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Controlling model error of underdamped forecast models in
sparse observational networks using a variance limiting

Kalman filter
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The problem of controlling covariance overestimation due to underdamped
forecast models and sparsity of the observational network in an ensemble
Kalman filter setting is considered. It is shown in a variational setting that
limiting the analysis error covariance to stay below the climatological value and
driving the mean towards the climatological mean for the unobserved variables
can significantly improve analysis skill over standard ensemble Kalman filters.
These issues are explored for a Lorenz-96 system. It is shownthat for large
observation intervals the climatological information assures that the statistical
properties of the unobserved variables are recovered, providing superior
analysis skill. This skill improvement is increased for larger observational noise.
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1. Introduction

To account for uncertainties in both the initial conditions
and forecast model and to combat the associated forecast
error and flow-dependent predictability, ensemble methods
have become popular for producing numerical weather
forecasts (Molteni and Palmer 1993; Toth and Kalnay
1993) and for performing data assimilation (Evensen
1994). The idea behind ensemble based methods is that
the nonlinear chaotic dynamics of the underlying forecast
model and the associated sensitivity to initial conditions
cause an ensemble of trajectories to explore sufficiently
large parts of the phase space in order to deduce meaningful
statistical properties of the dynamics. However, all currently
operational ensemble systems are underdispersive, meaning
that the true atmospheric state is on average outside the
statistically expected range of the forecast or analysis
(e.g. Buizzaet al. (2005); Hamill and Whitaker (2011)).
This detrimental underdispersiveness can be linked to two
separate sorts of model error: adynamical model error
due to a misrepresentation of the physics of the forecast
model and anumericalmodel error due to the choice of the
numerical method used to simulate those forecast models.
It has been argued (Palmer 2001) that dynamical model

error is largely due to a misrepresentation of unresolved
sub-grid scale processes. The very active field of stochastic
parametrization is aimed at reintroducing statistical
fluctuations of the unresolved degrees of freedom and
a direct coupling between the resolved and unresolved
degrees of freedom into the equations of motion (see
Palmer and Williams (2010) for a recent review on current
trends). Indeed, using a low-dimensional toy model
Mitchell and Gottwald (2012) showed that stochastic
parametrizations can lead to superior skill performance in
ensemble data assimilation schemes in situations where the
dynamics involves rapid large amplitude excursions such as
in regimes switches or in intermittent dynamics.
Numerical model error is often introduced deliberately to
control numerical instabilities arising in the simulationof
geophysical fluids, such as in numerical weather prediction
or climate dynamics. In such simulations numerical
codes tend to produce large errors linked to numerical
instabilities at the grid resolution level, which limits the
reliability of the forecast over the forecast window. In a
data assimilation context this numerical “noise” can lead to
an unrealistic overestimation of forecast error covariances
at small scales. The standard approach to dealing with
these numerical instabilities is to add various forms of
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artificial dissipation to the model (Durran 1999). This
however has several well documented drawbacks. In the
context of ensemble data assimilation artificial viscosity
diminishes the spread of the forecast ensemble, causing
detrimental underestimation of the error covariances
(Houtekamer and Mitchell 1998; Burgerset al. 1998;
Anderson and Anderson 1999; Houtekameret al. 2005;
Charronet al. 2010). Most notably, artificial dissipation
implies unrealistic and excessive drainage of energy out of
the system (Shutts 2005), effecting processes ranging from
frontogenesis to large scale energy budgets. For example,
Palmer (2001) reports on the unphysical dissipation of
kinetic turbulent energy caused by mountain gravity wave
drag parametrizations. Skamarock and Klemp (1992)
introduce divergence damping to control unwanted gravity
wave activity in hydrostatic and non-hydrostatic elastic
equations to stabilize the numerical scheme, leading to
numerical energy dissipation (see also Durran (1999)).
Blumen (1990) controls the collapse of near-surface frontal
width by artificially introducing momentum diffusion in a
semi-geostrophic model of frontogenesis, with the effect
of producing unrealistic energy dissipation rates. In semi-
Lagrangian advection schemes Côté and Staniforth (1988)
and Ritchie (1988) find unrealistic energy dissipation rates
that are caused by interpolation. Besides effecting the
small-scale dynamics, numerical dissipation also has a
major effect on the large scales and their energy spectra
(Palmer 2001; Shutts 2005). In ideal fluids, which often
serve as a good approximation of the large scale dynamics
(Salmon 1998), numerical dissipation destroys dynamically
important conservation laws which may be undesirable
in long time simulations such as in climate modelling
(Thuburn 2008). Using statistical mechanics Dubinkina
and Frank (2007, 2010) show how the choice of the
conservation laws respected by a numerical scheme effects
the statistics of the large scale fields.
There exists a plethora of methods to remedy the unphysical
energy loss due to artificial diffusion and reinject energy
back into the numerical model, for example via energy
backscattering (Frederiksen and Davies 1997; Shutts 2005)
or systematic stochastic model reductions (Majdaet al.
1999).

Here we will look at these issues in the context of
ensemble data assimilation. Rather than controlling
numerical instabilities of the dynamic core via appropriate
discretization schemes of the numerical forecast model,
we will modifiy the actual ensemble data assimilation
procedure, avoiding excessive numerical dissipation.
Underdamping in dynamic cores causes the ensemble to
acquire unrealistically large spread. This overdispersion
is exacerbated in sparse observational networks where
for the unobserved variables unrealistically large forecast
covariances are poorly controlled by observational data
(Liu et al. 2008; Whitakeret al. 2009). The questions we
address in this article are:can one use numerical forecasting
models which are not artificially damped, yet still control
the resulting overestimation of forecast covariances within
the data assimilation procedure?, and,is it possible to use
the increased spread induced by numerical instabilities in
a controlled fashion to improve the skill of ensemble data
assimilation schemes?
In a recent article Gottwaldet al. (2011) proposed a
variance limiting ensemble Kalman filter (VLKF) which
controls overestimation in sparse observational networks

