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The Morse and Maslov indices for matrix Hill’s equations

Christopher K. R. T. Jones, Yuri Latushkin, and Robert Marangell

To Fritz Gesztesy on the occasion of his 60-th birthday with best wishes

Abstract. For Hill’s equations with matrix valued periodic potential, we dis-
cuss relations between the Morse index, counting the number of unstable eigen-

values, and the Maslov index, counting the number of signed intersections of

a path in the space of Lagrangian planes with a fixed plane. We adapt to the
one dimensional periodic setting the strategy of a recent paper by J. Deng and

C. Jones relating the Morse and Maslov indices for multidimensional elliptic

eigenvalue problems.

1. Introduction

Various results on Hill’s equation are among many fundamental contributions
made by Fritz Gesztesy in mathematical physics and analysis, see, for example,
[GW96, GT09]. In the current paper, we discuss a symplectic approach to count-
ing positive θ-eigenvalues for Hill’s equations with matrix valued periodic potentials,
that is, the values of λ for which there exists a nontrivial solution of the eigenvalue
problem

Hy := y′′ + V (x)y = λy, y = (y1(x), . . . , yn(x))>,(1.1)

that satisfies the boundary conditions

(1.2) y(L) = eiθy(−L), y′(L) = eiθy′(−L).

Here, x ∈ R, yi : R → C, θ ∈ [0, 2π], and V (x) is an n × n symmetric matrix
whose entires are real valued piecewise continuous periodic functions of period 2L.
We will denote by Hθ the differential operator in L2([−L,L]) associated with the
eigenvalue problem (1.1), (1.2).

A great deal of attention is devoted to Schrödinger operators with periodic
potentials, see, e.g., [MW, ReSi78, Kr97] and the bibliography therein. In the
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current paper, our main concern is the Morse index, Mor(Hθ), a ubiquitous number
that appears in many areas, from variational calculus [B56, D76, M63] to stability
of traveling waves [J88, SS08], and which is defined as the dimension of the spectral
subspace of a self-ajoint operator corresponding to its positive (unstable) discrete
eigenvalues. We will relate it to the Maslov index, Mas(Γ,X ), which is defined as
the signed number of intersections of a curve Γ in the set of Lagrangian planes
with a given subvariety, called the train of a fixed Lagrangian plane X (see [Ar67,
Ar85, J88, RS93, RS95] as well as more recent papers [F04, FJN03, O90] and
the bibliography therein for a discussion of this beautiful subject).

One of the main motivations for studying the Maslov index in the context of
second order differential operators was a generalization in [Ar85] (for the case of
matrix valued potentials) of the classical Sturm oscillation theorems; in connec-
tion with the latter we mention [GST96], [G07, Chapter 3] and the bibliography
therein. That the Morse and Maslov indices for periodic problems are related is of
course well known (see, e.g., the classical sources [D76, CZ84], an excellent book
[A01] which has a detailed bibliography, and the important recent work done in
[CDB06, CDB09, CDB11]). However, all literature that we know deals only
with the case of periodic eigenvalues corresponding to the particular case of θ = 0
or θ = 2π (but also see [S-B12]).

More importantly, in the present paper we use a novel approach of determin-
ing the Maslov index borrowed from a recent paper [DJ11] where the relations
between the Morse and Maslov indices have been established in the multidimen-
sional situation, in particular, for elliptic problems in a star-shaped domain D in
Rd containing zero. The main idea in [DJ11] is to consider a family of “shrinking”
domains Ds parametrized by s ∈ (0, 1] and such that a point x ∈ ∂D if and only
if sx ∈ ∂Ds. Rescaling the original elliptic equation for λ-eigenfunctions from Ds
to D, one then defines a trace map φλs acting from the Sobolev space H1(D) into
the trace space H1/2(∂D)×H−1/2(∂D). It maps a weak solution of the eigenvalue
equation with no boundary conditions at all into a vector function on the boundary
whose components are the Dirichlet and Neumann traces of the solution. Using
Green’s formulas, one defines a symplectic structure in the trace space so that if
Ys,λ denotes the set of the weak solutions then φλs (Ys,λ) forms a curve in the set
of Fredholm Lagrangian planes. The boundary conditions define a plane, and an
intersection of the curve with the train of the plane defined via the boundary con-
ditions corresponds to an eigenvalue of the elliptic operator at hand, eventually
leading to a formula relating the Morse and Maslov indices.

In the current paper, for the boundary value problem (1.1), (1.2) on [−L,L],
following the strategy in [DJ11], we consider a family, parametrized by s ∈ (0, L],
of boundary value problems for (1.1) on the segments [−s, s] with the boundary
conditions

(1.3) y(s) = eiθy(−s), y′(s) = eiθy′(−s).
By changing s and λ and using the traces of solutions of the differential equation
(1.1) at the boundary of the segment [−s, s], we construct a path in the set of finite
dimensional Lagrangian planes. The construction of the path is the first crucial in-
gredient of the current paper. The second key point is to utilize and further develop
an idea from [Ga93] to augment the first order system corresponding to (1.1) by
considering a supplementary linear complex (2n×2n) first order ODE system with
the coefficient iθ

2s I2n whose solutions automatically satisfy the boundary conditions
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Figure 1. λ = 0 is a θ-eigenvalue, θ ∈ (0, 2π), and s0 is small enough

(1.3). This allows one to replace the eiθ-periodic boundary conditions in (1.2), (1.3)
by certain “Dirichlet-type” boundary conditions for the augmented system.

Our plan then is to re-write the eigenvalue equation (1.1) as a complex (2n×2n)
first order system, separate the real and imaginary parts of the solutions in the
eigenvalue equation and the boundary conditions, thus arriving at a (4n × 4n)
real system, consider the augmented (8n × 8n) real system, and then to define a
trace map, Φλs , for each s ∈ (0, L] and λ ∈ R, that maps a solution (p,w)> of
the augmented system on [−L,L] with no boundary conditions at all into its trace
(p(−s),w(−s),p(s),w(s))> ∈ R16n on the boundary of of the segment [−s, s]. This
leads to the critical observation (see Proposition 3.7 below) that if Ys,λ denotes the
set of the solutions of the augmented system then λ is an eigenvalue of (1.1), (1.3)
on [−s, s] if and only if the plane Φλs (Ys,λ) intersects the plane X × X in R16

consisting of vectors whose respective p(±s)- and w(±s)-components are equal;
here and below we denote p = (p, q)>, w = (w, z)>, and use notation

(1.4) X = {(p, q, w, z)> ∈ R8n
∣∣ p = w, q = z}.

Thus, the “Dirichlet-type” boundary condition Φλs
(
(p,w)>

)
∈ X ×X replaces the

eiθ-periodic boundary condition (1.3).
There is a natural symplectic structure in R16n such that the planes Φλs (Ys,λ)

and X × X in R16n are Lagrangian (see Theorem 3.4). Thus, one can consider
crossings with the train ofX×X of the Lagrangian curve Γ = Γ1∪Γ2∪Γ3∪Γ4 formed
by Φλs (Ys,λ) when (λ, s) runs along the boundary of the square [s0, L]× [0, λ∞], for
a small s0 > 0 and a large λ∞, where Γj , j = 1, 2, 3, 4, correspond to the four
sides of the square, see Figure 1. We stress that Γ depends on the choice of s0 and
λ∞ while the location of the crossings of course depends on θ; we sometimes write
Γ(θ,s0) and Γj,(θ,s0).

A homotopy argument implies that the Maslov index Mas(Γ, X × X) of the
entire curve Γ is equal to zero (see Corollary 3.9). By general properties of the

Maslov index one infers Mas(Γ, X ×X) =
∑4
j=1 Mas(Γj , X ×X). For θ ∈ (0, 2π)

one can show that there are no crossings along Γ1 (when s = s0 and λ ∈ [0, λ∞])
provided s0 is chosen small enough (see Lemma 3.12). For θ = 0 or θ = 2π,
assuming that the potential V is continuous at the point x = 0, and s0 > 0 is
small enough, one can show that the number of crossings along Γ1 is equal to the
number Mor(V (0)) of positive eigenvalues of the matrix V (0) (Lemma 4.3). Since
the spectrum of the operator Hθ is bounded from above, there are no crossings
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along Γ2 (when λ = λ∞ and s ∈ [s0, L]) provided λ∞ is chosen large enough, see
Lemma 3.12.

The crossings of the curve Γ3 (when s = L and λ ∈ [0, λ∞]), correspond to the
θ-eigenvalues of (1.1), (1.2). A local computation shows that all crossings along
Γ1 have the same signs and all crossings along Γ3 have the same signs, see Lemma
4.1. This important monotonicity property of the Maslov index implies that the
Morse index Mor(Hθ) is equal to the number of crossings along Γ3 counting their
multiplicities.

It turns out that the crossings along Γ4 (when λ = 0 and s ∈ [s0, L]) correspond
to conjugate points of the Hill’s equation on [−L,L], that is, to the points s where
the number eiθ is an eigenvalue of the propagator of this equation transforming
the value of its solution at the point −s into the value at the point s (Proposition
3.7). Thus, Mas(Γ4, X × X) can be viewed as the Maslov index of the boundary
value problem (1.1), (1.2) for the Hill equation. Yet another local computation
shows that all crossings along Γ4 have the same sign provided that, in addition, the
potential is sign definite (see Lemma 4.2).

Since Mas(Γ, X ×X) = 0, we therefore arrive at the desired formula

(1.5) Mor(Hθ) =


−Mas(Γ4, X ×X), if θ ∈ (0, 2π),

for small s0 = s0(θ) > 0,

−Mas(Γ4, X ×X) + Mor(V (0)), if θ = 0 or θ = 2π,

for small s0 > 0,

relating the Maslov index of the boundary value problem for the Hill equation
and the Morse index of the corresponding differential operator (see Theorem 4.4
summarizing our results). For instance, for a fixed s0 > 0, when θ changes from a
positive value to zero, the crossings move from Γ4 to Γ1 through the left bottom
corner of the square in Figure 1, thus keeping the proper balance in formula (1.5).

The paper is organized as follows. In Section 2 we set up the stage and introduce
the augmented system for the Hill equation (1.1). After a brief reminder of basics on
the Maslov index, in Section 3 we introduce an appropriate Lagrangian structure,
and relate the crossings of the path Φλs to the eigenvalues of differential operators.
In Section 4 we prove monotonicity of the crossings, and summarize the main
results of the paper. Finally, in Section 5 we conduct several numerical experiments
calculating the Maslov and Morse indices for a particular Mathieu equation.

Notations. We denote by In and 0n the n × n identity and zero matrix.

