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Abstract
We present a scaling theory for unforced inviscid two-digienal turbulence. Our model unifies exist-
ing spatial and temporal scaling theories. The theory iethas a self-similar distribution of vortices of
different sizesA. Our model uniquely determines the spatial and tempordiirgraf the associated vortex
number density which allows the determination of the enasggctra and the vortex distributions. We find
that the vortex number density scalesds, t) ~ t—2/3 /A, which implies an energy spectrufn~ k=5,
significantly steeper than the classical Batchelor-Knagrhscaling. High-resolution numerical simulations

corroborate the model.
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There has been a renewed interest in two-dimensional embelin recent years, motivated by
its applicability as a simple model for large-scale geojtaislows. The earth’s atmosphere has
an approximate two-dimensional structure, as the tropagpis only approximatelyOkm deep,
while the horizontal extension is more thaf, 000km. Moreover, the fast rotation of the earth
leads to a vertical alignment enhancing the two-dimensidmaracter of large-scale dynamics. As
a result, two-dimensional turbulence has been regardeleasimplest model for understanding
some of the mechanisms in turbulent transport in atmospled oceanic flows.

In the seminal work by Batchelor [1] and Kraichnan [14, 15]pedral approach, local in
wavenumber space, was adopted to deduke’ascaling of the energy spectrum in the inertial
range, which is dominated by nonlinear transport and is imectly affected by viscosity. Ac-
cording to their theory, two-dimensional turbulence isreleterized by an inverse energy cascade
primarily towards larger scales, a property first noted bys&yger [16], and a direct enstrophy cas-
cade primarily towards smaller scales [7, 12]. There iseasing numerical evidence however
that the actual spectrum is significantly steeper than tlebcated Batchelor-Kraichnan spectrum,
see for example [2, 4, 19]. It has been argued that vortexmdigsaand coherent structures, which
are local in physical space and therefore non-local in sakspace, are responsible for the devia-
tions from the Batchelor-Kraichnan theory. Most of the @yan a turbulent flow is contained in
vortices which spontaneously form out of initial randomdgel

In a series of papers [2, 3, 5, 18] several scaling theorige baen proposed which take into
account the dynamical importance of vortices. In [2, 3] tlgebraic scaling of the energy spec-
trum was linked to an emerging distribution of vortices watteaA having an algebraic number
densityn(A) ~ A~P. (The aread of a vortex may be defined as the size of a contiguous region
having vorticity e.g. exceeding the r.m.s. vorticity ovhetdomain.) The exponeptwas deter-
mined by fitting to numerical simulations. A temporal scgliof the vortex number density was
proposed in [5, 18]. Assuming that, in addition to energyg thaximal vorticity during vortex
interactions is conserved, dimensional arguments lead~tot—¢. The analysis however assumes
vortices of one particular size, and does not predict theevaf the scaling exponetit Here we
present a model which unifies the spatial and temporal gcéli@ories and moreover, determines
the vortex number density ag A) ~ t=2/3 /A on using self-similarity. Our theory is supported by

high-resolution numerical simulations.
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Following [3] we write the total conserved enstrophy pertamea as

Q:/O Q(k)dk:/o K*E(k) dk 1)

whereQ)(k) and (k) are the enstrophy and energy spectra at wavenurhbeConsidering a
population of vortices with a vortex number density4) of vortices with aread we write

1

QUI2AS

As
/ wiAn(A)dA , (2)
0

where(), is the part of) associated with the vortices,, is the vorticity magnitude, and, is an
arbitrary domain size. We now assume that most of the energyritained within the vortices, and
that the vorticity of each vortex, does not vary for vortices with different areds ldentifying

A ~ k7% sothatdA ~ k=3 dk, comparison of (1) and (2) gives the energy spectrum
E(k) ~ WA I (A)k". (3)

The vortex number density is assumed to be of the fofm) ~ A~7 implying £ ~ k=727,
Up to here our analysis is equivalent to the one performedjn Thereinp is determined by
numerically fitting the energy spectrum (3) for a prescrilvedtex distribution. Note that the
classical Batchelor-Kraichnan spectrum is recoveredpfet 2. In the following however, we
show that onlyn(A) ~ A~! allows for a self-similar vortex distribution. The energyestrum

associated with a self-similar vortex distribution thealss as
E(k) ~ k7. (4)

To study scale-invariance of a vortex distribution we firstide the area fraction of an arbitrary

areaA, occupied by vortices

1

Amax
fo= Z/o An(A)dA .

Here A,... is the maximal vortex size ial,. Each vortex with areal occupies aone the area
of which is A/ f,. The sum of all zones is equal to the total area Now consider a subdomain
Ay < Amax Which is populated by non-overlapping vortices with areas< A,. Arguably,
these vortices typically populate an arég,, which is not already occupied by zones of vortices
with areaA > A, since strong shear surrounding these vortices would tesat amaller vortices
nearby, as explicitly demonstrated in [9]. This left-ovezais just

1 [Ao
Arern = —/ An(A) dA .
fv 0
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Self-similarity means that the ratid, /A,.., must be independent of the subdomain The only
choice forn(A) with this property is
n(A)=—. (5)

Note that for such a density the number of vortices betweénand Ay, 1 < 1, is

Ao .
N, = / —dA=clnpy™?t, (6)
pAo A

which is independent of the subdomadp, again illustrating the self-similarity associated with
the special form of the vortex number density (5).

