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Abstract

We study centred second-order in time and space discretizations of the inviscid Burgers equa-
tion. Although this equation in its continuum formulation supports non-smooth shock wave
solutions, the discrete equation generically supports smooth solitary wave solutions. Us-
ing backward error analysis we derive the modified equation associated with the numerical
scheme. We identify three different equations, the Korteweg-de Vries (KdV) equation, the
Camassa-Holm (CH) equation and the b = 0 member of the b-family. Solutions of the first
two equations are solitary waves and do not converge to the shock solutions of the Burgers
equation. The third equation however supports solutions which strongly approximate weak
solutions of the Burgers equation. We corroborate our analytical results with numerical sim-
ulations.
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1 Introduction

The inviscid Burgers equation

∂u

∂t
+ c

∂u

∂x
+ µu

∂u

∂x
= 0 , (1)

is the prototype equation for a shock-developing system [3, 13, 22]. An arbitrary smooth initial
condition will develop a singularity of its gradient in finite time. The solution consists of one or
more isolated shocks connected by smooth ramps. The equation involves linear and nonlinear
advection. The nonlinear advection is responsible for the steepening. The strength of the non-
linearity is measured by the parameter µ.

The occurrence of shock waves makes numerical integration of the Burgers equation particularly
difficult. For the continuum Burgers equation (1) several attempts have been made to study so
called regularized equations which support smooth regularized solutions. We distinguish here
between viscously and dispersively regularization procedures. Whereas the viscously regularized
Burgers equation

ut + cux + µuux = νuxx , (2)

supports solutions which in an L1-sense converge strongly to weak solutions of the Burgers
equation for ν → 0, conservative dispersively regularized equations such as the Korteweg-de
Vries (KdV) equation [17]

ut + cux + µuux + βuxxx = 0 , (3)

and the Camassa-Holm (CH) equation [6]

ut + cux + µuux + βuxxx − α2uxxt +
2

3
α2µuxuxx +

1

3
α2µuuxxx = 0 , (4)

support localized solitary waves. These dispersively regularized equations approximate the initial
development of a smooth initial condition of the Burgers equation (1) until the solution develops
into a weak shock solution. Then the approximation breaks down. The presence of linear
dispersion in (3) and (4) balances the nonlinear steepening and gives rise to the formation of
solitary waves. A recently introduced regularization, the b = 0 member of the b-family [7]

ut + µuux − α2uxxt − α2µuuxxx = 0 (5)

does not contain linear dispersive terms. In contrast to the KdV equation and the CH-equation
its solutions have been shown to strongly approximate weak solutions of the Burgers equation
[2]. As supposed to viscously regularized equations such as (2) dispersively regularized equations
such as (5) redistribute energy via nonlinear interactions rather than simply by dissipation. This
has obvious advantages for long time integration where artificial energy dissipation will have a
significant effect.

In the following we investigate finite-differencing methods to discretize (1) and study their solu-
tions. We show that centred finite-difference equations of the Burgers equation lead to dispersive
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regularizations. The fact that discretization schemes of the Burgers equation can lead to disper-
sive regularizations had been previously studied [14] for semi-discretizations where time is kept
continuous and only x is discretized. Here we study fully discretized difference equations and
determine under what conditions on the discretization the numerical scheme approximates the
KdV equation, the CH equation or the b = 0 member of the b-family. It turns out that solutions
of symmetrically discretized numerical schemes generically do not consist of isolated nonsmooth
shock waves but rather of smooth solitary waves, and only for special values of the discretization
may approximate weak shock solutions. In Section 2 we present the numerical discretization un-
der consideration. The resulting discretized equations are then analyzed in Section 3 by means
of backward error analysis to derive the associated modified equations. In Sections 3.1 - 3.3 we
investigate the three cases when the modified equation is the KdV equation, the CH equation
and the b = 0 member of the b-family, respectively. We conclude with a discussion in Section 4.

2 Numerical discretization scheme

The inviscid Burgers equation (1) is solved on a spatial box of length L with N equally spaced
grid points xj = j∆x with grid spacing ∆x = L/N . The temporal discretization is performed
with a constant time-step ∆t. We study here second-order in time and space centered finite-
differencing schemes [11, 19]. In the following we introduce general discretization schemes for all
terms of (1) which will allow for either explicit schemes or semi-implicit Crank-Nicolson schemes.

