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Steady, nonpropagating, fronts in reaction diffusion systems usually exist only for special sets of
control parameters. When varying one control parameter, the front velocity may become zero only
at isolated values(where the Maxwell condition is satisfied, for potential systemBhe
experimental observation of fronts with a zero velocity ovéinde intervalof parameters, e.g., in
catalytic experimentgBarelko et al, Chem. Eng. Sci.,33, 805 (1978], therefore, seems
paradoxical. We show that the velocity dependence on the control parameter may be such that
velocity is very small over a finite interval, and much larger outside. This happens in a class of
reaction diffusion systems with two components, with the extra assumptiongithtte two
diffusion coefficients are very different, and tHad the slowly diffusing variables has two stable
states over a control parameter range. The ratio of the two velocity scales vanishes when the
smallest diffusion coefficient goes to zero. A complete study of the effect is carried out in a model
of catalytic reaction. ©2000 American Institute of Physid$§1054-15000)01903-7

Front propagation plays a crucial role in the dynamics of

of a less stable stateControl parameters, such as tempera-

extended systems. They separate various phases of the ture, modify the nature of the equilibrium states. In general,

systems, and their motion depends on the relative stabil-

for a special value of the external parameter, the two inves-

ity of these phases, which depends on some external con- tigated phases have the same stability. In a thermodynamic

trol parameter. Zero velocity (motionles9 fronts are rare
solutions in the sense that they typically appear at most
once when varying one control parameter. This is what is
expected from general considerations in variational sys-
tems (notion of Maxwell point). The experimental obser-
vation in catalytic reactions of {\it intervals} of control
parameters where the front velocity is zero is in this con-
text very surprising. In this article we analyze this prob-
lem theoretically. Namely, we show that the phenomenon
of persistent zero velocity can be understood when the
system is described by at least two reaction diffusion
equations, with two assumptions about the special form
of the equations(existence of two very different diffusion
coefficients, and bistability of the slowly diffusive vari-
able over a range of control parametery, compatible
with the existing models of catalytic activity over a plati-
num wire.

I. INTRODUCTION

context, this occurs at the Maxwell point, where the free
energies of the two states are equal. In this situation, the
front solutions separating the two states have a zero velocity.
This is however a rather special case, corresponding to a
restricted set of values of the external parametarset of
codimension 1

Mathematically, reaction diffusion systems are governed
by partial differential equations of the type

du="f,(u)+Dd3u, )

where u is the control parameter. Whenis a scalar func-
tion, that is, when there is only one reacting species, the front
separating the two locally stable statesandu, has a zero
velocity when the followingMaxwell) condition:

fu+fﬂ(u)du:0, @)

u
is satisfied. Equatiori2) is a relation between the control
parameters. As a consequence, if one varies only one control
parameter, steady front solutions exist only at isolated values

Reaction diffusion waves are observed in a wide rang®f the control parameter, and not on a whole interval.
of contexts, including combustion, chemical waves in homo- ~ Even for a reaction diffusion system with an arbitrary
geneous systems, in the presence of a catalytic element, afgmber of variables, zero velocity fronts may be observed
in a number of biological systenis? In the case where sev- only for a subset of codimension one of control paraméters.
eral equilibrium states coexist, front solutions may describel his results from very general geometric considerations. Sta-

how a region in the more stable phase grows at the expend@nary front solutions of reaction diffusion systems with
components obey the ordinary differential equation

