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Abstract. We study catastrophic filter divergence in data as-most unstable direction®lf et al, 2011) and is exacerbated
similation procedures whereby the forecast model develop$y large observational noise. Finite size effects may also lead
severe numerical instabilities leading to a blow-up of the so-to spurious overestimating correlations between otherwise
lution. Catastrophic filter divergence can occur in sparse obuncorrelated variabledHamill et al, 2001 Whitaker et al.
servational grids with small observational noise for interme-2004 2009 Liu et al, 2008 Sacher and Bartel)a2008,
diate observation intervals and finite ensemble sizes. Usingpoiling the overall analysis skill.

a minimal five-dimensional model, we establish that catas- Harlim and Majda2010 andGottwald et al(2011) doc-
trophic filter divergence is a numerical instability of the un- umented a new type of filter divergence which is charac-
derlying forecast model caused by the filtering procedureterised by the forecast model diverging to machine infinity.
producing analyses which are not consistent with the trudt was shown that this catastrophic filter divergence occurs in
dynamics, and stiffness caused by the fast attraction of theparse observational networks with small observational noise
inconsistent analyses towards the attractor during the forefor moderate observation intervals, in contrast to the classical
cast step. filter divergence described in the previous paragraph.

We will establish here the mechanism leading to this in-
stability in a minimal low-dimensional model: in a sparse
observational grid, finite ensemble sizes cause the ensemble

1 Introduction to align, and in the case of (sufficiently) small observational
noise generate analyses which are not consistent with the ac-
Data assimilation is the procedure to find the best estimayya| dynamics and are located in phase space off the attractor.
tion of the state of a dynamical system given a forecastt the attraction towards the attractor is sufficiently strong,
model with possible model error and noisy observations akne subsequent forecast step attempts to integrate a stiff dy-
discrete observation intervalsglnay, 2002 Majda and Har-  namical system, which may cause the integrator to develop
lim, 2012. The presence of the often chaotic nature of theymerical instabilities.
underlying nonlinear dynamics, as well as the sparseness |n Sect2we introduce the minimal model for which catas-
of the observational network, significantly complicates this yrophic filter divergence is studied. We briefly describe en-
process. In the setting of ensemble-based filtBrsefsen  sembple Kalman filters in Secd. Numerical results are pre-
1994 20089, finite ensemble sizes may introduce additional sented in Sect, and the mechanism for catastrophic filter

sources of error (see, for examplehrendorfer 2007). In- divergence is established. We conclude with a discussion in
sufficient ensemble size typically causes an underestimatioggct 5,

of the error variances, which may ultimately lead to filter di-
vergence when the filter trusts its own forecast and ignores
the information provided by the observations. This filter di-
vergence is caused by ensemble members aligning with the

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



706 G. A. Gottwald and A. J. Majda: A mechanism for catastrophic filter divergence

2 A minimal model and its ensemble deviation matrix
Z'=Z—-ze",
We study the Lorenz-96 ¢renz 1996 model
_ T k - :
5= 2i1(zisl—2i2) —2i + F i=1---.D 1) wheree =[1,...,1]" € R*. The ensemble deviation matrix

Z’ is used to provide a Monte Carlo estimate of the forecast
with z = (z1,---,zp) and periodicz;+p =z in a five-  covariance matrix

dimensional setting. We use negative forcing here, which

allows strong mixing with small dimensio®. We con-  Pt(1) = lez’(t)Z'(t)T eRP*D

sider hereD =5 with F =—-16 (Abramov and Majda . . ) o
2008. For these parameters we find as Lyapunov expo-NOte thatPs(z) is rank-deficient |f the enser_nble Sizeis
nentsi. = (2.72,0.09, —0.09, —1.83, —5.89) for an integra- smaller than the rank of the covariance matrix. .
tion lasting 250 time units. One of the Lyapunov exponentsCIVen the forecast ensemkife = Z (1; —¢) and the associ-
should be zero, corresponding to the flow direction; due to2ted forecast error covariance matrix (or the priaiy; —e),

slow convergence this is only approximately satisfied. Notethe actual Kaiman analysi&ginay, 2002 Evensen2006

thatZ?:lf\i —lim,_ o % [Te(M (t))dt, whereM is the lin- Simon ZOQQ upda.tes a foregast into a so-called analysis (or
the posterior). Variables at times=t; — € are evaluated be-