The temporal derivative is symmetrically discretized up to second order in ∆t as

∂u

∂t

∣

∣

∣

t=n∆t,x=j∆x
=

un+a
j − un−a

j

2a∆t
. (6)

Superscripts denote temporal discretization and subscripts denote spatial discretization. One
could have also included symmetric spatial averaging in (6), but we find that this is not neces-
sary for our purposes. The linear advection term is discretized by means of a centred spatial
differencing and centered temporal averaging to assure second order accuracy in ∆x and ∆t

c
∂u

∂x

∣

∣

∣

t=n∆t,x=j∆x
=

c

2

(

un+b
j+s − un+b

j−s

2s∆x
+

un−b
j+s − un−b

j−s

2s∆x

)

. (7)

Note that the prefactor 1/2 has to be omitted when the discretization does not involve temporal
averaging for b = 0. The nonlinear advection term is discretized similarly up to second-order in
space and time according to

µu
∂u

∂x

∣

∣

∣

t=n∆t,x=j∆x
=

1

2
µ

(

1

2

(

un+d
j+y + un+d

j−y

) un+d
j+z − un+d

j−z

2z∆x
+

1

2

(

un−d
j+y + un−d

j−y

) un−d
j+z − un−d

j−z

2z∆x

)

. (8)

Again the two prefactors of 1/2 occur only for d = 0 and y = 0, respectively. The Burgers
equation (1) discretized using (6)-(8) can be solved for un+a

j either explicitly or by matrix
inversion in the case that the choice of a, b and d imply an implicit scheme.
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3 Backward error analysis and the modified equation

The idea of backward error analysis (see for example [11]) is that a numerical scheme for (1) such
as the scheme (6)-(8) is not solving the original equation – in our case the Burgers equation (1)
– but rather approximates up to a certain order in ∆x and ∆t a so called modified equation. To
derive the modified equation for the above scheme we use Taylor-expansions of un

j . In particular,
we evaluate

uj±k = uj ± k∆x(ux)j +
1

2
k2∆x2(uxx)j ±

1

6
k3∆x3(uxxx)j + O(∆x4) , (9)

where u is evaluated at a fixed point in time, let’s say at t = n∆t, and analogously

un±l = un ± l∆t(ut)
n +

1

2
l2∆t2(utt)

n ± 1

6
l3∆t3(uttt)

n + O(∆t4) , (10)

where u is evaluated at a fixed spatial grid point, let’s say at xj = j∆x. We consider here
discretizations O(∆x) ∼ O(∆t) and also restrict ourselves in the following to small amplitude
waves with O(µ) ∼ O(∆x). Using the Taylor expansions (9) and (10) for un

j we can rewrite the
individual discretizations (6)-(8) in terms of the continuous spatial and temporal derivatives of
u. First (6) is expanded as

∂u

∂t

∣

∣

∣

t=n∆t,x=j∆x
= ut +

1

6
a2∆t2uttt + O(∆t4) , (11)

where here and in the following the right hand side is evaluated at time t = n∆t and spatial
location x = j∆x. Similarly (7) becomes

∂u

∂x

∣

∣

∣

t=n∆t,x=j∆x
= ux +

1

6
s2∆x2uxxx +

1

2
b2∆t2uttx + O(∆x4,∆t4) , (12)

and (8)

µu
∂u

∂x

∣

∣

∣

t=n∆t,x=j∆x
= µuux + µ

(

1

6
z2∆x2 +

1

2
c2d2∆t2

)

uuxxx + µ

(

1

2
y2∆x2 +

3

2
c2d2∆t2

)

uxuxx

+O(∆x4,∆t4,∆x2∆t2, µ2∆x2, µ2∆t2) , (13)

To obtain the last equation we substituted the zeroth order equation ut = −cux back into the
equation. We summarize and write down the modified equation for our discretization (6)-(8) as

ut + cux + µuux = −1

6
a2∆t2uttt −

1

2
cb2∆t2uttx − 1

6
cs2∆x2uxxx

−µ

(

1

2
y2∆x2 +

3

2
c2d2∆t2

)

uxuxx − µ

(

1

6
z2∆x2 +

1

2
c2d2∆t2

)

uuxxx

+O(∆x4,∆t4,∆x2∆t2, µ2∆x2, µ2∆t2) . (14)

