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1 Motivation

Wave fronts are ubiquitous in nature. In the context of population dynamics, such waves may be
viewed as representing patterns or structure in migrating populations. Reaction-diffusion equations,
such as the extensively studied Fisher equation [5], are used to model population growth dynamics
combined with a simple Fickian diffusion process, and are typically capable of exhibiting travelling
wave solutions.
In cell migration, advection (or transport) is another important model mechanism. It may rep-
resent, e.g., tactically-driven movement, where cells migrate in a directed manner in response to
a concentration gradient. Such a concentration gradient develops, for example, in a soluble fluid
(chemotaxis) or as a gradient of cellular adhesion sites or of substrate-bound chemoattractants
(haptotaxis). Well studied examples of individual cells exhibiting directed motion in response to
a chemical gradient include bacteria chemotactically migrating towards a food source. Wound
healing, angiogenesis or malignant tumor invasion are just a few examples of chemotactic and/or
haptotactic cell movement where the migrating cells form part of a dense population of cells as
may be found in tissues. Such migrating cell populations not only form travelling waves but may
also develop sharp interfaces in the wave form.
From a classical PDE point of view, these advection-reaction models may represent hyperbolic
balance laws (hyperbolic conservation laws with source terms), and the formation of shock fronts
is well known. In general, shocks are problematic because as the wave front steepens (and a shock
forms) the solution becomes multivalued and physically nonsensical. The model breaks down and
it becomes impossible to compute the temporal evolution of the solution [9].
To account for shocks, modellers have employed the technique of regularisation – adding small
higher order terms to these models to smooth out the shocks. In the context of hyperbolic con-
servation/balance laws, these are usually small viscous (diffusive) regularisations, e.g., the viscous
Burgers equation. Due to dissipative mechanisms, these physical shocks are observed as narrow
transition regions with steep gradients of field variables. Mathematically, questions of existence
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2.1 Shock fronts in the RND model (1)

It is well-known that in the case of a nonlinear advection-reaction model which defines a hyperbolic
balance law (under certain assumptions) shock formation is a well-known phenomenon. Similarly,
negative diffusitivity D(u) can also cause shock formation in an RND model [4, 12, 13].
Let us look for one of the simplest coherent structures in such RND models (1), travelling waves with
wave speed c ∈ R that connect the asymptotic end states u− = 1 → u+ = 0, i.e., population/agents
invade the unoccupied domain with constant speed. A travelling wave analysis introduces a co-
moving frame z = x − ct in (1), c ∈ R. Stationary solutions, i.e., ut = 0, in this co-moving
frame include travelling waves/fronts, and they are found as special (heteroclinic) solutions of the
corresponding ODE problem −cuz − (D(u)uz)z = f(u). Define v := −cu −D(u)uz to obtain the
corresponding 2D dynamical system

uz = −(v + cu)

D(u)

vz = f(u) .

We are interested in a travelling front/wave in this system corresponding to a heteroclinic connection
from one steady state (u = 1) to the other (u = 0) or vice versa. In our setup of the RND model,
such a solution (if it exists) cannot be smooth, because the zeros of the diffusion coefficient D(u)
which exist in the relevant domain of interest u ∈ [0, 1] define singularities in this problem. To avoid
these singularities, discontinuous jumps (shocks) would be necessary to define ‘weak’ solutions of
the original PDE problem (1).

2.2 Regularisations of RND models

To account for these shocks, we employ the technique of regularisation to this RND problem.
Regularisation of RND models is typically considered in one of two ways [11, 12]. The first method
of regularisation accounts for viscous relaxation by adding a small temporal change in the diffusivity:

ut = (Φ(u) + εut)xx + f(u), 0 ≤ ε � 1. (3)

The second of these involves adding a small change in the potential to account for nonlocal effects,
leading to:

ut = (Φ(u)− ε2uxx)xx + f(u), 0 ≤ ε � 1. (4)

These regularisation techniques have been widely employed in models of chemical phase-separation,
though they have gone relatively unnoticed in biological models until very recently.
In this presentation, we study the possible effects of both regularisations in a single RND model,
i.e.,

ut = (Φ(u) + εaut − ε2uxx)xx + f(u), 0 ≤ ε � 1, a ≥ 0. (5)

Since we only consider small perturbative regularisations 0 < ε � 1, these models are so-called
singularly perturbed systems and, as a consequence, the powerful machinery of geometric singular
perturbation theory (GSPT) is applicable [3, 8, 16], as we shall explain in this presentation.