()

dElectronic mail: krinsky@inln.cnrs.fr Ddyeu+f,(u)=0,
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whereu=(uq, ... ,u,) andD is an invertible, positive defi- Maxwell condition, Eq.(2) for the variableu, is satisfied.
nite matrix. Equation(3) defines a B-dimensional dynami- When this condition cannot be fulfilled, fronts propagate at a
cal system which is reversiblénvariant underx— —x). much larger velocityp ~D;.
Front solutions correspond to heteroclinic trajectories, leav-  Physically, the fact that the velocity may be very small
ing u_ whenx— —o and approachingi, when x— + o, over a finite range of control parameters, and much larger
Because of the reversibility, the unstable manifolduof, outside this range provides an explanation for the phenom-
Wy(u_), defined as the set of solutions such tiatu_ enon reported in Refs. 8 and 9. In experimental systems, the
whenx— —o, and the stable manifold af, , W4(u,), the  ratio D,/D; can be as small as 10", therefore, making
set of solutions such that—u, whenx— +, are both of the small velocity ¢~ D) 3 orders of magnitude smaller
dimensionn. A heteroclinic trajectory can be found when the than the fast velocityy~ D).
two manifolds intersect along a lingda one-dimensional The conditionsH; andH, are met in activator-inhibitor
manifold), in the phase space of dimension.2 systems, with a long range inhibitioru{ plays the role of
Geometric arguments show that this does not happethe inhibitor, andu, of the activatoy.!* As such, these as-
unless an extra condition is imposed on the set of externaumptions are very plausible in a number of contexts.
parameter. As follows from the transversality the@sge, for We focus here on the problem of chemical reaction over
example, Ref. ¥ the dimension of the intersection of two a catalytic element, which we study with the help of an ex-
manifolds,A and B, in N-dimensional space is generically plicit, although somewhat approximate model of catalytic re-
action, described in Sec. Il.
dim(ANB)=dim(A)+dim(B)—N. (4) A number of analytic tools have been developed to in-
vestigate excitable systems with long range inhibition. In
In our caseN=2n and dimW,(u_)=dimWx(u,)=n, so  Particular, much effort has been devoted to the appearance of

the dimension of the intersection of the two manifolds islocalized structures in these systerfmich as the “hot
zero. To make it equal to one, as required for existence of th&POts™? observed in catalytic reactign see among
heteroclinic trajectory, an extra condition should be imposed@thers:*"*°Using similar analytic techniques, we investi-
to the set of control parameters, that forces the dynamics tgate the existence and the structure of slow fronts in the

be restricted to a lower dimension spdce. model of catalytic reaction. The analytic results are con-
This proves the result stated above: Stationary front sofirmed by our numerical study, see Sec. Ill.
lutions of the partial differential Eq(3) with the proper Finally, we investigate the transition from slow to fast

boundary condition exist only for a subset of external paramWaves, when the Maxwell condition cannot be satisfied.
eters, of codimension orfe.

In many experiments, zero velocity fronts are observed!- THE MODEL
at one special value of the control parameter, in full agree- |, this section, we introduce the model to describe cata-
ment with the general considerations above. In contrast, thF}‘/tic reactions over a platinum wire immersed in a gas
experimental observation that zero velocity fronts may existi eam at temperatu,. The dynamics of reactive systems
over a wholenterval of external parameters seems paradoXi-inolves. in general, many variable. The model we use has
cal. This phenomenon has been observed in waves of caigy|y two variables(the others may be considered adiabati-
lytic oxidation of ammonium over catalytic wiréss well as cally eliminated: T, the temperature, and, interpreted as
in transition from nucleate to film boiling over a heat gener-«,ctive center’ density. This variable, introduced originally
ating element, a situation that may be described phenomengy anaj0gy with chain branched reactions, is supposed to
logically by reaction diffusion gysterﬁsAn explanation in-reflect structural changes at the surface of the catalyst, as
volves the multivaluedhystereti¢g character of the function ,pserved very clearly in a number of recent experimthts.
fu in Eq. (1). The hysteresis is heuristically described with gther theoretical descriptions of this phenomenon were pro-
the help of an extra discrete variable, specifying whichyoseq in Refs. 18 and 19. We will simply use the fact that
branch of the function governs the dynamics of the syéfém. (T,n) obey a set of coupled reaction diffusion equations, and
In this work, we show that fronts with @ery small velocity 4t the two diffusion coefficient®); andD,, (respectively,