This modified equation differs from the original Burgers equation by additional linear and non-
linear dispersive terms. The nonlinear dispersive terms are of the same form as the nonlinear
dispersive terms of the Camassa-Holm equation (4). The exclusive occurrence of dispersive
terms is due to our scheme being centred in time and space. If we had used non-centred meth-
ods in time or space we would have obtained either damping or amplifying terms depending
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on the scheme. We may express time derivatives as space derivatives using the lowest order
balance ut + cux = O(µ,∆x2,∆t2), to realize that at O(µ,∆x2,∆t2) the modified equation is
the KdV equation (3). In the following we will investigate the influence of the higher order terms.

Inspection of the modified equation (14) suggests that we may expect to obtain the three dis-
persively regularized equations of interest for us as modified equations at O(∆x4,∆t4,∆x2∆t2,
µ2∆x2, µ2∆t2), namely the Korteweg-de Vries (KdV) equation (3), the Camassa-Holm (CH)
equation (4) and the b = 0 member of the b-family (5). In the following we show that for specific
discretizations, i.e. appropriate values of a, b, d, y, z and ∆x and ∆t, one may obtain dis-
cretizations whose associated modified equations coincide with each of these three dispersively
regularizations of the inviscid Burgers equation (1).

In order to do so we need to substitute the various temporal derivatives occurring in the modified
equation (14), in particular the terms uttt and uttx. For example, the KdV equation (3) does not
contain any term of the form uxxt, whereas the CH equation (4) and the nonlinearly regularized
Burgers equation (5) do. We partially substitute occurring time derivatives by the first order
approximation ut = −cux − µuux. We introduce a free parameter q which controls the splitting
of the temporal derivatives. We write

uttt = q
(

−c3uxxx − 3µc2 (3uxuxx + uuxxx)
)

(1 − q)
(

c2uxxt − 2µc2 (3uxuxx + uuxxx)
)

. (15)

The remaining temporal derivative uttx in (14) can be fully substituted as

uttx = c2uxxx + 2µc (3uxuxx + uuxxx) . (16)

It turns out that the free parameter q is sufficient and one does not need to introduce further
free parameters to only allow for partial substitutions of temporal derivatives in uttx and uxxx.
Inserting (15) and (16) into (14) we obtain

ut + cux + µuux + C(uxxx)uxxx + C(uxxt)uxxt + C(uxuxx)uxuxx + C(uuxxx)uuxxx = 0 , (17)

with

C(uxxx) =
1

6
s2c∆x2 − 1

6
qa2c3∆t2 +

1

2
b2c3∆t2 (18)

C(uxxt) =
1

6
(1 − q)a2c2∆t2

=
1

c
C(uxxx) −

1

6
s2∆x2 +

1

6
a2c2∆t2 − 1

2
b2c2∆t2 (19)

C(uxuxx) = −1

2
µ(2 + q)a2c2∆t2 + 3µb2c2∆t2 +

3

2
µd2c2∆t2

+
1

2
µy2∆x2 (20)

C(uuxxx) = −1

6
µ(2 + q)a2c2∆t2 + µb2c2∆t2 +

1

2
µd2c2∆t2

+
1

6
µz2∆x2

=
1

3
C(uxuxx) +

1

6
µ
(

z2 − y2
)

∆x2 . (21)

It is this form of the modified equation we will be working with from now on.
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3.1 Korteweg-de Vries equation

In this Section we show that one can choose the parameters of the discretization of (6)–(8) in
such a way that its associated modified equation (17) is the famous KdV equation (3) which we
recall here

ut + cux + µuux + βuxxx = 0 .

Inspection of (17) reveals that any numerical scheme and its dispersive regularization approx-
imates the KdV equation up to O(µ∆x2, µ∆t2), and effectively simulates the KdV equation
rather than the Burgers equation (1). Our aim here is to determine the conditions for a numer-
ical scheme that approximates the KdV equation up to O(∆x4,∆t4, µ2∆x2, µ2∆t2). To obtain
(3) as the modified equation up to this order we need to choose our discretization scheme and
our free parameter in order to assure

C(uxxt) = 0

C(uxuxx) = 0

C(uuxxx) = 0 .

