o SR

Math, Scientist 33, 1-7 (2008)
Printed in England
© Applied Probability Trust 2008

IN VINO VERITAS, IN DOLIO CALAMITAS
FRANCOIS JONGMANS,* Université de Lidge

Abstract

We review five classical geometrical models for the volume of a barrel, four of which
g0 back at least to Johannes Kepler in the 17th century. The fifth model, proposed
by Charles Carnus in 1741, indicated a fruitful new direction, but was superseded by
a number of ‘empirical’ formulae for volume, some stili used by wine gaugers today.
These are generally inaccurate and/or do not permit a logical extension to partly filled
barrels, We propose three new geometrical models motivated by Camus’ ideas. All eight
vohlume expressions are shown, using integral calculus, to have a common structure.
The physical measurement is most easily made by a rod inserted vertically through the
bunghole, foliowed by a simple calculation.
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1. Introduction .

This paper is concerned with efforts over time to measure the internal volume of wine
contained in a full barrel or cask (dolium in Latin; fonneau, barrigue, or filt in French), an
assembly of several curved wooden staves and two flat ends. The measuring procedure may

- be called barrel ganging after the tool called a gauge (fauge in French). This is a simple”

rod of wood or metal which is plunged vertically or diagonally into a barrel lying on its side
(see Figure 1 for a profile) through the bunghole (bonde in French), an opening in the barrel at
the highest point on the opposite side.

The measurement thus made (the length D = 2R of CC’ or k of CE in Figure 1) is used in
conjunction with the Iength, / = 24, of the barrel (that is, of A’A), and the diameter, d = 2r, of
the ends (that is, the length of BE), to give an expression for the volume, V', of a full barrel by
way of a generally ‘empirical’ formula. Since, clearly, k%> = @’ + (R+1r)? = 12/4 + (R +7r)*
(by Pythagoras’ theorem) any such formula for volume can be expressed in terms of I, R, and r.

Another parameter of interest to which we shall refer is T = R/r, self-evidently named
the swelling number. A swelling number of 1.25, while common in Marseille, is generally
considered high for most barrels.

The chief tool for wine gauging of small barrels during the 19th and 20th centuries seems
to have been the ‘velte’, earlier called kubische Visierruthe in German countries and diagonael
vergierroede in Flanders. This typical rod was already known in Flanders around the middle
of the 16th century. This is a ‘diagonal’ rod thrust in the direction CE, and originally graduated
so that the gauger could read the volume directly on the velte. The main champion of this tool
was the famous astronomer Johannes Kepler (1571--1630), who was astonished in 1613 by the
quick gauging of several barrels with a single rod at his second wedding in Linz, Austria.
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FiGuURe 1: A barrel lying on its side.

Nowadays the graduation on the diagonal rod is linear, and an empirical expression for the
volume Wy of the liguid in a full barrel is given by

3 £2 3/2
W1 = gk” == g +(R+r) , M

with a su1table coefficient g for which the French Office of Customs and Excise has proposed
a value 2 % == (.6. The measurements are in decimetres for lengths and litres for volume. This
formula, while needing only a simple calculation once the diadgonal measurement k is obtained,
does not always give a good approximation to the actual volume, as we shall see later.

A strong impulse for scientifically based gauging came from Kepler. He devoted two short
books in 1615 (in Latin) and in 1616 (in German) to the topic (see [4]). He tried to find the
volume of several typical barrels, and more generally of bodies obtained by rotation of a contour
{upper profile) around an axis. The advent of the integral calculus which swept Europe soon
after, facilitated the calculation of such a volume. Various models for the upper profile could
thus be treated easily, but the results were disappointing, giving vahies for volumes which were
too small or too large for the barrels they were supposed to represent. We shall consider four
such expressions for volume from profiles listed by Kepler,

The fifth model to be considered is due to a somewhat less famous French scientist, Charles
Camus (1699-1768), and was presented by him in 1741 [1]. The remaining three models out of
a total of eight are the author’s own, but using only the simple calculus tools already available
250 years ago. In the discussion to follow, all volumes, both model and ‘empirical’, are given
by an expression of the following form as the product of 7/ with a ‘weighted mean’:

V = nl(@R* + BRr + yr?), (2)
with the coefficients, «, 8, and y (positive, null, or negative) summing up to 1. Such expressions

for volume are therefore appropriate for the use of a vertical linearly marked measuring rod to
read the value of D = 2R directly.
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For our eight model volumes, we use the notation V;,§ = 1,2, ..., 8. A comparison between
two such expressions, V; and V;, for a given fundamental triplet (I = 2a, D = 2R, d = 2r)
may conveniently be made by taking the difference V; — V;, which will be of the general form
al(AR? + pRr + vr?), A+ i -+ v =0, which can be factorized as

Vi — V; = 2l{R — r)(AR — vr), (3)

from which any difference is easily evaluated,

The numerical values of subscripts of the V;s will correspond, in the sequel, to increasing
values of the V;s.