For an n × m matrix A = (aij)
n,m
i=1,j=1 and a k × ` matrix B = (bij)

k,`
i=1,j=1, we

denote by A⊗B the Kronecker product, that is, the nk ×m` matrix composed of
k × ` blocks aijB, i = 1, . . . n, j = 1, . . .m. We let 〈· , ·〉Rn denote the real scalar
product in the space Rn of n×1 vectors, and let > denote transposition. We denote

by A ⊕ B the matrix

(
A 0
0 B

)
and use notation J =

(
0 1
−1 0

)
for the standard

symplectic matrix. When a = (ai)
n
i=1 ∈ Rn and b = (bj)

m
j=1 ∈ Rm are (n × 1)

and (m × 1) column vectors, we use notation (a, b)> for the (n + m) × 1 column
vector with the entries a1, . . . , an, b1, . . . , bm (just avoiding the use of (a>, b>)>).
We denote by B(X ) the set of linear bounded operators on a Hilbert space X and
by Spec(T ) = Spec(T ;X ) the spectrum of an operator on X .

Acknowledgment. We thank Konstantin Makarov and Holger Dullin for their
valuable suggestions.
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2. Hill’s equation and an augmented equation

We start with the eigenvalue problem (1.1), where we consider λ ∈ R, and
consider complex valued solutions to (1.1). Setting

pi := (Re(yi), Im(yi))
> ∈ R2, p := (p1, . . . , pn)> ∈ R2n,

qi := (Re(y′i), Im(y′i))
> ∈ R2, q := (q1, . . . , qn)> ∈ R2n,

(2.1)

we can write (1.1) as follows:

(2.2)

(
p
q

)′
=

(
02n I2n

λI2n − V (x)⊗ I2 02n

)(
p
q

)
.

It is sometimes convenient to denote p := (p, q)> ∈ R4n and to write (2.2) as

(2.3) p′ = A(x, λ)p, A(x, λ) =

(
02n I2n

λI2n − V (x)⊗ I2 02n

)
.

We are interested in studying bounded on R solutions of (1.1). To this end,
for each θ ∈ [0, 2π], we will examine for which λ there exists a nontrivial solution
y of (1.1) that satisfies the boundary condition (1.2). In particular, if θ = 0 or
θ = 2π we have periodic boundary conditions, and if θ = π we have antiperiodic
ones. Equivalently, using (2.1) and writing out (1.2) in real and imaginary parts,
we seek a nontrivial solution p = (p, q)> of (2.2) such that the following boundary
condition is satisfied:

(2.4)

(
p(L)
q(L)

)
=

(
In ⊗ U(θ) 0

0 In ⊗ U(θ)

)(
p(−L)
q(−L)

)
,

where we denote

(2.5) U(θ) :=

(
cos θ − sin θ
sin θ cos θ

)
.

In the notation of equation (2.3), condition (2.4) is written as

(2.6) p(L) = (I2n ⊗ U(θ))p(−L).

Since the boundary conditions (1.2) and (1.3) are the same in the case when θ = 0
or θ = 2π, out of these two possibilities we will always consider only the former.

We now briefly discuss the spectrum of the operators associated with (1.1).
On the space L2(R) of (n × 1) complex vector valued functions, or on the space
BUC(R) of bounded uniformly continuous complex vector valued functions, one can

associate to equation (1.1) a differential operator, H, defined by H = d2

dx2 + V (x),
whose domain is given by the following formula (we recall that the potential V is
bounded):

(2.7) dom(H) =
{
y ∈ L2(R)

∣∣∣ y, y′ ∈ ACloc(R), y′′ ∈ L2(R)
}

(for the space BUC(R) one has to replace the space L2(R) in (2.7) by BUC(R)).
There is a standard way, see [ReSi78, Section XIII.16], of associating with H
a family of operators, Hθ, with θ ∈ [0, 2π], acting in L2([−L,L]) and induced
by the complex boundary conditions (1.2). Indeed, we may identify L2(R) and
L2([0, 2π];L2([−L,L])) = L2([0, 2π] × [−L,L]) by introducing, see [ReSi78, eqn.
(147)], a family of operators Wθ : L2(R)→ L2([−L,L]) by

(2.8) (Wθy)(x) =
∑
n∈Z

e−inθy(x+ 2Ln), x ∈ [−L,L].
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Obviously, (Wθy)(L) = eiθ(Wθy)(−L), and analogously for the derivative y′, lead-

ing to the fact the H is similar to the direct integral, ⊕
∫ 2π

0
Hθ

dθ
2π , of the operators

Hθ defined in L2([−L,L]) as follows: Hθ = d2

dx2 + V (x) with

dom(Hθ) =
{
y ∈ L2([−L,L])

∣∣∣y, y′ ∈ ACloc([−L,L]),

y′′ ∈ L2([−L,L]) and the boundary condition (1.2) holds
}
.

(2.9)

Similarly, one can introduce the operator Hθ on the space C([−L,L]) of continuous
functions by replacing L2([−L,L]) in (2.9) by C([−L,L]).

For each θ ∈ [0, 2π], the spectrum Spec(Hθ) consists of discrete eigenvalues;
when θ varies, they fill up spectral bands with or without spectral gaps between
them, thus forming the spectrum Spec(H), see [MW, ReSi78] for a detailed ex-
position.

Definition 2.1. We say that λ is a θ-eigenvalue of equation (1.1) if there is a
nonzero solution of (2.2) such that the boundary condition (2.4) is satisfied.

For each λ ∈ R, we let ΨA(x, λ) denote the fundamental matrix solution to
equation (2.3) such that ΨA(−L, λ) = I4n and, for each s ∈ (0, L], let MA(s, λ) :=
ΨA(s, λ)ΨA(−s, λ)−1 denote its propagator so that p(s) = M(s, λ)p(−s) for a
solution of (2.3). In particular, MA(L, λ) = ΨA(L, λ) denotes the monodromy
matrix for (2.3). We recall that in [Ga93], λ is said to be a γ-eigenvalue if γ ∈
{γ ∈ C : |γ| = 1} is an eigenvalue of the monodromy matrix of equation (2.2).
We note that our definition of θ-eigenvalue is consistent with the definition of γ-
eigenvalue, with γ = eiθ, given in [Ga93], as the following proposition shows.

Proposition 2.2. On L2(R) or BUC(R), the following assertions are equiva-
lent:

(i) λ ∈ Spec(H);

(ii) equation (2.2) has a bounded solution on R;

(iii) Spec(MA(L, λ)) ∩ {γ ∈ C : |γ| = 1} 6= ∅;
(iv) equation (2.2) has a solution on [−L,L] satisfying (2.4) for a θ ∈ [0, 2π];

(v) λ ∈ Spec(Hθ) for a θ ∈ [0, 2π].

Proof. This follows immediately from Proposition 2.1 in [Ga93] and its proof
and from the results in [ReSi78, Section XIII.16]. The equivalence of the last three
assertions is also proved in a slightly more general Proposition 3.7 below. �

We will now introduce a family of systems of equations parametrized by s ∈
(0, L] which augment (2.2). Each system will be a linear constant coefficient system
whose solutions satisfy the same boundary condition (2.4) as our original system
but with L replaced by s. To this end let us consider the system(

ζ
ξ

)′
=

(
iθ
2s 0
0 iθ

2s

)(
ζ
ξ

)
, ζ, ξ : R→ Cn, θ ∈ [0, 2π], s ∈ (0, L].(2.10)

Setting

wi := (Re(ζi), Im(ζi))
> ∈ R2, w := (w1, . . . , wn)> ∈ R2n,

zi := (Re(ξi), Im(ξi))
> ∈ R2, z := (z1, . . . , zn)> ∈ R2n,

(2.11)
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we observe that w and z satisfy the following system of ODEs:

(2.12)

(
w
z

)′
=

(
In ⊗ u(s, θ) 0

0 In ⊗ u(s, θ)

)(
w
z

)
, u(s, θ) :=

(
0 −θ

2s
θ
2s 0

)
.

Any solution of (2.10), respectively, (2.12) will automatically satisfy the same
boundary conditions as in (1.2), respectively, (2.4), with L replaced by s, that
is, the boundary conditions (ζ(s), ξ(s))> = eiθ(ζ(−s), ξ(−s))>, respectively,

(2.13)

(
w(s)
z(s)

)
=

(
In ⊗ U(θ) 0

0 In ⊗ U(θ)

)(
w(−s)
z(−s)

)
.

As before, sometimes it is convenient to write equation (2.12) in a more condensed
form denoting w := (w, z)>, and writing equation (2.12) as the following equation
with x-independent coefficient:

(2.14) w′ = B(s, θ)w, B(s, θ) := I2n ⊗ u(s, θ).

For each s ∈ (0, L], we let ΨB(x, s) denote the fundamental matrix solution to the
equation (2.12) such that ΨB(−L, λ) = I4n, and remark that

(2.15) ΨB(x, s) = I2n ⊗ eu(s,θ)(x+L) = I2n ⊗
(

cos θ
2s (x+ L) − sin θ

2s (x+ L)
sin θ

2s (x+ L) cos θ
2s (x+ L)

)
is an orthogonal matrix: ΨB(x, s)> =

(
ΨB(x, s)

)−1
.

It is sometimes convenient to combine (2.3) and (2.14) as follows:(
p
w

)′
=

(
A(x, λ) 04n

04n B(s, θ)

)(
p
w

)
, x ∈ [−L,L], θ ∈ [0, 2π], s ∈ (0, L].(2.16)

We will now reformulate the boundary value problems for equations (2.2) and
(2.12) with s = L in a way amenable for symplectic analysis. We consider X defined
in (1.4) as a 4n-plane in R8n. We claim that λ is a θ-eigenvalue of equation (1.1)
if and only if there is a nonzero solution to the following (augmented) boundary
value problem:

p
q
w
z


′

=


0 I2n 0 0

λI2n − I2 ⊗ V (x) 0 0 0
0 0 In ⊗ u(L, θ) 0
0 0 0 In ⊗ u(L, θ)



p
q
w
z

 ,(2.17)

(
p(−L), q(−L), w(−L), z(−L)

)>
,
(
p(L), q(L), w(L), z(L)

)> ∈ X.(2.18)

It is convenient to write (2.17) and (2.18) as follows:(
p
w

)′
=

(
A(x, λ) 04n

04n B(L, θ)

)(
p
w

)
,(2.19) (

p(−L)
w(−L)

)
,

(
p(L)
w(L)

)
∈ X.(2.20)

To justify the claim, we note that if w satisfies (2.14) with s = L then w auto-
matically satisfies (2.13) with s = L. Thus, if (2.20) holds then p satisfies (2.6).
Conversely, given a p satisfying (2.6), pick a solution w of (2.14) with s = L such
that w(−L) = p(−L). Then (2.20) holds.
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3. A symplectic approach to counting eigenvalues

We begin by recalling some notions regarding symplectic structures and the
Maslov index; for a detailed exposition see [Ar67, Ar85, RS93, RS95] and a
review [F04], for a brief but extremely informative account see [FJN03].

A skew-symmetric non-degenerate quadratic form ω on R2n is called symplectic.
Symplectic forms are in one-to-one correspondence with orthogonal skew-symmetric
matrices Ω, such that Ω> = Ω−1 = −Ω, via the relation ω(v1, v2) = 〈v1,Ωv2〉R2n ,
v1, v2 ∈ R2n. A real Lagrangian plane V is an n-dimensional subspace in R2n such
that ω(v1, v2) = 0 for all v1, v2 ∈ V . The set of all Lagrangian planes in R2n is
denoted by Λ(n).

