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Abstract

A periodically inhomogeneous Schrödinger equation is considered. The inhomo-
geneity is reflected through a non-uniform coefficient of the linear and non-linear
term in the equation. Due to the periodic inhomogeneity of the linear term, the
system may admit spectral bands. When the oscillation frequency of a localized
solution resides in one of the finite band gaps, the solution is a gap soliton,
which is characterized by the presence of infinitely many zeros in the spatial
profile of the soliton. Recently, it is shown how to construct such gap solitons
through a composite phase portrait. By exploiting the phase-space method and
combining it with the application of a topological argument derived in [15], here
it is shown that the instability of a gap soliton can be described by the phase
portrait of the solution. Numerical calculations are presented accompanying
the analytical results. In addition to gap solitons, surface gap solitons located
at the interface between a periodic inhomogeneous and a homogeneous medium
are also discussed.

1. Introduction

A homogeneous nonlinear system may admit a localized solutions with a nat-
ural frequency residing in the first (semi-infinite) band-gap of the corresponding
linear system. When there is a periodic non-uniformity in the linear system,
additional finite band-gaps will be formed and the nonlinear system will admit
a novel type of solitons known as the gap solitons [3]. One main characteristic
of a gap soliton is the infinitely many number of zeros in the profile of the so-
lution, inheriting a characteristic of Bloch waves. Gap solitons are intensively
studied among others in nonlinear optics [2] and Bose-Einstein condensates [18].
Several reports on the experimental observation of gap solitons in the fields in
the one-dimensional setting are, e.g., [6, 10, 11, 23, 24, 31].
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Depending on particular underlying assumptions and specific limits, gap soli-
tons have been studied analytically through several different approaches. The
first theoretical approach is through the coupled-mode theory, which is based
on a decomposition of the wave field into a forward and backward propagating
wave [33, 6, 8]. The applicability and justification of the method can be seen
in [12, 26, 27]. The stability of gap solitons in this approach have been stud-
ied analytically in [22, 7, 4]. The second formal approximation to gap soliton
is through the so-called tight-binding approximation, which leads to a discrete
nonlinear Schrödinger equation (DNLS) [17]. In this approach, a gap soliton can
be related to the ’ordinary’ soliton through the so-called staggering transforma-
tion. The existence and the stability of discrete solitons in the uncoupled limit
of this approach has been discussed in [25]. The third analysis of gap solitons is
based on the approximation when the eigenfrequency of the localized modes is
close to one of the edges of the finite band gaps [13, 14, 28, 34]. In this case, the
envelope of the gap solitons is described by the nonlinear Schrödinger equation.
It is shown in [28] that gap solitons at least suffer from an oscillatory instability
because gap solitons possess internal modes.

Relatively recently, another analytical method was proposed by Kominis
et al. [19, 20, 21], employing a phase space method for the construction of an
analytical solitary wave. Even though the method is rather limited to piecewise-
constant coefficients, it was shown that the method is effective in obtaining
various types of localized modes belonging to gap solitons. For that new method,
the stability result was so far only obtained through numerical simulations.

The phase-space method proposed in [19, 20, 21] is similar to that used
in our recent work [16], where it was shown that the profile of a solution in
the phase-space can be used to describe its instability. The method was based
on the topological argument developed in [15]. Here, we propose to apply a
similar method to determine the stability of gap solitons obtained through the
phase-space method [19, 20, 21]. Despite the similarity in the proposed method
in investigating the instability of gap solitons, the problem is nontrivial. The
topological argument in [15] is so far immediately applicable to nonlinear sys-
tems with finite inhomogeneity (see [16] and references therein). By specifically
constructing the solutions, we show that the argument is also useful to study
gap solitons. In addition to inhomogeneities occupying the infinite domain, the
so-called surface gap solitons sitting at the interface between inhomogeneities
in the semi-infinite domain and a homogeneous region [31, 32, 21] will also be
studied. Our result will complement the numerical results on the stability of
surface gap solitons recently studied, e.g., in [9, 5].