Remark 2.1 This regularised RND model (5) can be derived fom the history dependent energy
functional

E(u) =

∫

Ω

(
F (u) + εa

∫ t

0
u2sds+

ε2

2
|ux|2

)
dx ,
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and uniqueness of such viscous shock profiles are fundamental.1

Another source for the formation of sharp interfaces can be found in density-dependent nonlinear
diffusion processes. Through sensing the local cell density, cells make informed decisions, i.e., they
perform a ‘biased walk’. This could lead to, e.g., the tendency to cluster or aggregate with other
nearby cells; think of flocking or swarming which might be perceived as an advantageous situation
for the cell population. Such aggregation mechanism can be achieved through, e.g., negative (or
backward) diffusion. Such reaction-nonlinear diffusion (RND) models may form shocks. Again,
modellers have employed the technique of regularisation – adding small higher order terms to
these models to ‘smooth’ the shocks, but these are not so well-known, at least in the bioscientific
community. Possible shock formation in such regularised RND models is the main focus of this
presentation, and we will use the tools from geometric singular perturbation theory and dynamical
systems theory to tackle this problem.

2 The setup for RND Models

We start by considering a dimensionless reaction–nonlinear diffusion model of the form

ut = (D(u)ux)x + f(u) = Φ(u)xx + f(u) (1)

where x ∈ R denotes the spatial domain, t ∈ R+ denotes the time domain, u ∈ R+ denotes a
(population/agent) density, D(u) models a (population/agent) density dependent diffusivity. Φ(u)
is an anti-derivative of D(u), i.e. Φ′(u) = D(u), referred to as the potential. The (dimensionless)
population/agent density u is scaled such that u ∈ [0, 1] forms the domain of interest where u = 1
is the carrying capacity of the population/agent density. This domain of interest is also reflected
in the reaction term f(u) which is modelled either as logistic growth, f(u) = fl(u) = u(1 − u), or
as bistable growth, f(u) = fb(u) = u(u− α)(1− u) , 0 < α < 1.
We focus on RND models where not only diffusion is present but also aggregation (or backward
diffusion) [2, 6, 4, 10, 11]. The heuristic motivation for this modelling assumption is based on the
observation that population tend to cluster for, e.g., safety (to avoid easy predation). By imposing
different motility rates for agents that are isolated, compared to other agents, one obtains density
dependent nonlinear diffusion [7]. Aggregation will manifest itself in these models in sign changes
of the density dependent diffusion coefficient D(u). The simplest density-dependent nonlinear
diffusion coefficient model that we consider is of the polynomial form

D(u) = β(u− γ1)(u− γ2) (2)

with 0 < γ1 < γ2 < 1, i.e., diffusion-aggregation-diffusion (DAD) in the domain of interest. For
sparse population density diffusive behaviour is assumed, while for intermediate population density
aggregation will happen which again turns into diffusive behaviour for large population densities
(close to carrying capacity).

1Another option is dispersive regularisation, e.g., the KdV equation. Note that both regularisations (viscous and
dispersive) deal with the same equation (inviscid Burgers) and create very different outcomes.
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uy = û

ûy = w +Φ(u)− δû

vy = wy = 0 ,

(9)

i.e., (v, w) are considered parameters. Hence, the flow is along two-dimensional fast fibers L :=
{(u, û, v, w) ∈ R4 : (v, w) = const}. The set of equilibria of the layer problem,

S := {(u, û, v, w) ∈ R4 : û = û(u, v) = 0, w = w(u, v) = −Φ(u)} , (10)

forms the two-dimensional critical manifold of the problem which is a graph over (u, v)-space.
The stability property of this set of equilibria S is determined by the two non-trivial eigenvalues of
the layer problem, i.e., the eigenvalues of the Jacobian evaluated along S,

J =

(
0 1

D(u) −δ

)
. (11)

This matrix has trJ = −δ and det J = −D(u). Hence, for D(u) > 0 equilibria are of saddle-type
while for D(u) > 0 equilibria are of focus/node/centre-type. Loss of normal hyperbolicity happens
along the one-dimensional set(s)

F := {(u, û, v, w) ∈ S : D(u) = 0} . (12)