fore taking observationg, into account in the analysis step,
and variables at times=t; + € are evaluated after the anal-
ysis step when the observations, taken att;, have been

earized vector field of Eql], and henc{f’zlxi = —5. Us-
ing the Kaplan—Yorke dimension (see for examehuster
and Just2005, this suggests that the attractor has a fractal
dimension OfDat” - .4'15’ a_nd trajectories are on average at- taken into account. Observatiopg € R"” can be expressed
trgctet_j to this mamfolt_j with the fas.t ralg = —5.89. The __as a perturbed truth according to
climatic mean and variance are estimated from a long time
trajectory ag = —2.47 ando 3, = 33.7, respectively. Yo(ti) =Hz(5) + ro,
We remark that the system in Eql)(has not been
chosen to model any physical system but rather for
its simplicity in addressing the phenomenon of catas-
trophic blow-up. We will report as well on results with
F =8, which is less chaotic witho? =131, 1=

where the observation operatdr: R — R” maps from the
whole space into observation space, apd R” is i.i.d. ob-
servational Gaussian noise with associated error covariance
matrix Ry and zero mean.

clim In the first step of the analysis, the forecast mgais up-
(0.474,0.003 —0.523 —1.315 —3.636) and Dayr = 2.9. dated to the analysis mean

We assume that observations of the variables are given at
equally spaced discrete observation timesvith observa-  Za=Zf — Ko[HZr — yo] , (3)
tion interval Afops We observe only one variabla. It is where the Kalman gain matrix is defined as
well known that the Kalman filter is suboptimal for dynam- _1
ical systems which are nonlinear and involve non-GaussiarK, = PiH” (HPfHT + Ro) . (4)
statistics. It is pertinent to mention that although the five-
dimensional Lorenz system in EdQ.) (s highly nonlinear, its
probability density function is near-Gaussian = —16, Pa= (I —KoH)Ps. )
but highly non-Gaussian fof = 8. The Lorenz system in 14 cajculate an ensemb, which is consistent with the

Eq. () is assimilated using an ensemble transform Kalmananalysis error covariande,, and which therefore needs to
filter (ETKF) (Tippett et al, 2003 Wang et al.2004, which  g4isfy

is briefly described in the following section.

The analysis covariand®, is given by

1
k-1
we use the method of deterministic ensemble square root fil-
ters Simon 2006 which expresses the analysis ensemble
as a linear combination of the forecast ensemble. In particu-
lar we use the method proposedTippett et al.(2003 and

Pa Z,20,

3 Ensemble Kalman filter

In an ensemble Kalman filter (EnKFEYensen 2006, an
ensemble wittk memberg; € RP

Z=[z1,22,...,2¢) € RP*¥ Wang et al(2004), the so-called ensemble transform Kalman
) ) ) filter (ETKF). Alternatively one could have chosen the en-
is propagated by the full nonlinear dynamics semble adjustment filterAqderson 2001 or the continu-

Z=F@2),FZ) = [£(z0). Fz2)..... fzn)] € RO*k | (2) ous KaI_mgn—Bucy filter, which does not require the inversion
of matrix inversesBergemann et al2009. A new forecast

The ensemble is split into its mean Z(t;+1 — €) is then obtained by propagatig, with the full
. nonlinear dynamics to the next time of observation. The nu-
7= } zi merical results presented in the next section are obtained with
k —= this method.
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4 The genesis of catastrophic filter divergence

150}
We observe only one of the five variablgs(without loss
of generality we usej) and generate observatiopg from 1251
the truth by adding Gaussian observational noise with small
observational error covariané&, = 0.01 after equal obser- ., 100F
vation intervalsAzqps. We use in the following a fourth-order g

Runge—Kutta method to integrate forward in time the system N§ 750
in Eq. (1) during the forecasting step.