may exist over a finite range of parameters, and with & mucky, temperature and for active centerbave very different
larger velocity outside, in a class of coupled reaction diffu-5,qers of magnitude

sion equations for two variablesg andu, with the following
featuresH; the two diffusion coefficients are extremely dif- Dn<Ds. )

ferent, sayD,>D,, andH, the variable with the small dif-  physically this comes from the fact that a catalytic wire has a
fusion coefficient has two stable steady states over a range ggry good thermal conductivity, whereas changes in surface

control parameters. _ . conformation propagate very slowly along the wire.
Because of the hypothesi$,, the width of the region The model considered explicitly in the present work is
where the variablel, changes significantly is very narrow. )
AssumptionH , implies that the reaction term of the variable @ T=D1dT+F(T,n), ©)
with the largest diffusion coefficientu;, has several D
branches, and in this sense, is multivalued. \Byy small &tnz—n§§n+af(T,n), (7)
a

velocity, we mean that the velocity is controlled by the small-
est diffusion coefficienty ~+/D,. This is possible when a with
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F(T,n)=n(1+tanh(y(T—T,)))— 8(T—Ty), (8) 1.0 ———— —r— ———
f(T,nN)=ky(T)n?(1—n)—Kky(T)n+kz(T). (9

The scaling factoa is introduced for later purpose. It will be
set equal to 1 unless stated otherwise. The first term in the
equation forF, Eq. (8), is the production term. It is propor-
tional ton, expressing the fact that the reaction can proceed
only in the presence of active centers. The assumed tempera- =
ture dependence is an approximation, which reproduces the
main qualitative features of a more realistic dependence: The
reaction does not proceed at temperatures appreciably below
T, , and the reaction rate saturates at high temperature. In
the second term, effectively a loss term, the temperafgre
of the gas stream is taken as our control parameter. The
dynamics of active centers is controlled by the reaction term, e
Eq. (9), which can be justified experimentafl. The terms o T 5 Tu 10
ki(T) were effectively shown to be Boltzmann factors: (@)
ki(T)=k%(T)exp(—E;/RT). We have simplified these fac- 2
tors, and takenk,(T)=aT, ky(T)=1 and k3(T)=pT, C
which provides a qualitatively correct description of the ac- -
tive center dynamics. 1
At a given value ofT, the reaction ternii(T,n) is a cubic
polynomial inn, which possesses either three real roots: One
stable, typically close to 1, and two close to(@ne stable 0
and one unstabjeor just one stable real root, close to 1 at ’2'
large temperature, and close to 0 at small temperature, see &
Fig. 1(a). The disappearance of the branches nmeaO re- =4
sults from the creation ternks(T) in Eq. (9). Because of
these features, the front solutions we are looking for may
exist only in an interval of temperature. They do not exist -2
above the temperaturé, where the lower branches of
disappear, and below, where the higher branch disappears.
Figure Xa) shows that the assumptidthy, stated in the pre- gl [ W
vious section, is satisfied in the model we are considering.
Since the variable is essentially bistable over a range (b)
of temperature, the functioR(T,n) has two branches, cor- FiG. 1. Bistability in the catalytic modela) The roots off (n,T)=0 in the
responding to each value of F.(T)=F(T,n.(T)). One  (T.n) plane[Egs.(6) and(7)]. Three branches of solutions are observed for

may approximate the upper branlébl(T), for T= T and for T,<T<T,, the highesin (T) and the lowesn_(T) are stable(b) The
Iarge enougﬁl’ and y by functionF . (T)=F(T,n.(T)). As T, increases, the two branches move up.
0 3

The parameters in Eqg8) and (9) are «=2.5, 8=0.002, y=1.8, T,

|

o
=
—
(9]
gﬁ
-
)
=

F (T)=2-6X(T—T,y), (10) =24,6=0.4,T,=3.
and the lower branck _(T) for T<T, by
F (T)~—6xX(T—To), (11) later, the front inn is very sharp. We insisted that the region

where n varies fromn~0.2 andn~0.8 contained at least
see Fig. b). We mention that for sufficiently large, mod-  five grid points. Too low a resolution resulted in unphysical
els (6)—(9) has thregand even fourstable states coexisting oscillations in then profile. We estimate our numerical errors
in a limited range of values of,. This leads to unusual to be at worse of the order of 1%.
regimes of propagation, studied, for example, in Ref. 21. We
will not consider these phenomena.