In the assumed diffusion-aggregation-diffusion (DAD) setup of (2), we have F = Fl ∪ Fr =
{(u, û, v, w) ∈ S : u = γ1} ∪ {(u, û, v, w) ∈ S : u = γ2}, i.e., we have a splitting of the critical
manifold S = Sl

s ∪ Fl ∪ Sm ∪ Fr ∪ Sr
s where

Sl
s := {(u, û, v, w) ∈ R4 : û = û(u, v) = 0, w = w(u, v) = −Φ(u), u < γ1}

Sr
s := {(u, û, v, w) ∈ R4 : û = û(u, v) = 0, w = w(u, v) = −Φ(u), u > γ2}

denote saddle-type outer branches and, for δ �= 0,

Sm := {(u, û, v, w) ∈ R4 : û = û(u, v) = 0, w = w(u, v) = −Φ(u), γ1 < u < γ2}

denotes the (node/focus-type) middle branch. For δ = 0 this middle branch Sm is of centre-type
(where normal hyperbolicity is lost as well).

3.1.1 The δ = 0 case

In this case, the layer problem (9),
uy = û

ûy = w +Φ(u)
(13)

is Hamiltonian with

H(u, û) =
û2

2
−
∫
(w +Φ(u))du . (14)

Trajectories of this layer problem are confined to level sets of the Hamiltonian (14), i.e., H(u, û) =
k. Possible trajectories that are able to connect equilibrium points on different branches of the

critical manifold S are confined to the saddle branches S
l/r
s including the boundaries Fl/r. The

corresponding equilibrium points pl/r = (ul/r, 0, vl/r,−Φ(ul/r)) ∈ S
l/r
s ∪ Fl/r of such connections

must fulfill vl = vr and Φ(ul) = Φ(ur) since v and w are constant.

5

where F (u) =
∫
Φ(u)du is the free energy density function of the homogeneous state. The interfacial

energy, ε2

2 |ux|
2, introduces smoothing effects in regions with large gradients, and so does the memory

term, εa
∫ t
0 u

2
sds, which can be interpreted as visco-elastic potential energy; see, e.g., [18].

Remark 2.2 Continuum macroscale models can also be derived from lattice-based microscale mod-
els; see [7] for leading order RND models and [1] for regularised RND models (albeit more compli-
cated).

3 Travelling wave analysis of the regularised RND model (5)

We derive conditions based on the specific functions D(u) and f(u) that lead to travelling waves
with sharp interfaces (shocks) in one spatial dimension. We introduce a travelling wave coordinate
z = x − ct for waves with speed c ∈ R. This transforms the regularised RND model (5) into a
fourth order ordinary differential equation

−cuz = Φ(u)zz − εacuzzz − ε2uzzzz + f(u) , (6)

which we can recast as a singularly perturbed dynamical system in standard form

εuz = û

εûz = w +Φ(u)− δû

vz = f(u)

wz = v + cu .

(7)

where (u, û) ∈ R2 are ‘fast’ variables, (v, w) ∈ R2 are ‘slow’ variables, and ε � 1 is the singular
perturbation parameter.
Rescaling the ‘slow’ independent travelling wave variable dz = εdy in (7) gives the equivalent fast
system

uy = û

ûy = w +Φ(u)− δû

vy = εf(u)

wy = ε(v + cu) .

(8)

with the ‘fast’ independent travelling wave variable y. These equivalent dynamical systems (7)
respectively (8) have a symmetry

(û, v, c, y) ↔ (−û,−v,−c,−y), resp. (û, v, c, z) ↔ (−û,−v,−c,−z) .

The aim is to use methods from GSPT to analyse the travelling wave problem in its ‘slow’ and
‘fast’ singular limit, and to obtain results on the existence (and stability) of travelling waves in the
full regularised RND problem.

3.1 The limit on the ‘fast’ scale - the layer problem

We begin with the ‘fast’ system (8). Here the limit ε → 0 gives the layer problem

4
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û2

2
−
∫
(w +Φ(u))du . (14)

Trajectories of this layer problem are confined to level sets of the Hamiltonian (14), i.e., H(u, û) =
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vz = f(u)

wz = v + cu .

