making N sufficiently large. The second problem
occurs when non-consecutive lattice points lie on the same line segment intersecting
the unstable disc. If gcd(p1, p2) is not even this can be fixed by choosing N per
(4.1). Note that for our purposes, gcd(p1, 0) = p1 and gcd(p1, p2) = gcd(|p1|, |p2|).

Lemma 4.1 (Correct choices of N for the Zeitlin truncation). For all p = (p1, p2)T

such that κ = gcd(p1, p2) is not even, there exists a sequence of N which increases
without bound such that for all choices of a any two non-consecutive lattice points
in Σ′a cannot both be in the unstable disc.

Proof. Let

(4.1) N =
(2Ñ + 1)κ− 1

2
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for A ∈ N. Thus 2N + 1 = (2Ñ + 1)κ. If κ is not even, then such an N is a positive

integer and thus a valid grid size. Select as a lower bound Ñ > 2|p|2−κ
2κ so that

N > 2|p|2−1
2 . p is fixed and finite so this lower bound is always finite. We can thus

find an infinite sequence of N that increases without bound by letting Ñ increase
without bound.

If x ∈ Σa then x = â + kp for some k ∈ N. Thus x lies on the line parallel to
the vector p that passes through the point a+∆x(2N+1) for some ∆x ∈ Z2 (note
that this point will be outside the domain D).

Similarly if y ∈ Σa then it lies on the line parallel to p that passes through
a + ∆y(2N + 1) for some ∆y ∈ Z2. Then the distance between these two lines is
(4.2)

d =
|((a + ∆x(2N + 1))− (a + ∆y(2N + 1)))× p|

|p|
=

(2N + 1)|(∆x −∆y)× p|
|p|

.

(∆x −∆y)× p ∈ Z2, so d = 0 or d ≥ 2N+1
|p| . If d ≥ 2N+1

|p| , this corresponds to x

and y lying on different line segments, as in figure 4.1. Thus the distance between
two points on different line segments is at least 2N+1

|p| > 2|p| for our choice of N .

If d = 0, then x and y must lie on the same line segment. Thus y lies on the
line parallel to p passing through x.

Write p = κq so q = (q1, q2)T where gcd(q1, q2) = 1. Then as x,y ∈ Z2,
y = x + kq for some k ∈ Z. But x,y ∈ Σa so y = x + jp + (2N + 1)∆ for some
∆ ∈ Z2.

Thus kq = jp + (2N + 1)∆. So

(4.3) kq = jκq + (2Ñ + 1)κ∆ = κ(jq + (2Ñ + 1)∆).

Thus kq is divisible by κ, but the elements of q both be divided by κ by definition,
so κ|k. Thus y = x+κβq for some β ∈ Z, and so y = x+βp. Then if |y−x| < 2|p|
(the necessary condition for x,y both in Dp) this implies β = 0 or β = ±1, and
the result follows. �

The outstanding issue with Zeitlin’s truncation is that there is no appropriate
choice of N when gcd(p1, p2) is even. If κ > 1 and gcd(κ, 2N + 1) = 1, then p
will generate all multiples of q due to the wrapping operation. Thus classes that
intersect the disc can return after leaving the disc and intersect the disc again,
breaking the assumption of 3.2 that ρk < 0 for only one value of k. This behaviour
continues for all values of N with gcd(κ, 2N + 1) = 1. If κ is even, this is true for
any N ; if κ is odd, we select appropriate N to avoid this.

It is important to note that this is not an error per se, but merely a failure
of Lemma 4.1 for our proof. The wrapping of the Zeitlin truncation associates
modes in an artificial way, but still generates correct results. For instance if p =
(6, 2)T = 2(3, 1)T , the class led by a = (1, 6)T intersects the unstable disc again at
(−2, 5)T = (1, 6)T − (3, 1)T for any finite truncation size. If we compare the non-
imaginary eigenvalues of the class led by a = (1, 6)T with those of the Galerkin-
truncated systems for a = (1, 6)T and a = (−2, 5)T , the same eigenvalues are
generated, with similar convergence to Figure 5.2.

