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Abstract

We present a scaling theory for unforced inviscid two-dimensional turbulence. Our model unifies exist-

ing spatial and temporal scaling theories. The theory is based on a self-similar distribution of vortices of

different sizesA. Our model uniquely determines the spatial and temporal scaling of the associated vortex

number density which allows the determination of the energyspectra and the vortex distributions. We find

that the vortex number density scales asn(A, t) ∼ t−2/3/A, which implies an energy spectrumE ∼ k−5,

significantly steeper than the classical Batchelor-Kraichnan scaling. High-resolution numerical simulations

corroborate the model.
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There has been a renewed interest in two-dimensional turbulence in recent years, motivated by

its applicability as a simple model for large-scale geophysical flows. The earth’s atmosphere has

an approximate two-dimensional structure, as the troposphere is only approximately10km deep,

while the horizontal extension is more than40, 000km. Moreover, the fast rotation of the earth

leads to a vertical alignment enhancing the two-dimensional character of large-scale dynamics. As

a result, two-dimensional turbulence has been regarded as the simplest model for understanding

some of the mechanisms in turbulent transport in atmospheric and oceanic flows.

In the seminal work by Batchelor [1] and Kraichnan [14, 15] a spectral approach, local in

wavenumber space, was adopted to deduce ak−3 scaling of the energy spectrum in the inertial

range, which is dominated by nonlinear transport and is not directly affected by viscosity. Ac-

cording to their theory, two-dimensional turbulence is characterized by an inverse energy cascade

primarily towards larger scales, a property first noted by Onsager [16], and a direct enstrophy cas-

cade primarily towards smaller scales [7, 12]. There is increasing numerical evidence however

that the actual spectrum is significantly steeper than the celebrated Batchelor-Kraichnan spectrum,

see for example [2, 4, 19]. It has been argued that vortex dynamics and coherent structures, which

are local in physical space and therefore non-local in spectral space, are responsible for the devia-

tions from the Batchelor-Kraichnan theory. Most of the energy in a turbulent flow is contained in

vortices which spontaneously form out of initial random fields.

In a series of papers [2, 3, 5, 18] several scaling theories have been proposed which take into

account the dynamical importance of vortices. In [2, 3] the algebraic scaling of the energy spec-

trum was linked to an emerging distribution of vortices withareaA having an algebraic number

densityn(A) ∼ A−p. (The areaA of a vortex may be defined as the size of a contiguous region

having vorticity e.g. exceeding the r.m.s. vorticity over the domain.) The exponentp was deter-

mined by fitting to numerical simulations. A temporal scaling of the vortex number density was

proposed in [5, 18]. Assuming that, in addition to energy, the maximal vorticity during vortex

interactions is conserved, dimensional arguments lead ton ∼ t−ξ. The analysis however assumes

vortices of one particular size, and does not predict the value of the scaling exponentξ. Here we

present a model which unifies the spatial and temporal scaling theories and moreover, determines

the vortex number density asn(A) ∼ t−2/3/A on using self-similarity. Our theory is supported by

high-resolution numerical simulations.
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Following [3] we write the total conserved enstrophy per unit area as

Q =

∫
∞

0

Ω(k) dk =

∫
∞

0

k2E(k) dk , (1)

whereΩ(k) and E(k) are the enstrophy and energy spectra at wavenumberk. Considering a

population of vortices with a vortex number densityn(A) of vortices with areaA we write

Qv =
1

2As

∫ As

0

ω2
vAn(A) dA , (2)

whereQv is the part ofQ associated with the vortices,ωv is the vorticity magnitude, andAs is an

arbitrary domain size. We now assume that most of the energy is contained within the vortices, and

that the vorticity of each vortexωv does not vary for vortices with different areasA. Identifying

A ∼ k−2 so thatdA ∼ k−3 dk, comparison of (1) and (2) gives the energy spectrum

E(k) ∼ ω2
vA

−1
s n(A)k−7 . (3)

The vortex number density is assumed to be of the formn(A) ∼ A−p implying E ∼ k−7+2p.