(7)
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These first-order expansion terms of the distance function ∆ are known as first-order Melnikov
integrals. They can be calculated as follows:

(Dw∆(wh, 0), Dδ∆(wh, 0)) = (

∫ ∞

−∞
(ψ(s)�Dwf(Γ±(0);wh, 0))ds,

∫ ∞

−∞
(ψ(s)�Dδf(Γ±(0);wh, 0))ds)

We have Dwf(Γ±(0);wh, 0) = (0, 1)� and, hence,

Dw∆(wh, 0) =

∫ ∞

−∞
(ψ(s)�Dwf(Γ±(0);wh, 0))ds =

∫ ∞

−∞
ψ2(s)ds �= 0,

based on the geometric observation that the ψ2-component does not change sign along Γ±. The
measure is well-defined since ψ2(y) is decaying exponentially for y → ±∞. Hence, w = wh(δ) =
wh + bδ + O(δ2) solves ∆(w(δ), δ) = 0 for δ ∈ (−δ0,+δ0). We also have Dδf(Γ±(0);wh, 0) =
(0,−û(y))� and, hence,

Dδ∆(wh, 0) =

∫ ∞

−∞
(ψ(s)�Dδf(Γ±(0);wh, 0))ds = −

∫ ∞

−∞
û(s)ψ2(s)ds �= 0 ,

based on a similar geometric observation as above, i.e., both terms do not change sign under the
variation along Γ±. Hence,

b =
Dδ∆(wh, 0)

Dw∆(wh, 0)
= −

∫∞
−∞ û(s)ψ2(s)ds∫∞

−∞ ψ2(s)ds
�= 0

and we have a leading order affine solution w(δ) to ∆(w, δ) = 0 near (wh, 0).

Remark 3.3 Only for (w, δ) = (wh, 0) there exist two heteroclinics Γ± simultaneously. For fixed
small δ �= 0, the two heteroclinics exist for distinct w-values. There is also the symmetry δ ↔ −δ.
Thus one only needs to continue one heteroclinic in (w, δ)-space. The other is given through the
symmetry.

Remark 3.4 The leading order linear growth found in the Melnikov analysis cannot continue in-
definitely since the saddle equilibria pl/r are confined to w-values between the local extrema of Φ;
see Remark 3.1. These extrema indicate saddle-node bifurcations of equilibria.

3.1.3 The δ = O(1) case

What is the fate of the heteroclinic branches established in the previous section? Do they exist
for large |δ| as well? Note, the heteroclinic orbits are confined to the upper (Γ+) or lower (Γ+)
half-plane in (u, û)-space. In these half-planes, the u-motion is monotone. Hence, all heteroclinics
Γ± are graphs over the u-coordinate chart in (u, û)-space, i.e., Γ± : û(u) : u ∈ (ul, ur). We consider
Γ+. Such a heteroclinic orbit û(u) must fulfill

dû

du
=

w +Φ(u)− δû

û
, ∀u ∈ (ul, ur)

=⇒ d

du
(
û2

2
) =

d

du

∫
(w +Φ(u)− δû)du , ∀u ∈ (ul, ur)

=⇒ û2

2
=

∫ u

ul

(w +Φ(u)− δû)du , ∀u ∈ (ul, ur) .

7

Remark 3.1 This creates a bound on possible w-values, w ∈ [−Φ(uf−),−Φ(uf+)] where D(uf∓) =
0, i.e., confined to region between the local extrema of Φ.

Without loss of generality, set H(ul, û = 0) = 0, i.e., H(u, û) = û2

2 −
∫ u
ul
(w + Φ(u))du. Then

H(ur, û = 0) must be equal zero as well for the existence of a layer connection between these two
points. This constraint leads to the well-known ‘equal area rule’ (see, e.g. [12]),

∫ ur

ul

(wh +Φ(u))du = 0 . (15)

This rule allows for S
l/r
s to S

r/l
s connections, but not to the boundaries Fl/r or the centre-type

middle branch Sm. Due to the symmetry (û ↔ −û), there exists automatically a pair of such
heteroclinic connections for fixed w = wh, i.e., Γ+(wh, 0) : pl → pr and Γ−(wh, 0) : pr → pl.

Remark 3.2 The equal area rule (15) determines the value w = wh for which this integral vanishes.
For a = 0, it is independent of the possible wave speed c ∈ R.