Next we study the temporal behaviour of the number density, t) = ¢(¢)/A. We generalize
the approach of [5]; instead of a gas of equal-sized vortiwesconsider a distribution of vortices

with a maximum vortex radiug(t) ~ v/ Anmax. The total energy scales as

1
E = 2 dxdy ~
2AS/‘“‘ RNV

where we again assume thatdoes not vary with the vortex arel Conservation of energy then

Amax
/ w2A?n(A)dA ~ ca
0

impliesc ~ a~*. The scaling of the enstrophy and the area fraction can teesbtained as
Qu(t) ~a™? and fo(t) ~a™?. (7

The temporal behaviour of the maximal vortex raditis) is determined by the rate of enstrophy
transfer from vortices to filament&), /dt. This transfer occurs through destructive vortex inter-
actions. Vortex interactions typically involve three voes, e.g. two vortices brought together by
a third. The simplest model of this, and statistically thestrmmmon situation, is the interaction
of a vortex dipole with a third, isolated vortex. The dynaatignportance of this mechanism for
enstrophy transfer has been known for some time and has leeified for a dilute population of
vortices in [10]. This interaction can be destructive arglites in the transfer of enstrophy from
the vortex population to small-scale filaments. Self-samiy now implies that the enstrophy at
any scalew?An(A)dA, decays at a rate which is independent of scale. We theretprate

dQ, Qy
~ —Pco s 8
i b 1Tint (8)

wherep., is the collision probability of a dipole with smaller voréis and7;,; is the time for

a dipole to travel a characteristic inter-vortex distam¢g. Since the collision probability is
proportional to the vortex number density we hayg ~ ¢ ~ a~*. Using (6) the characteristic

inter-vortex distance(t) of vortices with sizes betweenA, and 4, is given by

r e (Ag/N)V2 ~ (Ag/e)V? ~ A a? . 9)
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The typical timeT;,;, which measures the time a dipole of aréaand width proportional to¢1é/2

travels a distance, can be estimated as

wy Ao o AL2

Az

T, with Ugp = (10)

nt — )
Udip

being a characteristic dipole velocity. Note this implieg ~ a2, independent ofl, as required
by self-similarity. Substituting (9)—(10) into (8) we obtaa differential equation for the size of
the largest vortices
1 da 1 . . . 1/6
53 ~ o5 Wwhichimplies a(t) ~ /s
Together with (5) this uniquely determines the vortex nundensity
t72/3

n(A,t) ~ (11)

Furthermore via (7) we can determine the temporal scalifgeur of the enstrophg),(¢) and

the area fractiorf, () as
Qu(t) ~ 7% and  fy(t) ~ TP (12)

We note that the temporal decay ratef the vortex number density gf= 2/3 is consistent with
previous numerical estimates [3—6, 18]. Our approach o$icaning a self-similar vortex distri-
bution allows a unique determination of the spatial and @mapscaling behaviour of the vortex
densityn(A, t) and subsequently of the total vortex enstrophyt) and area fraction occupied by
vorticesf,(t).

To corroborate our model, ensemble statistics were deteainfrom 20 high-resolution nu-

merical simulations carried out using the CASL algorithmhydorid contour dynamics/spectral
method capable of accurately modelling an especially wahgye of scales [8], with great care
taken to minimise the numerical dissipation over long irdéign times (details will be published
elsewhere). Each simulation began with a random-phaseititpdistribution with energy spec-
trum&(k) = ak?® exp(—2k?/k2), with ky = 32 anda chosen so thatl = 1/2. ThenQ(0) = k2/2.
In time, numerical dissipation strongly reduggswhereast’ remains conserved to within a few
percent, consistent with previous studies. Importantig numerical dissipation here acts only
on thin vorticity filaments, not on sharp vorticity gradisnthereby preserving many small-scale
vortices.

Each of the 20 simulations differed only in a random numbedseEach was run for 160
‘eddy rotation periodsT.qy, = 47 /wims(0), Wherew,s(0) = 1/2Q(0) = ko is the initial r.m.s.
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FIG. 1: Vorticity field att = 4 (left) andt = 160 (right) in one representative simulation. A linear greysca

is used, with the highest positive vorticity being white.l{ph/16th of the domain is shown.

FIG. 2: Full vorticity fieldw(x,t = 16) (left) and its corresponding coherent part (right). Ohji6th of

the domain is shown.

vorticity. Time is measured in units @f.4q,. The most intense vortices rotate 4 to 5 times in one
such unit of time.

The simulations use a bagit2 x 512 ‘inversion grid’ for computing the velocity field, while a
much finer resolution is used to represent the vorticity,@gaurs, down to scales of a twentieth
of the basic grid size [8]. This results in an accurate regaveion of the vorticity dynamics down
to the scale of numerical dissipation. The vorticity evmntin one representative simulation at
early and late times is shown in figure 1.