In Fig. 1 we show an instance of catastrophic filter diver- 50¢
gence for d = 0.025 andAzgps= 0.05 where we usekl = 6
ensemble members (so the forecast error covariance matri;
is not necessarily rank-deficient). Besides the maximal abso-
lute amplitude of the analysis ensemble, we show the norm
error& of the analysis

) = 1Za(t) — 2, ()| (6) 150

evaluated at each analysis cyelébetween the truth, and
the ensemble mean. After 1; = 62 the norm error becomes 125
machine infinity, due to the forecast model developing a nu-
merical instability. The genesis of the blow-up is clearly seen 100
from Fig. 1: until 1 ~ 55.5 the filter is stable and the anal-

ysis tracks where the norm error may be even smaller than~ 75
the observational error (see the inset in Y. This is fol-

lowed by a non-tracking episode lastingrter 59 in which 50
the norm error evolves around a mean value of approximately

(€) ~ 18~ /(£2) — Var[€] = ,/2Da 3, — Var[£], suggest- 25

ing that the analysis is exploring the attractor, uncorrelated

from the truth and not controlled by the observations any- 0

more. This episode precedes the actual blow-up episode o 0 10 20 30 40 50 60
the forecast integrator in which the norm error grows to ma- ti

chine infinity.

. . Fig. 1. Top: maximal absolute valug, ... of the analysis ensemble
In order to quantify the propensity for blow-up, we count gyer all p = 5 components for = 0.025 andArgps= 0.05 with
the numberN, of blow-ups that occur before a total of R, =0.01andk = 6 ensemble members. Bottom: the error négrm

5000 simulations have terminated without blow-up. A single as a function of analyses cycles. The continuous line (online blue)
successful simulation consists of = 4000 analysis cycles. in the inset shows the observational ertéRo.

Simulations differ in truth, observations and in the initial en-

semble with variance 1. The proportions of blow-ups is then

given by line with the less chaotic nature of the system when com-
pared toF = —16, blow-up develops for larger values of the
Sp = Np ) integration time stepsd All results presented in the following
Np+ 5000 are forF = —16.

Note thatS, depends on the number of data assimilation cy- To obtain meaningful statistics for blow-up which arein
) . ) dependent of the number of the analyses cyelgsve esti-
clesn,. In Fig. 2 we showsSy as a function of the observation TN
) . S mate the number of assimilation cyclesefore blow-up oc-
interval Arops for several values of the integration time step . .
curs. To generate statistics of these blow-up times, we numer-

dz. It is seen that blow-up occurs for moderate observation. .
L . ically calculatedr; for 10 000 instances of blow-up where we
time intervals. No blow-up occurs for sufficiently small or

sufficiently large values offps The percentage of blow- allowed for a maximum ofi; = 250000 assimilation cycles.

ups as well as the range dirgps for which blow-up occurs In Fig. 3we show the empirical cumulative distribution func-

is reduced by reducing the integration time step, establishElon Po(z) for the blow-up times. The results suggest that

ing blow-up as a numerical instability of the forecast model. catastrophic blow-up is a Poisson process with cumulative

Additionally, we performed simulations with the forcing pa- probability distribution function
rameter in Eq. 1) chosen asF = 8, corresponding to less
chaotic dynamics. We found similar behaviour; however, in

www.nonlin-processes-geophys.net/20/705/2013/ Nonlin. Processes Geophys., 2077252013
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Fig. 2. Percentagey, of blow-ups as a function of the observation
interval Arops for several values of the integration time stepfar  Fig. 3. Log plot of the empirical normalised cumulative probability
fixed number of analyses cycleg= 4000. We use®o = 0.01and  gensity functionPy(z;) of blow-up timest; for different observa-
k = 6 ensemble members. tion intervalsAtgpsfor dt = 0.0025. We use®o = 0.01 andk = 6

ensemble members.

Pp(ti) =1~ exp(—?) , (7) . 2
% (Zi:l Mi)

wherety, denotes the mean blow-up time. The Poisson charPens= SF

acter of blow-up suggests that blow-up is not an accumu- =

lative process, but rather that blow-up is a random procesgvheres; denotes théth eigenvalue of thé x k covariance

with each assimilation having the same probability of blow- Matrix

up, independent of previous assimilations. Linear regression T

of the curves in Fig3 yields for the average blow-up times C =X Xt.