The paper is outlined as the following. In Section 2, the governing equations
are discussed and the corresponding linear eigenvalue problem is derived. The
construction of gap solitons using the phase-space method is briefly explained.
The instability of gap solitons is studied analytically in Section 3 using the
topological argument. In Section 4, the linear eigenvalue problem for several
gap solitons is solved numerically, where an agreement between the analytical
results presented in the previous section is obtained. In the same section, the
instability of surface gap solitons is also discussed. We conclude the paper in
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Section 5.

2. Mathematical model

We consider the following governing system of differential equations

iΨt +Ψxx + |Ψ|2Ψ = VΨ x ∈ UO := R \ UI

iΨt +Ψxx − η|Ψ|2Ψ = 0 x ∈ UI
(1)

where the ‘outer’ equation has focusing type nonlinearity, the ‘inner’ equation
can be defocusing (η > 0) or linear (η = 0), and UO, UI are disjoint sets of
intervals to be specified later.

To study standing waves of (1), we pass to a rotating frame and consider
solutions of the form Ψ(x, t) = e−iωtψ(x, t). We then have

iψt + ψxx + |ψ|2ψ = (V − ω)ψ x ∈ UO,
iψt + ψxx − η|ψ|2ψ = −ωψ x ∈ UI .

(2)

Standing wave solutions of (1) will be steady-state solutions to (2). We consider
real, t independent solutions u(x) to the ODE:

uxx = (V − ω)u− u3 x ∈ UO,
uxx = −ωu+ ηu3 x ∈ UI .

(3)

To obtain solutions that decay to 0 as x → ±∞, the condition that V − ω > 0
is required, with ω ∈ R+. We will also require that ux → 0 as x → ±∞. To
establish the instability of a standing wave solution we linearize (2) about a
solution to (3). Writing ψ = u(x) + ǫ

(

(r(x) + is(x))eλt + (r(x)⋆ + is(x)⋆)eλ
⋆t
)

and retaining terms linear in ǫ leads to the eigenvalue problem

λ

(

r
s

)

=

(

0 D−
−D+ 0

)(

r
s

)

=M

(

r
s

)

, (4)

where the linear operators D+ and D− are defined as

D+ =
∂2

∂x2 − (V − ω) + 3u2, x ∈ UO,
∂2

∂x2 + ω − 3ηu2, x ∈ UI ,
(5)

D− =
∂2

∂x2 − (V − ω) + u2, x ∈ UO,
∂2

∂x2 + ω − ηu2, x ∈ UI .
(6)

It is then clear that the presence of an eigenvalue of M with positive real part
implies instability.

In [19] a gap soliton was constructed via a method of superimposing the
phase portraits of the ‘outer’ system:

ux = y, yx = (V − ω)u− u3, (7)
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Figure 1: The plot of a gap soliton of (3) in (a) the physical space, (b) the phase-space. The
parameter values are explained in Section 4.

and the ‘inner’ one:
ux = y, yx = −ωu+ ηu3. (8)

We can view the composite picture as a single, non-autonomous system with
phase plane given by:

ux = y,

yx =

{

(V − ω)u− u3, x ∈ UO,
−ωu+ ηu3, x ∈ UI .

(9)

In the phase plane of (7), the outer system admits a soliton solution, given
by the equation:

y2 = (V − ω)u2 − u4

2
, (10)

while solution curves of the inner system are given by

y2 = −ωu2 + ηu4

2
+ C. (11)

The inner system (8) admits a heteroclinic orbit in the phase plane given by
C = ω2/2. The solutions we are interested in will travel in the phase plane along
the homoclinic orbit of the outer system described by (10) and then ‘flip’ to the
inner system as x passes through UI , and then ‘flip’ back to the outer system
along the homoclinic orbit, repeating the process for each of the components of
UI (see [19]).