by including climatological information of the unobserved
variables. In a perfect model data assimilation scheme
unrealistic overestimation of the error covariances occurs
in sparse observational networks as a finite size effect; it
was shown that for short observational intervals of up to10
hours the VLKF produces superior skill when compared
to the standard ensemble transform Kalman filter (ETKF)
(Bishop et al. 2001; Tippett et al. 2003; Wanget al.
2004). Here we will apply the variance limiting Kalman
filter in the case of an imperfect, underdamped forecast
model, and for large observation intervals. Unlike in the
perfect model case where for large observation intervals the
forecast error covariances approach the climatic variance,
when forecasting with underdamped forecast models the
error covariances will be larger than the climatic variance.
This will be controlled by the VLKF, invoking a weak
constraint onto the mean and the variance of the unobserved
variables, leading to an improvement in the analysis skill.
We will study this effect using the standard Lorenz-96
model (Lorenz 1996), where we assume that the truth is
evolving to the standard set of parameters. To investigate
whether underdamped models can be used as forecast
models we then use forecast models with smaller values
of the linear damping term of the Lorenz-96 system to
generate ensembles with forecast spreads exceeding the
true climatology.

Our main result is, that VLKF produces significantly
better skill than ETKF, increasing with the strength of
the model error, the sparsity of the observational network
and the observational noise covariance. We will establish
that a variance limiting weak constraint may be used as
an adaptive alternative to artificial viscosity damping,
counteracting model error on the fly when underdamping
of the numerical forecast model causes an unrealistic
overestimation of the forecast ensemble. However, we will
see that there is a trade-off as for large model error the skill
of VLKF becomes comparable to the skill of an analysis
involving no forecast but using an analysis comprised of the
observations and the climatological mean for the observed
and unobserved variables, respectively. It will be shown
that this is important for large observation times when
the analysis is not tracking anymore due to either model
error or the chaotic nature of the underlying dynamics,
and one can only improve the analysis, assuring a reliable
reproduction of statistical properties of the dynamics.

In the next section we briefly describe the variance
limiting Kalman filter. In Section 3 we introduce the
Lorenz-96 model and describe the underdamped forecast
model used. In Section 4 we present results showing under
what conditions the VLKF produces better skill than the
usual ensemble transform Kalman filter. We conclude with
a discussion and outlook in Section 5.

2. The variance limiting Kalman filter

The variance limiting Kalman filter (VLKF) is a variation
of a standard ensemble Kalman filter designed to control
overestimation of error covariances caused by finite
ensemble sizes in sparse observational grids (Gottwald
et al. 2011). Whereas usually only direct observations and
model forecasts are combined to produce an analysis in data
assimilation, it was proposed to incorporate climatological
information to fill the data voids in sparse observational
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grids. In the atmospheric sciences data voids are a huge
obstruction to climate reanalyses (Bengtssonet al. 2007;
Whitakeret al.2004; Compoet al.2011) when assimilating
data from pre-radiosende era, or when attempting to include
the mesospehere into numerical weather forecasts where
the energetics is dominated by unobserved gravity waves
(Polavarapuet al. 2005; Sankeyet al. 2007; Eckermann
et al. 2009). Climatic information is used to limit the
posterior error covariance of the unobserved variables to
not exceed their climatic covariance. It was shown that
this limitation of the analysis error covariance controlled
undesirable overestimation of error covariances which
are caused by the finite size of the forecast ensembles.
Furthermore, the VLKF drives the mean of the unobserved
variables towards the climatological mean significantly
increasing the analysis skill. We remark that one may
use other values than the climatic covariance to control
the analysis error covariance if one interprets the variance
constraint as a numerical tool only to control overestimation
of the error covariances. We present a brief summary of
the algorithm here. For a detailed derivation the reader is
referred to Gottwaldet al. (2011).

Given anN -dimensional dynamical system

żt = F(zt) , (1)

which is observed at discrete timesti = i∆tobs, data
assimilation aims at producing the best estimate of the
current state given a typically chaotic, possibly inaccurate
model ż = f(z) and noisy observations of the true state
zt (Kalnay 2002). We assume that the state space is
decomposable according toz = (x,y) with observables
x ∈ R

n, for which direct observations are available,
and pseudo-observablesy ∈ R

m, for which only some
integrated or statistical climatological information is
available. Here we will assumen + m = N , however this
is not essential.

Observationsyo ∈ R
n are expressed as a perturbed truth

according to
yo(ti) = Hzt(ti) + ro ,

where the observation operatorH : R
N → R

n maps from
the whole space into observation space, andro ∈ R

n

is assumed to be independent identically distributed
observational Gaussian noise with associated error
covariance matrixRo.

We further introduce an operatorh : R
N → R

m

which maps from the whole space into the space of the
pseudo-observables spanned byy. We assume that the
pseudo-observables have varianceAclim ∈ R

m×m and
constant meanaclim ∈ R

m. This is the only information
available for the pseudo-observables, and may be estimated,
for example, from historical data or long time simulations.
The error covariance of those pseudo-observations is
denoted byRw ∈ R

m×m.

In an ensemble Kalman filter (EnKF) (Evensen 2006) an
ensemble withk memberszk

Z = [z1, z2, . . . , zk] ∈ R
N×k

is propagated by the model dynamics according to

Ż = f(Z) , f(Z) = [f(z1), f(z2), . . . , f(zk)] ∈ R
N×k .

This forecast ensemble is split into its meanz̄f and
ensemble deviation matrixZ′

f . The ensemble deviation
matrixZ′

f can be used to approximate the ensemble forecast
covariance matrix via

Pf (t) =
1

k − 1
Z′(t) [Z′(t)]

T ∈ R
N×N .

Note thatPf (t) is rank-deficient fork < N which is the
typical situation in numerical weather prediction whereN
is of the order of109 andk of the order of100.

Given the forecast mean̄zf , the forecast error covariance
Pf and an observationyo, an analysis mean is given by

z̄a = z̄f − Ko [Hz̄f − yo] − Kw [hz̄f − aclim] , (2)

where

Ko = PaH
TR−1

o

Kw = Pah
TR−1

w ,

with analysis error covariance matrix

Pa =
(

P−1

f + HTR−1
o H + hT R−1

w h
)

−1

.