Our analytic study of the reaction diffusion system Eqs.“l' SLOW FRONTS
(6)—(9) was complemented by a numerical study. The reac- We look for front solutions corresponding to a hot, re-
tion diffusion system was discretized by using finite differ- active region i~1), propagating into a colder, inactive re-
ences and integrated in time by a Crank—Nicholson methodion (n~0). The mathematical treatment presented in this
in a finite domain, with zero flux boundary conditions. In section is similar to the one used in Ref. 13 to analyze the
order to look for front solutions, steadily propagating with a existence of localized structures in a system with an activator
finite velocity v, we replaced in Eqs6) and (7) d;, by ¢,  and a long-range inhibitor.
—vdy (which amounts to use a frame moving at a constant  In all cases, when solutions exist, the jumpniroccurs
velocity), and adjusted so as to reach a steady state. Reso-over a very narrow domain, much thinner than the region
lution in this problem is a serious concern, since, as showver which temperature jumps. This is a consequence of Eq.
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(5) (our hypothesidH,). One of the main ideas consists in
looking for solutions of then equation by simply treating@
as a constant, equal Iy . We first consider the case where
the polynomial inn, f(n,T;), has three rootsy_, n, and
n;, with n,>n;>n_; n,~1 andn_~0. Steadily propa-
gating front solutions can be readily found by replacingy
—vdg; é=x—vt, in EqQ.(7)

n.+n_ n.—n_
n(§)=————5 tanhug, (12)
n,—n_{[aT;|¥
K=" "\2b0,] (3
n
DpaT;\ M
v=l—5 (n++n—_2ni)|T:Tj- (14)

This solution describes a front propagating at a veloeity
~(DnaT;/2)"2 the variablen changing fromn~0 to n
~1 over a distance-(D,/T;)*2 This velocity is propor-
tional to D, and hence quite small.

So far, we have not determined the temperatlie
which remains a free parameter in Eq&2) and (14). In

Kramer et al.

T
L "F(T,n(T))dT=0. (19

0
Quite generally one expects in the linik,/D+—0 the ve-
locity to be given from Eq(14) with T; determined from the
Maxwell condition (19) with F=F_ (F=F_) for T<T;
(T>T)).

Importantly, because the branches andn_ exist only

in a finite interval of temperature, the Maxwell construction
is possible only in a finite interval of values df,. The
disappearance of the, branch afT=T, and then_ branch
at T=T, implies that the Maxwell construction, E{L9), is
possible only ifT|<Ty+T,)/2<T,, or equivalently,

T, — U8<To<T,—1/5. (20)

In our model the lower limit is only slightly below the zero
of the (slow) velocity.

The existence of slowly propagating fronts has been
thoroughly checked numerically. An example of such a so-
lution is shown in Fig. 2: Figure(2) shows then-front, and
Fig. 2(b) shows theT-front. These figures clearly demon-
strate the widely different scale of variations for theand

order to obtain a consistent solution, one has to solve simuthe n-profiles.

taneously ther-equation, Eq(7), with the condition thanh
jumps fromn_~0 ton,~1 atT=T,. The equation foil
can be solved by assuming thatis discontinuous wheit
=T;, which is justified since the region wherejumps is