Fortunately, this problem does not arise with the Galerkin truncation as the
wrapping operation is omitted, and so the proof goes through without issue. For
both truncations it is still necessary to establish whether for a given p there is an
a such that the conditions of Theorem 3.5 are met. We address that now.
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(
√ 3
−

1
)|
p
|

p

(0, 0)

Figure 4.2. If a is inside the dashed blue circle centred at the
origin, then ρ0 + ρ2 < 0 and ρ0 + ρn−2 < 0. This circle has centre
(0, 0) and radius (

√
3 − 1)|p|. The shaded region here shows the

overlap of this condition and the shaded region in figure 2.1. To
show that there is at least one lattice point in the shaded regions
we show the disc Dc inscribed in this region (indicated by the small
shaded red circles) has radius larger than 1/

√
2.

Lemma 4.2. For all p = (p1, p2)T except (1, 0)T , (1, 1)T , (1, 2)T (and permutations
and sign changes thereof) there exists a choice of a such that the reality conditions of
Theorem 3.5 are satisfied for an appropriate choice of N in the Galerkin truncation.
Furthermore, if κ = gcd(p1, p2) is not even there is also a choice of a such that the
conditions of Theorem 3.5 are satisfied for the Zeitlin truncation.

Proof. For the bounds given in Theorems 3.3 and 3.2 to be real, positive, and
hence a valid bound, we require ρ0 < 0, ρk ≥ 0 for all k 6= 0, and ρ0 + ρ2 < 0 (or
ρ0 + ρn−2 < 0).

If ρ0 < 0, ρ1, ρ−1 > 0, then |a| < |p| and |a± p| > |p|. This is true if and only
if a is in the shaded region figure 2.1. In the Galerkin truncation, this is sufficient
to show that ρk > 0 for all k 6= 0. By Lemma 4.1, in the Zeitlin truncation we
can find an unbounded sequence of choices of N such that this is sufficient to show
k 6= 0, ρk > 0. Thus for an appropriate choice of N we only need to prove that
there exists an a such that |a± p| > |p|.

As λ† =
√
−ρ1(ρ0 + ρ2) (or equivalently λ† =

√
−ρ−1(ρ0 + ρ−2)) is required to

be real and non-zero, and ρ−1 > 0, then ρ0 + ρ2 < 0 (equivalently ρ0 + ρ−2 < 0).
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If |a| < (
√

3− 1)|p|, then |a± 2p| ≤ |a|+ 2|p| < (
√

3 + 1)|p|. So

ρ0 + ρ±2 <
2

|p|2
− 1

|(
√

3− 1)p|2
− 1

|(
√

3 + 1)p|2
(4.4)

= 0.

We thus need to show there exists some lattice point a such that |a| < (
√

3−1)|p|
and |a ± p| > |p|. These two conditions are illustrated in figure 4.2 in the shaded
region. Note that this is sufficient but not necessary for Theorem 3.5 to hold.

The idea now is to specify that a is in the disc inscribed by the shaded region
in figure 4.2, which we call Dc. This disc is tangent to the circles with radii |p|
and centres ±p and the circle centred at the origin with radius (

√
3 − 1)|p|. It is

a simple geometric exercise to show that such a circle has centre ± 1√
3

(
−p2

p1

)
and

radius
(

2√
3
− 1
)
|p|.

If a ∈ Dc, it is outside the circle with centre −p and radius |p|. Thus a + p is
outside Dp and ρ1 > 0. Similarly, ρ−1 > 0. As Dc is inside the disc with centre

origin and radius
(

2√
3
− 1
)
|p| clearly ρ0 < 0 and by the above ρ0 + ρ±2 < 0. If

we take a Zeitlin truncation, choose appropriate N such that ρk ≥ 0 for all k 6= 0
by Lemma 4. Then the conditions of Theorem 3.5 are satisfied and the resulting
bound λ† is real and positive.

All that remains is to show that there exists an integer lattice point a ∈ Dc.
Any disc with a radius greater than 1√

2
must contain some integer lattice point (as

it wholly contains a square of side length 1). Thus if

(4.5) |p| >
√

3√
2(2−

√
3)
≈ 4.57.

then the Dc has radius greater than
√

2 and such a lattice point exists. Note that
this is a sufficient but not necessary condition on p .

Checking the small number of p values with |p| < 4.57 and κ odd there are ap-
propriate lattice points a for most such p. The following table shows an appropriate
value for a for most such p, and “None” where no such a exists.