The variance of the unresolved pseudo-observableshz is
controlled by setting

hPah
T = Aclim . (3)

This yields upon using the Sherman-Morrison-Woodbury
formula (see for example Golub and Loan (1996)) the
equation for the as yet unspecified error covariance matrix
for the pseudo-observablesRw

R−1
w = A−1

clim
−

(

hPhT
)−1

,

where

P =
(

P−1

f + HTR−1
o H

)

−1

is the analysis error covariance of an equivalent EnKF
without variance constraint. We remark that the matrix
Rw itself is never required in the VLKF algorithm, so
an expensive inversion ofR−1

w is not explicitly needed.
Furthermore, the matrixP can also be calculated without
computing inverses of the forecast covariance matrix by
means of the Sherman-Morrison-Woodbury formula. It is
readily seen that for sufficiently small background error
covariancePf , the error covarianceRw is not positive
semi-definite. To ensure that the error covariance is non-
negative we diagonalizeR−1

w = VDVT ; introducing D̄
with D̄ii = Dii for Dii ≥ 0 andD̄ii = 0 for Dii < 0, we
setR−1

w = VD̄VT . Hence the variance limiter acts only
on those eigendirections ofhPhT whose corresponding
singular eigenvalues are larger than those of the prescribed
(climatic) covarianceAclim. The diagonalisation ofR−1

w

poses an additional computational complexity when
compared to ETKF.

To determine an ensembleZa which is consistent with
the analysis error covariancePa and satisfies

Pa =
1

k − 1
Z′

a [Z′

a]
T

,

Copyright c© 0000 Royal Meteorological Society Q. J. R. Meteorol. Soc.00: 1–15 (0000)

Prepared usingqjrms4.cls



4 L. Mitchell and G.A. Gottwald

we use the method of ensemble square root filters (Simon
2006). In particular we use the ensemble transform Kalman
filter (ETKF) (Bishop et al. 2001; Tippettet al. 2003;
Wanget al.2004), which seeks a transformationS ∈ R

k×k

such that the analysis deviation ensembleZ′

a is given
as a deterministic perturbation of the forecast ensemble
Zf via Z′

a = Z′

fS. Details of the implementation can be
found in (Bishopet al. 2001; Tippettet al. 2003; Wang
et al. 2004). Alternatively one could choose the ensemble
adjustment filter (Anderson 2001) in which the ensemble
deviation matrixZ′

f is pre-multiplied with an appropriately
determined matrixA ∈ R

N×N . Yet another method to
construct analysis deviations was proposed in Bergemann
et al. (2009) where the continuous Kalman-Bucy filter
is used to calculateZ′

a without using any computations
of matrix inverses, which may be advantageous in high-
dimensional systems.
A new forecast is obtained by propagatingZa with the
nonlinear forecast model to the next observation time,
where a new analysis cycle will be started.

In the perfect model case, whenAclim and aclim

are given by the climatology, the forecast model will
acquire comparable forecast error covariancePf for large
observational intervals∆tobs using either the ETKF or
VLKF. Hence both filters will have approximately the
same input parameters prior to the analysis step, and as
was shown in Gottwaldet al. (2011) the filters perform
equally well. This is not true for imperfect models with an
underdamping forecast model; when the variance limiting
constraint is switched on, the background covariance of
the pseudo-observables is set toAclim = σ2

climI for the
VLKF, much smaller than that for the ETKF when using
an underdamped model. Note that this implies that the
forecast error covariance is also typically much smaller for
the VLKF than ETKF over short observation intervals.

3. The Lorenz-96 model

Consider the following modification of the Lorenz-96
model (Lorenz 1996)

dzj

dt
= zj−1(zj+1 − zj−2) − γzj + F j = 1, ..., D (4)

with z = (z1, ..., zD)T and periodiczj = zj+D, where we
have introduced a variable linear damping parameterγ. The
Lorenz-96 model is a standard test bed for data assimilation
(see for example Ottet al. (2004); Fisheret al. (2005))
as it is computationally manageable but still incorporates
crucial ingredients of real midlatitude atmospheric flows
such as nonlinear energy conservation, advection, forcing
and linear damping. We set the number of degrees of
freedom asD = 40 andF = 8 for the forcing. Forγ = 1,
the classical value of the damping in the Lorenz-96 system,
this corresponds to a time scaling of 5 days per model
time unit, ane-folding time of 2.1 days and a distance
between adjacent grid points of750 km, roughly equalling
the Rossby radius of deformation (Lorenz 1996).

Figure 1 illustrates how the climatic meanµclim and
variance σ2

clim depend on the value of the damping
parameterγ. The climatic values are obtained from
simulations of one long time trajectory (1000 days). Note
that in the Lorenz-96 system all variableszj share the same

statistical behaviour. Furthermore, we show the variances
σ2 when calculated from simulations running only over
a finite length of time, such as analysis cycle length. As
expected, the variance increases as the dynamics gets less
and less damped for fixed length of time, and increase with
the simulation length∆tobs for fixed damping parameterγ
(asymptoting to the climatic variance).

Two characteristic time scales of the Lorenz-96 system
(4) will be important in the following, thee-folding
time, measured here by the inverse of maximal Lyapunov
exponentλmax and the advection timeTadv, which is a
measure for the time taken for a front to propagate from
one sitej to the nextj + 1. In Figure 2 we show how these
characteristic time scales vary with the damping parameter
γ. Firstly, we show the inverse of the maximal Lyapunov
exponentλmax which is a measure for the predictability
time of the Lorenz-96 dynamics and correlates with the
decorrelation time. For the original Lorenz-96 model with
γ = 1 we reproduce thee-folding time of 50 hours, i.e.
2.1 days. In accordance with the observed increase in
variance, the predictability time decreases with decreasing
damping. As a second characteristic time scale we show
the advective timeTadv. Since the nonlinear term in (4)
can be interpreted as a finite difference discretization of an
advection termzzx, information from one grid pointj is
mainly transported to its right neighbours in an asymmetric
fashion. We estimateTadv by initializing an integration
of the Lorenz-96 model with only one non-zero variable
and then measuring the time taken for the resulting front
to propagate across sites. The characteristic time scale of
this information transport is important when discussing the
influence of the sparsity of an observational network on the
filtering skill. Figure 2 shows that this time scale decreases
with increasing model error.

