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Controlling model error of underdamped forecast models in
sparse observational networks using a variance limiting
Kalman filter
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The problem of controlling covariance overestimation due ® underdamped
forecast models and sparsity of the observational networkn an ensemble
Kalman filter setting is considered. It is shown in a variaticnal setting that

limiting the analysis error covariance to stay below the clmatological value and
driving the mean towards the climatological mean for the undserved variables
can significantly improve analysis skill over standard ensmble Kalman filters.

These issues are explored for a Lorenz-96 system. It is showhat for large

observation intervals the climatological information assires that the statistical
properties of the unobserved variables are recovered, prading superior

analysis skill. This skill improvement is increased for lager observational noise.
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1. Introduction error is largely due to a misrepresentation of unresolved
sub-grid scale processes. The very active field of stochasti
To account for uncertainties in both the initial conditiongarametrization is aimed at reintroducing statistical
and forecast model and to combat the associated foredistuations of the unresolved degrees of freedom and
error and flow-dependent predictability, ensemble methalglirect coupling between the resolved and unresolved
have become popular for producing numerical weathdg¢grees of freedom into the equations of motion (see
forecasts (Molteni and Palmer 1993; Toth and Kalndalmer and Williams (2010) for a recent review on current
1993) and for performing data assimilation (Evensérends). Indeed, using a low-dimensional toy model
1994). The idea behind ensemble based methods is tithell and Gottwald (2012) showed that stochastic
the nonlinear chaotic dynamics of the underlying forecgsrametrizations can lead to superior skill performance in
model and the associated sensitivity to initial conditiofisemble data assimilation schemes in situations where the
cause an ensemble of trajectories to explore sufficientlynamics involves rapid large amplitude excursions such as
large parts of the phase space in order to deduce meaningfuégimes switches or in intermittent dynamics.
statistical properties of the dynamics. However, all cotle Numerical model error is often introduced deliberately to
operational ensemble systems are underdispersive, ngeanomtrol numerical instabilities arising in the simulatioh
that the true atmospheric state is on average outside geephysical fluids, such as in numerical weather prediction
statistically expected range of the forecast or analysis climate dynamics. In such simulations numerical
(e.g. Buizzaet al. (2005); Hamill and Whitaker (2011)).codes tend to produce large errors linked to numerical
This detrimental underdispersiveness can be linked to timstabilities at the grid resolution level, which limitseth
separate sorts of model error: dynamicalmodel error reliability of the forecast over the forecast window. In a
due to a misrepresentation of the physics of the forecdsta assimilation context this numerical “noise” can lead t
model and amumericalmodel error due to the choice of thean unrealistic overestimation of forecast error covarasnc
numerical method used to simulate those forecast modelast small scales. The standard approach to dealing with
It has been argued (Palmer 2001) that dynamical motlese numerical instabilities is to add various forms of
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2 L. Mitchell and G.A. Gottwald

artificial dissipation to the model (Durran 1999). Thiby including climatological information of the unobserved
however has several well documented drawbacks. In treiables. In a perfect model data assimilation scheme
context of ensemble data assimilation artificial viscositynrealistic overestimation of the error covariances agcur
diminishes the spread of the forecast ensemble, causingparse observational networks as a finite size effect; it
detrimental underestimation of the error covariancess shown that for short observational intervals of up(to
(Houtekamer and Mitchell 1998; Burgerst al. 1998; hours the VLKF produces superior skill when compared
Anderson and Anderson 1999; Houtekanetral. 2005; to the standard ensemble transform Kalman filter (ETKF)
Charronet al. 2010). Most notably, artificial dissipation(Bishop et al. 2001; Tippettet al. 2003; Wanget al.
implies unrealistic and excessive drainage of energy out2gf04). Here we will apply the variance limiting Kalman
the system (Shutts 2005), effecting processes ranging frfilter in the case of an imperfect, underdamped forecast
frontogenesis to large scale energy budgets. For examptedel, and for large observation intervals. Unlike in the
Palmer (2001) reports on the unphysical dissipation pérfect model case where for large observation intervals th
kinetic turbulent energy caused by mountain gravity waverecast error covariances approach the climatic variance
drag parametrizations. Skamarock and Klemp (1992hen forecasting with underdamped forecast models the
introduce divergence damping to control unwanted graviéyror covariances will be larger than the climatic variance
wave activity in hydrostatic and non-hydrostatic elastithis will be controlled by the VLKF, invoking a weak
equations to stabilize the numerical scheme, leading denstraint onto the mean and the variance of the unobserved
numerical energy dissipation (see also Durran (1999ariables, leading to an improvement in the analysis skill.
Blumen (1990) controls the collapse of near-surface flont&e will study this effect using the standard Lorenz-96
width by artificially introducing momentum diffusion in amodel (Lorenz 1996), where we assume that the truth is
semi-geostrophic model of frontogenesis, with the effesbolving to the standard set of parameters. To investigate
of producing unrealistic energy dissipation rates. In semyhether underdamped models can be used as forecast
Lagrangian advection schemes Coté and Staniforth (198&)dels we then use forecast models with smaller values
and Ritchie (1988) find unrealistic energy dissipationsatef the linear damping term of the Lorenz-96 system to
that are caused by interpolation. Besides effecting thenerate ensembles with forecast spreads exceeding the
small-scale dynamics, numerical dissipation also hastrae climatology.
major effect on the large scales and their energy spectra
(Palmer 2001; Shutts 2005). In ideal fluids, which often Our main result is, that VLKF produces significantly
serve as a good approximation of the large scale dynantiester skill than ETKF, increasing with the strength of
(Salmon 1998), numerical dissipation destroys dynanyicalhe model error, the sparsity of the observational network
important conservation laws which may be undesirald@d the observational noise covariance. We will establish
in long time simulations such as in climate modellinghat a variance limiting weak constraint may be used as
(Thuburn 2008). Using statistical mechanics Dubinkingn adaptive alternative to artificial viscosity damping,
and Frank (2007, 2010) show how the choice of thgunteracting model error on the fly when underdamping
conservation laws respected by a numerical scheme effegtshe numerical forecast model causes an unrealistic
the statistics of the large scale fields. overestimation of the forecast ensemble. However, we will
There exists a plethora of methods to remedy the unphysigéé that there is a trade-off as for large model error thé skil
energy loss due to artificial diffusion and reinject energyf VLKF becomes comparable to the skill of an analysis
back into the numerical model, for example via energyvolving no forecast but using an analysis comprised of the
backscattering (Frederiksen and Davies 1997; Shutts 20@Bbgervations and the climatological mean for the observed
or systematic stochastic model reductions (Magdaal. and unobserved variables, respectively. It will be shown
1999). that this is important for large observation times when
the analysis is not tracking anymore due to either model
Here we will look at these issues in the context @frror or the chaotic nature of the underlying dynamics,
ensemble data assimilation. Rather than controlliggd one can only improve the analysis, assuring a reliable
numerical instabilities of the dynamic core via appro@riateproduction of statistical properties of the dynamics.
discretization schemes of the numerical forecast model,
we will modifiy the actual ensemble data assimilation |n the next section we briefly describe the variance
procedure, avoiding excessive numerical dissipatigiiting Kalman filter. In Section 3 we introduce the
Underdamping in dynamic cores causes the ensembl@ ¢®enz-96 model and describe the underdamped forecast
acquire unrealistically large spread. This overdispersitodel used. In Section 4 we present results showing under
is exacerbated in sparse observational networks wh@igat conditions the VLKF produces better skill than the