Let US be the collection of intervals US = [0, x0) ∪ (x1, x2) ∪ (x3, x4) . . .. In
the case of a gap soliton, UI = −US ∪ US , and we have that the number of
components of UI is infinite and the x′is are chosen so that the soliton travels
from (u0, y0) along the inner system to (−u0,−y0). This is a key ingredient
in the construction of the soliton, and will play a large role in establishing
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instability. In [19], the inner system is linear, and the length of the interval
(x2k, x2k−1) can be determined as π/

√
ω. Here, we do not require that the

inner system be linear, however we do require that the x′is be chosen so that if
i ≥ 1, the soliton travels from (u0, y0) on the homoclinic orbit along the inner
system to (−u0,−y0), which is also on the homoclinic orbit.

In Figure 1, we plot an example of a gap soliton of the governing equation
(1) for parameter values that will be explained in Section 4. One can notice
the main characteristic of gap solitons in the plot, which is the infinitely many
zeros in the soliton profile.

3. Instability Results

To show instability of the standing waves, we will show that the matrix M
from above has a real positive eigenvalue. This is done by applying the main
theorem of [15]. In [16], systems like (1) were considered with UI = (−L,L),
for some real number L. One can show that the following quantities are well
defined (see for example [15], and the references therein):

P = the number of positive eigenvalues of D+

Q = the number of positive eigenvalues of D−.

We then have the following:

Theorem 1 ([15]). If P − Q 6= 0, 1, there is a real positive eigenvalue of the
operator M .

From Sturm-Liouville theory, P and Q can be determined by considering solu-
tions of D+v = 0 and D−v = 0, respectively. In fact, they are the number of
zeros of the associated solution v. Notice that D−v = 0 is actually satisfied by
the standing wave itself, and that D+v = 0 is the equation of variations of the
standing wave equation. It follows that:

Q = the number of zeros of the standing wave u.
P = the number of zeros of a solution to the variational equation along u.

(12)
For gap solitons, it is not immediately clear how to apply Theorem 1 above

as in this case, both, P and Q → ∞. The idea presented in this paper is to
build an approximation to a gap soliton using more and more intervals of UI for
which the quantity P −Q remains constant. To this end define S0 = [0, x0) and
Sn = [0, x0) ∪ (x1, x2) ∪ (x3, x4) ∪ . . . (x4n−1, x4n), where (xi, xi+1) ⊆ US . Thus
Sn adds two more components for each n. Then we can define Un = −Sn ∪ Sn,
and we let fn be a solution to the ODE

fxx = (V − ω)f − f3, x ∈ R \ Un,
fxx = −ωf + ηf3, x ∈ Un.

(13)

Thus for example f0 would be the solution to

fxx = (V − ω)f − f3, |x| ≥ x0,
fxx = −ωf + ηf3, |x| < x0,

(14)
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while f1 would be a solution to

fxx = (V − ω)f − f3, x /∈ (−x4,−x3) ∪ (−x2,−x1) ∪ (−x0, x0) ∪ (x1, x2) ∪ (x3, x4)
fxx = −ωf + ηf3, x ∈ (−x4,−x3) ∪ (−x2,−x1) ∪ (−x0, x0) ∪ (x1, x2) ∪ (x3, x4).

(15)
A gap soliton then can be realized as the limit of successive fn’s (in a variety
of norms, but in particular in the L2 and H1 norms). In Figure 2 we present a
plot of fn, n = 0, 1, 2, approximating the gap soliton in Figure 1.

We have the following theorem

Theorem 2. The quantity P −Q is the same for all fi described above. Thus
if f0 is unstable then so is fn for all n. Further, if f0 is unstable, then so is f ,
the gap soliton, corresponding to the limit.