Let Train(V ) denote the train of a Lagrangian plane V ∈ Λ(n), that is the
set of all Lagrangian planes whose intersection with V is non trivial. Obviously,
Train(V ) = ∪nk=1Tk(V ) where Tk(V ) =

{
V0 ∈ Λ(n)

∣∣ dim(V ∩ V0) = k
}

. Each set
Tk(V ) is an algebraic submanifold of Λ(n) of codimension k(k+1)/2. In particular,
codim T1(V ) = 1; moreover, T1(V ) is two-sidedly imbedded in Λ(n), that is, there
is a continuous vector field tangent to Λ(n) which is transversal to T1(V ). Hence,
one can speak about the positive and negative sides of T1(V ). Thus, given a smooth
closed curve Φ in Λ(n) that intersects TrainV transversally (and thus in T1(V )),
one can define the Maslov index Mas(Φ, V ) as the signed number of intersections.

We now recall a more detailed definition of the Maslov index as well as how to
calculate it from local data. Let Φ : [a, b]→ Λ(n) be a smooth path. A crossing is
a point t0 ∈ (a, b) of intersection of the path {Φ(t) : t ∈ [a, b]} with Train(V ). Let
t0 ∈ (a, b) be a crossing for a smooth path Φ, that is, assume that Φ(t0)∩V 6= {0}.
Let V ⊥ be a subspace in R2n transversal to Φ(t0). Then V ⊥ is transversal to Φ(t)
for all t ∈ [t0− ε, t0 + ε] for ε > 0 small enough. Thus, there exists a smooth family
of matrices, φ(t), viewed as operators from Φ(t0) into V ⊥, so that Φ(t) is the graph
of φ(t) for |t− t0| ≤ ε. The bilinear form QM = QM(Φ(t0), V ) defined by

(3.1) QM(v,w) =
d

dt
ω(v, φ(t)w)

∣∣
t=t0

for v,w ∈ Φ(t0) ∩ V,

is called the crossing form.
A crossing is called regular if the crossing form is non degenerate. At a regular

crossing t0, denote the signature of the crossing form by sign QM(Φ(t0), V ). The
Maslov index Mas(Φ, V ) of the path Φ with only regular crossings of Train(V ) is
then defined as

Mas(Φ, V ) :=
1

2
sign QM(Φ(a), V )

+
∑
t∈(a,b)

sign QM(Φ(t), V ) +
1

2
sign QM(Φ(b), V ),

(3.2)

where the summation above is over all crossings t (one can verify that regular
crossings are isolated [RS93]). At the endpoints, take the appropriate left or right
limit definition of the derivative in (3.1) to compute the bilinear form QM (and
hence its signature). We remark that now we have a Maslov index even if the
crossing does not take place in T1. It will sometimes be convenient to refer to
the absolute value of the local Maslov index of a crossing as the multiplicity of
the crossing. In the sequel, a curve with only regular crossings will also be called
regular. From the context it should always be clear whether regular refers to a
crossing or to the curve itself.
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The important features of the Maslov index for this work are summarized below.

Theorem 3.1. [RS93]

(1) (Naturality) If T is a symplectic linear transformation then

Mas(TΦ(t), TV ) = Mas(Φ, V ).

(2) (Catenation) For a < c < b

Mas(Φ, V ) = Mas(Φ(·)
∣∣
[a,c]

, V ) + Mas(Φ(·)
∣∣
[c,b]

, V ).

(3) (Homotopy) Two paths Φ0,Φ1 : [a, b] → Λ(n), with Φ0(a) = Φ1(a) and
Φ0(b) = Φ1(b), are homotopic with fixed endpoints if and only if they have
the same Maslov index.

Remark 3.2 (The generic case). A crossing t0 is called simple if it is regular
and Φ(t0) ∈ T1(V ). A curve has only simple crossings if and only if it is transverse
to every Tk(V ). Suppose that a curve Φ : [a, b]→ Λ(n) with Φ(a),Φ(b) ∈ T0(V ) :={
V0 ∈ Λ(n)

∣∣ dim(V ∩ V0) = 0
}

has only simple crossings. Then the two-sidedness
of T1(V ) allows one to define m+ to be the number of crossings by which Φ(t) passes
from the negative side of T1(V ) to the positive side, and m− to be the number of
crossings from negative to positive. We then have that Mas(Φ, V ) = m+ −m−.

Remark 3.3. We remark that at a regular crossing t0 the Maslov index of
the path Φ : [t0 − ε, t0 + ε] → Λ(n), for small enough ε, is equal to the signature
of the crossing form at the crossing. In particular, the crossing is called positive
(respectively negative) if the crossing form is positive (negative) definite. In this
case the local Maslov index at the crossing is equal to plus (respectively minus) the
dimension of the subspace Φ(t0)∩V (i.e. the multiplicity of the crossing is the real
dimension of this subspace).

We will now return to the augmented system (2.16). Following [DJ11], for
each λ ∈ R and s ∈ (0, L] we now define the following set of vector valued functions
on [−L,L]:

Ys,λ =
{

(p,w)>
∣∣∣p,w ∈ ACloc([−L,L]),

and (p,w)> is a solution of (2.16) on [−L,L]
}
.

(3.3)

That is, we consider the (8n dimensional) solution space to the augmented equation
(2.16), defined on [−L,L], without any boundary conditions at all. We stress that
by solutions (p,w)> of (2.16) on [−L,L] we understand the mild solutions, that is,
absolutely continuous vector valued functions such that (2.16) holds for almost all
x ∈ [−L,L]; in other words, p(x) = ΨA(x, λ)p(−L) and w(x) = ΨB(x, s)w(−L),
x ∈ [−L,L], where ΨA(·, λ) and ΨB(·, s) are the fundamental matrix solutions to
equations (2.2) and (2.12), respectively.

Next, for each λ ∈ R and s ∈ (0, L], let us define the trace map Φλs : Ys,λ → R16n

by the following formula:

(3.4) Φλs :
(
p,w

)> 7→ (
p(−s),w(−s),p(s),w(s)

)> ∈ R16n.
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We remark that Φλs can be identified with the following (16n× 8n) matrix,

(3.5) Φ̂λs =


ΨA(−s, λ) 04n

04n ΨB(−s, s)
ΨA(s, λ) 04n

04n ΨB(s, s)

 ,

since for the solution
(
p,w

)> ∈ Ys,λ given by p(x) = ΨA(x, λ)p(−L) and w(x) =

ΨB(x, s)w(−L), clearly, the vector Φλs
(
(p,w)>

)
∈ R16n is the product of the matrix

Φ̂λs and the vector
(
p(−L),w(−L)

)> ∈ R8n.
Let us introduce the (16n × 16n) orthogonal skew-symmetric matrix Ω (and

thus a symplectic structure on R16n) by the formula

(3.6) Ω = (J ⊗ I2n)⊕ (J> ⊗ I2n)⊕ (J> ⊗ I2n)⊕ (J ⊗ I2n), J =

(
0 1
−1 0

)
,

where J is the standard symplectic matrix.

Theorem 3.4. For all s ∈ (0, L] and λ ∈ R the plane Φλs (Ys,λ) belongs to
the space Λ(8n) of Lagrangian 8n-planes in R16n, with the Lagrangian structure
ω(v1, v2) = 〈v1,Ωv2〉R16n given by Ω defined in (3.6).

Proof. Equations (2.3) and (2.14) are Hamiltonian, with the symplectic struc-
ture defined by the matrices

(3.7) Jn := J ⊗ I2n and J (n) := J> ⊗ I2n,
respectively. In particular,

(3.8) JnA(x, λ) =
(
JnA(x, λ)

)>
, J (n)B(s, θ) =

(
J (n)B(s, θ)

)>
.

Writing (3.6) as

(3.9) Ω = Jn ⊕ J (n) ⊕ (−Jn)⊕ (−J (n)),

for any two vectors from Φλs (Ys,λ), v1 =
(
p1(−s),w1(−s),p1(s),w1(s)

)>
and v2 =(

p2(−s),w2(−s),p2(s),w2(s)
)>

, we infer:

〈v1,Ωv2〉R16n = 〈p1(−s), Jnp2(−s)〉R4n + 〈w1(−s), J (n)w2(−s)〉R4n

− 〈p1(s), Jnp2(s)〉R4n − 〈w1(s), J (n)w2(s)〉R4n

=

∫ −s
s

d

dx

(
〈p1(x), Jnp2(x)〉R4n + 〈w1(x), J (n)w2(x)〉R4n

)
dx

=

∫ −s
s

(
〈p′1(x), Jnp2(x)〉R4n + 〈p1(x), Jnp

′
2(x)〉R4n

+ 〈w′1(x), J (n)w2(x)〉R4n + 〈w1(x), J (n)w′2(x)〉R4n

)
dx

=

∫ −s
s

(
〈A(x, λ)p1(x), Jnp2(x)〉R4n + 〈p1(x), JnA(x, λ)p2(x)〉R4n

+ 〈B(s, θ)w1(x), J (n)w2(x)〉R4n + 〈w1(x), J (n)B(s, θ)w2(x)〉R4n

)
dx

=

∫ −s
s

(
− 〈JnA(x, λ)p1(x),p2(x)〉R4n + 〈p1(x), JnA(x, λ)p2(x)〉R4n

− 〈J (n)B(s, θ)w1(x),w2(x)〉R4n + 〈w1(x), J (n)B(s, θ)w2(x)〉R4n

)
dx
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= 0,

where in the last two lines we used (Jn)> = −Jn, (J (n))> = −J (n) and (3.8). �

We remark that X ×X with X defined in (1.4) is a Lagrangian plane in R16n

with the same symplectic structure given by Ω (indeed, this was why Ω was chosen
in the first place). This can be verified by a straightforward calculation.

Definition 3.5. For a given λ, a point s ∈ (0, L] is called a (λ-)conjugate point
if Φλs (Ys,λ) ∈ Train(X ×X), where X is defined in (1.4).

The latter inclusion means that there exists a solution of the system of equations
(2.2), (2.12) on the segment [−s, s] satisfying the boundary conditions (2.4) with L
replaced by s, that is, the boundary condtions

(3.10)

(
p(s)
q(s)

)
=

(
In ⊗ U(θ) 0

0 In ⊗ U(θ)

)(
p(−s)
q(−s)

)
,

and the boundary conditions (2.13).
Our next objective is to relate the crossings of the path

{
Φsλ(Ys,λ)

}
and eigen-

values of differential operators Hθ,s in L2([−s, s]) introduced as follows, cf. (2.9).

For any s ∈ (0, L] and θ ∈ [0, 2π], let Hθ,s = d2

dx2 + V (x) with

dom(Hθ) =
{
y ∈ L2([−s, s])

∣∣∣y, y′ ∈ ACloc([−s, s]),

y′′ ∈ L2([−s, s]) and the boundary condition (1.3) holds
}
.

(3.11)

In particular, Hθ,L = Hθ. We remark that y ∈ ker
(
Hθ,s − λIL2([−s,s])

)
if and only

if the vector valued function p = (p, q)> defined in (2.1) is a solution of (2.3) on
[−s, s] that satisfies the boundary conditions (3.10).