The dependence of the velocityon T is shown in Fig.
3. Itis seen that the slow fronts are observed in an interval of
control parameter values where the Maxwell construction is
possible. In this range, slow waves are observed: The nu-

much narrower than any other distance in the problem. Thignerically observed values of the velocity are well described

allows to replace the original equatidn) by

0, T=F.(T)+D+:T. (15)

by Eq. (14). The dependence of the velocity afD, has
been explicitly checked, see Fig(b3.
In the limit D,/Dt—0, the temperaturd; is deter-

We consider the case where the velocity is positive, so th&ined by imposing the Maxwell condition, E(L9), and the

system is in the low(respectively high temperature state
when é— + o (respectively §¢— — ). Imposing that the lo-
cation of the front for then variable is¢=0, the branch- _
(respectively,F ) must be chosen foé=0 (respectively,
£<0). The problem can be solved analytically when is
replaced by its approximate form, Eq40) and (11). By

solving in each subdomain, and imposing continuity of the

function and its derivative at the boundary, one obtains

T(E)=To+(T;—Toexpa_&) for £=0 (16)
and
T(H=T +(Tj—T)expla,§) for £<O, 17
where
(DT5)1’2 (To+To—2T))
e memaet
(18)

a.=(v/Dy)(—1/2+\1/4+ D16lv?),

andT,=Ty+2/6.

In principle, compatibility of Eqs(14) and(18) fixes the
value ofT; . Since according to E18), the front velocity is
proportional to\/D+, which isa priori much larger than the
velocity given by Eq.(14), one obtains T, +T,—2T))
=0O(yD,/Dy). In the limit D,,/D+—0, and in the range
where Eqgs.(10) and (11) apply, one hasTj=(To+T,)/2.
This coincides with the Maxwell condition

velocity of the front is small, of ordex/D,. Although the
calculation has been carried out completely for a particular
model, the conclusion can be generalized for a wide class of
functions. This provides a justification of the ideas put for-
ward in order to explain a number of experimental f&cts,
and of the work of Petchatnikov and BarefKb.

When the condition for existence of slow fronts, Eg.
(19), is not satisfied, slow solutions cannot exist.

IV. FAST FRONTS

Our numerical results show that steadily propagating
front solutions still exist, even when the Maxwell condition
Eq. (19 cannot be satisfied. Figure 3 shows that the velocity
increases sharply wheh,>T,—1/4, indicating that these
fronts have a much larger velocifgee Eqs(10, (11), and
(20)]. The aim of this section is to characterize these fast
fronts. We choose to focus here on the disappearance of slow
fronts aboveT,>T,—1/6. The fast fronts observed on the
low-temperature side could be described in a similar way, up
to inessential technicalities.

Figure 4 shows an example of front solutions when
>T,—1/6. Because of the fact thdd,/D;<<1, the region
wheren jumps is found to be very narrow compared to the
length over whichT varies, and therefore the temperature is
essentially constant<(T;) in the region of the jump. The
structure of fast fronts is in this sense comparable to the
structure of slow fronts. However, the gradients observed in
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C ] -0.005- : - : - :
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4__ ] (b) Costrol parameser, T,
: : FIG. 3. Velocity of the front as a function of control parametgr (a) The
L J slow fronts are observed in an interval (€.4,<5.6). Parametea is in-
ol 11 PR S I A troduced in Eq. 7(b) Influence of the diffusion coefficients. The dashed
0.0 0.2 0.4 0.6 0.8 1.0 lines show the fit by Eq(14). Same parameters as in Figs. 1 and 2. The
() x upper curve corresponds By,= 1076 andD;=10"3, while the lower curve

corresponds t®,=10"7 andD;=5%x10"%.
FIG. 2. Structure of a slow fron{a) The n profile, blown up in the front
region.(b) The T profile, over the entire domain. Therange in(a) is 100
times smaller than ir(b); the temperature is essentially constant in the

front Th ; in Fig.0, =10 ° andD;=10 2 other hand depends on the strength of the nonlinear term,
ront. € parameters are as In FIg.l4,= an T= .