The key idea is to use the interpretation of P and Q given in (12) as the
number of zeros of the solution f and the number of zeros of the solution to
the variational equation along f , for the partial solution defined on (xi, xi+4),
to the ODE below:

fxx = (V − ω)f − f3, x ∈ (xi+1, xi+2) ∪ (xi+3, xi+4)
fxx = −ωf + ηf3, x ∈ (xi, xi+1) ∪ (xi+2, xi+3).

(16)

The number Q is straight forward to calculate. We make the geometric
observation as in [16] that P , the number of zeros of a solution to the equation
of variations along f , can be found by determining the number of times that a
vector must pass through the vertical as the base point ranges over the entire
orbit. It turns out that for the solution of (16) defined above, the rotation of a
vector by the equation of variations is the same (mod 2π) as if the base point
had traveled along only the outer homoclinic orbit.

Example 1. To better illustrate this last point, we first consider the case when
both the inner system and the outer systems are linear. That is we have the
following systems of linear, constant coefficient equations

(

u
y

)

x

=

(

0 1
(V − ω) 0

)(

u
y

)

, when x ∈ (xi+1, xi+2) ∪ (xi+3, xi+4) (17)

=

(

0 1
−ω 0

)(

u
y

)

, when x ∈ (xi, xi+1) ∪ (xi+2, xi+3) (18)

The solution to the above equation can be written explicitly. Further, because
we are in the linear case, we have that the equation of variations along a solution
is the same as the equation itself (17 18).

Being led by the geometry of the phase plane, we let Φ1(a, b) denote a
fundamental solution matrix to the equation of variations of the outer system
of equations (17) along a solution to (17) which travels from point a to point b
in the phase plane. That is let (u(x), y(x)) be a solution to (17), considered on
the interval (xj , xk). Then set a := (u(xj), y(xj)) and b := (u(xk), y(xk)), and
define Φ1(a, b) to be a fundamental solution matrix of the equation of variations
to the outer system, along the path (u(x), y(x)) with x ∈ (xj , xk).
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Figure 2: Successive approximations to a gap soliton in Figure 1 in the physical space (a,c,e)
and in the phase-space (b,d,f). The first, second and third row is respectively f0, f1, and f2.
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Figure 3: A sketch of a phase portrait of the partial solution to equation (16). The points ai
correspond to the points (f(xi−1), fx(xi−1)) in the phase plane.

Similarly, let Φ2(a, b) be a fundamental solution matrix to the equation of
variations of the inner system (18), along a solution to (18) evolving from point
a to point b. We denote by a0, a1, a2, a3, the points in the phase plane of (17, 18)
where the solutions switches between the two systems, and a4 the point where

we stop evolving (see Figure 3), and we let

(

ζ0
ξ0

)

be a pair of initial conditions

in the tangent plane to R
2 at the point a0. We have that a solution to the

equation of variations along the orbit from a0 to a1 to a2 to a3 to a4 can be
described as

Φ1(a3, a4)Φ2(a2, a3)Φ1(a1, a2)Φ2(a0, a1)

(

ζ0
ξ0

)

.

It turns out that modulo 2π,

Φ1(a3, a4)Φ2(a2, a3)Φ1(a1, a2)Φ2(a0, a1)

(

ζ0
ξ0

)

= Φ1(a0, a4)

(

ζ0
ξ0

)

(19)

The equality in equation (19) can be verified by solving the appropriate systems.
Another way to see the effect is to consider the following. As the base point
evolves under equation (17 18) from ai to ai+1, we can consider the aggregate

effect of a Φj(ai, ai+1) on a tangent vector

(

ζ0
ξ0

)

, as a linear map from R
2 → R

2,

by simply determining where a tangent vector to ai gets sent to, when the base
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point is at ai+1. That is we are considering Φj(ai, ai+1) as a map between the
tangent plane of R2 at the point ai to the tangent plane of R2 at the point
ai+1. This will give us the total rotation of a tangent vector modulo 2π as
we travel from point ai to point ai+1 along the orbit. The key observation is
to realize that for Φ2(a0, a1) and Φ2(a2, a3), this will be negative the identity
−Id. That is, viewing Φ2(aj , aj+1) j = 0, 2 as a map between tangent spaces
of R2, Φ2(aj , aj+1) : Taj

R → Taj+1
R j = 0, 2, we have Φ2(aj , aj+1) = −Id.