Definition 3.6. We say that λ is an (θ, s)-eigenvalue of equation (1.1) if there
is a nonzero solution of (2.2) such that the boundary conditions (3.10) are satisfied.

Recall that ΨA(x, λ) is the fundamental matrix solution of the system (2.2),
and MA(s, λ) = ΨA(s, λ)ΨA(−s, λ)−1 is the propagator for s ∈ (0, L] so that p(s) =
M(s, λ)p(−s) for a solution of (2.3). Also, we recall that the multiplicity of the
eigenvalue λ of the operator Hθ is the (complex) dimension of the solution space of
the boundary value problem (1.1), (1.2) on [−L,L].

Proposition 3.7. For any λ ∈ R, θ ∈ [0, 2π], and s ∈ (0, L] the following
assertions are equivalent:

(i) λ ∈ Spec(Hθ,s) in L2([−s, s]);
(ii) eiθ ∈ Spec

(
MA(s, λ)

)
;

(iii) s is a λ-conjugate point, that is, Φλs (Ys,λ) ∈ Train(X ×X).
Moreover, the multiplicity of the eigenvalue λ of the operator Hθ,s is equal to the
real dimension of the subspace Φλs (Ys,λ)∩(X×X). In particular, λ is a θ-eigenvalue
of (1.1) if and only if L is a λ-conjugate point, that is, ΦλL(YL,λ) ∈ Train(X ×X),
and λ is an (θ, s)-eigenvalue of (1.1) if and only Φλs (Ys,λ) ∈ Train(X ×X).

Proof. (i) ⇒ (ii) Take a nonzero y ∈ ker
(
Hθ,s − λIL2([−s,s])

)
and let y =

(y, y′)> be the complex valued (n× 1) solution of the first order system

(3.12) y′ = AC(x, λ)y, AC(x, λ) =

(
0n In

λIn − V (x) 0n

)
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that satisfies the boundary condition (1.3). Let ΨC
A(x, λ) denote the fundamental

matrix solution to (3.12) such that ΨC
A(−L, λ) = In, so that y(x) = ΨC

A(x, λ)y(−L),
and let MC

A(s, λ) = ΨC
A(s, λ)ΨC

A(−s, λ)−1 denote the propagator such that y(s) =
MC
A(s, λ)y(−s). Due to (1.3), we have eiθ ∈ Spec

(
MC
A(s, λ)

)
. Let T : C2n → R4n

be the map y 7→ p = (p, q)> defined in (2.1). Then ΨA(x, λ) = TΨC
A(x, λ)T−1 and

MA(s, λ) = TMC
A(s, λ)T−1, yielding (ii).

(ii) ⇒ (iii) For a vector v ∈ C2n satisfying MC
A(s, λ)v = eiθv let y(x) =

ΨC
A(x, λ)v be the solution of (3.12) satisfying (1.3). Using (2.1), construct the so-

lution p of (2.3) satisfying (3.10), that is, satisfying p(s) = (I2n⊗U(θ))p(−s). Pick
the solution w of (2.14) such that w(−s) = p(−s). Since solutions of (2.14) auto-
matically satisfy (2.13), we have p(±s) = w(±s) and thus Φλs (Ys,λ) ∈ Train(X×X).

(iii) ⇒ (i) Pick a solution (p,w)> of (2.16) such that Φλs
(
(p,w)>

)
∈ X ×

X; then p(±s) = w(±s). Since w automatically satisfies (2.13), the boundary
condition p(s) = (I2n ⊗ U(θ))p(−s) holds. It follows that the solution y of (3.12)
related to p = (p, q)> via (2.1) satisfies the boundary condition (1.3), thus yielding
Hθ,sy = λy.

To prove the equality of the multiplicity and the dimension of the intersection,
we remark that the linear map y 7→ (p(−s),w(−s),p(s),w(s))> from the finite
dimensional space

ker(Hθ,s − λIL2([−s,s])) =
{
y ∈ L2([−s, s])

∣∣∣y, y′ ∈ ACloc([−s, s]),

and (1.1), (1.3) hold
}(3.13)

into the finite dimensional space Φλs (Ys,λ)∩ (X×X) has zero kernel, and thus is an
isomorphism yielding dimC ker(Hθ,s−λIL2([−s,s])) = dimR

(
Φλs (Ys,λ)∩(X×X)

)
. �

Since the boundary value problem on the segment [−s, s] makes sense only for
positive s, we may restrict s to s ∈ [s0, L] for some s0 > 0. Since the operator Hθ,s is
semibounded from above, for a λ∞ large enough there are no (θ, s)-eigenvalues with
λ ≥ λ∞. Therefore, we may restrict λ to λ ∈ [0, λ∞]. As we will see in Lemma 3.12,
for λ∞ large enough there are no s ∈ [s0, L] such that Φλ∞s (Ys,λ) ∈ Train(X ×X)
provided θ ∈ [0, 2π], and for s0 small enough there are no λ ∈ [0, λ∞] such that
Φλs0(Ys0,λ) ∈ Train(X ×X) provided θ ∈ (0, 2π).

With no loss of generality (by varying θ a little, if needed), we may assume that
λ = 0 is not a θ-eigenvalue for a given θ, see Figures 1 and 2. (This ensures that
all crossings take place away from the upper left corner in Figure 2). This is not
actually necessary, but more of a convenience. We can simply use the crossing form
calculation at the endpoints if there is a crossing at the upper left corner, taking
into account half of the local Maslov index each time.

We also remark that for a fixed λ∞, and s0, we can view the map Φλs as a
continuous map from the square Φλs : [0, λ∞] × [s0, L] → Λ(8n) to the space of
Lagrangian planes, see Figure 2. As such, its image must be homotopic to a point,
and so we have the following theorem.

Theorem 3.8. The homotopy class of the image of the boundary of the square
[0, λ∞]× [s0, L] under the map Φ is zero in π1(Λ(8n)).

It is well known that π1(Λ(8n)) ≈ Z, and that the class of a closed curve can
be determined by the number of intersections of such a curve (up to homotopy)
with the train of a fixed Lagrangian plane (see for example, [Ar67], or [RS93] and
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Figure 2. λ = 0 is not a θ-eigenvalue, θ ∈ (0, 2π), and s0 is small enough

the references therein). Denote by Γ the boundary of the image of [0, λ∞]× [s0, L]
under Φλs . The key idea here is that under the construction given above, we have an
eigenvalue interpretation for the intersection of Φλs (Ys,λ) with the train of a special
plane. Since the signed number of intersections does not change under homotopy,
and Γ is homotopic to a point, we have the following result.

Corollary 3.9. As we travel along Γ, the signed number of intersections of
Γ with Train(X ×X), counted with multiplicity, is equal to zero.

Remark 3.10. It is convenient for us to break up the curve Γ = Γ(θ,s0) into
the four pieces corresponding to the sides of the square from which it comes.
Let Γ1 = Γ1,(θ,s0) denote

{
Φλs0(Ys0,λ)

∣∣λ ∈ [0, λ∞]
}

, let Γ2 = Γ2,(θ,s0) denote{
Φλ∞s (Ys,λ∞)

∣∣ s ∈ [s0, L]
}

, let Γ3 = Γ3,(θ,s0) denote
{

ΦλL(YL,λ)
∣∣λ ∈ [λ∞, 0]

}
, and

let Γ4 = Γ4,(θ,s0) denote
{

Φ0
s(Ys,0)

∣∣ s ∈ [L, s0]
}

.

Let Ai = Ai,(θ,s0) denote the Maslov index of each piece of Γi, as defined in
(3.2), that is,

(3.14) Ai := Mas(Γi, X ×X).

We will also denote by Bi = Bi,(θ,s0) the following expression:

Bi :=

∣∣∣∣12sign QM(Γi(ai), X ×X)

∣∣∣∣
+

∑
t∈(ai,bi)

|sign QM(Γi(t), X ×X)|+
∣∣∣∣12sign QM(Γi(bi), X ×X)

∣∣∣∣ ,(3.15)

where Γi(ai) and Γi(bi) denote the endpoints of the curve Γi. That is, Bi is the
number of crossings along Γi each counted regardless of sign, but taking into account
the multiplicity of crossings. For instance, if we have three simple crossings on Γi
with signs +,−,+, we would have that Ai = 1, while Bi = 3. It is also worth
noting that in all cases |Ai| ≤ Bi.

We will now show that B2 = 0 provided λ∞ is large enough and θ ∈ [0, 2π],
and that B1 = 0 provided s0 > 0 is small enough and θ ∈ (0, 2π). For θ = 0, see a
computation of B1 in Lemma 4.3. We will repeatedly use the following elementary
fact.

Theorem 3.11. [K80, Theorem V.4.10] Let H be selfadjoint and V ∈ B(X ) be
symmetric operators on a Hilbert space X . Then

dist
(

Spec(H+ V),Spec(H)
)
≤ ‖V‖B(X ).
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We recall that V is a bounded matrix valued function on [−L,L] and denote the
supremum of its matrix norm by ‖V ‖∞ = supx∈[−L,L] ‖V (x)‖Rn×Rn .

Lemma 3.12.

(i) Assume that θ ∈ [0, 2π]. If λ∞ > ‖V ‖∞ then B2 = 0.
(ii) Assume that θ ∈ (0, 2π). If λ∞ > ‖V ‖∞ and

s0 <
1

2
min

{
θ, 2π − θ

}
(‖V ‖∞ + λ∞)−1/2,

then B1 = 0.

Proof. Let H
(0)
θ,s = d2

dx2 with dom(H
(0)
θ,s ) = dom(Hθ,s). The eigenvalues of

H
(0)
θ,s are given by the formula

(3.16) µk = −
(θ + 2πk

2s

)2
, k ∈ Z.

Indeed, inserting the general solution y(x) = c1e
√
µx + c2e

−√µx of the equation
y′′ = µy in the boundary conditions (1.3), we obtain the system of equations for
c1, c2, whose determinant must be equal to zero, yielding (3.16).

For s ∈ (0, L] and µk in (3.16) we denote µ(s) = maxk∈Z µk. Then (3.16)
implies

(3.17) µ(s) = −
(

min
{
θ, 2π − θ

}
/(2s)

)2
, θ ∈ [0, 2π], s ∈ (0, L],

and

(3.18) Spec(H
(0)
θ,s ) ⊂

(
−∞, µ(s)

]
⊂ (−∞, 0], for each s ∈ (0, L].

By Theorem 3.11 we infer:

(3.19) dist
(

Spec(Hθ,s), Spec(H
(0)
θ,s )
)
≤ ‖V ‖B(L2([−s,s])) ≤ ‖V ‖∞.

This and the second inclusion in (3.18) yield Spec(Hθ,s) ⊂ (−∞, ‖V ‖∞]. If s is a
conjugation point for a given λ, then there is a solution y of the equation Hθ,sy = λy
satisfying (1.3), that is, λ is an eigenvalue of Hθ,s. Thus, there are no conjugation
points for λ∞ provided λ∞ > ‖V ‖∞, proving assertion (i).