These conditions translate to

q = 1 (22)

−(2 + q)a2A2 + 6b2A2 + 3d2A2 + y2 = 0 (23)

y = z , (24)

where we introduced

A2 = c2 ∆t2

∆x2
. (25)

Note that A2 ≤ 1 is required for numerical stability as a Courant-Friedrichs-Levy condition. This
assures that the numerical scheme with discretization ∆x and ∆t is able to resolve processes
which propagate with the physical wave speed c. Condition (23) yields

A2 =
1

3

y

a2 − 2b2 − d2
≤ 1 . (26)

Any numerical scheme which satisfies 0 < A2 ≤ 1 with A2 given by (26) together with y = z
has the KdV equation with linear dispersion

β = c
∆x2

6

(

s2 − a2A2 + 3b2A2
)

.

as its modified equation up to O(∆x4,∆t4, µ2∆x2, µ2∆t2). For example, for a given numerical
scheme with given ∆x and ∆t that satisfies (24) and the inequality (26), one may choose the
linear advective speed c such that A2 = c2∆t2/∆x2. One may similarly prescribe c and ∆x
(∆t), which then subsequently fixes ∆t (∆x) to satisfy condition (26).

The Korteweg-de Vries equation is integrable, supports smooth solutions, and its initial value
problem is solvable via the inverse scattering transformation [1]. In particular, equation (3)
supports a one-parameter family of soliton solutions of the form

u(x − csolt) = a sech2(w(x − csolt)) , (27)
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with amplitude

a = 12
β

µ
w2 (28)

and speed

csol = c + 4βw2 . (29)

The existence of solitons crucially depends on the balance of the nonlinear steepening provided
by uux and the linear dispersion uxxx. The linear dispersion can be attributed entirely to the
numerical scheme with β = β(∆x2). Hence these solitary waves are spurious in the sense that
the continuum system (1) does not support them and they are purely an artefact of the chosen
numerical integration scheme.

Note that the constant advection with c 6= 0 is crucial for the existence of the linear dispersive
term C(uxxx) of the modified equation. If we initially had transformed into the system moving
with the constant advection velocity c by introducing ξ = x−ct to eliminate the cux term, there
would be no linear dispersive terms in the modified equation (17).

To illustrate the effect of the discretization and the modified equation we look at a particular
example. We choose a = 2, b = 1, d = 0 and z = y = s = 1, which makes the numerical scheme
(6)–(8) explicit. Condition (23) is satisfied with 0 < A2 = 1/

√
6 < 1 assuring a stable scheme.

This choice of parameters implies for the linear dispersion coefficient β = 5c∆x2/36. In Fig. 1
we show results from a numerical simulation of the scheme (6)–(8) for the Burgers equation for
periodic boundary conditions. The results clearly show that the KdV equation is the modified
equation and that the solitary wave (27) is the appropriate solution.

0 20 40 60 80

0

0.05

0.1

x

u

0   2000 4000 6000

0.1065

0.1066

0.1067

0.1068

t

u m
ax

Figure 1: Left: Plot of the solitary wave (27) for the numerical scheme for the Burgers equation
(6)–(8) with a = 2, b = 1, d = 0, z = y = s = 1 corresponding to the KdV equation. We use
∆x = 0.08 for the spatial discretization on a ring with L = 80. Equation parameters are µ = 0.1
and c = 1 which implies ∆t = 0.0327. Right: Plot of the maximal amplitude umax of the solitary
wave as a function of time. The solitary wave solution retains amplitude and shape.

To illustrate this further we look at the two-soliton solution of (3) parameterized by w1 and w2
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[21, 16]

u(x, t) = 12
β

µ

(

w2
1 − w2

2

(w1 coth(w1(x − L
2
)) − w2 tanh(w2(x − L

2
)))2

)

×
(

w2
1

sinh2(w1(x − L
2
))

+
w2

2

cosh2(w2(x − L
2
))

)

. (30)

In a periodic box, the two solitary waves elastically interact. In Fig. 2 we show the maximal
amplitude which is constant for the times when the two solitons are well separated and drops
when they interact.

0 25000 50000 75000 100000

0.35

0.4

0.45

0.5

t

u m
ax

Figure 2: Plot of the maximal amplitude as a function of time for the two-soliton solution (30)
of the KdV equation. We use the same numerical scheme and the same parameters as in Fig. 1.