Moreover, by considering Φ2(aj , aj+1) in this way, we are just measuring the
effect of rotation by Φ2(aj , aj+1) on an initial tangent vector modulo 2π, and
we have that

Φ1(a3, a4)Φ2(a2, a3)Φ1(a1, a2)Φ2(a0, a1)

(

ζ0
ξ0

)

= (−Id)2Φ1(a3, a4)Φ1(a1, a2)

(

ζ0
ξ0

)

= Φ1(a0, a4)

(

ζ0
ξ0

)

,

(20)

, where the last equality follows from the facts that a0 = −a1, a2 = −a3, the
outer system of equations (17) is symmetric about the origin, and the group
property of variational flows.

We are now ready to state the main lemma used in the proof of theorem 2.

Lemma 1. Redefine Φ1(a, b) and Φ2(a, b) as in the above example, but instead
of using the linear ODE, let them be the fundamental solution matrices to the
equations of variations along solutions to the inner and outer systems given in
the nonlinear equation (16):

fxx = (V − ω)f − f3, x ∈ (xi+1, xi+2) ∪ (xi+3, xi+4)
fxx = −ωf + ηf3, x ∈ (xi, xi+1) ∪ (xi+2, xi+3).

Likewise, let aj be defined analogously for the points in the phase plane of the
nonlinear equation where the orbit switches between the inner and outer systems.

Also, let

(

ζ0
ξ0

)

be an initial condition to the equation of variations along a

solution to (16) in the tangent plane to R
2 at a0. Then we have the following:

Φ1(a3, a4)Φ2(a2, a3)Φ1(a1, a2)Φ2(a0, a1)

(

ζ0
ξ0

)

= Φ1(a0, a4)

(

ζ0
ξ0

)

(21)

Proof. The exact same reasoning can be used to prove Lemma 1 (the nonlinear
case), as was used in the example (the linear case). The only difference is that in
order to determine the aggregate effect of the inner system on an initial tangent
vector some more care must be taken with the matrices Φ2(ai, ai+1). Write the
equation of variations to the outer system as
(

ζ
ξ

)

=

(

0 1
−3u21 + V − ω 0

)(

ζ
ξ

)

, when x ∈ (xi+1, xi+2) ∪ (xi+3, xi+4), (22)
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where u1(x) is the equation satisfying the outer system with limx→±∞ u1(x) =
limx→±∞ u′1(x) = 0. Write the equation of variations of the inner system as

(

ζ
ξ

)

=

(

0 1
3ηu22 − ω 0

)(

ζ
ξ

)

, when x ∈ (xi, xi+1) ∪ (xi+2, xi+3), (23)

where u22 satisfies the appropriate conditions for the orbit. Now here is where
the appropriate choices of the xi’s must come into play. In the linear case, the
xi’s were chosen so that the length of an interval in UI was π√

ω
. Here we choose

the xi’s in UI so that the length of an interval is such that we will return not
only to the homoclinic orbit, but also if we leave the homoclinic orbit at the
point (u0, y0), we will return to the homoclinic orbit at the point (−u0,−y0).
This allows us to determine the effect of the rotation (modulo 2π) by the flow
associated to the equation of variations along the partial orbit (u2(x), y2(x)).
In fact, we claim that the exact same is true as in the linear case. If B is the
linear map from the tangent space at a0 and at a2 to the tangent spaces at a1, a3
respectively, then B = −Id. To see this we will write out B in a suitable basis
~v1, ~v2 of the tangent space at a0. One obvious choice of a basis vector is the
tangent vector to the inner system. However given equation (23), and the fact
that along an orbit (u0, y0) → (−u0,−y0), this means that if ~v1 is the vector
tangent to the inner orbit at a0 (or a2), then under B ~v1 → −~v1. This means
that B has the form:

B =

(

−1 b1,2
0 b2,2

)

, (24)

where bi,j are the coefficients of the linear combination of ~v1 and a suitably
chosen ~v2. Now we appeal to two facts about the matrix B which are evident
from it’s definition. The first is that B must be orientation preserving. This is
an elementary consequence due of the fact that it is the matrix of a flow (see
for example [29]). This means that b2,2 must be negative. The second fact is
that since B corresponds to the matrix of the equation of variations traveling
half way along the periodic orbit given by (u2(x), y2(x)) (because we chose our
xi’s so it would be that way), we must have that B2 = Id. But this means that
b1,2 = 0 and b2,2 = −1 and the matrix B itself B = −Id. Now we simply repeat
the computation done in equation (20) and the proof of Lemma 1 is complete.

We are now ready to complete the proof of theorem 2 .

Proof of Theorem 2. Recall that fn as constructed is the solution to the
ODE (13). We let Pn and Qn denote the count for fn of P and Q respectively.
Lemma 1 shows that Pn−1 = Pn +2 and it is clear that Qn−1 = Qn, and so the
quantity Pn −Qn is the same for all fn, and in particular is equal to P −Q for
f0. This completes the first part of the proof of theorem 2.

In order to determine the instability of the limit soliton we must proceed
topologically using the methods developed in the proof of the main theorem of
[15].
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We have already discussed that in H1, fn → f a solution to

fxx = (V − ω)f − f3 x ∈ R \ UI ,
fxx = −ωf + ηf3 x ∈ UI .

(25)

Following [15] we can associate to each solution fn a curve γn(x), and to f
a curve γ(x) in Λ(2) the space of Lagrangian planes in R

4.
This is done as follows. Let Φn

L+
(x) denote the evolution operator of the

ODE corresponding to the equation of variations of the ODE (13) along the
solution fn. Likewise, let ΦL+

(x) denote the evolution operator of the ODE
corresponding to the equation of variation of the ODE (25) along the solution

f = lim
n→∞

fn. Thus if

(

v0
w0

)

is a pair of initial conditions at x = 0, then for any

x ∈ R we have that the evolution of

(

v0
w0

)

under the equation of variations along

f , fn respectively will be given by

(

ΦL+
(x) · v0

ΦL+
(x) · w0

)

, respectively

(

Φn
L+

(x) · v0
Φn

L+
(x) · w0

)

.

We remark that the initial conditions

(

v0
w0

)

will be the same for each fn as

well as for f .
Again appealing to [15], we can explicitly write the curves γn(x) and γ(x)

in the space of Lagrangian planes Λ(2) ≈ U(2)/O(n). This is given by

γn(x) =

(

eiθ1,n(x) 0
0 eiθ2,n(x)

)

(26)

where

θ1,n = 2 arctan(
Φn

L+
(x) · w0

Φn
L+

(x) · v0
) and, θ2,n = −2 arctan(

f ′
n(x)

fn(x)
) (27)

and

γ(x) =

(

eiθ1(x) 0

0 eiθ2(x)

)

(28)

where

θ1 = 2 arctan(
ΦL+

(x) · w0

ΦL+
(x) · v0

) and, θ2 = −2 arctan(
f ′(x)

f(x)
) (29)

Now we observe that the curves γn(x) and γ(x) actually lie on a torus contained
in Λ(2).

It was established in [15] that because fn and f are solutions corresponding
to homoclinic orbits in the phase plane of equations (13),and (25), the curves
γn(x), and γ(x) have well defined end points. Let µ−,n, µ+,n be the endpoints
in Λ(2) of γn(x). That is, let

lim
x→−∞

γn(x) = µ−,n and, limx→∞γn(x) = µ+,n

11



and set
lim

x→−∞
γ(x) = µ− and, limx→∞γ(x) = µ+.