To analyze the problem, we make use of the dimension-
less parametea introduced in Eq(7) to enhance the nonlin-
earity. In the temperature range where slow waves exist, the
the fast front case are even larger than the ones observed fisont velocity is independent af. However, the width of the
slow fronts, compare Figs.(® and 4a). In addition, one front in n becomes smaller whemincreases, as predicted by
notices a clear lack of symmetry between the upper part anflg. (12) and(13). The situation changes dramatically when
the lower part of then front: the value oh reaches _ rather  slow fronts no longer exist. Figure 3 shows the front velocity
slowly, compared to the sharpness of the front between for several values o, for an otherwise fixed set of param-
~0.3 andn=0.9. The contrast between the spatial extent ofeters. Asa increases the width of the front again becomes
the foot and the high gradient region increases witfsee  smaller, the jump occurs nearerTq, and the front velocity
Eq. (7)]. Numerically, the value off; is in the intervalT,, increases. In the limia—o the velocity tends to that ob-
<T;sTy+1/5. tained from Eq(18) with T;=T,. It is evident, and we also

The fact that the jump im may occur at a temperature checked numerically, that the diffusive term in E@) be-
higher thanT, seems at first sight paradoxical, since the  comes very small, compared to the other terms in the equa-
branch disappears aboVg, hence, the solution is expected tion, whena increases. This suggests that the diffusive term
to jump to the other stable branch, ~1 aboveT,. The may be dropped when considering large but fimite
explanation for the high values of the temperatlijes that Since the jump im occurs over a very narrow region of
although the branches of solutions disappear aliqvethe  space, at a fixed;, the approximate solution Eq&l6) and
function f, see EQq.(7), remains small nean~0 for T (17) for T should still be valid, as well as the relationship
=Ty, hence, the jump im doesnot coincide with the dis- between the velocity and T;, Eq. (18). Indeed we have
appearance of the_ branch. The temperaturg; on the checked that Eq18) numerically works very well, and that
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UL LA LR B B with 0=(T,—Tg)a_=(T,—T,)a,, leads, after substitu-
r 1 tion in Eq.(7), and neglecting the diffusion term in the large

1.0 — — a limit, to
i i —vdn=aaT,(n,—n)((n—n,)2—\§), (23
where\ = 67.
i ] In order to solve Eq(23), we impose as a boundary
A i T condition thatn(¢) is, for large, positive values @f, equal to
0.5 — n_(&), the lower branch of solution. With this boundary con-
L 4 dition, one may decompose space ifitpa regions where
| | n<n,, so the equation reduces to the Riccati equation:
—vdn/dé=aaT,n, ((n—n,)?—\¢&), and (i) a region
I ) wheren is large.
i T In region (i), the parametea can be scaled away from
ool by L T the Riccati equation
0.538 0.540 0.542 0.544 0.546 .
(a) x dn (=B (24
e I A IR L I dé

7 by introducing n=n,+en, §&=f¢&  e=(v/a)*3(\/
aT,n, )3 and f=(v/a)?¥(1laT,n. )3\ 2. The solution
of this equation, with the boundary conditiof =0 at ¢
=0 has a finite-time singularity,n~1/({§—¢&,) at &g
~—1.99. For other boundary condition the value &f is
changed.

In region(ii) wheren is larger, the fi,. —n) term cannot
be approximated by a constant any longer. Using the numeri-
cal results, we expect that the front is very steepé go the
right-hand-siddrhs) of the Riccati equation may be replaced
by a constant. Scaling distances in the front regionéby
=¢(v/aaT,), one readily finds in the front region

-|||||||||l||||||||||||||_ dn

0.0 0.2 0.4 0.6 0.8 1.0 ——=n%n,—n), (25
dé
(b) X 2

FIG. 4. Structure of a fast fronta) and(b) are the same as in Fig. 2. A clear which can be Integrated by quadrature' Importantly, the so-

lack of symmetry between the upper and the lower parts oftfent s lUtion of Eq. (25) and the singular solution of E¢24) have
seen in(a). The parameters are as in Fig.Tb=5.9,a=32,D;=10 *and a common domain of validity, allowing a formal matching.