3.2 Camassa-Holm equation

In [6] the Camassa-Holm equation (4) which we recall as

ut + cux + µuux + βuxxx − α2uxxt +
2

3
α2µuxuxx +

1

3
α2µuuxxx = 0 ,

was introduced to describe shallow water waves. It has been derived in an asymptotic multiscale
expansion for water waves [8, 9]. The order of the asymptotic approximation is one order better
compared to the KdV equation. As with its lower order cousin the CH-equation is integrable [8].

In [9, 20] solutions of (4) were investigated. The CH-equation (4) supports solitary waves,
periodic waves, peakons for which the first derivative is discontinuous, and cuspons for which
the first derivative has a singularity.

We first focus on the one-parameter family of solitary travelling waves – parametrized by
the wave speed csol – which is given by

u(τ) = 3
δ

µ
sech2

√
δ

2
τ , (31)

where δ = csol − c. The spatial dependence of the solitary wave solution is parametrized by the
variable τ . The relation between τ and x is given by the Sundman transformation

dx

dτ
=

√

β + α2csol − α2δsech2

√
δ

2
τ , (32)

7



which can be explicitly solved to yield

x(τ) = 2

√

β + α2csol

δ
sinh−1

(
√

β + α2csol

β + α2c
sinh

√
δ

2
τ

)

−2
√

α2 tanh−1





√
α2δ

tanh
√

δ
2

τ
√

α2δ tanh2
√

δ
2

τ + β + α2c



 . (33)

For the regularizing case α2 > 0 the conditions for a travelling wave are [9]

δ > 0 (34)

β + α2c > 0 . (35)

In this section we write down the conditions such that the numerical scheme (6)–(8) contains
the CH-equation (4) as its modified equation (17). Using scaling transformations of u, x and
t, the coefficients of the CH-equation may be changed. However, in [10] it was shown that the
following conditions for its coefficients are essential for integrability of the CH equation (4)

C(uxuxx) : C(uuxxx) = 2 : 1 (36)

C(uxxt)C(uux) : C(uuxxx)C(ut) = 3 : 1 . (37)

Moreover, we require α2 to be positive. Identifying α2 = −C(uxxt) this amounts to

C(uxxt) < 0 . (38)

Using the definitions for the coefficients (18)-(21) the conditions (36)-(38) can be written as

−(2 + q)a2A2 + 6b2A2 + 3d2A2 = 2z2 − 3y2 (39)

(7 + 2q)a2A2 − 18b2A2 − 9d2A2 = 3z2 (40)

1 − q < 0 , (41)

where again A2 is defined by (25) and is subject to the Courant-Friedrichs-Levy stability condi-
tion

0 < A2 ≤ 1 . (42)

Note that we have the additional restriction csol∆t/∆x ≤ 1 to assure that the solitary wave
propagation can be resolved by the numerical scheme. Combining (39) and (40) we obtain

3a2A2 − 6b2A2 − 3d2A2 = 7z2 − 6y2 . (43)

Combining conditions (39) and (41) we obtain

3a2A2 − 6b2A2 − 3d2A2 + 2z2 − 3y2 < 0 ,

which together with (43) implies

z < y . (44)
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Rewriting (43) we find

A2 =
1

3

7z2 − 6y2

a2 − 2b2 − d2
, (45)

which further constraints the admissible parameters for the discretization because 0 < A2 ≤
1 is required as the Courant-Friedrichs-Levy condition. For each admissible combination of
discretization parameters we may calculate the free parameter q from (40) as

q = − 1

2a2A2

(

7a2A2 − 18b2A2 − 9d2A2 − 3z2
)

, (46)

with the additional constraint (41) requiring that q > 1. This defines the numerical scheme for
the modified equation to be the CH equation (4).