Further because fn → f and lemma 1, we have that µ−,n = µ−, and µ+,n = µ+

for all n. In the previously introduced coordinates on the torus in Λ(2) this
means that the limits of θ1,n, θ2,n are equal to the limits of θ1(x) and θ2(x) as
x → ±∞. Moreover, it is easy to calculate explicitly that

θ1(x) → 2 arctan(
√
V − ω) := θ− and, θ2(x) → −θ−

as x→ −∞.
Still following the outline laid out in [15], we denote by˜the lift of the point

(or curve) in the torus embedded in Λ(2) to its corresponding point in the
universal cover of the torus, R2. We will parametrize the universal covering of
the torus in the obvious way. Without loss of generality, all of the µ−,n’s and
µ− can be lifted to the same point µ̃− = (θ−,−θ−). It was shown in [15] that
for each n, µ+,n lifts to the point µ̃+,n = (±θ−, θ− + (P −Q)2π. Thus lemma
1 implies that each µ+,n lifts to the same point µ̃+,0 = (±θ−, θ− + 2πk),

Next we observe that as fn → f pointwise, γn(x) → γ(x) in the torus inside
Λ(2) pointwise, and the compactness of the torus and of Λ(2), means that the
end point µ+ must lift to the same point in the cover as µ+,0. Thus we have
that µ̃+ = (±θ−, θ− + 2πk).

Finally, it was shown in [15], that if |k| 6= 0, 1, then the corresponding soliton
underlying the curve γ is unstable. This completes the proof of theorem 2

Remark 1. The proof of theorem 2 may also be couched in the language of
fixed end point homotopy classes. There are several ways to define such classes,
see for example [30] or [1], and the references therein. In this context theorem 2
establishes that the fixed end-point homotopy class of the curve γ is the same as
those for γn(x). An immediate consequence of this observation is that in Λ(2),
it is possible to deform the curves γ, and γn all to the curve γ0, in a continuous
way.

Remark 2. One can also consider so-called surface gap solitons, and obtain
exactly the same results as for theorem 2. Mathematically, a surface gap soliton
is the evolution of the solution to equation (25) but with the chosen intervals UI

replaced by US, defined earlier. In this case, we consider a sequence of functions
fn which are solutions to equation (13), but with Un replaced by Sn. Then the
functions fn → f , a solution to (25) with the appropriate replacements. Lemma
1 holds, as well as theorem 2, and the techniques used in each will be identical.
Thus if we start with an unstable solution, then the surface gap soliton that we
obtain in the limit will also be unstable. (See below for a further discussion of
surface gap solitons).

4. Numerical solutions and Discussion

We have solved the time independent equation (3) numerically, where we
have used a spectral difference method to approximate the Laplacian uxx. Once
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a solution is obtained, the corresponding eigenvalue problem (4) is solved using
a MATLAB routine. The time dependent equation (1) is integrated numerically
using a fourth-order Runge-Kutta method. Throughout the paper, we consider
the parameter values

V = 1, ω = 0.5.

First, we study Equation (1) with

η =

{

1, x ∈ (−x0, x0),
0, x ∈ (x2n+1, x2n+2), (−x2n+2,−x2n+1),

(30)

where x0 = 2, x2n+1 − x2n = 1, x2n+2 − x2n+1 = π/
√
ω and n = 0, 1, 2, . . . . A

gap soliton for the above periodic inhomogeneity is depicted in Figure 1.
Theorem 2 implies that to determine the instability of the gap soliton, it

suffices to determine the instability of the corresponding solution f0 shown in
panel (a,b) of Figure 2. As discussed in [16], the positive solution f0 is unstable,
with P = 2 and Q = 0. We plot λ+, i.e. the eigenvalues of the operator D+,
in Figure 4. As shown in the figure, for f0 there are two positive eigenvalues
of D+, i.e. P = 2. The matrix M in (4) for the solution has one pair of real
eigenvalues [16] in agreement with Theorem 1.