Tp = 62633 (iops= 0.005), 7p = 3324 (Atops=0.05) and  Note thatDens takes values between 1 and riinD), de-
T = 6160 (Arops= 0.1). This is consistent with the blow-Up  hending on whether the ensemble members are all aligned or

statisticsSy, for fixed nu_mber of assimilation cyclet_‘a and are orthogonal to each other. In Figwe show the ensemble
shows that the probability of blow-up has a maximum for dimension as a function of time for an ensemble Witk 6

an intermediate value of the observation intem@psfor a  mempers corresponding to the blow-up presented in Eig.
specified integration time step f. red curve with circles 1 is seen thatDens~ 2 during the stable tracking episode,

in Fig. 2). _ indicating that the ensemble is not spanning all directions on
We now look at the dependency of the propensity for yhe attractor (we recall the fractal attractor dimension to be
blow-up on the observational variané®. Figure4 shows 4.15) but instead is aligning with the first two Lya-
that catastrophic filter blow-up requires the observatlonalpunov vectors (cfNg et al, 2011). This triggers the non-
noise to be suﬁiciently small put non-zero. For the Sma"eSttracking period untik ~ 59. On the other hand, for ensem-
value of the observational noise we used wip= 10°%  ple sizes ofk — 400 we observe that most§ens> 4, and
we still observedsy, = 0.07 forna = 4000, d =0.0025 and 4 pjow-up occurs. Before the actual blow-up the ensemble
Atops= 0.05. This is in stark contrast to the traditional filter §imension reaches values of almékts= 1, indicating en-
divergence which occurs for sufficiently large observational ggmpje collapse.

noise. o . . Finite ensemble sizes and the associated loss of ensem-
We propose that catastrophic filter divergence is caused by spread are known to cause non-catastrophic filter diver-

insufficient ensemble size paired with sufficiently small ob- gence in which the filter trusts the wrong forecasts, ignor-
servational noise. We have checked that by increasing the enjg error-correcting observationsgutekamer and Mitchell
semble size to |mpract|c_ally high valueslof:_400, wewere 1998 Hamill et al, 2001 Sacher and Bartell@2008 Ng
able to avoid catastrophic blow-up. To monitor the ensembley; 51 2017). Finite ensemble sizes cause the forecast er-
spread, we consider the ensemble dimenggrsas defined ¢ covariancePs to exhibit on the one hand small diago-

in Patil et al.(2003; Pazo et al(201D), nal variances and on the other hand off-diagonal entry values

)

Nonlin. Processes Geophys., 20, 7062 2013 www.nonlin-processes-geophys.net/20/705/2013/
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Fig. 4. Top: percentagdy of blow-ups as a function of the obser-
vation interval Azgps for several values of the observational noise
Ro for fixed number of analyses cycleg = 4000, integration time
step d = 0.0025. Bottom: percentag®, of blow-ups as a function
of the observational noise varianRg for fixed number of analyses
cyclesng = 4000, integration time stepr @& 0.0025 and observa-
tional interval Atgps= 0.05.

of unrealistically large absolute valuklgmill et al, 20017).
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Fig. 5. Ensemble dimensiobensas a function of analyses cycles.
Parameters as in Fig.

for i =1,...,5. The combination of small ensemble sizes
causing small values &%, and large absolute valuesle;,

for i > 1 and comparably small observational ndiggleads

to analyses for # 1 which are significantly influenced by the
observationy, at sitei = 1, irrespective of the actual physi-
cal correlations present in the dynamics. The resulting anal-
ysis may therefore not be dynamically consistent but may lie
in phase space off the attractor. As a proxy for the distance of
the analysis to the attractor, we measure the tiggetaken

for the trajectory to reach an Euclidean distaticeom the
attractor when propagating the analysis forward in time. We
created an approximation of the attractor by storing 0°
data points sampled at@5 time units. We choosg= 1.
Figure6 illustrates clearly that during the non-tracking pe-
riod episode (i.e. the periogl € (55,59) in Fig. 1), one has
(predominantly)zay = 0, consistent with our previous ob-
servation that the analysis lies on the attractor, but is uncor-
related from the truth and not controlled by the observations.
The subsequent initiation of blow-up for- 59, however, is
characterised by non-zero valueggf;. It is clearly seen that
blow-up is characterised by analyses lying off the attractor.