D,=1.6x10"° The result of this analysis is that the front is located at a
distance~ (v/a)?® from the location where the_ branch
disappears. Using again the fact that temperature is linear in

the temperature profile is made of two exponentials, as prehe region considered, E2), and the dependence ofon

dicted. To completely determine the solution, one has tor;, Eq. (18), our analysis predicts that the front velocity
compute the value of; . Thus the increase of the velocity  pehaves, for large values af as

whena increases is related to the fact that fhigto be in- o
serted in Eq(18) becomes closer t@,. The structure of the v(a)=v(a==)—consta " (26)
front may be completely determined in the lamédimit, as

X In addition, our analysis predicts that the front is very sharp
we now explain.

(size of ordew/a), with a very wide precursor ahead, of size

The disappearance of the. branch forT>T, means (v/a)??
that the functiorf can be parametrized far=T, by This is in full agreement with our numerical results. For
f(n,T)=aTy(n;—n)((n—n )2+ n(T-T,)), (21)  a set of parameters, we have varied the paranmsetarthe

range ka<128. The width of the front defined as the dif-

ference between the points where 0.2 andn=0.8 is found

to scale aw/a, and the distance between the point where

T=T, and the location of the jump behaves 21/1396()2/3.

one knows the temperature dependencée drom Eqgs.(16) Figure .5 shﬁws;he veloc!ty Ias a Iunctlon ofa. ' de”."h h

and(17) onstrat.lng that the numerical results are cqnsstent with the
analysis presented above. In fact, the analytic estimate of the

T(&)=T,—6¢, (22 prefactor is in fair agreement with the numerical one.

where to leading ordem, , n,, and» are taken alf=T,,.

In addition, we use the numerically verified fact that the
temperature profile is essentially linear betwdgnand the
region where the variable jumps. The fact that foa— o
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0.0/ ———— 7 T T T T T Mathematically, the limitD,/D,—0 is a very singular

- Ty=5.9 T one. From a dynamical system point of view, setting

- T =0 amounts to reducing the phase space dimension. In this

A T sense, the limiD,/D;— 0 calls for the boundary layer treat-

\ ment provided here. A better geometric understanding of the

0.020 =1 I problem wherD,/D;=0 is currently being developed.

r \+ T The conditionsH; andH,, necessary to get the conclu-

> i \ T sions reached in this article, should also apply in other situ-
Y ations, so it should be possible to observe fronts with a very

i \ T small velocity over some finite range of parameters in other

0.015 |— \\ I systems as well.

. ACKNOWLEDGMENTS

- 8 We are very grateful to Pierre Coullet for his provoca-
Y71 ASPR I S tive comments at some early stage of this work, and for
0.0 ot 02 0.3 many discussions. We also thank J.-A. Sepulchre and V.
a Hakim for discussions. The support of NATO under contract
FIG. 5. The velocity of the front as a function af 3. The numerical ~SfP.97 1897 and DAADOProcope 972 38 858s gratefully
values are indicated by signs, and the limiting value whem—o (a=%3 acknowledged.
=0) by a cross. The dashed line shows the fitting by a fundtierv (a
=) +Aa 23+ Aza~t; with A,~—0.148 andA;~0.204. In this sense,

the numerical results support the analytic prediction, see(Z8). M. Cross and P. C. Hohenberg, Rev. Mod. Pt85.851(1993.
2p. Clavin, Annu. Rev. Fluid Mect26, 321 (1994).
3J. Keener and J. SneyMathematical PhysiologySpringer Verlag, New
York, 1998.