for the unobserved variables unrealistically large fosécasual ensemble transform Kalman filter. We conclude with
covariances are poorly controlled by observational dajajiscussion and outlook in Section 5.

(Liu et al. 2008; Whitakeret al. 2009). The questions we

address in this article arean one use numerical forecasting,  The variance limiting Kalman filter

models which are not artificially damped, yet still control

the resulting overestimation of forecast covariances iwithThe variance limiting Kalman filter (VLKF) is a variation
the data assimilation procedurg@nd,is it possible to use of a standard ensemble Kalman filter designed to control
the increased spread induced by numerical instabilities @averestimation of error covariances caused by finite
a controlled fashion to improve the skill of ensemble dagssemble sizes in sparse observational grids (Gottwald
assimilation schemes? et al. 2011). Whereas usually only direct observations and
In a recent article Gottwaldet al. (2011) proposed amodelforecasts are combined to produce an analysis in data
variance limiting ensemble Kalman filter (VLKF) whichassimilation, it was proposed to incorporate climatolabic
controls overestimation in sparse observational networkformation to fill the data voids in sparse observational
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Controlling model error using a variance limiting Kalman fil ter 3

grids. In the atmospheric sciences data voids are a hddes forecast ensemble is split into its mean and
obstruction to climate reanalyses (Bengtssbral. 2007; ensemble deviation matriz’f. The ensemble deviation
Whitakeret al.2004; Compeet al.2011) when assimilating matrix Z’, can be used to approximate the ensemble forecast
data from pre-radiosende era, or when attempting to inclust®/ariance matrix via

the mesospehere into numerical weather forecasts where

the energetics is dominated by unobserved gravity waves P (t) = 1 Z'(t) [Z’(t)]T c RVNXN |
(Polavarapuet al. 2005; Sankeyet al. 2007; Eckermann k—1

et al. 2009). Climatic information is used to limit the ) . o
posterior error covariance of the unobserved variablesNgte thatP ;(¢) is rank-deficient fork < N which is the

not exceed their climatic covariance. It was shown thiical situation mgnumencal weather prediction wheve
this limitation of the analysis error covariance contralleS Of the order ofi0” andk of the order ofl00.

undesirable overestimation of error covariances which i .

are caused by the finite size of the forecast ensembles>ven the forecast measy, the forecast error covariance
Furthermore, the VLKF drives the mean of the unobservid @nd an observation,, an analysis mean is given by
variables towards the climatological mean significantly _

increasing the analysis skill. We remark that one may?e = 2f — Ko Hz; — yo] — Ky [hZf — acim] ,  (2)
use other values than the climatic covariance to cont\r,\(lwll]
. . . . . ere
the analysis error covariance if one interprets the vaganc
constraint as a numerical tool only to control overestiorati K. - P H'R-!
of the error covariances. We present a brief summary of © “ - fl
the algorithm here. For a detailed derivation the reader is Ky = P.h R,

referred to Gottwalet al. (2011).
( ) with analysis error covariance matrix

Given anN-dimensional dynamical system

Zt = F(Zt) s (1)

which is observed at discrete times = iAt..s, data The variance of the unresolved pseudo-observélies
assimilation aims at producing the best estimate of thentrolled by setting

current state given a typically chaotic, possibly inactaira -

model z = f(z) and noisy observations of the true state hP,h” = Acjim - )

z; (Kalnay 2002). We assume that the state space_is. . ) )
decomposable according = (x,y) with observables This yields upon using the Sherman-Morrison-Woodbury

x € R", for which direct observations are availabldormula (see for example Golub and Loan (1996)) the
and pseudo-observableg € R™, for which only some equation for the as yet unspecified error covariance matrix
integrated or statistical climatological information ior the pseudo-observablgs,

available. Here we will assume+ m = N, however this ) . -1
is not essential. R, = Ay, — (hPhY)

-1
P, — (P;l +HTR;'H + hTRv_Vlh)

Observationy, € R™ are expressed as a perturbed trutMhere .

according to P= (P;1 + HTRng)
Vo(ti) = Hz(t;) + 1o,

where the observation operatli : RY — R” maps from
the whole space into observation space, ands R"
is assumed to be independent identically distribut
observational Gaussian noise with associated ergy,
covariance matriR,.

is the analysis error covariance of an equivalent EnKF
without variance constraint. We remark that the matrix
Rg" itself is never required in the VLKF algorithm, so
& expensive inversion dR ;! is not explicitly needed.
thermore, the matri? can also be calculated without
computing inverses of the forecast covariance matrix by
means of the Sherman-Morrison-Woodbury formula. It is
headily seen that for sufficiently small background error
cgvariancePf, the error covarianc®.,, is not positive
semi-definite. To ensure that the error covariance is non-
negative we diagonaliz&,! = VDVT; introducing D