If we are additionally interested in the solitary wave solution (31) we need to further satisfy
conditions (34) and (35). Identifying β = C(uxxx) conditions (34) and (35) can be written as

csol − c > 0 (47)

s2 − a2A2 + 3b2A2 > 0 . (48)

If the conditions for the validity of the CH equation (44) – (46) are satisfied we expect the
numerical scheme (6)–(8) to model the CH equation up to O(∆x4,∆t4, µ2∆x2, µ2∆t2). If addi-
tionally the conditions for the existence of travelling waves for the CH equation (47) and (48)
are satisfied, we expect the numerical scheme (6)–(8) to support the solitary wave (31). For
example, a = 3, b = 3, d = 0, z = 1, y = 2 and s = 1 is such a choice of parameters and implies
q = 98/17 and A2 = 17/27 < 1. Because a = b = 3 we may write the scheme as a one-step
scheme. For these parameters the numerical scheme (6)–(8) is semi-implicit, which is uncondi-
tionally stable [19]. We solve the system of equations numerically using LU-decomposition.

In Fig. 3 we show results from a numerical simulation of the scheme (6)–(8) for the CH equation,
again for periodic boundary conditions. As for the KdV equation we see clearly that the modified
equation is the CH equation and the numerical scheme preserves the solitary wave solution (31).

In the remainder of this Section we investigate peakon solutions of the CH equation. Con-
dition (35), which we may rewrite as C(uxxx) > cC(uxxt), restricts the solutions of the CH
equation (4) to the smooth solitary wave solution (31). For C(uxxx) = cC(uxxt) however, so
called peakons are supported for which the first derivative is not continuous. The CH equation
in the peakon limit reads as

ut + cux + µuux − α2uxxt − cα2uxxx +
2

3
α2µuxuxx +

1

3
α2µuuxxx = 0 , (49)

which we have cast here in the form where we moved into a frame of reference moving with speed
−c. This equation only involves nonlinear dispersion, and supports a one-parameter family of
solutions u = c exp(|x − ct|). The numerical scheme (6)–(8) have the peakon equation (49) as
its modified equation for the choice of parameters a = 7, b = 4, d = 2, s = 1, y = 16 and z = 15
implying A2 = 1. However, we found that this explicit scheme is numerically unstable.
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Figure 3: Left: Plot of the solitary wave (31) for the numerical scheme for the Burgers equation
(6)–(8) with a = 3, b = 3, d = 0, z = 1, y = 2, s = 1 and q = 98/17 corresponding to the CH
equation. We choose ∆x = 0.1. The equation parameters are µ = 0.1 and c = 1.1 which implies
∆t = 0.0721. Right: Plot of the maximal amplitude umax of the solitary wave as a function of
time.

3.3 Regularized Burgers equation

Whereas the KdV equation and the CH equation are regularizing the Burgers equation by their
inherent linear dispersion, the b = 0 member of the b-family (5) which we recall

ut + µuux − α2uxxt − α2µuuxxx = 0 ,

does not contain any linear dispersive terms [7]. In [2] it was shown that solutions of this
equation strongly converge to weak solutions of the Burgers equation. The particular mechanism
of regularization can be seen best if we write (5) as

vt + uvx = 0 where u = (1 − α2∂xx)−1v . (50)

This is analogous to the regularization used in α-Euler models [15, 4, 5] in which the advecting
velocity is smoothed with respect to the advected velocity. As in α-Euler models the smoothing
is performed by an inverse Helmholtz operator.

To allow for the asymptotic resubstitutions of temporal derivatives (15) and (16) which were
used to obtain (18)-(21) we move in a frame of reference moving with −c and write (5) as

ut + cux + µuux − α2uxxt − cα2uxxx − α2µuuxxx = 0 . (51)

We now ask the same question as before for the KdV equation or the CH equation. Can we find
a numerical discretization, i.e. parameters for the temporal discretization a, b, d and for the
spatial discretization s, y and z, and a free parameter q such that (51) is the modified equation
for (6)–(8). In particular, we require

C(uxuxx) = 0 (52)

C(uuxxx) = µ C(uxxt) < 0 (53)

C(uxxx) = cC(uxxt) . (54)

From condition (54), which we have already encountered for the peakon equation (49), we deduce
that

s2 − a2A2 + 3b2A2 = 0 , (55)
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where A2 is again defined via (25). Using (18)-(21) condition (52) implies

C(uuxxx) =
1

6
µ(z2 − y2)∆x2 . (56)

Since according to condition (53) we have C(uuxxx) < 0 we need to impose

y > z . (57)

Condition (52) reads as

−(2 + q)a2A2 + 6b2A2 + 3d2A2 + y2 = 0 . (58)