This leads to unrealistic innovations of the unobserved vari-It is pertinent to mention that the existence of alignment of
ables towards the observation of the observed distant varithe ensemble and the occurrence of off-attractor analyses (i.e.

able. Gottwald et al.(2011) showed that catastrophic filter

large values oty) does not necessarily cause catastrophic

divergencies are suppressed by a variance limiting Kalmadilter divergence (for example as in Fi§.at 7; ~ 56). The

filter (VLKF) which controls overestimation of the analysis
error covariance.

effect of off-attractor analyses is the following: the forecast
model, initialised with such an analysis lying off the attrac-

The destructive interp]ay of sparse (Sufﬁcient]y) accuratetor, trie.S to fO”OW the stable .dire.Cti.On towards the globally
observations and finite size ensembles can be illustrated ag&tracting set with a rate which is in our case very fast on
follows. The Kalman filter produces analyses according to@verage with a Lyapunov exponent €5.89. This renders

Eq. (3), which read for our case where onjyis observed as

 Pry
Pr11+Ro

Zai = Zfi (21— Yo (8)

www.nonlin-processes-geophys.net/20/705/2013/

the dynamical system stiff developing numerical instabilities
for sufficiently large time steps dcausing the filter to catas-
trophically diverge to machine infinity.
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) ) i Fig. 7. Percentagéy, of blow-ups as a function of the multiplicative
Fig. 6. Distance betvyeer_1 analysis and the attractor as measured By, factors for fixed number of analyses cycles = 4000,
Tattr. Parameters as in Fig. integration time stepzd= 0.0025 and observational noise variance

Ro = 0.01. We used = 6 ensemble members.

As seen in Fig.2 there is no filter divergence for suf- ) o )
ficiently small and sufficiently large observation intervals 9€NC€ is completely suppressed for a localisation radius of
Afops This can now be understood as follows: for too small Ploc < 1.5 grid spacings. Other covariance limiting strate-

observation intervals, the forecast model will not have suffi-91€S such as the ensemble filters suggestégbitwald et al.
ciently propagated the analysis away from dynamically real-(2013) andMitchell and Gottwald(2012) were also able to
istic values, whereas for sufficiently large values\agps > suppress catastrophic filter divergence. We remark that the

Zeon the ensemble will have acquired sufficient spread withaCF“al truth, however, gloes indeed exhibit nontm_nal corre-
Dens> 4 exploring the whole of the attractor. lations between all variables for our parameters in this low

The behaviour of the propensisy for blow-up as a func- dimension withD = 5. Multiplicative error covariance (i.e.
tion of the noise covariancB, as depicted in Figdb can the multiplication of the forecast error covariance maRjx

also be readily understood from E®){for large observa- by a constant inflation fact@) is a standard remedy to con-
tional noise withR, > 2 we obtain analyses, = z; which trol underestimation of covariancedr(derson and Ander-

are forced by the dynamics to lie on the attractor, and the>°" 1999. In Fig. 7 we show the effect of multiplicative
sampling error of finite ensemble sizes is not entering the“ovariance inflation on the propensity for blow-up. We ob-

analysis. For small observational noise the magnitude of th&€rve that increasing the inflation faciifrom 6 =1 sig-
increments(Pry; / (Pr11+ Ro)) [2f1 — ¥o] IS given as a bal- nlflgantly decrease; the propensity for blow-6ig _th|s is
ance between small innovatim[nsfl —J’o] and large finite achieved by reducing occurrences of non-tracking periods

ensemble size induced gaiPsy, / (Pf11+ Ro) ~ Pr1 /P11, (the classi(_:al filter divergence_),_ which are the precursors of
yielding a maximum aRo ~ 0.025. catastrophic blow-up. For sufficiently large values pfiow-

We now address the question how catastrophic bIow-upF"er' the instances of catastrophic filter divergence are dras-

can be controlled, except through decreasing the time SteHcally increased. Too large values of the inflation factor ex-
of the numerical forecast model to control the numerical in- 2cerbate the sampling errors of the forecast error covariances

stability or through increasing the number of ensembles toVith 8Pr1i/ (8Pr11+Ro) & Py /Pra;. Covariance inflation,

diminish the sampling effects. We found that catastrophichOWever, cannot completely suppress catastrophic filter di-
blow-up can be avoided by employing covariance localisa-vergence for all observation times, and more complicated be-

tion into the data assimilation procedure, which controls the@viour can occur as observed for exampleAagps = 0.04

unrealistic overestimation of off-diagonal entries of the fore- N F19- 7-
cast covariance matri®;. Houtekamer and Mitchell200J)