We further introduce an operatoh :RY — R™
which maps from the whole space into the space of t
pseudo-observables spanned py We assume that the
pseudo-observables have variangey,, € R™*™ and
constant meara.;,, € R™. This is the only information -7 = —
available for the pseudo-observables, and r);ay be estimaY\é'%]1 ]}f =Dy fo; Dy 20 arr:d D;; =0 folf D;; <0, we |
for example, from historical data or long time simulationg® R, = VDV . Hence the variance limiter acts only

; o T X
The error covariance of those pseudo—observationsog those _elgendlrectlons dfPh whose correspondmg

T singular eigenvalues are larger than those of the prestribe
denoted byR,, € R .

(climatic) covarianceA ;. The diagonalisation oR.;!
poses an additional computational complexity when

In an ensemble Kalman filter (EnKF) (Evensen 2006) Wmpared to ETKF

ensemble withk memberz;,

Z=[z1,2,...,2;) € RN*F To determine an ensemb¥#, which is consistent with

) ) ) the analysis error covarian&®, and satisfies
is propagated by the model dynamics according to

Z="1(Z), f(Z)=[f(z) f(22),... F(z)] € RV*F. P, = ﬁz; z,)"
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4 L. Mitchell and G.A. Gottwald

we use the method of ensemble square root filters (Sinmssatistical behaviour. Furthermore, we show the variances
2006). In particular we use the ensemble transform Kalmah when calculated from simulations running only over
filter (ETKF) (Bishop et al. 2001; Tippettet al. 2003; a finite length of time, such as analysis cycle length. As
Wanget al. 2004), which seeks a transformati8re R*** expected, the variance increases as the dynamics gets less
such that the analysis deviation ensemflge is given and less damped for fixed length of time, and increase with
as a deterministic perturbation of the forecast ensembie simulation lengti\¢,s for fixed damping parameter
Z; via Z!, = Z.S. Details of the implementation can bdasymptoting to the climatic variance).
found in (Bishopet al. 2001; Tippettet al. 2003; Wang
et al. 2004). Alternatively one could choose the ensembleTwo characteristic time scales of the Lorenz-96 system
adjustment filter (Anderson 2001) in which the ensemh(é) will be important in the following, thee-folding
deviation matrixZ’; is pre-multiplied with an appropriatelytime, measured here by the inverse of maximal Lyapunov
determined matrixA € R¥*N_ Yet another method to€XPonentAn.x and the advection timé,q,, which is a
construct analysis deviations was proposed in Bergemap@asure for the time taken for a front to propagate from
et al. (2009) where the continuous Kalman-Bucy filtepne sitej to the nextj + 1. In Figure 2 we show how these
is used to calculaté without using any computationscharacteristic time scales vary with the damping parameter
of matrix inverses, which may be advantageous in high- Firstly, we show the inverse of the maximal Lyapunov
dimensional systems. exponentAn.x which is a measure for the predictability
A new forecast is obtained by propagatig with the time of the Lorenz-96 dynamics and correlates with the
nonlinear forecast model to the next observation tim@correlation time. For the original Lorenz-96 model with
where a new analysis cycle will be started. 7 =1 we reproduce the-folding time of 50 hours, i.e.
2.1 days. In accordance with the observed increase in
In the perfect model case, wheA.;, and a.,, variance, the predictability ime decreases with decrepsi
are given by the climatology, the forecast model wil@mping. As a second characteristic time scale we show
acquire comparable forecast error covariaRgefor large the advective timel;q,. Since the nonlinear term in (4)
observational intervals\t.,s using either the ETKF or ¢an be interpreted as a finite difference discretizatiomof a
VLKF. Hence both filters will have approximately thexdvection terme:z,, information from one grid poinj is
same input parameters prior to the analysis step, andT@nly transported to its right neighbours in an asymmetric
was shown in Gottwaldet al. (2011) the filters perform fashion. We estimatd.q, by initializing an integration
equally well. This is not true for imperfect models with aff the Lorenz-96 model with only one non-zero variable
underdamping forecast model; when the variance limitid§d then measuring the time taken for the resulting front
constraint is switched on, the background covariance {8fPropagate across sites. The characteristic time scale of
the pseudo-observables is set AQ),, = o2, I for the this information transport is important when discussing th
VLKF, much smaller than that for the ETKF when usin§fluence of the sparsity of an observational network on the
an underdamped model. Note that this implies that tH&ering skill. Figure 2 shows that this time scale decrsase
forecast error covariance is also typically much smaller f#/ith increasing model error.
the VLKF than ETKF over short observation intervals.

3. The Lorenz-96 model 4. Numerical results
Consider the following modification of the Lorenz-9§Ve now investigate how and when the variance limiting
model (Lorenz 1996) Kalman filter can be used to control the increased

covariances of an underdamped forecast model. In

dz; , particular, we will study the situation of a sparse
dt = zj-1(zj41 = 2j—2) =72+ F j=1,..D (4) gpservational grid.

with z = (21, ..., 2p)? and periodicz; = z;4p, where we  We will address two issues. First, we will investigate
have introduced a variable linear damping paramet&he under what conditions the VLKF as described in Section 2
Lorenz-96 modelis a standard test bed for data assimilatimoduces better analysis skill than the ETKF. Second, we
(see for example Otet al. (2004); Fisheret al. (2005)) will investigate when the VLKF produces better skill than a
as it is computationally manageable but still incorporatesrst-case analysis which does not involve any forecast but
crucial ingredients of real midlatitude atmospheric flonsmply constructs the analysis by taking the observational
such as nonlinear energy conservation, advection, forcifgfa and the climatic mean for the observed and the
and linear damping. We set the number of degrees urfobserved analysis variables, respectively (a “poorsnan
freedom asD = 40 and F' = 8 for the forcing. Fory = 1, analysis”). This latter unfortunate situation can occaor, f
the classical value of the damping in the Lorenz-96 systeexample, for moderate observation intervalg,,s, as we
this corresponds to a time scaling of 5 days per modeil see. Besides the degree of underdampindhe skill
time unit, ane-folding time of 2.1 days and a distancewill be seen to depend on the sparsity of the observational
between adjacent grid points 850 km, roughly equalling grid used as well as on the observation interval and the
the Rossby radius of deformation (Lorenz 1996). observational noise level.