3.1.2 The small |δ| case

For sufficiently small |δ| > 0, we show that nearby heteroclinic connections to the same asymptotic
end states still exist. This is done via a Melnikov-type argument; see, e.g., [15, 17]:

Define x = (u, û)� and f(x;w, δ) = (û, w + Φ(u) − δû)� such that the layer problem is given in
vector form by x′ = f(x;w, δ) , x ∈ R2. This system possesses heteroclinic orbits Γ±(y) for w = wh

and δ = 0, i.e., Γ′ = f(Γ±;wh, 0). Let x = Γ± +X, X ∈ R2 which transforms the layer problem to
the non-autonomous problem X ′ = A(y)X+g(X, y;w, δ) with the non-autonomous matrix A(y) :=
Dxf(Γ±;wh, 0) and the nonlinear remainder g(X, y;w, δ) = f(Γ±+X;w, δ)−f(Γ±;wh, 0)−A(y)X .
The linear equation X ′ = A(y)X is the variational equation along Γ±. The corresponding adjoint
equation is given by Ψ′ + A�(y)Ψ = 0 . Solutions of the variational and its adjoint equation pre-
serve a constant angle along Γ±, i.e., Dy(Ψ

�(y)X(y)) = 0, ∀y ∈ R . We can use this fact to define
a splitting of the vector space R2 along Γ±. Without loss of generality, we define it at y = 0 in
the following way: R2 = span {f(Γ±(0);wh, 0)} ⊕W where W is spanned by the solutions of the
adjoint equation that decay exponentially for y → ±∞; here, this space is one-dimensional and we
denote the corresponding solution by ψ(y) = (ψ1(y), ψ2(y))

�.

We measure the distance ∆ ∈ R between the one-dimensional stable and unstable manifolds em-
anating from the saddle-equilibria in a suitable cross section Σ. We denote these manifold seg-
ments by X±. Based on our setup, we choose Σ = W . This distance function depends on the
system parameters, i.e., ∆ = ∆(w, δ). In the previous section, we established ∆(wh, 0) = 0.
In general, one cannot solve ∆(w, δ) = 0 explicitly. Thus one aims to solve ∆(w, δ) = 0 near
(w, δ) = (wh, 0) approximately by means of the implicit function theorem: e.g., if Dw∆(wh, 0) �= 0
then w = wh(δ) = wh + bδ + O(δ2) solves ∆(wh(δ), δ) = 0 for δ ∈ (−δ0,+δ0). The leading order
expansion parameter b is then given by

b = −Dδ∆(wh, 0)

Dw∆(wh, 0)
.
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These first-order expansion terms of the distance function ∆ are known as first-order Melnikov
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∫ ∞

−∞
(ψ(s)�Dwf(Γ±(0);wh, 0))ds,

∫ ∞

−∞
(ψ(s)�Dδf(Γ±(0);wh, 0))ds)
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Dw∆(wh, 0) =

∫ ∞

−∞
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�= 0
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Γ+. Such a heteroclinic orbit û(u) must fulfill

dû

du
=

w +Φ(u)− δû

û
, ∀u ∈ (ul, ur)

=⇒ d

du
(
û2

2
) =

d

du

∫
(w +Φ(u)− δû)du , ∀u ∈ (ul, ur)

=⇒ û2

2
=

∫ u

ul

(w +Φ(u)− δû)du , ∀u ∈ (ul, ur) .
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H(ur, û = 0) must be equal zero as well for the existence of a layer connection between these two
points. This constraint leads to the well-known ‘equal area rule’ (see, e.g. [12]),

∫ ur

ul

(wh +Φ(u))du = 0 . (15)

This rule allows for S
l/r
s to S

r/l
s connections, but not to the boundaries Fl/r or the centre-type
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Therefore, we aim to study the corresponding reduced flow on S in this (u, v)-coordinate chart. By
definition, the main requirement on the reduced vector field R(u, v) ∈ R2 is that, when mapped onto
S via Dψ it has to correspond to the (leading order) slow component of the full four-dimensional
vector field constraint to S, i.e.,

Dψ(u, v)R(u, v) = ΠSG(ψ(u, v)) = (
v + cu

−D(u)
, 0, f(u), v + cu)�

where ΠSG(ψ(u, v)) is the (oblique) projection of the vector field G = (0, 0, f(u), v+ cu)� onto the
tangent bundle TS of the critical manifold S along fast fibres spanned by {(1, 0, 0, 0)�, (0, 1, 0, 0)�}.
Thus the reduced vector field R(u, v) in the (u, v)-coordinate chart is given by

−D(u)uz = v + cu

vz = f(u) .
(18)

Note that this dynamical system is singular along the folds F± where D(u) = 0. To be able to
study the reduced problem (18) in a neighbourhood of F±, we make an auxiliary state-dependent
time transformation dz = D(u)dζ which gives the so-called desingularised problem

uζ = −(v + cu)

vζ = D(u)f(u) .
(19)

This problem is topologically equivalent to (18) on the saddle-type outer branches of S while one
has to reverse the orientation on the middle node-focus-centre-type branch of S to obtain the
equivalent flow. We classify all singularities of the reduced problem (18) by analysing the auxiliary
system, the desingularised problem (19).