Up to here our analysis is equivalent to the one performed in [3]. Thereinp is determined by

numerically fitting the energy spectrum (3) for a prescribedvortex distribution. Note that the

classical Batchelor-Kraichnan spectrum is recovered forp = 2. In the following however, we

show that onlyn(A) ∼ A−1 allows for a self-similar vortex distribution. The energy spectrum

associated with a self-similar vortex distribution then scales as

E(k) ∼ k−5 . (4)

To study scale-invariance of a vortex distribution we first define the area fraction of an arbitrary

areaAs occupied by vortices

fv =
1

As

∫ Amax

0

An(A) dA .

HereAmax is the maximal vortex size inAs. Each vortex with areaA occupies azone the area

of which isA/fv. The sum of all zones is equal to the total areaAs. Now consider a subdomain

A0 < Amax which is populated by non-overlapping vortices with areasA ≤ A0. Arguably,

these vortices typically populate an areaArem which is not already occupied by zones of vortices

with areaA > A0 since strong shear surrounding these vortices would tear apart smaller vortices

nearby, as explicitly demonstrated in [9]. This left-over area is just

Arem =
1

fv

∫ A0

0

An(A) dA .
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Self-similarity means that the ratioA0/Arem must be independent of the subdomainA0. The only

choice forn(A) with this property is

n(A) =
c

A
. (5)

Note that for such a density the number of vortices betweenµA0 andA0, µ ≪ 1, is

Nv =

∫ A0

µA0

c

A
dA = c ln µ−1 , (6)

which is independent of the subdomainA0, again illustrating the self-similarity associated with

the special form of the vortex number density (5).

Next we study the temporal behaviour of the number densityn(A, t) = c(t)/A. We generalize

the approach of [5]; instead of a gas of equal-sized vortices, we consider a distribution of vortices

with a maximum vortex radiusa(t) ∼
√

Amax. The total energy scales as

E =
1

2As

∫
|u|2 dxdy ∼ 1

2As

∫ Amax

0

ω2
vA

2n(A) dA ∼ ca4

where we again assume thatωv does not vary with the vortex areaA. Conservation of energy then

impliesc ∼ a−4. The scaling of the enstrophy and the area fraction can then be obtained as

Qv(t) ∼ a−2 and fv(t) ∼ a−2 . (7)

The temporal behaviour of the maximal vortex radiusa(t) is determined by the rate of enstrophy

transfer from vortices to filamentsdQv/dt. This transfer occurs through destructive vortex inter-

actions. Vortex interactions typically involve three vortices, e.g. two vortices brought together by

a third. The simplest model of this, and statistically the most common situation, is the interaction

of a vortex dipole with a third, isolated vortex. The dynamical importance of this mechanism for

enstrophy transfer has been known for some time and has been verified for a dilute population of

vortices in [10]. This interaction can be destructive and results in the transfer of enstrophy from

the vortex population to small-scale filaments. Self-similarity now implies that the enstrophy at

any scale,ω2
vAn(A)dA, decays at a rate which is independent of scale. We thereforeequate

dQv

dt
∼ −pcol

Qv

Tint

, (8)

wherepcol is the collision probability of a dipole with smaller vortices andTint is the time for

a dipole to travel a characteristic inter-vortex distancer(t). Since the collision probability is

proportional to the vortex number density we havepcol ∼ c ∼ a−4. Using (6) the characteristic

inter-vortex distancer(t) of vortices with sizes betweenµA0 andA0 is given by

r ∼ (A0/Nv)
1/2 ∼ (A0/c)

1/2 ∼ A
1/2

0 a2 . (9)
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The typical timeTint, which measures the time a dipole of areaA0 and width proportional toA1/2

0

travels a distancer, can be estimated as

Tint =
r

Udip

, with Udip =
ωvA0

A
1/2

0

∼ A
1/2

0 (10)

being a characteristic dipole velocity. Note this impliesTint ∼ a2, independent ofA0 as required

by self-similarity. Substituting (9)–(10) into (8) we obtain a differential equation for the size of

the largest vortices
1

a3

da

dt
∼ 1

a8
which implies a(t) ∼ t1/6 .