Figure 1 illustrates how the climatic mean,, and The main result will be that the VLKF framework can
variance ¢3;,, depend on the value of the dampinghdeed provide skill improvement over the standard ETKF.
parameter~. The climatic values are obtained fronHowever, as the level of model damping is decreased
simulations of one long time trajectory (1000 days). Notge find that there is a trade-off between increasing

that in the Lorenz-96 system all variablgsshare the sameimprovement over ETKF on the one hand, and decreasing
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Figure 1. Dependence of climatic mean (left) and variance (right) amping parametey. As well as the climatic variance (black, circles, solid) we
show the average variance calculated over forecast itdef\a,; = 12 hours (red, squares, dottedY¢.,s = 24 hours (green, triangles, dash-dotted)
andAt.,s = 48 hours (blue, crosses, dashed).
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Figure 2. Characteristic time scales for the Lorenz-96 system (4) fametion of the damping parametst Left: Inverse of the maximal Lyapunov
exponent\imax in hours. Right: Advection timé@, 4 in hours.

improvement over the poor-man’s analysis on the other. Téyeles to ensure statistical stationarity of the ensembles
skill improvement can be explained by the improved abilitye employ 5% constant global multiplicative covariance
of the VLKF to ensure the correct statistical propertiesflation in both filters.
of the analysis, as opposed to pathwise tracking of the
truth, for small forecast model damping. We find analogouswe use an implicit mid-point rule (see for example
results as the observational sparsify,s or the magnitude Leimkuhler and Reich (2005)) to simulate the system (4)
of the observational noise is increased. to a timeT" = 60 time units with a time ste@t = 1/240.

The total integration time corresponds to 300 days, and the

We generate a truth from a realisation of the Lorenz-96integration timesteplt corresponds to half an hour. The

system (4) withy = 1. Observationy, are then generatedclimatic mean and standard deviation over all variables
for the observableflz with Gaussian error covariancewith v = 1 are estimated as temporal averages from a long
R, = (noaim)?I, and are available after each observatidrajectory asyiclim = 2.34 and ociim = 3.63 respectively,
interval At,,s at every NI site. The observations arewhich determines our true climatology.
then assimilated in an ensemble filter framework using the
Lorenz-96 model (4) with damping parameter< 1 as In Figures 3 and 4 we show sample analyses using both
forecast model, mimicking the situation of underdampéitiers, ETKF and VLKF, with N,,s =4 and damping
forecast models. We perform twin experiments where tfaetory = 0.5 for both At = 24 and At,,s = 48 hours,
same truth and observations are used for data assimilagaemplifying moderate and large observation intervals
with both the VLKF and ETKF. Both filters are run withrespectively. We show analyses for an arbitrary unobserved
k = 41 ensemble members and the same forecast modiponent and an arbitrary observed component of the
(4) with v < 1, making the forecasts underdamped withorenz-96 model. Both filters track the truth for the
respect to the truthz,. Both filters are spun up for 100observed components reasonably well for both moderate
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6 L. Mitchell and G.A. Gottwald

and large observation intervals, with the analysis tendii®y . = §5 — Pfoy/(Ptze + Ro)(Zf — o) where
more towards the observations for large,.,. However, Py ., > 0andPs ., measures the forecast error covariance
for the pseudo-observables with moderate observatlmetween the unobserved and observed variable. Note that
interval Atq,s =24 hours, the ETKF tracks the truthdue to finite size ensemble sizes one can hByg, # 0
better than the VLKF despite the inclusion of additionaven if dynamically there are no correlations between
climatological information. For large observation intels/ observed and unobserved variables. We argue that the
Atons = 48 hours, neither filter tracks the truth for thelecrease in variance of the analys${g, — (z.))?) with
pseudo-observables well. However, the additional inpd#creasing damping is due to the analysis being damped
of the climatological information into the VLKF leads tostronger for smaller values ofin the case of the Lorenz-96
an analysis with statistics which better resemble the trefgstem (4). For the simple system this is the case when
climatology, thereby improving the overall RMS errors ang; ., /(Ps ... + R,)(Zs — z,) >0 on average, provided
skill. It is also clearly seen that the main contributiontte t that 5, > 0 also on average. Since the climatic mean
error stems from the pseudo-observables. is positive and decreases with decreasing damping
(cf. Figure 1),z; >0 and Hzy —y, <0 on average.
Figures 3 and 4 suggest that the notion of whmtoreover, as all variables; are statistically equal due to
constitutes a good performance of a filter depends on the periodicity of the Lorenz-96 system, the forecast error
length At,p,s of the observation interval. When aiming fotovariances between observed and unobserved variables
improved performance in the case of moderate observatig® ;h” (equivalent toP; ., in the simple model) must
intervals, one is interested in tracking the truth for bot{lso be negative on average. Hence the variance of the
the observables and pseudo-observables. In the cas@rifiysis time serie§z, — (z,))2) has the same decreasing
large observation intervals, one can only expect to tragfndency with decreasing dampings the climatic mean.
the truth for the observed variables and produce analyses
which exhibit the same statistical behaviour as the truthye now quantify the performance of the VLKF and the

for the pseudo-observables. We remark that for very largigndard ETKF by the site-averaged RMS error
observational sparsity,,s tracking cannot be demanded

even for moderate observation intervals; for example with B
Atops = 6 hours the analysis of an observational grid with 1 _ 5

Nobs = 20 does not produce tracking analyses for any &= <LDG Z |Za (1AEobs) — 2¢(IALobs) ) (5)
variablez;. =1