(ii) Assume that θ ∈ (0, 2π), fix λ∞ > ‖V ‖∞, and consider any λ ∈ [0, λ∞]
and s ∈ (0, L]. If y is a solution of the equation y′′ + V (x)y = λy for |x| ≤ s
satisfying boundary conditions (1.3) then z(x) = y(sx/L) for |x| ≤ L satisfies the
equation

(3.20) H
(1)
θ,Lz := z′′ +

((
s/L

)2
V (sx/L)− λ(s/L)2

)
z = 0, x ∈ [−L,L],

and boundary conditions (1.2). In other words, λ is an eigenvalue of Hθ,s on

L2([−s, s]) if and only if zero is an eigenvalue of H
(1)
θ,L on L2([−L,L]). Since the

potential in H
(1)
θ,L is

(
s/L

)2
V (s(·)/L)− λ(s/L)2, by Theorem 3.11 we infer:

dist
(

Spec(H
(1)
θ,L), Spec(H

(0)
θ,L)

)
≤ ‖
(
s/L

)2
V (s(·)/L)− λ(s/L)2‖B(L2([−L,L]))

≤
(
s/L

)2(‖V ‖∞ + λ∞
)
.(3.21)

This and the first inclusion in (3.18) with s = L imply

(3.22) Spec(H
(1)
θ,L) ⊂

(
−∞,

(
s/L

)2(‖V ‖∞ + λ∞
)

+ µ(L)
]
,
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where µ(L) < 0 due to θ ∈ (0, 2π). In particular, using (3.16), if

s20
(
‖V ‖∞ + λ∞

)
< (min

{
θ, 2π − θ

}
/2)2

then zero is not an eigenvalue of H
(1)
θ,L and thus λ is not an eigenvalue of Hθ,s0 on

L2([−s0, s0]), as needed in (ii). �

Alternatively, one can prove that for θ ∈ (0, 2π) there are no conjugate points,
provided s is sufficiently small, using Proposition 3.7 (ii): Since Spec

(
MA(s, λ)

)
→

{1} as s→ 0, we infer that eiθ /∈ Spec
(
MA(s, λ)

)
for s small enough.

The periodic case θ = 0 or θ = 2π is somehow special and should be treated
separately. Since the periodic boundary conditions (1.2), (1.3) hold when either
θ = 0 or θ = 2π, we will conclude this section by considering the case θ = 0 (see
also Lemma 4.3 for more information regarding this case).

We will begin by constructing the curve Γ = Γ(0,0) for θ = 0 and s0 = 0
(note that the construction described in Remark 3.10 does not work as (2.14) is
not defined for s = 0). If θ = 0 then u(s, 0) = 02 in (2.12) and B(s, 0) = 04n in
(2.14) for all s > 0. Thus, we have ΨB(x, s) = I4n for θ = 0 and s > 0. Letting
ΨB(x, 0) = I4n for s = 0 and all x ∈ [−L,L], we can extend ΨB(x, s) continuously
from s > 0 to s = 0 although the differential equation (2.14) is not defined for
s = 0. This allows us to define the curve Γ1 for θ = 0 and s0 = 0 as follows: Recall
that the curve Γ1 = Γ1,(θ,s0) is defined via (3.5) as the set

(3.23) Γ1,(θ,s0) =
{

Ψ̂λ
s0v
∣∣λ ∈ [0, λ∞],v ∈ R8n

}
.

Setting θ = 0 and passing in (3.5) to the limit yields Ψ̂λ
s0 → Ψ̂λ

0 as s0 → 0+

uniformly for λ ∈ [0, λ∞], where we define

(3.24) Φ̂λ0 =


ΨA(0, λ) 04n

04n I4n
ΨA(0, λ) 04n

04n I4n

 .

Letting

(3.25) Γ1,(0,0) =
{

Ψ̂λ
0v
∣∣λ ∈ [0, λ∞],v ∈ R8n

}
,

we thus introduce the curve Γ1 = Γ1,(0,0) for θ = 0 and s0 = 0. This curve is
homotopic to the curve Γ1 = Γ1,(θ,s0) for θ > 0 and s0 > 0 although the endpoints

of the two curves are not fixed. A direct computation shows that
(
Ψ̂λ

0

)>
ΩΨ̂λ

0 = 016n,
and thus Γ1,(0,0) is a curve in Λ(8n). Clearly, Γ1,(0,0) lies in Train(X × X), and
thus is not regular. This makes the computation of Mas(Γ1, X ×X) for θ = 0 and
s0 = 0 with this choice of Γ1 difficult. By appending to Γ1,(0,0) the three remaining
curves Γj,(0,0), j = 2, 3, 4, corresponding to the remaining three sides of the square
[0, L]× [0, λ∞], we construct the entire curve Γ = Γ(0,0) for θ = 0 and s0 = 0 which
is homotopic to the curve Γ = Γ(θ,s0) for θ > 0 and s0 > 0. We can appeal to a
theorem in [RS93] which says that every continuous curve is homotopic to a curve
with only regular crossings. Thus we can compute the Maslov index of Γ = Γ(0,0)

and verify that it is indeed 0, that is, that Corollary 3.9 holds for θ = 0 and s0 = 0.
One can also define conjugate point as a point s where eiθ ∈ Spec

(
MA(s, λ)

)
,

see Proposition 3.7 (ii). Unlike Definition 3.5, this latter definition is applicable
for s = 0 as well. But for θ = 0, since MA(0, λ) = I4n, we have that 1 = ei0 ∈
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Spec
(
MA(0, λ)

)
, and thus s = 0 is the conjugate point for all λ ∈ [0, λ∞]. In

particular, for θ = 0 the curve Γ2 has a conjugate point at s = 0.
We summarize the discussion as follows and refer to Lemma 4.3 for more in-

formation regarding the case θ = 0.

Corollary 3.13. Assume that θ = 0 and that Γ is the curve just defined for
s0 = 0 using (3.24), and parametrized by the sides of the square [0, L] × [0, λ∞].
Then Mas(Γ, X × X) = 0. Each point of the curve Γ1 belongs to Train(X × X).
The lower endpoints of the curves Γ2 and Γ4, and all points of Γ1 are conjugate
points in the sense that 1 = ei0 ∈ Spec

(
MA(0, λ)

)
for all λ ∈ [0, λ∞].

4. Monotonicity of the Maslov index

We will now establish monotonicity of the Maslov index with respect to the pa-
rameter λ and, under some additional assumptions, with respect to the parameter s.
Let us begin with λ. We recall from Remark 3.10 that the curve Γ3 is parametrized
by the parameter λ decaying from λ∞ to 0 while the curve Γ1 is parametrized by
the parameter λ growing from 0 to λ∞. The strategy of the proof of the next result
follows the proof of [DJ11, Lemma 4.7].

Lemma 4.1. For any θ ∈ [0, 2π] and any fixed s ∈ (0, L], each crossing λ0 ∈
(0, λ∞) of the path

{
Φλs (Ys,λ)

}λ0+ε

λ=λ0−ε
, with ε > 0 small enough, is negative. In

particular, if 0 /∈ Spec(Hθ), then B3 = A3 and if 0 /∈ Spec(Hθ,s0) then B1 = −A1.

Proof. Let λ0 ∈ (0, λ∞) be a crossing, so that Φλ0
s (Ys,λ0

) ∩ (X ×X) 6= {0}.
Let V ⊥ be a subspace in R16n transversal to Φλ0

s (Ys,λ0
). Then V ⊥ is transversal

to Φλs (Ys,λ) for all λ ∈ [λ0 − ε, λ0 + ε] for ε > 0 small enough. Thus, there exists
a smooth family of matrices, φ(λ), for λ ∈ [λ0 − ε, λ0 + ε], viewed as operators
φ(λ) : Φλ0

s (Ys,λ0)→ V ⊥, such that Φλs (Ys,λ) is the graph of φ(λ). Fix any nonzero
v ∈ Φλ0

s (Ys,λ0) ∩ (X ×X) and consider the curve v(λ) = v + φ(λ)v ∈ Φλs (Ys,λ) for
λ ∈ [λ0 − ε, λ0 + ε] with v(λ0) = v. By the definition of Ys,λ, there is a family of
solutions (p(· , λ),w(· , λ))> of (2.16) such that v(λ) = Φλs

(
(p(· , λ),w(· , λ))>

)
. We

claim that

(4.1) ω
(
v(λ0),

∂v

∂λ
(λ0)

)
< 0.

Assuming the claim, we finish the proof as follows: Since for each nonzero v ∈
Φλ0
s (Ys,λ0

) ∩ (X ×X) the crossing form QM satisfies

QM(v, v) =
d

dλ

∣∣∣
λ=λ0

ω(v, φ(λ)v) =
d

dλ

∣∣∣
λ=λ0

ω(v, v + φ(λ)v)

= ω
(
v(λ0),

∂v

∂λ
(λ0)

)
< 0,

the form is negative definite. Thus, the crossing λ0 ∈ (0, λ∞) is negative. In

particular, taking into account that the path Γ3 =
{

ΦλL(YL,λ)
}0
λ=λ∞

is parametrized

by the parameter λ decaying from λ∞ to 0, each crossing λ0 along Γ3 is positive.
Thus, the Maslov index A3 of the path Γ3 is equal to B3. Taking into account the

parametrization of Γ1 =
{

Φλs0
}λ∞
λ=0

, a similar argument yields A1 = −B1.

Starting the proof of claim (4.1), for the solution p = p(x, λ) we compute the
λ-derivative (for brevity, denoted below by dot) in equation (2.3), and obtain the
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equation

(4.2) ṗ′(x) = A(x, λ)ṗ(x) + (σ0 ⊗ I2n)p(x);

here and below we abbreviate σ0 =

(
0 0
1 0

)
and recall notations Jn and J (n) in

(3.7) and formula (3.9). Computing the scalar product in R4n of both parts of (4.2)
with Jnp, integrating from −s to s, and using the identities∫ s

−s
〈ṗ′(x), Jnp(x)〉R4n dx = 〈ṗ, Jnp〉R4n

∣∣∣s
−s
−
∫ s

−s
〈ṗ(x), Jnp

′(x)〉R4n dx

(integration by parts),∫ s

−s
〈A(x, λ)ṗ(x), Jnp(x)〉R4n dx = −

∫ s

−s
〈ṗ(x), JnA(x, λ)p(x)〉R4n dx

(formulas J>n = −Jn and (3.8)),∫ s

−s
〈(σ0 ⊗ I2n)p(x), Jnp(x)〉R4n dx = −

∫ s

−s
〈
(
(Jσ0)⊗ I2n

)
p(x), p(x)〉R4n dx

= −
∫ s

−s
‖p(x)‖2R2n dx (because p = (p, q)>),

and Jnp
′ = JA(x, λ)p, we arrive at the equality

〈p(−s), Jnṗ(−s)〉R4n + 〈p(s), (−Jn)ṗ(s)〉R4n = 〈ṗ, Jnp〉R4n

∣∣∣s
−s

= −
∫ s

−s
‖p(x)‖2R2n dx.