4. Numerical results

We now investigate how and when the variance limiting
Kalman filter can be used to control the increased
covariances of an underdamped forecast model. In
particular, we will study the situation of a sparse
observational grid.

We will address two issues. First, we will investigate
under what conditions the VLKF as described in Section 2
produces better analysis skill than the ETKF. Second, we
will investigate when the VLKF produces better skill than a
worst-case analysis which does not involve any forecast but
simply constructs the analysis by taking the observational
data and the climatic mean for the observed and the
unobserved analysis variables, respectively (a “poor-man’s
analysis”). This latter unfortunate situation can occur, for
example, for moderate observation intervals∆tobs, as we
will see. Besides the degree of underdampingγ, the skill
will be seen to depend on the sparsity of the observational
grid used as well as on the observation interval and the
observational noise level.

The main result will be that the VLKF framework can
indeed provide skill improvement over the standard ETKF.
However, as the level of model damping is decreased
we find that there is a trade-off between increasing
improvement over ETKF on the one hand, and decreasing
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Figure 1. Dependence of climatic mean (left) and variance (right) on damping parameterγ. As well as the climatic variance (black, circles, solid) we
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Figure 2. Characteristic time scales for the Lorenz-96 system (4) as afunction of the damping parameterγ. Left: Inverse of the maximal Lyapunov
exponentλmax in hours. Right: Advection timeTadv in hours.

improvement over the poor-man’s analysis on the other. The
skill improvement can be explained by the improved ability
of the VLKF to ensure the correct statistical properties
of the analysis, as opposed to pathwise tracking of the
truth, for small forecast model damping. We find analogous
results as the observational sparsityNobs or the magnitude
of the observational noise is increased.

We generate a truthzt from a realisation of the Lorenz-96
system (4) withγ = 1. Observationsyo are then generated
for the observablesHz with Gaussian error covariance
Ro = (ησclim)2I, and are available after each observation
interval ∆tobs at everyN th

obs
site. The observations are

then assimilated in an ensemble filter framework using the
Lorenz-96 model (4) with damping parameterγ < 1 as
forecast model, mimicking the situation of underdamped
forecast models. We perform twin experiments where the
same truth and observations are used for data assimilation
with both the VLKF and ETKF. Both filters are run with
k = 41 ensemble members and the same forecast model
(4) with γ < 1, making the forecasts underdamped with
respect to the truthzt. Both filters are spun up for 100

cycles to ensure statistical stationarity of the ensembles.
We employ 5% constant global multiplicative covariance
inflation in both filters.

We use an implicit mid-point rule (see for example
Leimkuhler and Reich (2005)) to simulate the system (4)
to a timeT = 60 time units with a time stepdt = 1/240.
The total integration time corresponds to 300 days, and the
integration timestepdt corresponds to half an hour. The
climatic mean and standard deviation over all variables
with γ = 1 are estimated as temporal averages from a long
trajectory asµclim = 2.34 and σclim = 3.63 respectively,
which determines our true climatology.

In Figures 3 and 4 we show sample analyses using both
filters, ETKF and VLKF, with Nobs = 4 and damping
factorγ = 0.5 for both∆tobs = 24 and∆tobs = 48 hours,
exemplifying moderate and large observation intervals
respectively. We show analyses for an arbitrary unobserved
component and an arbitrary observed component of the
Lorenz-96 model. Both filters track the truth for the
observed components reasonably well for both moderate
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and large observation intervals, with the analysis tending
more towards the observations for large∆tobs. However,
for the pseudo-observables with moderate observation
interval ∆tobs = 24 hours, the ETKF tracks the truth
better than the VLKF despite the inclusion of additional
climatological information. For large observation intervals
∆tobs = 48 hours, neither filter tracks the truth for the
pseudo-observables well. However, the additional input
of the climatological information into the VLKF leads to
an analysis with statistics which better resemble the true
climatology, thereby improving the overall RMS errors and
skill. It is also clearly seen that the main contribution to the
error stems from the pseudo-observables.

Figures 3 and 4 suggest that the notion of what
constitutes a good performance of a filter depends on the
length∆tobs of the observation interval. When aiming for
improved performance in the case of moderate observation
intervals, one is interested in tracking the truth for both
the observables and pseudo-observables. In the case of
large observation intervals, one can only expect to track
the truth for the observed variables and produce analyses
which exhibit the same statistical behaviour as the truth
for the pseudo-observables. We remark that for very large
observational sparsityNobs tracking cannot be demanded
even for moderate observation intervals; for example with
∆tobs = 6 hours the analysis of an observational grid with
Nobs = 20 does not produce tracking analyses for any
variablezj .

In Figure 5 we show the average maximal singular
values sH and sh of the forecast and analysis error
covariances projected onto the observation and pseudo-
observation subspaces respectively. As expected the
covariances increase with increasing model error, as well
as with increasing sparsity. The variance constraint of the
VLKF markedly controls the analysis covariance of the
unobserved variables to always assume values below the
climatic variance. This causes the forecast covariances
to be limited as well, albeit at values greater than the
climatic varianceσ2

clim. For large observational sparsity
Nobs, the analysis covariance of the unobserved variables
is set to the climatic variance for the VLKF, whereas for
the ETKF the analysis covariances grow larger thanσ2

clim

with increasing sparsity. Interestingly, the VLKF also
limits the covariances for the observed variables. As we
will see this may have negative effects and may lead to
an underdispersive ensemble which can spoil the VLKF
analysis for the observed variables.