Together with (5) this uniquely determines the vortex number density

n(A, t) ∼ t−2/3

A
. (11)

Furthermore via (7) we can determine the temporal scaling behaviour of the enstrophyQv(t) and

the area fractionfv(t) as

Qv(t) ∼ t−1/3 and fv(t) ∼ t−1/3 . (12)

We note that the temporal decay rateξ of the vortex number density ofξ = 2/3 is consistent with

previous numerical estimates [3–6, 18]. Our approach of considering a self-similar vortex distri-

bution allows a unique determination of the spatial and temporal scaling behaviour of the vortex

densityn(A, t) and subsequently of the total vortex enstrophyQv(t) and area fraction occupied by

vorticesfv(t).

To corroborate our model, ensemble statistics were determined from 20 high-resolution nu-

merical simulations carried out using the CASL algorithm, ahybrid contour dynamics/spectral

method capable of accurately modelling an especially wide range of scales [8], with great care

taken to minimise the numerical dissipation over long integration times (details will be published

elsewhere). Each simulation began with a random-phased vorticity distribution with energy spec-

trumE(k) = αk3 exp(−2k2/k2
0), with k0 = 32 andα chosen so thatE = 1/2. ThenQ(0) = k2

0/2.

In time, numerical dissipation strongly reducesQ, whereasE remains conserved to within a few

percent, consistent with previous studies. Importantly, the numerical dissipation here acts only

on thin vorticity filaments, not on sharp vorticity gradients, thereby preserving many small-scale

vortices.

Each of the 20 simulations differed only in a random number seed. Each was run for 160

‘eddy rotation periods’Teddy ≡ 4π/ωrms(0), whereωrms(0) =
√

2Q(0) = k0 is the initial r.m.s.
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FIG. 1: Vorticity field att = 4 (left) andt = 160 (right) in one representative simulation. A linear greyscale

is used, with the highest positive vorticity being white. Only 1/16th of the domain is shown.

FIG. 2: Full vorticity fieldω(x, t = 16) (left) and its corresponding coherent part (right). Only1/16th of

the domain is shown.

vorticity. Time is measured in units ofTeddy. The most intense vortices rotate 4 to 5 times in one

such unit of time.

The simulations use a basic512× 512 ‘inversion grid’ for computing the velocity field, while a

much finer resolution is used to represent the vorticity, as contours, down to scales of a twentieth

of the basic grid size [8]. This results in an accurate representation of the vorticity dynamics down

to the scale of numerical dissipation. The vorticity evolution in one representative simulation at

early and late times is shown in figure 1.

To test the above scaling theory, coherent vortices were identified by computing contiguous

regions of vorticity with|ω| > ωrms(t), and aspect ratioλ < 2 +
√

3 ≈ 3.73. Doubling or halving

these thresholds has little effect on the following results. In figure 2 we show the full vorticity field

of one representative simulation at16 eddy rotation periods and its corresponding coherent part as

defined above.

The vortex areaA and the mean vorticityωv associated with the coherent vortices can then be

calculated asA = Γ2/η andωv = η/Γ with enstrophy of a coherent vortexη and circulation of a
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FIG. 3: Ensemble averaged normalised number density (left)and mean vorticityωv (right) versus area, in

logarithmic scales;t = 0 is shown by a dashed line with diamonds,20 ≤ t ≤ 30 (averaged) is shown by a

thin line with squares, and100 ≤ t ≤ 160 is shown by a bold line with triangles.

coherent vortexΓ. The vortex number densityn(A) and the mean vorticityωv are subsequently

estimated by averaging over20 logarithmically spaced bins betweenA = 10−5 andA = 10−1.

The data were further ensemble averaged over the20 realizations and time-averaged.

