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1. Introduction

Throughout this paper, let {ck : k ∈ Z} be a sequence of complex numbers, in symbol:

{ck} ⊂ C, such that
∑

k∈Z

|ck| < ∞.

Then the trigonometric series

(1.1)
∑

k∈Z

ckeikx =: f(x), x ∈ T := [−π, π),
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converges uniformly; consequently, it is the Fourier series of its sum f . By convergence

of the two-sided series in (1.1) we mean the convergence of the symmetric partial sums

defined by
∑

|k|≤n

ckeikx, n = 0, 1, 2, . . . .

In this paper, we consider only periodic functions with period 2π. Let α > 0. We

recall that the Lipschitz class Lip(α) consists of all functions f for which

|f(x + h) − f(x)| ≤ C|h|α for all x and h,

where C is a constant depending only on f , but not on x and h; the little Lipschitz class

lip(α) consists of all functions f for which

lim
h→0

|h|−α|f(x + h) − f(x)| = 0 uniformly in x.

We also recall that the Zygmund class Zyg(α) consists of all continuous functions f for

which

|f(x + h) − 2f(x) + f(x − h)| ≤ C|h|α for all x and h,

where C is a constant depending only on f ; while the little Zygmund class zyg(α) consists

of all continuous functions f for which

lim
h→0

|h|−α|f(x + h) − 2f(x) + f(x − h)| = 0 uniformly in x.

It is known (see, for example [8, pp. 43-44]) that a function f may be nonmeasurable

(in Lebesgue’s sense) and yet satisfies the condition

f(x + h) − 2f(x) + f(x − h) = 0 for all x and h.

This is the reason why we require the continuity of f in the definition of the classes Zyg(α)

and zyg(α).

It is well known (see, e.g., [3, Ch.2] or [8, Ch.2, §3]) that if f ∈ lip(1), in particular, if

f ∈ Lip(α) for some α > 1, then f is a constant function. Furthermore, if f ∈ zyg(2), in

particular, if f ∈ Zyg(α) for some α > 2, then f is a linear function; and due to periodicity,

f is a constant function. The following inclusions are also well known:
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Zyg(α) = Lip(α) and zyg(α) = lip(α) for 0 < α < 1,

Zyg(1) ⊃ Lip(1) and zyg(1) ⊃ lip(1).

Finally, we recall that a function f is said to be smooth at some point x if

lim
n→0

h[f(x + h) − 2f(x) + f(x − h)] = 0.

The word “smooth” is justified by the idea that if a function f is smooth at some x and

if a one-sided derivative of f exists at this x, then the derivative on the other side also

exists and they are equal. The curve y = f(x) has then no angular point at x, and this

is the reason for the terminology. It is obvious that zyg(1) is exactly the class of those

continuous functions f which are uniformly smooth on T.

Beside the general coefficient sequences {ck} ⊂ C with
∑

k∈Z |ck| < ∞, the following

two particular cases will also be considered in the sequel:

(1.2)
∑

k∈Z

|ck| < ∞ and kck ≥ 0 for all k,

or

(1.3) ck ≥ 0 for all k ∈ Z and
∑

k∈Z

ck < ∞.

2. Two auxiliary results

Before formulating our main results, we present two lemmas which will be of vital im-

portance in the proofs of Theorems 1-5 in the subsequent sections. They were proved in [4,

Lemmas 1 and 2] by making use of summation by parts (also called Abel transformation).

This time, we provide very simple proofs for them.

L e m m a 1. Let ak ≥ 0 for k = 1, 2, . . ..

(i) If for some δ > β ≥ 0,

(2.1)
n∑

k=1

kδak = O(nβ),
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then
∑∞

k=1 ak < ∞ and

(2.2)

∞∑

k=n

ak = O(nβ−δ).

(ii) Conversely, if (2.2) holds for some δ ≥ β > 0, then (2.1) also holds.

R e m a r k. Lemma 1 fails at the endpoint cases.

(a) If δ = β > 0 in (i), then let ak := k−1. We have

n∑

k=1

kδak =

n∑

k=1

kδ−1 = O(nδ) and

∞∑

k=1

ck =

∞∑

k=1

k−1 = ∞.