In Figure 6 we show how for long observation intervals
∆tobs = 48 hours the true climatic mean and variance are
better preserved by the VLKF analysis than by the ETKF
analysis. The true climatic meanµclim is reasonably well
preserved by the VLKF analysis whereas the ETKF greatly
underestimates it. The VLKF analysis underestimates the
true climatic varianceσ2

clim, but not as severely as the
ETKF does. We will see that this leads to a marked increase
in skill, especially for large model errorγ < 1.
The fact that the variance of the analysis〈(z̄a − 〈z̄a〉)2〉
decreases with decreasing damping may seem
counterintuitive at first sight. This can be justified by
considering a simple two-dimensional system wherex
is observed andy is unobserved. The Kalman analysis
update (cf. Equation (2)) for the unobserved variables

is ȳa = ȳf − Pf,xy/(Pf,xx + Ro)(x̄f − xo) where
Pf,xx > 0 andPf,xy measures the forecast error covariance
between the unobserved and observed variable. Note that
due to finite size ensemble sizes one can havePf,xy 6= 0
even if dynamically there are no correlations between
observed and unobserved variables. We argue that the
decrease in variance of the analysis〈(z̄a − 〈z̄a〉)2〉 with
decreasing damping is due to the analysis being damped
stronger for smaller values ofγ in the case of the Lorenz-96
system (4). For the simple system this is the case when
Pf,xy/(Pf,xx + Ro)(x̄f − xo) > 0 on average, provided
that ȳf > 0 also on average. Since the climatic mean
is positive and decreases with decreasing dampingγ
(cf. Figure 1), z̄f > 0 and Hzf − yo < 0 on average.
Moreover, as all variableszj are statistically equal due to
the periodicity of the Lorenz-96 system, the forecast error
covariances between observed and unobserved variables
HPfh

T (equivalent toPf,xy in the simple model) must
also be negative on average. Hence the variance of the
analysis time series〈(z̄a − 〈z̄a〉)2〉 has the same decreasing
tendency with decreasing dampingγ as the climatic mean.

We now quantify the performance of the VLKF and the
standard ETKF by the site-averaged RMS error

E =

√

√

√

√〈 1

LDG

L
∑

l=1

‖z̄a(l∆tobs) − zt(l∆tobs)‖2
G
〉 (5)

between the truthzt and the ensemble mean̄za, where
L = ⌊T/∆tobs⌋ is the number of analysis cycles and
DG denotes the number of variables involved. We
introduced the norm‖a‖2

G
= aT Ga to investigate the

error over all variablesE using G = I, the error Eo

distributed over the observed variables usingG = HTH
and the errorEuo distributed over the unobserved variables
using G = hTh. We also introduce a measurêE to
quantify how well a filter performs against the poor-
man’s analysis of using the observations and the climatic
mean for the observed and unobserved components of the
analysis respectively, implyingH(z̄a − zt) ∼ N (0,Ro)
and h(z̄a − zt) ∼ N (0,Aclim). Assuming thatH(z̄a −
zt) and h(z̄a − zt) are uncorrelated and settingAclim =

σ2
clim

Im, we can calculate the RMS error̂E in the poor-
man’s analysis as

Ê2 =
1

LD

L
∑

i=1

[

||H(z̄a(ti) − zt(ti))||2

+ ||h(z̄a(ti) − zt(ti))||2
]

whereL = ⌊T/∆tobs⌋ is the number of analysis cycles as
in (5), giving the RMS error

Ê =

√

1

Nobs

η2σ2
clim

+

(

1 − 1

Nobs

)

σ2
clim

= σclim

√

1 +
(η2 − 1)

Nobs

, (6)

with Ro = (ησclim)2I.
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Figure 3. Sample ETKF (blue-green, solid line) and VLKF (red, solid line) analyses over 100 days for observedz4 (bottom panel) and unobservedz1

(top panel) component for∆tobs = 24 hours and model errorγ = 0.5. The dashed line is the truth, the crosses are observations.Parameters used were
Nobs = 4 andRo = (0.25σclim)2 I.
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Figure 4. As in Figure 3, but with∆tobs = 48 hours.

To quantify the proportional improvement in RMS errors
for the VLKF over ETKF we introduce the analysis skill

S =
EE

EV
,

where the RMS errorsE are defined by (5). Values of
S > 1 indicate an improvement of the VLKF over ETKF.
We also define the corresponding skills for proportional
improvement of the ETKF and VLKF over the poor man’s
analysis

ŜE =
Ê
EE

and ŜV =
Ê
EV

.

We first investigate the dependence of skill upon the
observation interval∆tobs. In Figure 7 the skillsS, ŜE

and ŜV are shown as a function of the model errorγ for
different observation intervals∆tobs with fixed sparsity
Nobs = 4. The figures reveal an intricate dependence of
the skill on both the observation interval and the model
error. We have checked that for∆tobs > 2.1 days, the
e-folding time for the Lorenz-96 model withγ = 1, the
skill curvesS(γ) collapse onto one curve, independent of
the observation interval. This indicates that the forecast
error covariance, which saturates for large observational

times to the climatic covariance, is the main factor driving
filter performance.

We will treat the near-perfect model caseγ close to one
and the strong model error case with smallγ separately.
The perfect model case withγ = 1 was already considered
in Gottwaldet al. (2011). We confirm here that the VLKF
is superior to the standard ETKF, its skill increasing
with decreasing observation intervals∆tobs. For smaller
observation intervals skill improvements of more than20%
can be achieved, and the analysis of the pseudo-observables
track the truth surprisingly well (cf. Gottwaldet al.(2011)).
Note that both filters perform better than the poor man’s
analysis withŜE > 1 andŜV > 1 for γ = 1. The variance
limiting filter here successfully controls the overestimation
of the analysis error covariance caused by the combination
of finite ensemble sizes and sparse observations.