Condition (53) together with (56) reads as

z2 − y2 − s2 + qa2A2 − 3b2A2 = 0 , (59)

which together with (58) results in

−s2 − 2a2A2 + 3b2A2 + 3d2A2 + z2 = 0 . (60)

Combining (55) and (60) we obtain the condition for our discretization parameters by eliminating
A2 as

(s2 − 1

3
z2)a2 + (z2 − 2s2)b2 − s2d2 = 0 , (61)

and may also determine

A2 =
1

3

z2 − 3s2

b2 − d2
≤ 1 . (62)

Given a solution of (61) satisfying the stability constraint (62) the free parameter for the resub-
stitution of the temporal derivatives can be calculated directly from, for example, (59) as

q =
1

a2A2

(

s2 + 3b2A2 + y2 − z2
)

. (63)

One possible choice of parameters satisfying (61) and (62) is

a = 2, b = 0, d = 1, s = 2, z = 3, y = 4 , (64)

which implies A2 = 1. In Fig. 4 we show results from a numerical realization of this discretization
scheme. Due to the spatial discretization s 6= z 6= y there are three subgrids which evolve
independently. We therefore perform after every 20 time steps a spatial averaging according
to uj = (uj−1 + 2uj + uj+1)/4. Note that this introduces some small artificial viscosity to the
scheme. Therefore the actual numerical scheme associated with this spatial averaging deviates
from the discretization scheme (6)–(8). Hence the modified equation deviates slightly from the
b = 0 member of the b-family (51). However, if the same amount of spatial averaging is applied
to discretization schemes whose associated modified equation are the KdV equation or the CH
equation, no weak shock solutions develop but the dynamics is still dominated by (now damped)
solitary waves and their near elastic interaction. In those cases the damping associated with
the spatial averaging is simply a small perturbation to the otherwise integrable nonlinear wave
equations which support smooth solitary wave solutions. Hence the introduced viscosity does
not simply transform the modified equation into the viscously regularized Burgers equation (2),
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but rather stabilizes the dispersively regularized equation (51). We have further checked this by
letting the parameters of the numerical scheme associated with (51) vary slightly. For example,
for ∆t → 0.9∆t⋆ (for fixed ∆x) where ∆t⋆ is the temporal spacing consistent with (52)–(54),
one observes solitary waves emanating from the initial pulse condition rather than weak shock
solutions as depicted in Fig. 4. This is consistent with our analytical findings of Section 3.1.
As can be seen from (56) one can control the value of α2 by increasing y. For example if all
parameters are kept as in Fig. 4 a value of y = 5 leads to α2 ≈ 1.6∆x. However, one does
not observe a sharper and sharper shock front for smaller values of the smoothing length α2 as
expected from the theory [2]. We have tested the shape of u for different values of α2 and found
no difference. This suggests that the viscosity associated with the averaging is the important
dynamical mechanism to produce regularized shocks, and that the numerical discretization as-
sociated with (51) only assures that no linear dispersion is present. However, one may achieve
better approximation to a shock wave by reducing the discretization. In Fig. 4 we show re-
sults for two spatial and temporal discretizations. We chose ∆x = 0.025 which then implies
∆t = ∆x = 0.025, and for the lower right panel we use half the grid size ∆x = 0.0125 which
implies ∆t = 0.0125. These two discretizations correspond to α2 = −C(uxxt) = 0.00073 and
α2 = 0.00018, respectively. However, as discussed above, the better approximation of a shock
wave for α2 = 0.00018 is not due to α2 being smaller but simply due to the finer discretization
applied.

Whereas the parameter α2 usually is motivated on physical grounds as a length scale over which
fluctuations are averaged out (see for example [15]), the parameter α2 arises here solely through
the numerical discretization scheme chosen. For example, for the parameters chosen to obtain
Fig. 4 we obtain α2 = 0.00073 ≈ ∆x2 for the coarse grid and α2 = 0.00018 ≈ (∆x/2)2 for the
finer grid. Hence the parameter α2 cannot be interpreted solely as a length scale over which
smoothing takes place since in the finer grid there are no grid points on that scale.
The link between regularization procedures such as Helmholtz regularization and numerical
schemes had been studied before, for example in [12]. However here we achieve an α-regularization
with an explicit scheme.