(4.3)

A similar argument for w = w(x, λ) yields

(4.4) 〈w(−s), J (n)ẇ(−s)〉R4n + 〈w(s), (−J (n))ẇ(s)〉R4n = 0.

Combining (4.3), (4.4) with (3.9) and

v(λ0) = Φλ0
s

(
(p(· , λ0),w(· , λ0))>

)
=
(
p(−s, λ0),w(−s, λ0),p(s, λ0),w(s, λ0)

)>
we infer

ω
(
v(λ0), v̇(λ0)

)
=
〈
v(λ0), Ωv̇(λ0)

〉
R4n

= 〈p(−s), Jnṗ(−s)〉R4n + 〈p(s), (−Jn)ṗ(s)〉R4n

+ 〈w(−s), J (n)ẇ(−s)〉R4n + 〈w(s), (−J (n))ẇ(s)〉R4n

= −
∫ s

−s
‖p(x, λ0)‖2R2n dx < 0,

thus completing the proof of (4.1) and the lemma. �

We will now establish monotonicity of the Maslov index with respect to the
parameter s. The strategy of the proof of the next lemma is similar to the proof of
Lemma 4.1. In the lemma we formulate a simple sufficient condition for the crossing
form to be sign-definite; however, in the course of its proof we give a general formula
(4.9). We recall that the curve Γ4 is parametrized by the parameter s decaying from
L to s0.
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Lemma 4.2. For any θ ∈ [0, 2π], any fixed λ ∈ (0, λ∞), and any s0 ∈ (0, L),

each crossing s∗ ∈ (s0, L) of the path
{

Φλs (Ys,λ)
}s∗+ε
s=s∗−ε

, with ε > 0 small enough,

is positive provided the potential V is continuous at the points ±s∗ and the matrix

(4.5)
1

2

(
V (−s∗) + V (s∗)

)
− λIn is positive definite.

In particular, B4 = −A4 provided V is continuous and positive definite at each
point of [−L,L], and 0 /∈ Spec(Hθ), 0 /∈ Spec(Hθ,s0).

Proof. Let s∗ ∈ (s0, L) be a crossing, so that Φλs∗(Ys∗,λ) ∩ (X × X) 6= {0}.
Let V ⊥ be a subspace in R16n transversal to Φλs∗(Ys∗,λ). Then V ⊥ is transversal

to Φλs (Ys,λ) for all s ∈ [s∗ − ε, s∗ + ε] for ε > 0 small enough. Thus, there exists
a smooth family of matrices, φ(s), for s ∈ [s∗ − ε, s∗ + ε], viewed as operators
φ(s) : Φλs∗(Ys∗,λ) → V ⊥, such that Φλs (Ys,λ) is the graph of φ(s). Fix any nonzero

v ∈ Φλs∗(Ys∗,λ) ∩ (X ×X) and consider the curve v(s) = v + φ(s)v ∈ Φλs (Ys,λ) for
s ∈ [s∗ − ε, s∗ + ε] with v(s∗) = v. By the definition of Ys,λ, there is a family
of solutions (p(· , s),w(· , s))> of (2.16) such that v(s) = Φλs

(
(p(· , s),w(· , s))>

)
.

Denoting by dot the derivative with respect to the variable s, we claim that

(4.6) ω
(
v(s∗), v̇(s∗)

)
> 0

provided (4.5) holds. Assuming the claim, we finish the proof as follows: Since for
each nonzero v ∈ Φλs∗(Ys∗,λ) ∩ (X ×X) the crossing form QM satisfies

QM(v, v) =
d

ds

∣∣∣
s=s∗

ω(v, φ(λ)v) =
d

ds

∣∣∣
s=s∗

ω(v, v + φ(s)v)

= ω
(
v(s∗), v̇(s∗)

)
> 0,

the form is positive definite. Thus, the crossing s∗ ∈ (s0, L) is positive. In par-

ticular, taking into account that the path Γ4 =
{

Φλs (Ys,λ)
}s0
s=L

is parametrized by
the parameter s decaying from L to s0, each crossing along Γ4 is negative since
the assumptions 0 /∈ Spec(Hθ), 0 /∈ Spec(Hθ,s0) and Proposition 3.7 imply that all
crossings for λ = 0 belong to (s0, L). Thus, the Maslov index A4 of the path Γ4 is
equal to −B4.

Starting the proof of claim (4.6), we remark that s-derivatives of the solutions
p(·, s) and w(·, s) of (2.3) and (2.14) satisfy the differential equations

(4.7) ṗ′(x) = A(x, λ)ṗ(x), ẇ′(x) = Ḃ(s, θ)w(x) +B(s, θ)ẇ(x),

where Ḃ(s, θ) is computed similarly to (2.14), (2.12) but with ∓θ2s replaced by ±θ2s2 :

(4.8) B(s) = − θ

2s

(
I2n ⊗ J

)
, Ḃ(s) =

θ

2s2
(
I2n ⊗ J

)
.

Clearly, v(s) =
(
p(−s, s),w(−s, s),p(s, s),w(s, s)

)>
yields

v̇(s) =
(
− p′(−s, s) + ṗ(−s, s),−w′(−s, s) + ẇ(−s, s),

p′(s, s) + ṗ(s, s),w′(s, s) + ẇ(s, s)
)>
.

Using (3.6), we split the expression for ω
(
v(s), v̇(s)

)
as follows:

〈v(s),Ωv̇(s)〉R16n

=− 〈p(−s, s), (J ⊗ I2n)p′(−s, s)〉R4n + 〈p(−s, s), (J ⊗ I2n)ṗ(−s, s)〉R4n

+ 〈w(−s, s), (J ⊗ I2n)w′(−s, s)〉R4n − 〈w(−s, s), (J ⊗ I2n)ẇ(−s, s)〉R4n
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− 〈p(s, s), (J ⊗ I2n)p′(s, s)〉R4n − 〈p(s, s), (J ⊗ I2n)ṗ(s, s)〉R4n

+ 〈w(s, s), (J ⊗ I2n)w′(s, s)〉R4n + 〈w(s, s), (J ⊗ I2n)ẇ(s, s)〉R4n

=α1 + α2 + α3 + α4,

where, using (4.7) and rearranging terms, the expressions αj are defined and com-
puted as follows:

α1 = −〈p(−s, s), (J ⊗ I2n)A(−s, λ)p(−s, s)〉R4n

− 〈p(s, s), (J ⊗ I2n)A(s, λ)p(s, s)〉R4n ;

α2 = 〈p(−s, s), (J ⊗ I2n)ṗ(−s, s)〉R4n − 〈p(s, s), (J ⊗ I2n)ṗ(s, s)〉R4n

= −
∫ s

−s

d

dx

(
〈p(x, s), (J ⊗ I2n)ṗ(x, s)〉R4n

)
dx

= −
∫ s

−s

(
〈A(x, λ)p(x, s), (J ⊗ I2n)ṗ(x, s)〉R4n

+ 〈p(x, s), (J ⊗ I2n)A(x, λ)ṗ(x, s)〉R4n

)
dx (using (4.7))

= −
∫ s

−s

(
− 〈(J ⊗ I2n)A(x, λ)p(x, s), ṗ(x, s)〉R4n

+ 〈p(x, s), (J ⊗ I2n)A(x, λ)ṗ(x, s)〉R4n

)
dx

= 0 (using (3.8));

α3 = 〈w(−s, s), (J ⊗ I2n)w′(−s, s)〉R4n + 〈w(s, s), (J ⊗ I2n)w′(s, s)〉R4n

= 〈w(−s, s), (J ⊗ I2n)B(s, θ)w(−s, s)〉R4n

+ 〈w(s, s), (J ⊗ I2n)B(s, θ)w(s, s)〉R4n

= 〈w(−s, s), − θ

2s
(J ⊗ I2n)(I2n ⊗ J)w(−s, s)〉R4n

+ 〈w(s, s), − θ

2s
(J ⊗ I2n)(I2n ⊗ J)w(s, s)〉R4n (using (4.8))

= −θ
s
〈w(−s, s), J ⊗ (In ⊗ J)w(−s, s)〉R4n

(since ΨB(x, θ) is orthogonal and commutes with J ⊗ (In ⊗ J));

α4 = −〈w(−s, s), (J ⊗ I2n)ẇ(−s, s)〉R4n + 〈w(s, s), (J ⊗ I2n)ẇ(s, s)〉R4n

=

∫ s

−s

d

dx

(
〈w(x, s), (J ⊗ I2n)ẇ(x, s)〉R4n

)
dx

=

∫ s

−s

(
〈B(s, θ)w(x, s), (J ⊗ I2n)ẇ(x, s)〉R4n

+ 〈w(x, s), (J ⊗ I2n)
(
Ḃ(s, θ)w(x, s) +B(s, θ)ẇ(x, s)

)
〉R4n

)
dx (by (4.7))

=

∫ s

−s
〈w(x, s), (J ⊗ I2n)Ḃ(s, θ)w(x, s)〉dx (distributing and using (3.8))

= − θ

2s2

∫ s

−s
〈w(x, s), J ⊗ (In ⊗ J)w(x, s)〉R4n dx (using (4.8))

=
θ

s
〈w(−s, s), J ⊗ (In ⊗ J)w(−s, s)〉R4n
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(since ΨB(x, θ) is orthogonal). Thus, 〈v(s), Ωv̇(s)〉R16n = α1. After a short calcu-
lation using the condition p(s∗, s∗) =

(
I2n⊗U(θ)

)
p(−s∗, s∗) (which holds since s∗

is a conjugation point), the orthogonality of U(θ), and formulas(
J ⊗ I2n

)
A(±s∗, λ) =

(
(λIn − V (±s∗))⊗ I2

)
⊕
(
− I2n

)
,

I2n ⊗ U(θ)±1 =
(
In ⊗ U(θ)±1

)
⊕
(
In ⊗ U(θ)±1

)
,(

I2n ⊗ U(θ)−1
)(
J ⊗ I2n

)
A(s∗, λ)

(
I2n ⊗ U(θ)

)
=
(
(λIn − V (s∗))⊗ I2

)
⊕
(
− I2n

)
,

we conclude that ω
(
v(s∗), v̇(s∗)

)
= α1

∣∣∣
s=s∗

is equal to

−
〈
p(−s∗, s∗),

((
2λI2n −

(
V (−s∗) + V (s∗)

)
⊗ I2

)
⊕
(
− 2I2n

))
p(−s∗, s∗)

〉
R4n .

Since p(−s∗, s∗) =
(
p(−s∗, s∗), q(−s∗, s∗)

)>
, we therefore have the following final

formula for the crossing form:

ω
(
v(s∗), v̇(s∗)

)
= 2
〈
p(−s∗, s∗),

(1

2

(
V (−s∗) + V (s∗)

)
⊗ I2 − λI2n

)
p(−s∗, s∗)

〉
R2n

+ 2‖q(−s∗, s∗)‖2R2n .(4.9)

In particular, (4.5) implies (4.6). �

We will prove next a version of Lemma 3.12 (ii) for θ = 0 or θ = 2π. It is
interesting to note that although the conclusion of the next lemma concerns the
spectrum of the operators H0,s, its proof uses topological arguments which led to
Corollary 3.9. We recall the notation Mor(H) = dim(ranP) for the Morse index of
an invertible selfadjoint semi-bounded from above operator H; here,

(4.10) P = (2πi)−1
∫
γ

(z −H)−1 dz

is the Riesz projection corresponding to the positive part Spec(H)∩ (0,+∞) of the
spectrum of H, and γ is a smooth curve enclosing this part of the spectrum.