The case of model error withγ significantly smaller
than 1 – our main objective in this work – shows an
interesting dependence on both the observation interval and
the model error. For the discussion below it is important
to note that for sufficiently large model error the analysis
error covariances projected onto the pseudo-observables
exceed the climatic varianceσ2

clim
; hence the background
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2 4 6 8 10
0

5

10

15

20

25

sH

Nobs

2 4 6 8 10
0

20

40

60

80

100

Nobs

sh

2 4 6 8 10

0.65

0.7

0.75

0.8

Nobs

sH

2 4 6 8 10
0

10

20

30

40

50

60

70

Nobs

sh

Figure 5. Average maximal singular valuessH (left panels) andsh (right panels) forHPf HT andhPfhT (top) andHPaH
T andhPahT (bottom),

respectively, as a function of the sparsityNobs. The solid lines depict values obtained from the ETKF and thedashed lines from the VLKF. We use
γ = 1 (blue, crosses),γ = 0.9 (green, circles) andγ = 0.8 (red, triangles). We usedRo = (0.25σclim)2I and∆tobs = 48 hours.
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Figure 6. Mean 〈z̄a〉 (left) and variance〈(z̄a − 〈z̄a〉)2〉 (right) of the analysis for ETKF (blue, crosses) and VLKF (green, circles), averaged over
time and sites. The dashed black lines shows the climatic mean and varianceµclim andσ2

clim
of the truth withγ = 1. We usedRo = (0.25σclim)2I,

Nobs = 4, ∆tobs = 48 hours.

error covariance matrices which are used to initialize an
analysis cycle are larger thanσ2

clim for the ETKF. On the
other hand, the VLKF limits the analysis error covariance
(projected onto the pseudo-observables) from above to
σ2

clim, independent of the observation interval.

It is seen in Figure 7 that for moderate observation
intervals∆tobs (24 hours), the VLKF performs worse than
the ETKF with skills S < 1 decreasing with increasing
model error (i.e. decreasing values ofγ). On the contrary,
for large observation intervals with∆tobs > 36 hours,
the skill S > 1 increases with increasing model error.

Furthermore, for moderate observation intervals the VLKF
performs increasingly worse than the poor man’s analysis
with increasing model error, but outperforms it for all
values of γ for large observation intervals. The ETKF,
however, always performs worse than the poor man’s
analysis for all observation intervals in the presence of
sufficiently large model error. We first explain the behavior
of the skill observed for moderate observation intervals and
then for large observation intervals.

Over moderate observation intervals the forecast
ensemble acquires only little spread, as already encountered
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Controlling model error using a variance limiting Kalman fil ter 9

in Figure 1. This small spread in conjunction with model
error can lead to instances where the analysis mean
performs large excursions away from the truth, thereby
spoiling the analysis. This effect is stronger for the VLKF
as it is initialized with a smaller ensemble spread associated
with the constrained analysis error covariance as discussed
above. Increasing the model error by decreasingγ increases
the probability of the ensemble mean diverging from
the truth, thereby decreasing the skill. This explains the
poor performance of the VLKF over ETKF withS < 1
for moderate∆tobs, and the poor performance of both
the ETKF and VLKF over the poor man’s analysis with
ŜE < 1 andŜV < 1 as illustrated in Figure 7.

For large observation intervals the situation is different.
Large observation intervals are characterized by the
forecast dynamics having sufficiently decorrelated so
that the forecast ensemble will have equilibrated with
(γ-dependent) covariance, having lost memory of the
background initialization. This has the effect that both
filters will acquire comparable forecast error covariancePf

over the forecast interval∆tobs. The large spread which is
acquired by the forecast ensemble during large observation
intervals prohibits the analysed pseudo-observables
tracking the truth well (cf. Figure 4). Skill improvements
can only be achieved by 1.) tracking the truth for the
observed variables as guided by the observations, and
2.) assuring the correct climatological behaviour for the
pseudo-observables. This latter point is where the variance
limiting method is beneficial, as illustrated in Figure 6. The
more accurate statistical properties of the VLKF analysis
results in improved skill withS > 1 for all values ofγ as
shown in Figure 7.

However, Figure 7 also shows that the increased skill
S for large observation intervals with increasing model
error comes at the price of the VLKF becoming less
able to outperform the poor man’s analysis with error
Ê . As expected,ŜV asymptotes to1 from above for
decreasing values ofγ, whereasŜE becomes less than1
for sufficiently large model error. We found that the VLKF
performs better than the poor man’s analysis for all values
of γ for ∆tobs > 36 hours.

We conclude that the VLKF may be beneficial for
ensemble based data assimilation with large underdamping
model error and large observation intervals∆tobs. For
smaller observation intervals∆tobs < 18 hours with
sufficient model error (not shown) the standard ETKF
performs better than the VLKF. However, for small∆tobs

with a near-perfect model (γ ≈ 1) it is beneficial to
use the VLKF, as shown in Gottwaldet al. (2011). For
large observation intervals the overall skill increases with
increasing model errorγ due to the imposed control of the
increased error covariances. However, there is a trade-off
between increased skill improvement of the VLKF over
ETKF, and of the skill improvement of the VLKF over the
poor man’s analysis.

We now look at the dependence of the skill on the
sparsity of the observational gridNobs in the presence
of model error. Numerical simulations show that the
critical observation interval above which we observe skill
improvement withS > 1 for all values of γ decreases

with increasing sparsityNobs. Note that this impacts
on the notion of what is considered to be moderate or
large observation interval in the discussion above. This
dependence of skill on observational sparsity can be
explained by noticing that sparser observations imply an
increased forecast error covariance and ensemble spread
for a given observation interval, as illustrated in Figure 5.
We have already seen that the main contribution to the
overall RMS error stems from the pseudo-observables.
Therefore one may be tempted to conclude that skill
improvement consistently gets better for increasingNobs.
This is correct when only comparing the VLKF and ETKF.
However, as in the case of increasing model error for
fixed sparsity discussed above, the increased sparsity for
fixed model error causes the VLKF to be less effective in
outperforming the poor-man’s analysis. Figure 8 illustrates
how increased sparsity affects the overall RMS errorE .
It is seen that the ETKF increasingly performs worse
than the poor-man’s analysis with increasing model error
and increasingNobs. In contrast, the RMS errors for the
VLKF are below the RMS error of the poor man’s analysis
Ê for all values ofγ, and they asymptote tôE for large
sparsity and large model error, in accordance with our
observations in Figure 5 on the singular values of the error
covariances of the VLKF. The trade-off between gain in
skill of the VLKF over ETKF and less good skill with
respect to the poor-man’s analysis for increasing sparsity
Nobs can be explained as follows. For sparse observations
information from the observables cannot propagate to
distant pseudo-observables within the observation interval
∆tobs (cf. Figure 2). This causes the forecast and analysis
for those pseudo-observables to be essentially random
variables with temporal meanµclim and varianceσ2

clim

for the VLKF, andµ(γ) andσ2(γ) for the ETKF. Hence
increased sparsity leads toEV asymptoting from below tôE
for all values ofγ, with increasingly worse performance for
decreasing dampingγ. In contrast, for the ETKFEE > Ê
for sufficiently large sparsity, for all values ofγ.