4 Summary

We have investigated different numerical schemes to discretize the Burgers equation (1). Usually
either artificial viscosity is added or upwinding methods are employed to control the problems
arising with the steep gradients [11, 19]. In contrast, we have focused here on dispersive regular-
izations. In particular we analyzed second-order discretizations which are symmetric in time and
space for small amplitude solutions. We analyzed the numerical discretizations of the Burgers
equation by means of backward error analysis and derived the respective associated modified
equations up to O(∆x4,∆t4, µ2∆x2, µ2∆t2).

The discretization generically generates the Korteweg-de Vries equations as its corresponding
modified equation at O(µ∆x2, µ∆t2). In a numerical simulation this causes an arbitrary smooth
initial condition to evolve into a train of solitary waves which then subsequently interact (up
to this asymptotic order) elastically in a periodic domain; the additional dispersive linear and
nonlinear terms in (17) are a small perturbation of the integrable Korteweg-de Vries equation.
We illustrate this in Fig. 5 where we show the temporal evolution of an initial bump. We
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Figure 4: Simulation of the numerical scheme for the Burgers equation (6)–(8) with a = 2, b = 0,
d = 1, z = 3, y = 4, s = 1 and q = 2.75. We chose ∆x = 0.025. The equation parameters were
µ = ∆x = 0.025 and c = 1 which implies ∆t = 0.025 and α2 = 0.00073. Upper left: initial
condition u(x, t = 0) = 0.5 sech2(x − L/2) with L = 20. Upper right: u(x, t) at a later time
t = 300. Lower left: u(x, t) at a later time t = 1600. Lower right: as in the lower left figure but
now with half the grid size ∆x = 0.0125 which implies α2 = 0.00018. During the time between
two consecutive snapshots the wave has performed several revolutions across the periodic box.

chose ∆x = 0.16 and ∆t = 0.12 and used a standard semi-implicit Crank-Nicolson scheme
with a = b = 1, d = 0 and s = z = 1 and y = 0. This particular scheme does not have the
KdV equation as its modified equation up to O(∆x4,∆t4, µ2∆x2, µ2∆t2) since, for example,
y 6= z. We employ again periodic boundary conditions. The initial condition disintegrates –
as expected for the KdV equation – in a train of solitary waves which subsequently elastically
interact. Hence, a finite discretization ∆t and ∆x generates linear dispersion at leading order
which balances the nonlinear steepening.

Our main concern in this paper however were special discretization schemes which use higher-
order terms of the modified equations to achieve either more accurate behaviour of linearly
dispersive regularization or a different type of regularization which supports approximations
to shock solutions rather than solitary waves. We found discretization schemes such that the
modified equation is the KdV equation up to O(∆x4,∆t4, µ2∆x2, µ2∆t2). We also found that
for a particular choice of the discretization scheme the modified equation is the Camassa-Holm
equation. Both equations support solitary waves. These waves are entirely artificial in the sense
that the original system (1) supports shock waves rather than smooth solutions. The discretiza-
tion associated with the KdV and the CH equation introduces linear and nonlinear dispersion.
The linear numerical dispersion balances the nonlinear steepening giving rise to smooth solitary
waves. Additionally, we derived numerical schemes whose modified equation is a proper regu-
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Figure 5: Snapshot of u(x, t) at t = 2700 for an arbitrary initial condition u(x, t = 0) =
0.25 sech(0.2(x −L/2)) where L = 80 is the box length. Equation parameters were µ = 0.1 and
c = 1. We used ∆t = 0.1.

larization of the Burgers equation in the sense that its solutions strongly converge to the weak
shock solutions of the full Burgers equation when α2 → 0. However for the numerical scheme
we proposed a small amount of viscosity was added to stabilize the scheme.

Crucial for our analysis is that the parent system already contains a dispersive term, i.e. the
simple constant advection term cux for the Burgers equation (1). For example, the Burgers
equation without linear advection

∂u

∂t
+ µu

∂u

∂x
= 0 ,

would not allow for a resubstitution of temporal derivatives. From (21) we infer the modified
equation for this equation to be

∂u

∂t
+ µu

∂u

∂x
+

1

6
µz2∆x2uuxxx +

1

2
µy2∆x2uxuxx = 0 .

The case y = 0 was discussed in [14] where a semidiscretization of the Burgers equation was
studied. It was shown that this “nonlinear” KdV equation behaves for small ∆x as the KdV
equation.
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