Lemma 4.3. Assume that θ = 0 or θ = 2π and that the potential V is continuous
at x = 0 and the matrix V (0) is invertible. If λ∞ > ‖V ‖∞ and s0 ∈ (0, L] is
sufficiently small then 0 /∈ Spec(H0,s0) and B1 = Mor(V (0)); in particular, if V (0)
is negative definite then B1 = 0.

Proof. Since H0,s = H2π,s because the boundary conditions (1.3) are the
same for θ = 0 and θ = 2π, and taking into account Proposition 3.7, we will
consider only the case θ = 0. If θ = 0 and s > 0 then H0,s is the operator in
L2([−s, s]) defined by (H0,sy)(x) = y′′(x) + V (x)y(x), |x| ≤ s, with the domain

dom(H0,s) =
{
y ∈ L2([−s, s])

∣∣ y, y′ ∈ ACloc([−s, s]), y′′ ∈ L2([−s, s]) and the

periodic boundary conditions y(s) = y(−s), y′(s) = y′(−s) hold
}
.

It is convenient to “rescale” the operator H0,s to L2([−L,L]) by introducing the
operator H0(s) in L2([−L,L]) defined by

(H0(s)y)(x) =
(
L/s

)2
y′′(x) + V

(
sx/L

)
y(x), |x| ≤ L,
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Figure 3. θ = 0 and the numbers s1 > s2 > s3 > s4 ≥ s0 > 0 in
the proof of Lemma 4.3 are small enough

with the domain

dom(H0(s)) =
{
y ∈ L2([−L,L])

∣∣ y, y′ ∈ ACloc([−L,L]), y′′ ∈ L2([−L,L]) and the

periodic boundary conditions y(L) = y(−L), y′(L) = y′(−L) hold
}
.

Writing the eigenvalue equation (H0,sy)(x) = λy(x), |x| ≤ s, at the point x = sx̂/L
for |x̂| ≤ L, introducing z(x̂) = y(sx̂/L), and passing to the eigenvalue equation
(H0(s)z)(x̂) = λz(x̂), |x̂| ≤ L, we observe that

(4.11) Spec(H0,s;L
2([−s, s])) = Spec(H0(s);L2([−L,L])) for all s ∈ (0, L].

In addition to H0(s), we introduce a constant coefficient operator H
(0)
0 (s) on

L2([−L,L]) defined by (H
(0)
0 (s)y)(x) =

(
L/s

)2
y′′(x) + V (0)y(x), |x| ≤ L, with

the domain domH
(0)
0 (s) = domH0(s). Since

(4.12) ‖H0(s)−H(0)
0 (s)‖B(L2([−L,L])) = sup

|x|≤L
‖V (sx/L)− V (0)‖ → 0 as s→ 0

by the continuity assumption in the lemma, we can use Theorem 3.11 to conclude
that

(4.13) dist
(

Spec(H0(s)),Spec(H
(0)
0 (s))

)
→ 0 as s→ 0.

Since the operator H
(0)
0 (s) is a constant coefficient operator with periodic bound-

ary conditions, passing to the Fourier series y(x) =
∑
k∈Z yke

iπkx/L, |x| ≤ L, we
calculate:

(4.14) Spec(H
(0)
0 (s)) =

⋃
k∈Z

(
−
(
πk/s

)2
+ Spec(V (0))

)
.

Let νj denote the eigenvalues of the matrix V (0) and let κ = Mor(V (0)) denote the
number of the positive eigenvalues counting multiplicities. Since 0 /∈ Spec(V (0)) by
the assumption, we can find a δ > 0, and enumerate the eigenvalues in Spec(V (0))
such that

−‖V (0)‖ ≤ · · · ≤ ν−1 < −δ < 0 < δ < ν1 ≤ · · · ≤ νκ ≤ ‖V (0)‖.
Choose s1 ∈ (0, L) so small that ‖V (0)‖+δ < (π/s1)2, see Figure 3. Then, for each

s ∈ (0, s1], the eigenvalues νj − (πk/s)2 of the operator H
(0)
0 (s) are positioned as

follows:

0 < δ < ν1 ≤ · · · ≤ νκ , for j ≥ 1 and k = 0,

. . . ≤ ν1 − (kπ/s)2 ≤ · · · ≤ νκ − (kπ/s)2 ≤ · · · ≤ ν1 − (π/s)2 ≤ · · · ≤ νκ − (π/s)2
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≤ ‖V (0)‖ − (π/s)2 ≤ ‖V (0)‖ − (π/s1)2 < −δ < 0, for j ≥ 1 and k ∈ Z \ {0},
νj − (kπ/s)2 < −δ, for j ≤ −1 and k ∈ Z.

In particular, for each s ∈ (0, s1] we have Spec(H
(0)
0 (s)) ∩ [−δ, δ] = ∅,

(4.15) Spec(H
(0)
0 (s)) ∩ (0,+∞) = {ν1, . . . , νκ} ⊂

(
δ, ‖V (0)‖

)
,

and Mor(H
(0)
0 (s)) = Mor(V (0)). Using (4.13), (4.15) one can find a sufficiently

small s2 ∈ (0, s1) such that for all s ∈ (0, s2] one has:

(4.16) 0 /∈ Spec(H0(s)) and Spec(H0(s)) ∩ (0,+∞) ⊂
(
δ/2, ‖V (0)‖+ δ/2

)
.

By (4.11), conclusions (4.16) hold with Spec(H0(s)) replaced by Spec(H0,s).
Fix any s3 ∈ (0, s2). We now claim that

(4.17) sup
s∈(0,s3]

Mor(H0(s)) <∞.

Postponing the proof of claim (4.17), we proceed with the proof of the lemma.

Let Ps, respectively, P
(0)
s denote the Riesz projection for the operator H0(s),

respectively, H
(0)
0 (s) that corresponds to the positive part of its spectrum. The

Riesz projection is defined by formula (4.10) withH replaced by H0(s), respectively,

H
(0)
0 (s), and with γ being the rectangle in the complex plane with the vertices at

the points ±iδ and ‖V (0)‖+ δ ± iδ. Inclusions (4.15), (4.16) imply, for s ∈ (0, s2],

(4.18) dist
(

Spec(H
(0)
0 (s)), γ

)
≥ δ, dist

(
Spec(H0(s)), γ

)
≥ δ/2.

Using (4.18) and that H0(s) is selfadjoint, for z ∈ γ we arrive at the estimate

‖
(
z −H0(s)

)−1‖ = 1/ dist(Spec(H0(s)), z) ≤ 1/ dist(Spec(H0(s)), γ) ≤ 2/δ,

and a similar estimate for ‖
(
z −H0(s)

)−1‖. Using (4.12) and

Ps − P (0)
s = (2πi)−1

∫
γ

((
z −H0(s)

)−1(
H0(s)−H(0)

0 (s)
)(
z −H(0)

0 (s)
)−1)

dz,

we conclude that

(4.19)
∥∥Ps − P (0)

s

∥∥
B(L2([−L,L])) → 0 as s→ 0.

Noting that Mor(H
(0)
0 (s)) = dim(ranP

(0)
s ) = tr(P

(0)
s ) = Mor(V (0)) by (4.15) and

that the dimensions Mor(H0(s)) = dim(ranPs) = tr(Ps) are bounded uniformly for

s ∈ (0, s3] by (4.17), we introduce the subspace Rs = ranP
(0)
s ⊕ ranPs and denote

R = sups∈(0,s3] dimRs <∞. Viewing Ps − P (0)
s as a finite dimensional operator in

Rs, we infer, using a simple inequality relating trace and norm:∣∣ tr(Ps)− tr(P (0)
s )

∣∣ =
∣∣ tr(Ps − P (0)

s )
∣∣

≤ R
∥∥Ps − P (0)

s

∥∥
B(Rs)

≤ R
∥∥Ps − P (0)

s

∥∥
B(L2([−L,L])).

(4.20)

We recall the 0 /∈ Spec(H0,s) and Mor(H0,s) = Mor(H0(s)) by (4.16) and (4.11).
Thus, using Proposition 3.7, for any s0 ∈ (0, s3], the number B1 = Mor(H0,s0) of
the crossings along Γ1 is equal to the Morse index Mor(H0(s0)) = tr(Ps0). In order
to establish the required in the lemma equality B1 = Mor(V (0)), it suffices to show

that tr(Ps0) = tr(P
(0)
s0 ) for all small enough s0. Indeed, the latter equality implies

(4.21) B1 = Mor(H0,s0) = Mor(H0(s0)) = tr(Ps0) = tr(P (0)
s0 ) = Mor(V (0)),
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as needed in the lemma. Since the functions s 7→ tr(Ps), s 7→ tr(P
(0)
s ) take integer

values, it suffices to show the existence of a small s4 ∈ (0, s3) such that the right-
hand side of (4.20) is smaller than 1 for all s ∈ (0, s4]. But this follows from (4.19),
thus concluding the proof of the lemma.

It remains to prove claim (4.17). This is the part of the proof based on Corollary
3.9. Since 0 /∈ Spec(H0,s) and Mor(H0,s) = Mor(H0(s)) for all s ∈ (0, s2] by (4.16)
and (4.11), in order to show (4.17) it suffices to check that the number of crossings
B1 = Mor(H0,s0) along the curve Γ1 = Γ1,(0,s0) is estimated from above by a
finite number that does not depend on s0 ∈ (0, s3] (we recall that s3 ∈ (0, s2)).
Take any s0 ∈ (0, s3] and construct the curve Γ = Γ1,(0,s0) ∪ Γ2 ∪ Γ3 ∪ Γ4,(0,s0) as
described in Remark 3.10. First, we remark that due to Proposition 3.7 there are
no crossings of the portion of the curve Γ4,(0,s0) given by {Φ0

s(Ys,0))
∣∣s ∈ [s0, s2]}

since 0 /∈ Spec(H0,s) for all s ∈ [s0, s2]. Second, we remark that with no loss of
generality we may assume that the curve Γ4,(0,s0)∪Γ3 is regular. (Indeed, otherwise,

use homotopy with the fixed endpoints Φ0
s2(Ys2,0) and Φλ∞L (YL,λ∞) of the portion

of this curve given by {Φ0
s(Ys,0))

∣∣s ∈ [s2, L]} ∪ Γ3 to transform it into a regular
curve.) Since the regular crossings are isolated, based on the two remarks just
made we conclude that the number B4 of the crossings of Γ4,(0,s0) is finite and
does not depend on s0. Clearly, B3 is finite and does not depend on s0 either. By
Corollary 3.9 we know that 0 = A1 + A2 + A3 + A4. By Lemma 3.12 (i) we have
A2 = 0. By Lemma 4.1 we know that A3 = B3 and A1 = −B1. Combining all this,
we have the required estimate

Mor(H0,s0) = B1 = −A1 = A3 +A4 = B3 +A4 ≤ B3 + |A4| ≤ B3 +B4,

which concludes the proof of claim (4.17) and the lemma. �

We will now summarize the count of eigenvalues and conjugate points via the
Morse and Maslov indices. Recall that the number of positive eigenvalues of a
self-adjoint operator (counting their multiplicities) is called its Morse index, and is
denoted by Mor(·). Also, recall definition (3.2) of the Maslov index. The Maslov
index of Γ4 = Γ4,(θ,s0) is the number A4 = A4,(θ,s0) which can also be thought of as
the Maslov index of equation (1.1). Also, we recall definition (3.15) of the numbers
Bi, and note that the expressions for Ai and Bi do not contain the first and the last
terms provided the endpoints of Γi are not crossings. In this case, we can interpret
B3 and B4 in terms of the eigenvalues of Hθ and the conjugate points.