It is illuminating to see how the RMS errors are
distributed over the observed variables and the unobserved
variables. In Figure 9 we depict the RMS errorsEo

of the observed variables andEuo of the unobserved
variables, as defined in (5). We restrict our discussion to
large observation intervals∆tobs = 48 hours. Consistent
with our observation that the overall skill improvement
is dominated by the superior analysis of the pseudo-
observables,Euo exhibits the same behaviour and trends as
the overall RMS errorE (cf. Figures 7 and 8). The error
for the observed variables shows different behaviour. It is
seen that the standard ETKF produces better or equal RMS
errors than the VLKF for all values of the model errorγ.
The inferior performance of the VLKF over ETKF for the
observed variables is an instance of underestimation of
the error covariances – the familiar situation in ensemble
data assimilation. As seen in Figure 5, where we show the
average maximal singular valuesH of HPaH

T for the
ETKF and VLKF, the variance constraint of the VLKF
for the pseudo-observations also significantly decreases
the covariance in the observed subspace. The observed
poor performance of the VLKF for the observed variables
suggests that the limited covariance in the observed
subspace is insufficient to provide enough ensemble spread
for a reliable analysis.
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Figure 7. Skill S as a function of dampingγ for ∆tobs = 24 hours (red, squares),∆tobs = 36 hours (green, circles) and∆tobs = 48 hours (blue,
crosses). We usedRo = (0.25σclim)2I, Nobs = 4 and averaged all results over 200 realizations where one realization was performed over300 days.
With ∆tobs = 48 hours, the RMS error in the ETKF analysiŝEE ranges from 3.13 (forγ = 1) to 3.57 (forγ = 0.05), while the RMS error in the
VLKF analysisÊV ranges from 3.08 (forγ = 1) to 3.15 (forγ = 0.05).
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Figure 8. Overall RMS errorE as a function of the observational grid sparsityNobs for different values ofγ. We show the perfect model caseγ = 1

(circles, blue),γ = 0.5 (crosses, green) andγ = 0.05 (triangles, red). The dashed line denotesÊ . The left panel shows results for the ETKF, the right
panel for the VLKF. We usedRo = (0.25σclim)2I and∆tobs = 48 hours.

For small model error, both filters produce worse analyses
than an analysis consisting of observations only. This
is again linked to insufficient spread of the forecast
ensembles. We have confirmed that for larger ensemble
sizesEo <

√
Ro for all γ with both the ETKF and VLKF.

Underestimation of error covariances due to finite size
effects in ensemble filters are usually controlled by some
form of covariance inflation, such as multiplicative inflation

whereby the prior forecast error covariance is multiplied by
an inflation factorδ > 1 (Anderson and Anderson 1999).
In Figure 10 we show how the RMS error of the observed
variablesEo decreases below the RMS error of the observed
variables forγ = 1 and increasing inflation factorδ. We
note that for very large values ofδ in the perfect model
situation the ETKF and VLKF produce analyses of equal
RMS error. Increasing the forecast covariance inflation
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Controlling model error using a variance limiting Kalman fil ter 11

has the same effect as increasing the model error (i.e.
decreasingγ) in producing larger forecast ensemble spread.

Further, it is seen in Figure 9 that for sufficiently large
model error, the RMS errors of the observablesEo for the
VLKF and ETKF converge to the sameγ-independent
value Ẽo <

√
Ro. This can be explained by the greater

inflation for less damped forecast models; less model
damping increases the forecast error covariancePf , and so
the analysis tends to trust the observations more. As such,
Eo → √

Ro asγ → 0 for both filters, albeit slightly reduced
by the Kalman filtering. Due to the variance constraint the
RMS error of the observed variablesEo asymptotes tõEo at
larger model error for a given observational sparsity.
The value of the model dampingγ below which the
forecast variance is sufficiently large for the filter to trust
the observations depends on the sparsityNobs. The larger
the sparsityNobs, the larger the value ofγ for which the
RMS errorEo of the two filters collapses onto the constant
valueẼo. ForNobs = 8, Eo ≈ Ẽo for all values ofγ for the
ETKF andEo assumes this value at roughlyγ < 0.7 for the
VLKF. For Nobs = 3, Eo ≈ Ẽo for γ < 0.7 for the ETKF
and forγ < 0.25 for the VLKF. This is linked again to the
increased forecast error covariances caused by the sparsity,
as illustrated in Figure 5. The top left panel in Figure 5
shows that for a given observation interval and model error
γ, the forecast error covariance increases with sparsity
Nobs, causing the observations to be weighted more by the
analysis.

We remark that while for the observed variables
there is generally little or no improvement in the RMS
error of the VLKF over ETKF, the VLKF still creates
more reliable ensembles, as characterised by the ranked
probability histogram (also known as Talagrand diagram)
(Anderson 1996; Hamill and Colucci 1997; Talagrand
et al. 1997). In such a histogram the forecast ensemble
is sortedXf = [xf,1, xf,2, ..., xf,k] and bins(−∞, xf,1],
(xf,1, xf,2], ... , (xf,k,∞) are generated at each forecast
step. We then increment whichever bin the truth falls
into at each forecast step to produce a histogram of
probabilities Pi of the truth being in bini. A reliable
ensemble is considered to be one where the truth and the
ensemble members can be viewed as drawn from the same
distribution. A flat probability density histogram therefore
is seen as indicating a reliable ensemble for which each
ensemble member has equal probability of being nearest to
the truth. A convex probability density histogram indicates
a lack of spread of the ensemble, while a concave diagram
indicates an ensemble which exhibits too large spread. In
Figure 11 we show ranked probability histograms for an
observed variable withγ = 0.5, and all other parameters
as in Figure 9. The figure shows that forNobs = 3, 4 and
8 the VLKF makes the forecast ensemble more reliable by
controlling the spread.