V. CONCLUSIONS 4A. G. Merzhanov and E. Rumanov, Rev. Mod. Phys,. 1173(1999.

. . . SIn the competition of spatially uniform states in extended systems the
This work was motivated by the observation of two direction of propagation of fronts may be used to argue only that at most

seemingly contradictory facts. On one hand, the velocity of one state is absolutely stable, since there may exist distinct fronts that
wave fronts in reaction diffusion systems is zero only for a propagate in opposite directigh. Kramer, Zeits. Phys. B85, 167(1981);
special subset, of codimension 1, of the set of all the control isnedeezf?hpegzg'ieﬁ )Zr:g rié?\ﬁtshs’e i‘c E:t:ﬂ:y Fi%8398(1975). This is
parameters. This implies that when one parameter is variedsp coullet, private communication.
the front velocity should be zero at isolated values, aatl ~ 7v. I. Arnold, V. S. Afrajmovich, Yu. S. llyashenko, and L. P. Shilnikov,
over a whole interval. On the other hand, in some experi- in Encyclopaedia of Mathematical Sciences, Vol. 5 Dynamical Systems
; ; ; ; (Springer-Verlag, Berlin—Heidelberg—New York, 1994

mental SyStems’ des_crlbable by reaction diffusion §ystemssvl V. Barelko, I. I. Kurochka, A. G. Merzhanov, and K. G. Shkadinskii,
the velocity of fronts is found to be zero over some interval chem. Eng. Sci33, 805 (1978.
of control parameters. °S. A. Zhukov, V. V. Barelko, and A. G. Merzhanov, Int. J. Heat Mass

This led us to consider a particular class of reaction dif-mgféll_nSFf)-2t4,h 4t7 §i980- 4. V. Barelko, Sov. J. Chem. PH#/£092(1987

. . . . . L. Petchatnikov an . V. barelko, Sov. J. em. .
f_US|on systems, with two V‘?‘“ablets' and W_Ith the two pmp_er'llA. S. Mikhailov, Foundations of Synergetics |: Distributed Active Systems
tiesH; aquz, sp(_ellgd out in the introduction. _In effect, this  (springer-verlag, Berlin—Heidelberg—New York, 1994
problem is very similar to the problem of excitable systems'Y. E. Volodinet al, Adv. Chem. Phys77, 551(1990), see also C. Krauns
with long range inhibitiort? o2t al. Catal. Lett.(submitted.

. . . K Y. K Prog. Theor. Phg8, 106 (1980.
Our work shows that it is possible, under these C|rcumq4§. Ccfg,ii%n?\dathel:rzi?f;f’ksffms ;Okeagﬁ;g Ofn(d ggi?fusing Systems
stances, to find a whole interval of parameters over which the (springer Verlag, Berlin, 1979
front velocity is very small, of ordex/D,. We have shown EB- S. Kerner and V. V. Osipov, Sov. Phys. U§Z2, 101(1989.
that the variablai, can be effectively eliminated to yield a 172- ';?t?zirél :”3’ i—rzjzrogh;hy%gg@ (71%59(;993'
multivalued function ofu;. The system chooses, wheneverisy yrischer, M. Eiswirth, and G. Ertl, J. Chem. Phys, 9161(1992.
possible, to satisfy a Maxwell condition, E@®). When the 19 M. Pismenet al, Phys. Rev. E58, 2065(1998.
Maxwell condition is no longer possible, typically because azozl- V;DBarelko and V. E. Volodin, Dokl. Akad. Nauk SSSRI6 1980
; ; VD, 1974

branch of solution dlsappggrs, faster fronts of veloei V-1 2ly. V. Barelko, A. N. lvanova, and B. L. Tarnopol’skii, Dokl. Phys. Chem.
are observed. The transition between the two regimes haszsz 99 (1997,

been investigated in our specific model. 223, A. Sepulchre, private communication.

Downloaded 26 May 2009 to 129.78.72.28. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