Remark 3.6 We emphasize that the desingularised system is only a proxy system to study the
problem near the folds. To completely understand the orginal flow near the folds, one has to use
additional techniques such as the blow-up method [14].

The asymptotic end states of the travelling waves form equilibrium states of the desingularised (and
the reduced) problem defined by f(u±) = 0, and v± = −cu±. Our focus is on asymptotic end states
given by the equilibria (u∓, v∓) = (1,−c) and (u±, v±) = (0, 0). In the case of the bistable reaction
term, there exists an additional equilibrium in the domain of interest defined by f(ub = α) = 0
which gives (ub, vb) = (α,−cα). We assume γ1 < α < γ2, i.e. this additional equilibrium is located
on the middle branch Sm. The Jacobian evaluated at any of these equilibria (u±,b, v±,b) is given by

J =

(
−c −1

D(u±,b)f
′(u±,b) 0

)

which has tr J = −c and det J = D(u±,b)f
′(u±,b). The types of equilibria of the reduced problem

are summarized in the following table.

Remark 3.7 The auxiliary system (19) defines another type of singularities for the reduced problem
through D(u) = 0 which exist on the folds Fl/r and are known as folded singularities; see, e.g., [16].
If time permits, I will briefly discuss this in my presentation.

9

For u → ul, the last line is fulfilled since û(ul) = 0. For u → ur, where û(ur) = 0, we obtain a
condition for the existence of a heteroclinic orbit,

∫ ur

ul

(w +Φ(u))du = δ

∫ ur

ul

û(u) du , (16)

which, for δ = 0, gives the equal area rule as established previously. For δ �= 0 this formula provides
a generalised ‘equal area rule’, i.e., the left hand side must move away from its ‘equal area’ position
given for w = wh(0) to counteract the right hand side contribution. This gives w = wh(δ).
For sufficiently large |δ| = δm, w will reach its limit wsn where one of the saddle equilibria pl/r goes
through a saddle-node bifurcation. Until then, the heteroclinic connection is along the hyperbolic
direction, but afterwards it will be along the centre direction which is non-unique and, hence,
replaces the codimension-one role of the w variation. Hence, for fixed w = wsn and for sufficiently
large |δ| > δm, there exists always a heteroclinic orbit.

Remark 3.5 For w = wsn, the rhs of (16) is fixed. One concludes that for sufficiently large
|δ| > δm, there is a û(u) that fulfills the generalised equal are rule, i.e., that fixes the right hand
side δ

∫
û du to the correct value.

Figure 1 summarizes our results on the existence of shocks in the regularised RND model, i.e., the
solution branches of ∆(w, δ) = 0. The important insight here is that viscous relaxation regularisa-
tion is dominant for |δ| > |δm|

Figure 1: sketch of complete bifurcation diagram for heteroclinic connections Γ± in (δ, w)-space
centered at (wh, 0).

3.2 The limit on the slow scale - the reduced problem

For the slow system (7), the limit ε → 0 gives the reduced problem

0 = û

0 = w +Φ(u)− δû

vz = f(u)

wz = v + cu .

(17)

It describes the ‘evolution’ of the slow variables (v, w) constrained to the 2D critical manifold S
(10). Here, the critical manifold S is given as a graph over the (u, v)-space, i.e., S : ψ(u, v) ∈ R4.
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D(u) f(u) (u−, v−) (u+, v+) (ub, vb), γ1 < α < γ2
DAD logistic Saddle stable NF -
DAD bistable Saddle Saddle Saddle

Table 1: Type of equilibria on critical manifold S

Figure 2: (Top Left) construction of singular heteroclinic orbit in (u, v) sub-space for δ > δm. The
shock connects from Ja ∈ Sr

s to F− with asymptotic end states u− = 1 and u+ = 0. (Top Right)
shows the singular heteroclinic orbit (dashed red, ε = 0) as well as the perturbed shock-fronted
travelling wave (black solid, 0 < ε � 1) in (u, v, w)-space. (Bottom) The corresponding travelling
wave profile with sharp interface for 0 < ε � 1