(4.6)
p (4, 1)T (3, 3)T (3, 2)T (3, 1)T (3, 0)T (2, 2)T

a (1,−2)T (1,−1)T (1,−2)T (1,−2)T (0, 2)T (−1, 2)T

For reflections/rotations of these values of p the corresponding reflection/rotation
of a is an appropriate choice.

Thus for all p = (p1, p2)T such that κ = gcd(p1, p2) except except (1, 0)T , (1, 1)T , (1, 2)T

and reflections and rotations of these, there is a choice of a so that the conditions

of Theorem 3.5 is satisfied when N = (2Ñ+1)κ−1
2 for any Ñ > 2|p|2−κ

2κ . �

Now we can combine the results about eigenvalues and eigenvectors from the
last section and the conditions on p when they are applicable in our main

Theorem 4.3. The steady state Ω∗ = α cos(p · x) + β sin(p · x) is nonlinearly

unstable for all p = (p1, p2)T except p =
(
±1, 0

)T
, p =

(
0,±1

)T
and possibly

p =
(
±1,±1

)T
, p =

(
±2,±1

)T
, p =

(
±1,±2

)T
.
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Proof. By Lemma 4.2, for all p except those listed above there exists some a such
that ρ0 < 0 and ρ0 + ρ2 < 0 (or ρ0 + ρn−2 < 0) for an appropriate choice of
N . Thus by Theorem 3.5 there exists a real positive eigenvalue λ. Moreover, the
eigenvalue is greater than

√
−ρ1(ρ0 + ρ2) (or

√
−ρn−1(ρ0 + ρn−2)) which is both

positive and independent of the choice of truncation size N . The truncation size
N can be increased without bound, by Lemma 4.1. Hence there is a hyperbolic
eigenvalue in the limit N → ∞ and the spectrum of the PDE is unstable. Now
recall that any steady state Ω∗ = α cos(p · x) + 2β sin(p · x) can be rewritten as
Ω∗ = 2Γ cos(p · x̃) and so the full result follows.

By Lemma 3.6, the eigenvector associated with the eigenvalue λ is in `2. The
classes led by a and −a have the same eigenvalue, and the the corresponding eigen-
vectors can be combined to construct coefficients ωk of a real eigenfunction Ωλ
corresponding to λ. Since the eigenvectors v are in `2 the periodic function Ωλ
is in L2. Together with the result in [16], which shows that the spectral mapping
theorem holds, establishes linear instability. To conclude nonlinear instability we
refer to the work of [10] and [22]. In [10] it was shown that sufficient conditions for
nonlinear instability are linear instability together with a ‘spectral gap’ condition.
In [22] it was shown that the essential spectrum of the linearised Euler operator in
the cases we are considering is iR. Because of the presence of a point of discrete
spectrum bounded away from the imaginary axis, we have a spectral gap, and hence
nonlinear instability.

�

Note that this does not preclude the possibility that the values of p listed as
exceptions do not also lead to a linearly unstable steady state Ω∗. In fact, for

p =
(
1, 1
)T
,
(
2, 1
)T

and reflections/rotations thereof numerical results find non-

zero non-imaginary eigenvalues. For p =
(
1, 1
)T

there is one complex quadruplet
of eigenvalues, ±0.24822±0.35172i to five decimal places, calculated with N = 1500

and Γ = 1. For p =
(
2, 1
)T

there are two real pairs and two complex quadruplets
of eigenvalues.

Theorem 4.3 together with the numerical results mentioned and the spectral
mapping theorem shown in [8] indicate that the only linearly stable equilibrium

of type (1.2) is p =
(
±1,±0

)T
,
(
±0,±1

)T
, because only these have the single

lattice point a = (0, 0)T inside the unstable disc. This exceptional case leads only
to zero eigenvalues. All lattice points outside the unstable disc (including those
on the boundary) do not contribute to instability (see section 3.1) and hence this
equilibrium is spectrally stable. By [14] it is then linearly stable, and by [2] and
[17] it is also Lyapunov stable.

5. Some Numerical Results

5.1. The Unstable Spectrum. The Zeitlin class decomposition means that we
now typically compute the eigenvalues of (2N + 1) matrices, each of size (2N +
1)× (2N +1). Without the class decomposition, the eigenvalues of one (2N +1)2×
(2N + 1)2 matrix need to be computed. So the class decomposition results in an
extremely significant saving of computation time. For a Galerkin truncation, this
computational saving is even more pronounced. However, this is at the expense of
accuracy (see figure 5.2).