In Figure 5 we show the average maximal singul@€tween the truthz, and the ensemble mean, where
values s;; and s, of the forecast and analysis errof = [T/ Atons] is the number of analysis cycles and
covariances projected onto the observation and pseufs: denotes the numt;er OfT variables involved. We
observation subspaces respectively. As expected #Hgoduced the normjallg, =a”Ga to investigate the
covariances increase with increasing model error, as wellfor OVver all variablest using G =1, the errorTSO
as with increasing sparsity. The variance constraint of tfiStributed over the observed variables usfdg= H" H
VLKF markedly controls the analysis covariance of th@nd the erroé%w distributed over the unobserved variables
unobserved variables to always assume values below ¥8819 G = h"h. We also introduce a measur& to
climatic variance. This causes the forecast covarianéggntify how well a filter performs against the poor-

to be limited as well, albeit at values greater than tfgan's analysis of using the observations and the climatic
climatic variances?, . For large observational sparsitynéan for the observed and unobserved components of the
Nobs, the analysis covariance of the unobserved variabf#alysis respectively, implyindl(z, — z¢) ~ N (0, R,)

is set to the climatic variance for the VLKF, whereas fdd h(z, —z;) ~ N'(0, Aciim). Assuming thatH(z, —

the ETKF the analysis covariances grow larger thdn ~ %) andh(z, —z;) are uncorrelated and settingciim =

with increasing sparsity. Interestingly, the VLKF alsg?; I, we can calculate the RMS errérin the poor-
limits the covariances for the observed variables. As wgan’s analysis as

will see this may have negative effects and may lead to

an underdispersive ensemble which can spoil the VLKF . 1 & )

analysis for the observed variables. £ =5 Zl [||H(za(ti) —z:(t))]
In Figure 6 we show how for long observation intervals SN oy 2}

Atohs = 48 hours the true climatic mean and variance are +Ih(@a (t:) — 2 (t:))]]

better preserved by the VLKF analysis than by the ETKF

analysis. The true climatic mean,;,, is reasonably well whereL = |T'/At.s] is the number of analysis cycles as

preserved by the VLKF analysis whereas the ETKF greaiiy(5), giving the RMS error

underestimates it. The VLKF analysis underestimates the

true climatic variances?; , but not as severely as the . \/
£ =

ETKF does. We will see that this leads to a marked increase

1 242 1 2
. . . N 70 clim +11- N, Oclim
in skill, especially for large model error < 1. obs obs

The fact that the variance of the analysig, — (z.))?) 2 —1)
decreases with decreasing damping may seem — ot |14+ L "2 (6)
counterintuitive at first sight. This can be justified by Nobs

considering a simple two-dimensional system where
is observed and; is unobserved. The Kalman analysiwith R, = (10¢lim)?L.
update (cf. Equation (2)) for the unobserved variables
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Controlling model error using a variance limiting Kalman fil ter 7

0 10 20 30 40 50 60 70 80 90 100

Figure 3. Sample ETKF (blue-green, solid line) and VLKF (red, solite)) analyses over 100 days for obserggdbottom panel) and unobserved
(top panel) component fakt.;,s = 24 hours and model erroy = 0.5. The dashed line is the truth, the crosses are observaianameters used were
Nops = 4 andRo = (0.250¢1im )2 L.

Figure 4. As in Figure 3, but withAt,;,s = 48 hours.

To quantify the proportional improvementin RMS errorsmes to the climatic covariance, is the main factor driving
for the VLKF over ETKF we introduce the analysis skill filter performance.

E .
S — & We will treat the near-perfect model cagelose to one
EV and the strong model error case with smalkeparately.
The perfect model case with= 1 was already considered

where the RMS errorg€ are defined by (5). Values of. A
S > 1 indicate an improvement of the \yLI(<F) over ETKEN Gottwaldet al. (2011). We confirm here that the VLKF

We also define the corresponding skills for proportion'a?l. superior to the standard ETKF, its skill increasing

improvement of the ETKF and VLKF over the poor man’ ith decrea;mg observ_at]on intervalstoys. For smaller
observation intervals skill improvements of more tf2afi

analysis can be achieved, and the analysis of the pseudo-observables
A é . é track the truth surprisingly well (cf. Gottwalet al. (2011)).
SP = = and SV = = - Note that both filters perform better than the poor man’s

analysis withS® > 1 andSY > 1 for v = 1. The variance
We first investigate the dependence of skill upon thieniting filter here successfully controls the overestiioat
observation intervalAt,s. In Figure 7 the skillsS, SE  of the analysis error covariance caused by the combination
andSY are shown as a function of the model errofor Of finite ensemble sizes and sparse observations.
different observation intervala\t,,s with fixed sparsity
Nous = 4. The figures reveal an intricate dependence ofThe case of model error with significantly smaller
the skill on both the observation interval and the moddélan 1 — our main objective in this work — shows an
error. We have checked that fakt,,, > 2.1 days, the interesting dependence on both the observation intereal an
e-folding time for the Lorenz-96 model with = 1, the the model error. For the discussion below it is important
skill curvesS(v) collapse onto one curve, independent @b note that for sufficiently large model error the analysis
the observation interval. This indicates that the forecastor covariances projected onto the pseudo-observables
error covariance, which saturates for large observatioeateed the climatic varianeg’; ; hence the background
Copyright(© 0000 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-15 (0000)
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Figure 5. Average maximal singular valueg; (left panels) and,, (right panels) foIP ; HT andhP sh” (top) andHP,HT andhP,h7 (bottom),
respectively, as a function of the sparsiti,s. The solid lines depict values obtained from the ETKF anddashed lines from the VLKF. We use
~ = 1 (blue, crosses)y = 0.9 (green, circles) ang = 0.8 (red, triangles). We useR, = (0.250 i )2T and Atp,s = 48 hours.
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Figure 6. Mean (z,) (left) and variance((z, — (z4))2) (right) of the analysis for ETKF (blue, crosses) and VLKFe@n, circles), averaged over
time and sites. The dashed black lines shows the climatiairaed variancg:cj;m, andaflim of the truth withy = 1. We usedR., = (0.250¢1im )21,
Nobs = 4, Atops = 48 hours.