3.3 Construction of heteroclinic orbits that give shock waves

The final task is to concatenate solutions form the two limiting problems to construct singular
heteroclinic orbits. Figure 2 shows an example for |δ| > |δm|; see Figure 1. In this case, the shock
location is at (one of) the folds of the critical manifold. From a regularisation pint-of-view, this
indicates that viscous relaxation (uxxt-term) dominates the nonlocal effects (uxxxx-term).
The power of geometric singular perturbation theory is to show the persistence of travelling waves
with smooth and sharp interfaces (shocks) constructed above under sufficiently small perturbations
0 < ε � 1 by means of geometric properties of invariant manifolds. Figure 2 (Bottom) indicates
that this is indeed the case.

Remark 3.8 If time permits, I will also discuss some of the intricacies of numerical schemes to
resolve the predicted analytical shock location. Similarly, if time permits, I briefly discuss (spectral)
stability properties of these solutions.
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Figure 2: (Top Left) construction of singular heteroclinic orbit in (u, v) sub-space for δ > δm. The
shock connects from Ja ∈ Sr

s to F− with asymptotic end states u− = 1 and u+ = 0. (Top Right)
shows the singular heteroclinic orbit (dashed red, ε = 0) as well as the perturbed shock-fronted
travelling wave (black solid, 0 < ε � 1) in (u, v, w)-space. (Bottom) The corresponding travelling
wave profile with sharp interface for 0 < ε � 1

3.3 Construction of heteroclinic orbits that give shock waves

The final task is to concatenate solutions form the two limiting problems to construct singular
heteroclinic orbits. Figure 2 shows an example for |δ| > |δm|; see Figure 1. In this case, the shock
location is at (one of) the folds of the critical manifold. From a regularisation pint-of-view, this
indicates that viscous relaxation (uxxt-term) dominates the nonlocal effects (uxxxx-term).
The power of geometric singular perturbation theory is to show the persistence of travelling waves
with smooth and sharp interfaces (shocks) constructed above under sufficiently small perturbations
0 < ε � 1 by means of geometric properties of invariant manifolds. Figure 2 (Bottom) indicates
that this is indeed the case.

Remark 3.8 If time permits, I will also discuss some of the intricacies of numerical schemes to
resolve the predicted analytical shock location. Similarly, if time permits, I briefly discuss (spectral)
stability properties of these solutions.
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1 Introduction

In this study, we consider mass-conserved reaction diffusion system. This system
is introduced for various mathematical models, for example a conceptial model for
cell polarity [4], [6], [1]. We consider reaction diffusion system defined on interval
Ω := (−K/2, K/2) as following:

{
∂tu = d∂2

xu+ f(u, v), t > 0, x ∈ Ω,

τ∂tv = ∂2
xv − f(u, v), t > 0, x ∈ Ω,

(1)

where, u = u(t, x), v = v(t, x) are real valued unknown functions, f ∈ C3(R2),
d, τ,K are positive constants.

In this study, we consider homogenious neumann boundary conditions

(N.B.C) ∂xu = ∂xv = 0 (t > 0, x = ±K/2), (2)

or periodic boundary conditions

(P.B.C)
u(t,−K/2) = u(t,K, 2), ∂xu(t,−K/2) = ∂xu(t,K/2) (t > 0),
v(t,−K/2) = v(t,K, 2), ∂xv(t,−K/2) = ∂xv(t,K/2) (t > 0).

(3)

Significant feature of system (1) is mass conservation law; under (N.B.C), or
(P.B.C), any classical solution (u, v) for (1) has following conserved quantity

1

K

∫

Ω

(u(t, x) + τv(t, x))dx = ⟨u(t, ·)⟩+ τ⟨v(t, ·)⟩,

where ⟨ϕ⟩ := 1
K

∫
Ω
ϕ(x)dx. We can check that d

dt
(⟨u⟩ + τ⟨v⟩) = 0, using boundary

conditions.
We consider the stability of stationary solution for (1). Since stationary prob-

lem of (1) with (N.B.C) or (P.B.C) can be transformed into scalar equation, the
stationary solutions are characterized by n-mode solution.

1This is joint work with Shin-ichiro Ei (Hokkaido university)
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