22 INSTABILITY OF EQUILIBRIA FOR THE 2D EULER EQUATIONS ON THE TORUS

Figure 5.1. All eigenvalues for the case p = (5, 3)T , Γ = 1
2 .

The Zeitlin truncation is used with N = 200. Note there are 200
(or 100 plus-minus pairs) eigenvalues with non-zero real part, and
there are 100 interior lattice points in Dp \ {0}. This confirms
the result from [16]. Of the non-imaginary eigenvalues, 56 are real
and 144 are complex. The number of interior points that satisfy
ρ0 < 0, ρ1, ρ−1 > 0 is 24. All these points correspond to real pairs
(two sets of 24 = 48). The other real pairs come from interior
points with ρ0 < 0 and ρ1 < 0 or ρ−1 < 0. This usually creates
a complex quadruplet but in a few cases corresponds to two real
pairs instead. Increasing N does not change the number of non-
imaginary eigenvalues.

Figure 5.1 shows all the eigenvalues associated with a fixed value of p and N .
There are exactly twice the number of interior lattice points in Dp \0. This agrees
with the result in [16] that the discrete spectrum of the corresponding operator has
at most 2|Dp| − 2 non-imaginary eigenvalues. Our numerical results indicate that
this bound is likely to be sharp; for all choices of p tested there is equality.

Figure 5.2 shows the values at which the calculated eigenvalues converge as a
function of the size N of our truncation domain D. Compared to the Galerkin trun-
cation the eigenvalue converges for much smaller values of N when using Zeitlin’s
method.

Figure 5.3 shows the correspondence between the location of values of a and the
types of eigenvalues of the class Σ′a. This corresponds to the results of Section 3.
Compare the positioning of the Fourier modes with figure 2.1.

5.2. The Stable Spectrum. Figure 5.4 shows the density of the imaginary parts
of the spectrum for a = (−4, 7)T , p = (7, 5)T . There are also non-imaginary
eigenvalues but these are not shown on the figure.

For any ε > 0, we can choose sufficiently large N so that there exists some a
such that 1

|b|2 < ε for all b ∈ Σ′a. So the imaginary spectrum of this class can
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Figure 5.2. Numerically computed real eigenvalues vs Fourier
mode domain size N .For these figure a = (0, 3)T and p = (3, 1)T .
The red dashed lines shows the eigenvalues computed by the
Galerkin truncation in equation (2.29), and the black solid lines
show the eigenvalues computed by the Zeitlin truncation in equa-
tion (2.30). For the left figure, the same truncation domain (2.7) is
used for the Zeitlin truncation and the Galerkin truncation, mean-
ing a larger matrix is computer for the Zeitlin truncation. For the
right figure, a Galerkin truncation with 2N + 1 modes was chosen
so that the same number of Fourier modes are included in both
calculations. The convergence of the eigenvalue as a function of
N computed with the Zeitlin truncation is significantly better in
either case. These plots omit the factor of α/α′ for clarity.

be approximated by taking ρk ≈ 1
|p|2 . The resulting matrix A from (2.30) is now

circulant. A circulant matrix is diagonalised by a discrete Fourier transform (see
[13]). Thus the eigenvalues of A are then found to be

(5.1) λj =
2i

|p|2
sin

(
2πj

n

)
for j = 0, ..., n− 1 where j is the size of A.

See [13] for details of this calculation.
Thus the approximate imaginary spectrum of Σa for sufficiently large |a| lies in

the interval 2i
|p|2 [−|α|, |α|] on the imaginary axis. Taking the limit N →∞ (and so

n→∞), for each x ∈ [0, 1] there is a correspondence with an eigenvalue λx where

x = 1
2π sin−1

(
λx|p|2

2i

)
. Differentiating this gives the density function

(5.2) F (x) =
|p|2

π
√

4α2 − |p|4x2
.