error covariance matrices which are used to initialize &urthermore, for moderate observation intervals the VLKF
analysis cycle are larger tharf,;  for the ETKF. On the performs increasingly worse than the poor man’s analysis
other hand, the VLKF limits the analysis error covarianaeth increasing model error, but outperforms it for all
(projected onto the pseudo-observables) from abovevalues of~ for large observation intervals. The ETKF,
o2, independent of the observation interval. however, always performs worse than the poor man’s
analysis for all observation intervals in the presence of
It is seen in Figure 7 that for moderate observatitﬁ#’ﬁidenﬂy large model error. We first explqint_he behavior
intervalsAt,ps (24 hours), the VLKF performs worse tharPf the skill observed for querate observation intervats an
the ETKF with skills S < 1 decreasing with increasingth€n for large observation intervals.
model error (i.e. decreasing values9f On the contrary,
for large observation intervals witi\¢,,s > 36 hours, Over moderate observation intervals the forecast
the skill S > 1 increases with increasing model erroensemble acquires only little spread, as already encaaahter
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Controlling model error using a variance limiting Kalman fil ter 9

in Figure 1. This small spread in conjunction with modelith increasing sparsityN.,s. Note that this impacts
error can lead to instances where the analysis meanthe notion of what is considered to be moderate or
performs large excursions away from the truth, therelarge observation interval in the discussion above. This
spoiling the analysis. This effect is stronger for the VLKHependence of skill on observational sparsity can be
as itis initialized with a smaller ensemble spread assediagxplained by noticing that sparser observations imply an
with the constrained analysis error covariance as disdussereased forecast error covariance and ensemble spread
above. Increasing the model error by decreasiimcreases for a given observation interval, as illustrated in Figure 5
the probability of the ensemble mean diverging froM/e have already seen that the main contribution to the
the truth, thereby decreasing the skill. This explains tlogerall RMS error stems from the pseudo-observables.
poor performance of the VLKF over ETKF witls§ <1 Therefore one may be tempted to conclude that skill
for moderateAt,,s, and the poor performance of botlimprovement consistently gets better for increasiigs.
the ETKF and VLKF over the poor man’s analysis witfThis is correct when only comparing the VLKF and ETKF.
SE < 1andSY < 1 asillustrated in Figure 7. However, as in the case of increasing model error for
fixed sparsity discussed above, the increased sparsity for
For large observation intervals the situation is differerftxed model error causes the VLKF to be less effective in
Large observation intervals are characterized by thetperforming the poor-man’s analysis. Figure 8 illugisat
forecast dynamics having sufficiently decorrelated §®W increased sparsity affects the overall RMS egor
that the forecast ensemble will have equilibrated with is seen that the ETKF increasingly performs worse
(y-dependent) covariance, having lost memory of ttiean the poor-man’s analysis with increasing model error
background initialization. This has the effect that bo#@nd increasingVois. In contrast, the RMS errors for the
filters will acquire comparable forecast error covariaBge VLKF are below the RMS error of the poor man’s analysis
over the forecast intervakt,,s. The large spread which is€ for all values of~, and they asymptote t6 for large
acquired by the forecast ensemble during large observatparsity and large model error, in accordance with our
intervals prohibits the analysed pseudo-observabtésservations in Figure 5 on the singular values of the error
tracking the truth well (cf. Figure 4). Skill improvementsovariances of the VLKF. The trade-off between gain in
can only be achieved by 1.) tracking the truth for th&kill of the VLKF over ETKF and less good skill with
observed variables as guided by the observations, aespect to the poor-man’s analysis for increasing sparsity
2.) assuring the correct climatological behaviour for th¥,.s can be explained as follows. For sparse observations
pseudo-observables. This latter point is where the vagiamtformation from the observables cannot propagate to
limiting method is beneficial, as illustrated in Figure 6 eThdistant pseudo-observables within the observation iaterv
more accurate statistical properties of the VLKF analysi, s (cf. Figure 2). This causes the forecast and analysis
results in improved skill withS > 1 for all values ofy as for those pseudo-observables to be essentially random
shown in Figure 7. variables with temporal meap.;,, and variances?

clim

for the VLKF, andu(v) ando?(v) for the ETKF. Hence
However, Figure 7 also shows that the increased skiltreased sparsity leadsd® asymptoting from below t&
S for large observation intervals with increasing modebr all values ofy, with increasingly worse performance for
error comes at the price of the VLKF becoming lesgecreasing damping. In contrast, for the ETKEZ > &
able to outperform the poor man's analysis with errgsy sufficiently large sparsity, for all values of
£. As expected,SY asymptotes tol from above for
decreasing values of, whereasS® becomes less thah It is illuminating to see how the RMS errors are
for sufficiently large model error. We found that the VLKRlistributed over the observed variables and the unobserved
performs better than the poor man’s analysis for all valuesriables. In Figure 9 we depict the RMS errofs
of v for At.ns > 36 hours. of the observed variables anfé,, of the unobserved
variables, as defined in (5). We restrict our discussion to
We conclude that the VLKF may be beneficial folarge observation intervalat,,s = 48 hours. Consistent
ensemble based data assimilation with large underdampiith our observation that the overall skill improvement
model error and large observation intervalg,.s. For is dominated by the superior analysis of the pseudo-
smaller observation intervalsAt,,s < 18 hours with observablest,,, exhibits the same behaviour and trends as
sufficient model error (not shown) the standard ETKi#ke overall RMS erro€ (cf. Figures 7 and 8). The error
performs better than the VLKF. However, for smalt.,. for the observed variables shows different behaviour. It is
with a near-perfect modelv(~ 1) it is beneficial to seen that the standard ETKF produces better or equal RMS
use the VLKF, as shown in Gottwalet al. (2011). For errors than the VLKF for all values of the model errar
large observation intervals the overall skill increasethwiThe inferior performance of the VLKF over ETKF for the
increasing model erroy due to the imposed control of theobserved variables is an instance of underestimation of
increased error covariances. However, there is a tradetb# error covariances — the familiar situation in ensemble
between increased skill improvement of the VLKF ovefata assimilation. As seen in Figure 5, where we show the
ETKF, and of the skill improvement of the VLKF over theaverage maximal singular valug; of HP,H” for the
poor man’s analysis. ETKF and VLKF, the variance constraint of the VLKF
for the pseudo-observations also significantly decreases
We now look at the dependence of the skill on thbe covariance in the observed subspace. The observed
sparsity of the observational grid,.s in the presence poor performance of the VLKF for the observed variables
of model error. Numerical simulations show that thsuggests that the limited covariance in the observed
critical observation interval above which we observe sk8ubspace is insufficient to provide enough ensemble spread
improvement withS > 1 for all values of~y decreases for a reliable analysis.
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Figure 7. Skill S as a function of damping for At.,s = 24 hours (red, squaresi\t,,s = 36 hours (green, circles) anflt.,s = 48 hours (blue,
crosses). We uset, = (0.2501im )21, Nows = 4 and averaged all results over 200 realizations where otligatan was performed ove300 days.