An explanation for the unified structure, expressed by (2) and (3), of model Vs is given in
Appendix A,

Camus, by insisting that the upper profile satisfies certain smoothness conditions, was a
pioneer, heralding a fruitful theoretical approach after a period of stagnation. However, Camus’
ideas were corrupted in the late 1700s by Dez [2], [3]. Then the French Revolution of 1789
initiated an empiricism devoid of elementary mathematics.

This is the reason for the title of the present paper, which can be loosely translated from the
Latin as: *“Truth in wine, but disaster in the wine barrel’.

2. Classical geometric models

Referring to Figure 1, a barrel T is conceived as a hollow body obtained by rotation, around
the x-axis, of a contour BCE', The barrel consists of an upper profile BE' and a lower profile
BE, with two vertical segments on the left and right sides in the vertical plane xQz. The
essential feature of the model is the equation z = f{x) for the upper profile BE', in terms of a
fonction f which is concave, symmetric, and continuous on the closed interval [—a, al, with
f(a) = f(~a) =r. The number R = f{0) is the radius of the bulge (bouge in French).

The volume of our mode] is

=

mea S(x)dx:Z[ S(x)dx,
0

where S(x) is the area mf2(x) of the circle described by the point (x, z) of the profile when
rotated about the x-axis. So,

V=2n fa F2(x) dx. (4)
]

The first item from Kepler’s list which we consider, namely two truncated cones placed back
to back, had already been mentioned in the first century of our era by Heron of Alexandria,
with the volume correctly calculated well before Kepler. It corresponds to

R—r

F) =R~

|x1]

with the upper profile being the straight line segments joining E'C and CB. Then (4) gives

R®+ Rr +r%
V=i TR ®)
3
Clearly this is the minimal volume for any model of the kind we have specified, for a given
fundamental triplet.
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The next model we consider, also from Kepler’s list, consists of truncated paraboloids placed

back to back. Here
aR? — (R2 —rd)|x
o) = \/ ( : el

so that, from (4), we obtain
R2 2
Vy =m0

(6)

As in the model leading to Vi there is a cusp at x = 0, rather than a smooth turning point,
which suggests that Vu, just like V1, will underestimate the volume of a real barrel with the
same fundamental triplet, although obviously V2 > Vi. Notice that with the paraboloid, the
curvature of the profile increases towards the ends of the curve. Finally, notice that (6) is just
the average of volumes of two cylinders which provide upper and lower bounds for the volume
of the barrel.

The next two models, also from Kepler, lead to overestimation of the volume.

The first of these, known as the spheroid, is in fact an ellipsoid, truncated at both eands of
its long axis. It was already known in the 14th century, and was associated with the name of
Jean de Murs. Here we have

IRZ _ (R2 — 42
f(x)x\/aR (R r)x,

a2
giving
) RZ 2
Ve = m—:r—. %
Although as simple in form as V5 and at first sight a goed approximation to the volume of a
barrel, its suffix indicates that it is the largest of our eight V;s.
A smaller volume is obtained with Kepler’s parabolic spindle arising from the quadratic

R —r)x?
foy=r— B
a
which gives
8R? 4 4R 2
vy = SRTARIEAT ®)

and is still used by some trusting gaugers.

The first satisfactory explanation for the values of ¥y and V3 to be overestimates of the real
volume was given in 1741 by Camus [1]. He pointed out that the bending of the staves forming
the sides of the barrel, under the combined action of water and fire at the hands of coopers, is
most pronounced at the middle of the staves, and negligible at the ends. Thus, the curvature of
afunction f giving a good model should be large at the bunghole, decrease as x increases from
0 to @, and vanish when x = a. With the parabolic spindle for example, the curvature does
decrease from x = Otox = a, but too slowly, since it does not vanish at . Camus consequently
modified the parabolic spindle construction, with a more complex f using a combination of a
parabola to the right of x = 0 and then a tangent to it, which passes through B, so the curvature
becomes zero abruptly, while the slope f/(x) is nevertheless continuous, The volume is then
reduced to
£64R2 + 37Rr + 34r?
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We may check from (3) that Vo < V3 < V¥ by taking into account that r < R < 2r for
all real barrels. Camus’ model represented real progress, providing a value for V3 between the
underestimates, V1 and V5, and the overestimates, ¥ and Vg.

3. New geometric models

As far as we know, no satisfactory geometric model has been proposed in France since
Camus, aithough a number of ‘empirical models’ were introduced which are examples of the
general strocture (2), Itis probable that Camus had only an intuitive understanding of curvature,
immersed as theoretical gaugers were in the Kepler tradition of straight line segments and conic
sections (which never have curvature zero). The condition that curvature should decrease to
zero is not easy to handle in a strictly geometric framework, but becomes tractable if we use
the second derivative £”(x) in the classical value of the curvature at x as follows:

Lf7 (x|
[T+ (2P
In any case, Camus’ concept leads to a function on [0, a] decreasing from f(0) = R to
f{a) = r, subject to the conditions f(0+) = Q0 and f7(0+) < 0, with the curvature steadily
decreasing on [0, ] and (@) = 0. Accordingly, we propose three simple models satisfying
these conditions.
The first begins with the cubic pelyromial on [0, a] specified by