0 0.5 1 1.5
−0.1

−0.05

0

0.05

0.1

Re(λ
+
)

Im
(λ

+
)

 

 

f
0

f
1

f
2

Figure 4: The positive eigenvalues of the operator D+, i.e. λ+. One symbol corresponds to
two different, but very close eigenvalues.

According to Lemma 1, fn must have the same value of P − Q as f0. In
the same figure, we obtain that f1 and f2 respectively has P = 6 and P = 10.
Considering the fact from Figure 2 that f1 and f2 respectively has Q = 4 and
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Q = 8, we indeed obtain that P −Q = 2 for both f1 and f2. Using the lemma,
one will obtain that P − Q = 2 for limn→∞ fn. Using Theorem 2, one can
conclude that the gap soliton in Figure 1 will be unstable. We depict in Figure
5(a) the eigenvalue structure of the gap soliton in the complex plane. When the
corresponding f0 of the gap soliton has one pair of real eigenvalues [16], the gap
soliton has several pairs of unstable eigenvalues. Nonetheless, one can easily
notice that there is only one pair of real eigenvalues, similarly to f0 [16]. The
time dynamics of the solution is shown in panel (b) of the same figure, where a
typical instability is in the form of the dissociation of the solution.

Next, we study Equation (1) with

η =

{

1, x ∈ (−x0, x0),
0, x ∈ (x2n+1, x2n+2),

(31)

for the same values of xn, n = 0, 1, 2, . . . , as above. The only difference with η
defined in Equation (30) is that the present periodic inhomogeneity only occu-
pies the x > 0-region. In this case, we will have surface gap solitons sitting at
the interface between a homogeneous and a periodically inhomogeneous region.
A corresponding surface gap soliton of that in Figure 1 and one of its successive
approximations f1 are shown in Figure 6. The f0 approximation of the soliton
is nothing else but that shown in Figure 2(a).

Using Theorem 2 and Remark 2, one can expect that in this case P −Q = 2.
Plotted in Figure 7(a) is the positive eigenvalues of D+, i.e. λ+. The positive
eigenvalue λ+ of f0 is the same as before, which is P = 2. For f1 and f2, from
Figure 7(a) one can deduce that P = 4 and P = 6, respectively, with Q = 2
and Q = 4. Hence, the limiting quantity P − Q of the surface gap soliton is
the same as that of the gap soliton in Figure 1, i.e. P − Q = 2. As expected,
shown in Figure 7(b) is the eigenvalue structure of the gap soliton, where one
also obtains one pair of real eigenvalues similarly to the stability the gap soliton
depicted in Figure 5(a). We plot the time dynamics of the surface gap soliton
in Figure 8.

5. Conclusion

We have considered a nonlinear Schrödinger equation with periodic inho-
mogeneity, both in the infinite and semi-infinite domain. Specifically we have
studied the instability of gap solitons admitted by the system. We have estab-
lished a proof that if the periodic inhomogeneity is arranged in a particular way,
such that parts of the solutions belonging to closed trajectories in the phase-
space have length half the period of the trajectories, then the solitons inherits
the instability of the corresponding solution with finite inhomogeneity. The an-
alytical study is based on the application of a topological argument developed
in [15].

It is natural to extend the study to the case when the solutions are localized,
but do not tend to the uniform zero solution (see, e.g., [20]). The (in)stability
of such solitons is proposed to be studied in the future using analytical methods
similar to that presented herein.
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Figure 5: The eigenvalue structure in the complex plane (a) and the typical time evolution
(b) of the gap soliton in Figure 1. Shown in (b) is the top view of |ψ(x, t)| in the (t, x)-plane.
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(a) (b)

Figure 6: (a) A corresponding surface gap soliton of that in Figure 1. (b) An f1 approximation
of (a).
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