With At,ps = 48 hours, the RMS error in the ETKF analysid® ranges from 3.13 (foty = 1) to 3.57 (fory = 0.05), while the RMS error in the
VLKF analysis€" ranges from 3.08 (foy = 1) to 3.15 (fory = 0.05).

2 4 6 8 10 2 4 6 8 10
Nobs Nobs

Figure 8. Overall RMS erroi€ as a function of the observational grid sparsiyy,s for different values ofy. We show the perfect model case= 1
(circles, blue);y = 0.5 (crosses, green) and= 0.05 (triangles, red). The dashed line denafesThe left panel shows results for the ETKF, the right
panel for the VLKF. We uselR, = (0.250 151, ) 2T and At,s = 48 hours.

For small model error, both filters produce worse analyssbereby the prior forecast error covariance is multipligd b
than an analysis consisting of observations only. Thas inflation factord > 1 (Anderson and Anderson 1999).
is again linked to insufficient spread of the forecast Figure 10 we show how the RMS error of the observed
ensembles. We have confirmed that for larger ensemiseiablest, decreases below the RMS error of the observed
sizes€E, < /R, for all v with both the ETKF and VLKF. variables fory = 1 and increasing inflation factaf. We
Underestimation of error covariances due to finite sipete that for very large values of in the perfect model
effects in ensemble filters are usually controlled by sorsiuation the ETKF and VLKF produce analyses of equal
form of covariance inflation, such as multiplicative inftati RMS error. Increasing the forecast covariance inflation
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Controlling model error using a variance limiting Kalman fil ter 11

has the same effect as increasing the model error (lteis seen that for sufficiently large observational noise
decreasing) in producing larger forecast ensemble spreagl> 0.25, the VLKF performs better than a poor man’s
analysis for all values of the model errgr

Further, it is seen in Figure 9 that for sufficiently large
model error, the RMS errors of the observaldgdor the
VLKF and ETKF converge to the same-independent 5. Discussion
value &, < v/R,. This can be explained by the greater _ . : . .
inflatior;) for\/gs damped forecapst modellé; Iessg,] moc@ rnumencal results suggest thqtmcludmg climatolabic
damping increases the forecast error covaridhgeand so information of the mean e_md variance of the_ unobserved
the analysis tends to trust the observations more. As su¢d{iables in an ensemble filter can be beneficial in the case
&, — R, asy — 0 for both filters, albeit slightly reducedVnen t.he forec_ast error covariances are overe_stlmated.
by the Kalman filtering. Due to the variance constraint tg Particular, this occurs when sparse observations are

RMS error of the observed variabl€s asymptotes tg, at :2:;32' ‘?; Isirf%iieﬂgsezvﬁé'g%;%teé\éalifxgvgpewgorﬁgszt
larger model error for a given observational sparsity. y pea. '

The value o the madel camping below whih the 50 STCEUNLETed Siions where e addtona warance
forecast variance is sufficiently large for the filter to tru P y

: be underestimated, spoiling the analysis (albeit onty fo
the observations depends on the sparaitys. The larger 0
the sparsityN,.., the larger the value of for which the the observables and not, as has to be stressed, for theloveral

RMS error&, of the two filters collapses onto the constarﬁ'vlS error)_. This is the case for moderate observation
= ~ intervals with large model error, and also for large
value&,. For N,s = 8, &, = &, for all values ofy for the

) observation intervals in the case of near-perfect models,
ETKF andé, assumes this value at roughly< 0.7 forthe -y " vt one is interested in the analygis of just the
VLKF. For Nops = 3, & = &, for v < 0.7 for the ETKF  qpservaples. This latter situation is not particularlyiting,
and fory < 0.25 for the VLKF. This is linked again to the 35 RMS errors for the observables are relatively small
increased forecast error covariances caused by the spars§mpared to those for pseudo-observables, and the finite
as illustrated in Figure 5. The top left panel in Figure gz effects can be eliminated here by basic multiplicative
shows that for a given observation interval and model eri@§yariance inflation. For sufficiently large observational
7, the forecast error covariance increases with sparsiyjise levels, when the analysis puts more weight on the
Nops, causing the observations to be weighted more by fagecast, controlling the unrealistic overestimation s
analysis. by underdamping model error using the VLKF becomes
) . the more effective strategy.