The normalised number densitỹn ≡ n(A)/Nv is shown in figure 3 (left) time-averaged over

several intervals. The late time density clearly scales asn(A) ∼ 1/A over 3 decades in area,

consistent with the prediction of our self-similar theory.On the right in figure 3, we showωv(A)

over the same time intervals. There is no systematic dependence onA, andω2
v varies by only

one order of magnitude over four orders of magnitude inA, and much less than this for−4 <

log(A) < −1, where arguably the flow is better resolved. This dependenceon A is extremely

weak, justifying the assumptionωv ≈ constant.

In figure 4, the enstrophy spectrumΩ(k), time averaged over the interval of100–160 eddy

rotation periods (thin line), is compared with its coherentpart obtained from retaining only the

coherent vortices. Figure 4 clearly illustrates that the steeper-than-Batchelor-Kraichnan scaling of

the spectra at high-wavenumbers is associated with the presence of vortices, and the shallow part

can be attributed to incoherent, predominantly filamentaryvorticity. In time (not shown), this in-

coherentk−1 tail is swept to ever higherk, leaving behind a widening steeper spectrum associated

with the coherent vortices. This steeper spectrum has a slope close tok−3, corresponding to a1/A
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FIG. 4: Ensemble and time-averaged (100 ≤ t ≤ 160) enstrophy spectrum (thin line) and its coherent

counterpart (bold line) versus wavenumberk, in logarithmic scales. Various slopes are indicated.
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FIG. 5: Temporal decay of total (resolved) enstrophyQ(t) (top curve) and coherent vortex enstrophyQv(t)

(bottom curve), in logarithmic scales.

distribution of vortices. The actual slope is slightly shallower, possibly due to the contribution

of vorticity discontinuities at the coherent vortex edges (an artifact of our vortex identification

method). In the corresponding energy spectrumE(k) = Ω(k)/k2, we may therefore associate

the steepk−5-part of the energy spectrum with coherent vortices and the shallow k−3 part with

filaments.

We turn finally to the temporal decay. Figure 5 shows the decayof total enstrophyQ(t) [20]

and its coherent partQv(t) (ensemble averaged), using logarithmic scales (similar results have

been found for the area fractionfv). The decay ofQv(t) is not a numerical artifact, but a genuine

feature of the turbulent flow evolution. This decay is the result of vortex interactions, generat-

ing incoherent filamentary debris which cascade to ever finerscales. At late times, both curves

approach at−1/3 decay, consistent with the prediction of our theory and withprevious numerical
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results [4, 6, 18]. Most remarkably,Qv(t) closely follows at−1/3 decay for the last 90% of the

flow evolution, i.e. coherent vortex interactions dominatethe long term behaviour of enstrophy —

crucial for our self-similarity assumption.

In summary, this paper presents a scaling theory for unforced inviscid two-dimensional tur-

bulence based on a self-similar vortex distribution. The theory predicts a steeper than Batchelor-

Kraichnan scaling for the energy spectrum at large wavenumbers withE(k) ∼ k−5 due to coherent

vortices, and a temporal scaling of vortex enstrophyQv(t) ∼ t−1/3. The model is consistent with

and extends previous spatial [2, 3] and temporal [5, 18] scaling theories and numerical simulations

[3–6, 18]. This is arguably the first consistent turbulence model which deduces all free parameters

from just a few assumptions without any empirical fitting to data. The model is confirmed by high-

resolution CASL simulations carried out to very long times.In particular, the simulations and the

associated vortex ensemble statistics underscore the importance of vortices for the steepening of

the energy spectra. The decay of coherent enstrophy impliesthat essentially all of the enstrophy

transfers from vortices to filaments, via vortex interactions, ast → ∞ [11, 17]. The enstrophy

accumulates within ak−1 filamentary tail which spreads tok → ∞. In a subsequent paper [13],

we discuss the implications of this enstrophy cascade. One key result however can be immediately

deduced: thet1/6 growth of the largest vortices predicted here implies a correspondingly slow, but

inevitable, inverse energy cascade.
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