That is, the proportion of the eigenvalues lying between c1i and c2i on the
imaginary axis is

∫ c2
c1
F (x)dx for c1, c2 ∈ 2

|p|2 [−|α|, |α|]. This curve is also plotted in

5.4, and it agrees well with the numerically calculated eigenvalues. This is surprising
as the value of |a| is not particularly high. We can conclude that equation (5.2)
gives a reasonable approximation of the imaginary spectrum for many choices of a.
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Figure 5.3. Non-imaginary eigenvalues (left) and the correspond-
ing lattice points a in the unstable disc (right) for the equilibrium
with p = (2, 1)T . At the top, the eigenvalues with non-zero real
part for every unstable class Σa are shown. Eigenvalues with zero
imaginary part are marked with a red ×, complex eigenvalues are
marked with a black +, and the zero eigenvalues are marked with
a blue dot. In the bottom figure we see the values of a that corre-
spond to these classes. The zero class led by a = (0, 0)T gives only
zero eigenvalues. Compare the locations of the classes correspond-
ing to real eigenvalues to the shaded region in figure 2.1. For these
figures, Γ = 1

2 , so Ω∗ = cos(x · p), and a Zeitlin truncation is used
for the approximation.

[16, 22] describe the essential spectrum of the linearised operator that coincides
with our limit N → ∞. The essential spectrum for the class led by a is given in
that paper as

(5.3) σess = i[−|β|, |β|], where β =
2

|p|2
(a× p)Γ.

In the limit N →∞, sin(εa×p)
ε → a×p, so 2

|p|2 |α| → |β|. Thus our approximation

for large N reproduces the essential spectrum of a single class calculated in [16].
Note that this is the essential spectrum associated with a single subsystem of the
linearised problem. The essential spectrum of the full system is the superposition
of all these essential spectra. It was shown in [22] that this is iR, which follows
from considering the superposition of (5.3) for all possible values of a.

6. Conclusion

We have demonstrated the non-linear instability of the stationary solutions with
vorticity Ω∗ = 2Γ cos(p · x) in the Euler equations for almost all values of p such
that p 6= (1, 0)T (or rotations and reflections thereof). We started out by using
the Zeitlin truncation, and observe the numerical approximation of eigenvalues for
finite N obtained from Zeitlin’s truncation converge much faster with N . However,
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Figure 5.4. The density of the imaginary part of the spectrum,
for the class p = (3, 1), a = (1,−2), N = 1000, and Γ = 0.5.
The bars show the normalized density of the imaginary eigenvalues
computed for N = 1000. The thick red line shows the approximate
density computed by taking the approximation ρk → 1

|p|2 . For this

figure a Zeitlin truncation is used for the approximation.

the Zeitlin truncation does not behave well when gcd(p1, p2) is even. Because of
this, we developed much of our theory for both truncations.

In addition, we have recreated and extended a number of results described by
[17], [16], and [22]. Specifically, we have shown that the “unstable disc theorem”
presented in [17] still holds true in the current context of finite dimensional approx-
imation. Moreover, we have shown that for almost all p we can use the unstable
disc to prove instability (as opposed to the existing stability results developed by
Li and others). We have also numerically verified the bound on the number of
non-imaginary eigenvalues and the essential spectrum of an individual class in [16]
and [22]. We used very different approaches and arguments to those papers.

There are obvious extensions of this work. The first is a complete description
of the non-imaginary spectrum. This would require first showing that for two con-
secutive negative values of ρ, the corresponding subsystem has four non-imaginary
eigenvalues, either two real pairs or a complex quadruplet. This would be a step
towards proving that the bound from [16] is sharp. Another extension would be
to see if any of the methods used in this paper could be applied to more complex
steady states, for instance Ω∗ = sin(p1x) sin(p2y).

A similar analysis of the Euler fluid equations on a three dimensional torus would
be interesting. A Zeitlin-style structure preserving truncation for the 3D case is not
possible, as the Casimirs that make such a truncation useful are not present in the
3D problem[24]. Similar stability results may still be possible using a Galerkin style
truncation instead.
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There is also a discussion of a structure-preserving truncation that includes a
viscosity term in [26]. A comparison of Zeitlin’s truncation to standard truncations
with a viscosity term included as in Figure 5.2 would be valuable.

A significant extension of this material would be an application of the same
methods to the Euler problem on a sphere. There similar structure preserving
truncation also due to Zeitlin for the sphere [25] and so there is some hope of
similar results in that setting.
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