We remark that while for the observed variables
there is generally little or no improvement in the RMS e argue that model error associated with an
error of the VLKF over ETKF, the VLKF still createsyngerdamped forecast model leads to an increased forecast
more reliable ensembles, as characterised by the rankg@r covariance and increased associated ensemble spread
probability histogram (also known as Talagrand diagray the same mechanism by which covariance inflation
(Anderson 1996; Hamill and Colucci 1997; Talagrand peneficial. The variance limiting filter controls this
et al. 1997). In such a histogram the forecast ensembjgreased spread and keeps it within the bounds of the
is sortedX; = [zy,1, 22, ..., z,] @and bins(—oco,211], climatologically reasonable bounds, thereby leading to a
(zr1,2p2], .., (zfk,00) are generated at each forecaghwer RMS error and improving the overall skill.
step. We then increment whichever bin the truth falls
into at each forecast step to produce a histogram ofwye remark that one may choose to drive the system
probabilities P; of the truth being in bini. A reliable towards values other than the climatological mean and
ensemble is considered to be one where the truth and yafiance. The variance limitation can be viewed as a simple
ensemble members can be viewed as drawn from the safiigtegy to numerically stabilize the filtering process. As
distribution. A flat probability density histogram theredo gych it may be more beneficial to choose values differing
is seen as indicating a reliable ensemble for which eagbm climatology which are given by numerical necessities
ensemble member has equal probability of being nearestdgher than by dynamical and physical considerations. For
the truth. A convex probability density histogram indicatexample, in non-equilibrium situations where the dynamics
a lack of spread of the ensemble, while a concave diagrafitbcally off the attractor, such as in the presence of gtron
indicates an ensemble which exhibits too large spreadffénts, the climatological values are not meaningful. Our
Figure 11 we show ranked probability histograms for &pproach still provides a means to control the dynamically
observed variable withy = 0.5, and all other parametersnatural overestimation to numerically stabilize the filigr
as in Figure 9. The figure shows that fdt,s = 3,4 and procedure, however this would imply careful tuning of
8 the VLKF makes the forecast ensemble more reliable limiters A, and acin. Furthermore, it would be
controlling the spread. computationally impossible in a full-scale model to trelait a

of the unobserved variables as pseudoobservables, so one

In Figure 12 we show how the overall skill, as well agould need to choose carefully which of the unobserved
the climatic skillsS® andSV, vary with the observationalvariables to apply the VLKF to.
noisen, whereR, = (nouim)?I. The VLKF outperforms
both the ETKF and the observations/climatology for large It was noted in Gottwal@t al. (2011) that the RMS errors
enough noiseny > 0.25. Large observational noise givesre not sensitive to uncertainties in the estimatioa.gf,
preference to the pseudo-observables, whose unredlisticand A .j;,,, which may be obtained from historical data or
large error covariances as seen in Figure 5 are limited fogm long time simulations of numerical models. However,
the VLKF. This is particularly true for large model errorinstead of damping all pseudoobservables towards the
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Figure 9. RMS errors of observed variablgs, (top) and of unobserved variablés,, (bottom) for the ETKF (blue, dashed, crosses) and VLKF
(green, dashed, circles) fo¥,,,s = 3 (left), Nops = 4 (centre) andV,,s = 8 (right). Top and bottom horizontal dashed lines shg®o ando¢iim,
respectively. We useRo = (0.250 i )21 and Aty = 48 hours.
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Figure 10. RMS errorsE, for ETKF (blue, dashed, crosses) and VLKF (green, dashegles) for increasing forecast covariance inflatiohe dashed
line showsv/Ro. We usedy = 1, Atypg = 48 hrs, Nops = 3.

same spatially homogeneous climatological valug,,, intervals and sparse observational grids is particularly
one may wish to damp towards a spatially inhomogeneagetevant for climate reanalysis in the pre-radiosondelera.
finite-time statistics. One may, for example, use a runnitfys case long time climatology was shown to be beneficial
mean of the past history of analyses instead of the as additional information in data assimilation. Our result
constanta.;;,, we have used here. However, for the longhow that model error may provide the necessary ensemble
observation times used here, the analysis is not track@ead needed to combat finite ensemble size effects,
(cf. Figure 4). Therefore driving the pseudoobservablggnilarly to covariance inflation; VLKF controls this sprka
towards non-climatological values af;,, will introduce by limiting unrealistically large analysis error covarias.

on average larger RMS errors, degrading the skill. 1t is

exactly the situation of large observational intervals whe The problem we addressed here is closely related to
the quality of an analysis cannot be measured by how wieltecast bias correction schemes (Takacs 1996). Dee and
it estimates the actual truth but by how well the statistics Da Silva (1998) introduced a filtering strategy where a
the truth is reproduced. The situation of large observatiforecast bias is estimated using a running mean which

Copyright(© 0000 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-15 (0000)
Prepared usingjjrms4.cls



Controlling model error using a variance limiting Kalman fil ter 13

Figure 11. Ranked probability histograms for the observables for ETKlge) and VLKF (green), withV,,s = 3 (left), N,,s = 4 (centre) and
Nops = 8 (right). We usedy = 0.5, all other parameters as in Figure 9.
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Figure 12. Overall skill S (top) and climatic skillsS® (bottom left) andS"V (bottom right) as a function of for different levels of observational noise
n, whereRo = (noqim)?1. Heren = 1 (blue, crosses)y = 0.5 (green, circles)y = 0.25 (red, squares) ang = 0.15 (blue-green, triangles). We
usedAt,y,s = 48 hours andV, s = 4.

was then subtracted from the forecast prior to the analyssll produce stable dynamics, albeit with significantly
This strategy was applied to the Goddard Earth Observiagreased covariances. The effectiveness of our approach
System moisture analysis (Dee and Todling 2000). V¥¢ controlling actual numerical instabilities remains an
are dealing here with the additional problem of sparggen question planned for further research. We mention
observational grids. Both approaches, however, gain theit ok by Grote and Majda (2006) who addressed a

skill improvement from driving the dynamics towards Qimilar problem and designed a filter which assures an
mean which was estimated from the preceding dynamics

using a running average rather than allowing the analyg servability _condition in the case of unstable_ dynamics

to drift away due to forecast bias caused as in our case'bye dynamic core where the unstable dynamics is tamed
model error. by appropriately incorporating observations. Furthemmor

we have not addressed the important issue raised in

We have used here underdamping as a model fbe introduction whether the proposed method is able to

numerically unstable dynamic cores; our forecast modei®duce realistic energy spectra and control the energy
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