and Hamill et al. (2001) achieved covariance localisation

by Schur multiplication of the forecast error covariarige

with a localisation matrixCjoc. We used the compactly sup-

ported localisation function introduced Baspari and Cohn

(1999, in conjunction with a DEnKF proposed Hyakov

and Oke (2008, and found that catastrophic filter diver-

Nonlin. Processes Geophys., 20, 7062 2013 www.nonlin-processes-geophys.net/20/705/2013/
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5 Discussion Edited by: O. Talagrand
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from the actual attractor. The subsequent attraction back t0- o Linear Fluctuation-Response for Chaotic Nonlinear Forced-
wards the attractor by the forecast model may cause numeri- pissipative Dynamical Systems. J. Nonlin. Sci., 18, 303-341,
cal instabilities if the attraction rate is sufficiently large. This  2006.

suggests that blow-up is to be expected in sparse observawnderson, J. L.: An ensemble adjustment Kalman filter for data as-
tional networks involving observables which exhibit a large  similation. Mon. Weather Rev., 129, 2884-2903, 2001.

degree of irregularity. If those high variance fields are mea-Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementa-
sured sufficiently accurately, catastrophic filter divergence is  tion of the nonlinear filtering problem to produce ensemble as-
possible. This is, for example, the case in data assimilation of Similations and forecasts, Mon. Weather Rev., 127, 27412758,

) : ) AR 999.
mall-scale intermittent turbulent fields or in situations wher _

2 e?rses Cai:iur:tee ogze:\:;tit;lag c:f Sadrisack;lesseijh?:)ic;ins streor? gergemann, K., Gotwald, G. A., and Reich, S.: Ensemble propa-
P 9 g gation and continuous matrix factorization algorithms. Q. J. Roy.

spatial gradients such as jets can cause numeripal instabilities Meteorol. Soc., 135, 15601572, 2009.
to occur (J. L. Anderson, personal communication, 2012). gnrendorfer, M.: A review of issues in ensemble-based Kalman fil-
We have checked that our results are independent of the tering, Meteorol. Z., 16, 795-818, 2007.
numerical integration scheme used during the forecastingevensen, G.: Sequential data assimilation with a nonlinear quasi-
step. We have performed simulations with a first-order in  geostrophic model using Monte Carlo methods to forecast error
time forward Euler scheme and a second-order in time im- statistics, J. Geophys. Res., 99, 10143-10162, 1994.
plicit midpoint rule scheme. The latter is unconditionally sta- Evensen, G.: Data Assimilation: The Ensemble Kalman Filter.
ble for the system in Eq.1j (see Theorem 5.5.6. iBtu- Springer, New York, 2006. _ _ _
art and Humphries1996; however, in the case of the im- Ggsparl, G. and Cohn, S..E.: Construction of correlation functions
plicit midpoint rule, we observed a large increase of the it- g\st;volgggthree dimensions. Q. J. Roy. Meteorol. Soc., 125, 723~
eratlon_s required to So_lve the _nonllnear fixed point equatlonGottwald, G. A, Mitchell, L., and Reich, S.: Controlling overes-
re”de“”g_ the sgheme_lmpractlcal. F!Jr_th(_ermore, we havg PEr timation of error covariance in ensemble Kalman filters with
formed simulations with the deterministic ensemble adjust- sparse observations: A variance limiting Kalman filter, Mon.
ment Kalman filter (EAKF) Anderson and Andersot999 Weather Rev., 139, 2650—2667, 2011.
and observed similar behaviour. Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-dependent
Our work established the dynamical genesis of catas- filtering of background covariance estimates in an ensemble
trophic filter divergence. Besides an impractical reduction of ~Kalman filter, Mon. Weather Rev., 129, 2776-2790, 2001.
the integration time step (or an increase of the limit of itera-Harlim, J. and Majda, A. J.: Catastrophic filter divergence in fil-
tions required in an unconditionally stable implicit method), ~ tering nonlinear dissipative systems, Communications in Mathe-
to control the stifiness of the dynamical system, or an im- matical Sciences, 8, 27-43, 2010. N ,
practical increase of the number of ensembles to eliminaté°utekamer, P. L. and Mitchell, H. L. Data assimilation using an
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propriately tuned covariance inflation were found to be ety oramer, P. L. and Mitchell, H. L.: A sequential ensemble
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