Theorem 4.4. Let us fix θ ∈ [0, 2π], and let the numbers Ai = Ai,(θ,s0) and
Bi = Bi,(θ,s0) be defined in (3.14) and (3.15) for a (small) s0 > 0 and a (large)
λ∞ > 0. Then the following assertions hold.

(i) The Maslov index of the curve Γ is zero for any s0 ∈ (0, L) and λ∞ > 0.
(ii) If 0 /∈ Spec(Hθ) then the Maslov index A3 of the curve Γ3 satisfies A3 =

B3.
(iii) If 0 /∈ Spec(Hθ) and λ∞ is large enough then B3 is equal to the number

of the positive λ for which there exists a solution to the original bound-
ary value problem for equation (2.2) on [−L,L] subject to the boundary
condition (2.4) counting multiplicities, that is, to the Morse index of the
operator Hθ in L2([−L,L]):

B3 = Mor
(
Hθ

)
.
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(iv) If 0 /∈ Spec(Hθ) and 0 /∈ Spec(Hθ,s0) for some s0 > 0 then B4 is equal
to the number of the conjugate points for λ = 0 counting multiplicities,
that is, the number of such s ∈ (s0, L) for which there exists a nontrivial
solution to the boundary value problem for equation (2.2) on [−s, s] subject
to the boundary condition (3.10).

(v) If θ ∈ (0, 2π), λ∞ > 0 is large enough and s0 > 0 is small enough then
A3 = −A4. If, in addition, 0 /∈ Spec(Hθ) then the Maslov index and the
Morse index are related as follows:

(4.22) Mor(Hθ) = −Mas(Γ4, X ×X).

(vi) If the potential V is continuous and positive definite on [−L,L], and the
assumptions in (iv) hold then A4 = −B4. If, in addition, the assumptions
in (v) hold then the Morse index can be computed as follows:

(4.23) Mor(Hθ) = B4.

(vii) If θ = 0 or θ = 2π, λ∞ > 0 is large enough and s0 > 0 is small enough,
the potential V is continuous at the point x = 0, and 0 /∈ Spec(V (0)) then
A1 = −B1 = Mor(V (0)). If, in addition, 0 /∈ Spec(Hθ) then

(4.24) Mor(Hθ) = −Mas(Γ4, X ×X) + Mor(V (0)).

Finally, if 0 is not in the spectrum of the operator H in L2(R), then, for all θ ∈
[0, 2π], the Morse index of Hθ does not depend on θ, and is greater than or is equal
to the number of disjoint spectral bands of H in the (unstable) right half-line, and
is equal to the number of the spectral bands of H if they are disjoint.

Proof. Assertion (i) is proved in Corollary 3.9. Assertion (ii) follows from
Lemma 4.1, while (iii) and (iv) are proved in Proposition 3.7. Assertion (v) follows
from (i) and Lemma 3.12 while (vi) follows from Lemma 4.2. Assertion (vii) follows
from Lemma 4.3. �

5. The Mathieu equation: an example

Now we will use a well known Mathieu equation, see, e.g. [BO78, JS99], as
an illustration of the phenomena described in Theorem 4.4. This example will also
give some indication as to how to handle the loss of regularity of crossings when
θ = 0 or θ = 2π and the curve Γ(0,0) is constructed as in Corollary 3.13. Specifically,
let us consider the Mathieu equation

(5.1) y′′ + 3.2 cos(2x)y = λy, x ∈ [−π, π],

where we have chosen the usual parameter in the equation to be −1.6 purely for
convenience and choose L = π (we could of course also choose L = kπ/2, k ∈ Z).

Letting ΨC
A(x, λ) be the fundamental solution matrix to the (2× 2) first order

(complex) system associated with (5.1) such that ΨC
A(−π, λ) = I2, we have then

that the propagator for all s ∈ [0, π] is given by MC
A(s, λ) = ΨC

A(s, λ)
(
ΨC
A(−s, λ)

)−1
.

Now for a fixed value of θ ∈ [0, 2π] we can look for θ-eigenvalues and conjugate
points of (5.1). A θ-eigenvalue will occur when MC

A(π, λ) has an eigenvalue eiθ,
while a conjugate point will be a value of s such that MC

A(s, 0) has an eigenvalue
eiθ. That is, the following two quantities can be computed:

B3 = {The number of λ ∈ [0,∞) such that det
(
MC
A(π, λ)− eiθI2

)
= 0},

B4 = {The number of s ∈ [0, π] such that det
(
MC
A(s, 0)− eiθI2

)
= 0}.
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The number B4 here corresponds to the choice s0 = 0. The graphs in Figures 4
and 5 were computed using Mathematica’s numerical Mathieu equations, and plot
the values of the θ-eigenvalues and the conjugate points versus values of θ ∈ [0, 2π].

1 2 3 4 5 6
Θ

0.85

0.90

0.95

1.00

1.05

Λ

Figure 4. A plot of the location of the θ-eigenvalues versus θ in
the Mathieu example (where s = π). It is clear that at θ = π there
is a double eigenvalue.

1 2 3 4 5 6
Θ

0.5

1.0

1.5

2.0

2.5

3.0
s

Figure 5. A plot of the location of the conjugate points s versus
θ in the Mathieu example (where λ = 0).

The graphs show that in our numerical experiments the quantities B3 and B4

are equal for all θ ∈ [0, 2π]. It is worth noting that the multiplicity of the eigenvalue
λ when θ = π is two, however this is ‘canceled’ out by two crossings along Γ4 - i.e.
we have two separate conjugate points, each with multiplicity one, and thus our
calculations are in concert with Theorems 3.8 and 4.4.

Theorem 4.4 (ii), (v) tells us that for any θ ∈ (0, 2π) the number of θ-eigenvalues
for s = π will be the same as the (signed) count of the number of conjugate points
for λ = 0, that is, that B3 = A3 = −A4 as soon as we chose λ∞ > 0 large enough
and s0 > 0 small enough. We now need to choose a small s0 > 0 as the arguments
in Theorem 4.4 (v) involve the curve Γ1 as defined in Remark 3.10.
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We recall that B3 = A3 due to Lemma 4.1 for any θ ∈ [0, 2π]. Also, for the
chosen value 3.2 of the parameter in the Mathieu equation it is known that λ = 0
is not a θ-eigenvalue for any θ ∈ [0, 2π], see [BO78, JS99].

Lemma 4.2 can be applied for the crossings at the conjugate points s∗ ∈ (0, π)
such that 3.2 cos 2s∗ > 0. For any θ ∈ [0, 2π] the latter inequality certainly holds
for the upper conjugate point in Figure 5, and thus the crossing form is positive
at this crossing by Lemma 4.2. At the lower conjugate point in Figure 5 the
inequality 3.2 cos 2s∗ > 0 does not hold for θ close to π, and thus one can not
use the sufficient condition (4.5) for the crossing form to be positive formulated in
Lemma 4.2. However, using the explicit formula for the crossing form in equation
(4.9), we computed directly the value of the crossing form at each crossing. As can
be seen from Figure 6, the crossing form is positive also for the lower conjugate
point. This implies that B4 = −A4 for the crossings in (0, π), and confirms the
equality B3 = A3 = B4 = −A4 in yet another way and for all θ ∈ (0, 2π).

0 2 4 6 8 10 12
Θ

2

4

6

8
Ω

Figure 6. A plot of the value ω = ω(v(s∗(θ)), v̇(s∗(θ))) of the
crossing form versus θ at the two conjugate points s∗ = s∗(θ). The
crossing form was computed using the right-hand side of equation
(4.9), and is positive.

The case as θ → 0 or θ → 2π poses more of a problem. As these two possibilities
are analogous, we consider, as usual, the case θ → 0. In this case the hypothesis
of Lemma 3.12 (ii) is not satisfied, so we can not expect to have a non-zero lower
bound limθ→0+ s

min
0 (θ), where smin

0 (θ) is defined as follows:

smin
0 (θ) := inf

{
s ∈ (0, L]

∣∣ for some λ > 0 on [−s, s] there exists a nonzero solution

of the boundary value problem (1.1), (1.3)
}
.

Indeed, as seen from the plot, limθ→0+ s
min
0 (θ) = 0 in the Mathieu example (see

Figure 5). One can choose, however, a sequence of nonzero θε that converges to zero
(see Figure 7). It is worth noting that the θε-eigenvalues stabilize away from zero,
even though the lower bound smin

0 (θε) tends to zero. This is because we have chosen
the parameter q in the Mathieu equation q = −1.6 so that 0 was not an eigenvalue
for any θ (and in particular for θ = 0). We could have similarly perturbed θε
away from zero in the negative direction, and we observe the same behavior. The
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Figure 7. We let θε → 0 and choose s0 = s0(θε) > 0 sufficiently
small. Although smin

0 (θε) → 0, for each θε we still have that λ =
0 is not a θε-eigenvalue, λ = 0 is not a (θε, s0)-eigenvalue, and
conclusions of Theorems 3.8 and 4.4 still hold.

numerical calculations can be summarized as follows: For small θ±ε, the values of
the θ-eigenvalues are 0.862 and 1.046, each of multiplicity one, while the conjugate
points are a small positive number and 2.926, each of multiplicity one.

It is also worth noting that even though the entire boundary curve Γ when
θ = 0 has to be defined for s0 = 0 as in Corollary 3.13 because (2.10) is not defined
at s = 0, the curves Γ3 and Γ4 are regular.

Alternatively, if θ = 0, we can pick a small s0 > 0 and define Γ1 and Γ4 as
described in Remark 3.10. In this case, the curve Γ4 contains only one conjugate
point (the upper conjugate point s∗ on the vertical line θ = 0, see Figure 5). Thus,
B4 = 1. Since cos s∗ > 0 for the upper conjugate point, by Lemma 4.2 we have
A4 = −B4 = −1. Since cos 0 > 0, we have Mor(V (0)) = 1, thus confirming the
count in (4.24) since B3 = 2 is the number of θ-eigenvalues when θ = 0.
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