In Figure 12 we show how the overall skill, as well as
the climatic skillsŜE andŜV, vary with the observational
noiseη, whereRo = (ησclim)2I. The VLKF outperforms
both the ETKF and the observations/climatology for large
enough noiseη ≥ 0.25. Large observational noise gives
preference to the pseudo-observables, whose unrealistically
large error covariances as seen in Figure 5 are limited by
the VLKF. This is particularly true for large model error.

It is seen that for sufficiently large observational noise
η ≥ 0.25, the VLKF performs better than a poor man’s
analysis for all values of the model errorγ.

5. Discussion

Our numerical results suggest that including climatological
information of the mean and variance of the unobserved
variables in an ensemble filter can be beneficial in the case
when the forecast error covariances are overestimated.
In particular, this occurs when sparse observations are
taken at large observation intervals and the forecast
model is sufficiently underdamped. However, we have
also encountered situations where the additional variance
constraint provided by the VLKF causes error covariances
to be underestimated, spoiling the analysis (albeit only for
the observables and not, as has to be stressed, for the overall
RMS error). This is the case for moderate observation
intervals with large model error, and also for large
observation intervals in the case of near-perfect models,
but only if one is interested in the analysis of just the
observables. This latter situation is not particularly limiting,
as RMS errors for the observables are relatively small
compared to those for pseudo-observables, and the finite
size effects can be eliminated here by basic multiplicative
covariance inflation. For sufficiently large observational
noise levels, when the analysis puts more weight on the
forecast, controlling the unrealistic overestimation caused
by underdamping model error using the VLKF becomes
the more effective strategy.

We argue that model error associated with an
underdamped forecast model leads to an increased forecast
error covariance and increased associated ensemble spread
by the same mechanism by which covariance inflation
is beneficial. The variance limiting filter controls this
increased spread and keeps it within the bounds of the
climatologically reasonable bounds, thereby leading to a
lower RMS error and improving the overall skill.

We remark that one may choose to drive the system
towards values other than the climatological mean and
variance. The variance limitation can be viewed as a simple
strategy to numerically stabilize the filtering process. As
such it may be more beneficial to choose values differing
from climatology which are given by numerical necessities
rather than by dynamical and physical considerations. For
example, in non-equilibrium situations where the dynamics
is locally off the attractor, such as in the presence of strong
fronts, the climatological values are not meaningful. Our
approach still provides a means to control the dynamically
natural overestimation to numerically stabilize the filtering
procedure, however this would imply careful tuning of
the limiters Aclim and aclim. Furthermore, it would be
computationally impossible in a full-scale model to treat all
of the unobserved variables as pseudoobservables, so one
would need to choose carefully which of the unobserved
variables to apply the VLKF to.

It was noted in Gottwaldet al.(2011) that the RMS errors
are not sensitive to uncertainties in the estimation ofaclim

andAclim, which may be obtained from historical data or
from long time simulations of numerical models. However,
instead of damping all pseudoobservables towards the
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Figure 9. RMS errors of observed variablesEo (top) and of unobserved variablesEuo (bottom) for the ETKF (blue, dashed, crosses) and VLKF
(green, dashed, circles) forNobs = 3 (left), Nobs = 4 (centre) andNobs = 8 (right). Top and bottom horizontal dashed lines show

√
Ro andσclim,

respectively. We usedRo = (0.25σclim)2I and∆tobs = 48 hours.
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Figure 10. RMS errorsEo for ETKF (blue, dashed, crosses) and VLKF (green, dashed, circles) for increasing forecast covariance inflationδ. The dashed
line shows

√
Ro. We usedγ = 1, ∆tobs = 48 hrs,Nobs = 3.

same spatially homogeneous climatological valueaclim,
one may wish to damp towards a spatially inhomogeneous
finite-time statistics. One may, for example, use a running
mean of the past history of analysesza instead of the
constantaclim we have used here. However, for the long
observation times used here, the analysis is not tracking
(cf. Figure 4). Therefore driving the pseudoobservables
towards non-climatological values ofaclim will introduce
on average larger RMS errors, degrading the skill. It is
exactly the situation of large observational intervals where
the quality of an analysis cannot be measured by how well
it estimates the actual truth but by how well the statistics of
the truth is reproduced. The situation of large observation

intervals and sparse observational grids is particularly
relevant for climate reanalysis in the pre-radiosonde era.In
this case long time climatology was shown to be beneficial
as additional information in data assimilation. Our results
show that model error may provide the necessary ensemble
spread needed to combat finite ensemble size effects,
similarly to covariance inflation; VLKF controls this spread
by limiting unrealistically large analysis error covariances.

The problem we addressed here is closely related to
forecast bias correction schemes (Takacs 1996). Dee and
Da Silva (1998) introduced a filtering strategy where a
forecast bias is estimated using a running mean which
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Figure 12. Overall skillS (top) and climatic skillsSE (bottom left) andSV (bottom right) as a function ofγ for different levels of observational noise
η, whereRo = (ησclim)2I. Hereη = 1 (blue, crosses),η = 0.5 (green, circles),η = 0.25 (red, squares) andη = 0.15 (blue-green, triangles). We
used∆tobs = 48 hours andNobs = 4.

was then subtracted from the forecast prior to the analysis.
This strategy was applied to the Goddard Earth Observing
System moisture analysis (Dee and Todling 2000). We
are dealing here with the additional problem of sparse
observational grids. Both approaches, however, gain their
skill improvement from driving the dynamics towards a
mean which was estimated from the preceding dynamics
using a running average rather than allowing the analysis
to drift away due to forecast bias caused as in our case by
model error.

We have used here underdamping as a model for
numerically unstable dynamic cores; our forecast models

still produce stable dynamics, albeit with significantly
increased covariances. The effectiveness of our approach
at controlling actual numerical instabilities remains an
open question planned for further research. We mention
the work by Grote and Majda (2006) who addressed a
similar problem and designed a filter which assures an
observability condition in the case of unstable dynamics
in the dynamic core where the unstable dynamics is tamed
by appropriately incorporating observations. Furthermore,
we have not addressed the important issue raised in
the introduction whether the proposed method is able to
produce realistic energy spectra and control the energy
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dissipation rates. This again may require tuning of the
limiters and is planned for further research.
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