To test the above scaling theory, coherent vortices wenetifikxd by computing contiguous
regions of vorticity with|w| > w.m(t), and aspect ratia < 2 + v/3 ~ 3.73. Doubling or halving
these thresholds has little effect on the following resufidigure 2 we show the full vorticity field
of one representative simulationldt eddy rotation periods and its corresponding coherent [gart a
defined above.

The vortex aread and the mean vorticity, associated with the coherent vortices can then be

calculated ast = I'? /5 andw, = n/T" with enstrophy of a coherent vortexand circulation of a
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FIG. 3: Ensemble averaged normalised number density @aff)mean vorticity, (right) versus area, in

logarithmic scalest = 0 is shown by a dashed line with diamonds, < ¢ < 30 (averaged) is shown by a

thin line with squares, anth0 < ¢t < 160 is shown by a bold line with triangles.

coherent vorteX". The vortex number density(A) and the mean vorticity, are subsequently
estimated by averaging ovee logarithmically spaced bins betweeh= 10~° and A = 10~
The data were further ensemble averaged oveRthealizations and time-averaged.

The normalised number density= n(A)/N, is shown in figure 3 (left) time-averaged over
several intervals. The late time density clearly scales(@s) ~ 1/A over 3 decades in area,
consistent with the prediction of our self-similar theo@n the right in figure 3, we show,(A)
over the same time intervals. There is no systematic depeeden A, andw? varies by only
one order of magnitude over four orders of magnitudelinand much less than this ferd <
log(A) < —1, where arguably the flow is better resolved. This dependencé is extremely
weak, justifying the assumptian, ~ constant.

In figure 4, the enstrophy spectrufi(k), time averaged over the interval ®60—-160 eddy
rotation periods (thin line), is compared with its coherpatt obtained from retaining only the
coherent vortices. Figure 4 clearly illustrates that tieeper-than-Batchelor-Kraichnan scaling of
the spectra at high-wavenumbers is associated with themcesof vortices, and the shallow part
can be attributed to incoherent, predominantly filamentanyicity. In time (not shown), this in-
coherent:~! tail is swept to ever highe, leaving behind a widening steeper spectrum associated

with the coherent vortices. This steeper spectrum has & sloge tok—2, corresponding to &/A
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FIG. 4: Ensemble and time-averagdd{ < ¢ < 160) enstrophy spectrum (thin line) and its coherent

counterpart (bold line) versus wavenumisgein logarithmic scales. Various slopes are indicated.

FIG. 5: Temporal decay of total (resolved) enstroghy) (top curve) and coherent vortex enstrogy(t)

(bottom curve), in logarithmic scales.

distribution of vortices. The actual slope is slightly dbaler, possibly due to the contribution
of vorticity discontinuities at the coherent vortex edgas @rtifact of our vortex identification
method). In the corresponding energy spectifith) = Q(k)/k?, we may therefore associate
the steep:—°-part of the energy spectrum with coherent vortices and ki@l@v £—3 part with
filaments.

We turn finally to the temporal decay. Figure 5 shows the deddgtal enstrophy?)(¢) [20]
and its coherent pa®,(t) (ensemble averaged), using logarithmic scales (similsulte have
been found for the area fractiofy). The decay of),(¢) is not a numerical artifact, but a genuine
feature of the turbulent flow evolution. This decay is theulesf vortex interactions, generat-
ing incoherent filamentary debris which cascade to ever Boates. At late times, both curves

approach a~'/3 decay, consistent with the prediction of our theory and \pitevious numerical
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results [4, 6, 18]. Most remarkablg),(¢) closely follows at~'/? decay for the last 90% of the
flow evolution, i.e. coherent vortex interactions domirthielong term behaviour of enstrophy —
crucial for our self-similarity assumption.

In summary, this paper presents a scaling theory for unébmoeiscid two-dimensional tur-
bulence based on a self-similar vortex distribution. Theotly predicts a steeper than Batchelor-
Kraichnan scaling for the energy spectrum at large waverusnith€ (k) ~ k> due to coherent
vortices, and a temporal scaling of vortex enstroghyt) ~ t~'/3. The model is consistent with
and extends previous spatial [2, 3] and temporal [5, 18]sgdheories and numerical simulations
[3—6, 18]. This is arguably the first consistent turbulenaalei which deduces all free parameters
from just a few assumptions without any empirical fitting tda The model is confirmed by high-
resolution CASL simulations carried out to very long timéspatrticular, the simulations and the
associated vortex ensemble statistics underscore theriamee of vortices for the steepening of
the energy spectra. The decay of coherent enstrophy imlsgessentially all of the enstrophy
transfers from vortices to filaments, via vortex interacipast — oo [11, 17]. The enstrophy
accumulates within @~ filamentary tail which spreads o — oo. In a subsequent paper [13],
we discuss the implications of this enstrophy cascade. @nedsult however can be immediately
deduced: the!/® growth of the largest vortices predicted here implies aegpondingly slow, but
inevitable, inverse energy cascade.
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