R—vr 2+R .
X s
2g2

R'—r 3
JFx) = 573 x7 -3

which resuilts in the volume

. 68R2 4 39Rr + 3372
140 ’
which is easily seen to satisfy V4 > V3 by using (3).
OQur next function is trigonometric

Vo = (10)

fix) = (Rwr)cosﬁwkr.
2a

The usual conditions including those of Camus are again satisfied, and we are led to the volume

a 2 2
V5=2[ (R~ rycos == +r | dx =l 5,.“?‘, iwl Rr -+ 2.2 P2Lan
0 2a 2 it 2

with the help of the formula 1 4+ cos 20 = 2cos? 8. A further step reveals that V4 < Vs for all
usual triplets.
Finally, another smooth model is generated by the biquadratic (quadratic in x2) function
(R—rix*  6(R—r)x?
5a4 542

Calculation of fi F 2 dx is somewhat cumbersome, as is the final result:

fx) = +R.

3968R? ++ 2144 Rr + 17632
Vo = 7l )
6=7% 7875 (12)

We have that Vs is a littde larger than Vs, but smailer than V7, whatever the fundamental triplet.
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Having tried with colleagues in 1998--1999 to raise the interest of pupils in applied
mathematics, the Belgian mathematician G. No&l wrote to the cooper Radoux in Jonzac, asking
for information on his ganging technique. A short answer described the profile of a stave as the
graph of a biquadratic polynomiall At about this time, addressing an inquiry from a one-time
collaborator, Germain Bonte, the author had also envisaged such a model, and was thus led to
revive geometric modelling.

To conclude this section, note that V4, Vs, and Vg satisfy

VieVosWVzaaVy< Vs < Vg < V<V (13

the newcomers thus sitting between the underestimates, V; and V3, and the overestimates,
V7 and Vg, and indeed doing a little better than the slight underestimate of Camus, V.

Thus, any one of Vi, Vs, or V5 could be used as an ‘honest’ estimate of the true volume, the
more so since they are very close to each other as the following numerical examples demonstrate.
With the triplet (I, D, d) = (12, 10, 8) which has swelling 1.25, we find the following sequence
of V;srounded to whole litres: 767,773, 805, 810, 814, 815, 824, 829, in the same order as (13).

The ‘official’ measure (1) gives Wy == 779 for the above triplet, which is something of
an underestimate. Of course, W) may be accurate when applied (o barrels for which it was
designed.

If we take a more modest swelling, 1.125, using the triplet ({, D, d) = (11,9, 8) we obtain
Wi = 623, which is even less than V; = 625. Here, Vo = 626, V3 = 641, Vi = 644, Vs = 645,
Vi == 646, V7 = 650, and V3 = 651.

in all our calculations we have used ;rz to several decimal places, althougha géuger may well

still use the traditional approximation = on a simple calculator.

4. Empirical expressions

Camus’ geometrically obtained expression (9) for the volume V3 was changed empirically
by Dez in 1773 and 1785 (see [2] and [3]) into

1D 2

(5R +3r)2 25R? 4+ 30Rr 4 9r?
y) ) i w= gl

64 64 ’

(14)

using again a traditional weighted mean of R2, Rr, r2.

It turns out by using (14) that W3 < Vi, butifthe swelling v = R/r < 1.333 then Wy > V5,
so under this condition it tends to give a good approximation to the real volume. (Dez made an
error in his calculation of the difference V3 — W3, reaching an over-optimistic conclusion.)

During the French Revolution, another empirical formula was devised, which was suggested,
as far as the author can determine (the original text is lost), by a formal edict (Instruction
ministérielle de pluvidse de ’an VII). This date is almost equivalent to February 1799. In this
case,

m(m +d)? l4R2 +4Rr + r2

Wy = mlsm e =l e (15)

containing again a weighted mean of R%, Rr, r%. Note using (15) that Wy < V7 as noticed in
(6], although comparison with our Vg shows that Vg < Wy,

The formulae for W3 and W7 may be deemed of acceptable quality, but unlike the formulae
obtained from geometric models they cannot be extended to aliow for satisfactory gauging of
partiaily filled barrels, a delicate problem which we do not deal with here. Tnstead, we direct
the interested reader to Meskens [5].
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Appendix A, (By E. Seneta.)

Notice that each of the ‘weighted mean’ volume formulae (5)~(12) is given by an expression
of the following form:
V = 2mri ¥ (q), (16)

where © = R/r. Moreover, for y > 1,

W(y) = f w(f, y) dx, an
i} a

where a > 0 is a constant and Y (w, ¥), (w, ¥} € (0, 1) x [1, 00), is a2 nonnegative function
which is a quadratic in vy for fixed w. Thus, changing the variable of integration in (17) to
w = x/a, and by putting I = 24, from (16) and (17) we obtain

1
14 =31'lr2/ Wr(w, ) dw. (18)

Consaquently, fo W(w, t)dw is a quadratic in 7. Its coefficients must sum to umty since
f(} W{w, 1) dw = 1. This follows from (18) since, when 7 = 1, V is the volume 7irZ of a
cylinder of radins r = R and length .
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