(b) If δ > β = 0 in (ii), then let ak := k−1−δ. We have

∞∑

k=n

ak =
∞∑

k=n

k−1−δ = O(n−δ) and
n∑

k=1

kδak =
n∑

k=1

k−1 6= O(1).

(c) The case δ = β = 0 is trivial in both (i) and (ii), but it is of no use for our purposes.

P r o o f o f L e m m a 1. Part (i). By (2.1), there exists a constant C such that

(2.3)

n∑

k=1

kδck ≤ Cnβ , n = 1, 2, . . . .

Clearly, it is enough to prove (2.2) for the particular case when n is a power of 2 with a

nonnegative exponent, say n = 2m. To this end, we introduce the notation

Im := {2m, 2m + 1, . . . , 2m+1 − 1}, m = 0, 1, 2, . . . .

By (2.3), we estimate as follows:

2mδ
∑

k∈Im

ak ≤
∑

k∈Im

kδck ≤ C2(m+1)β,

whence it follows that
∑

k∈Im

ak ≤ 2βC2−m(β−δ).

Taking into account that δ > β, we obtain

∞∑

k=2m

ak =
∞∑

ℓ=m

∑

k∈Iℓ

ak ≤ 2βC
∞∑

ℓ=m

2ℓ(β−δ) = O(2m(β−δ)),
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which is (2.2) in the case n = 2m.

Part (ii). By (2.2), there exists a constant C such that

∞∑

k=n

ak ≤ Cnβ−δ, n = 1, 2, . . . .

Clearly, we have

∑

k∈Iℓ

kδak ≤ 2(ℓ+1)δ
∑

k∈Iℓ

ak ≤ 2δC2ℓβ , ℓ = 0, 1, 2, . . . ;

and consequently, we also have

2m∑

k=1

kδak ≤
m∑

kℓ=0

∑

k∈Iℓ

kδak ≤ 2δC
m∑

ℓ=0

2ℓβ = O(2mβ),

which is (2.1) in the case n = 2m. ⊔⊓

L e m m a 2. Let ak ≥ 0 for k = 1, 2, . . ., and δ > β > 0. Both statements in Lemma

1 remain valid if the big ‘O’ is replaced by little ‘o’ in (2.1) and (2.2).

R e m a r k. The endpoint cases are useless again.

(a) If δ ≥ β = 0 in (i) makes no sense, since the left-hand side in (2.1) is increasing

with n.

(b) The case δ = β is trivial in (ii).

P r o o f o f L e m m a 2. It is a repetition of the proof of Lemma 1 with obvious

modifications. ⊔⊓

3. New results on Lipschitz classes

Our first theorem is a generalization of [2, Theorems 1 and 2] and that of a particular

case of [6, Theorem 3], where they were proved for cosine and sine series with nonnegative

coefficients.

T h e o r e m 1. (i) If {ck} ⊂ C is such that

(3.1)
∑

|k|≤n

|kck| = O(n1−α) for some 0 < α ≤ 1,

5



then
∑∞

k=1 |ck| < ∞ and f ∈ Lip(α), where f is defined in (1.1).

(ii) Conversely, suppose that {ck : k ∈ Z} is a sequence of real numbers and f ∈ Lip(α)

for some 0 < α ≤ 1. If condition (1.2) holds, then (3.1) also holds. If condition (1.3) holds,

then (3.1) holds in case 0 < α < 1.

The counterpart of Theorem 1 for the little Lipschitz class lip(α) reads as follows.

T h e o r e m 2. Let 0 < α < 1. Both statements in Theorem 1 remain valid if in

(3.1) the big ‘O’ is replaced by little ‘o’, and f ∈ Lip(α) is replaced by f ∈ lip(α).

R e m a r k. By Lemmas 1 and 2, it is easy to check that in case 0 < α < 1 condition

(3.1) is equivalent to the following one:

(3.2)
∑

|k|≥n

|ck| = O(n−α);

and this equivalence remains valid if the big ‘O’ is replaced by little ‘o’ in both (3.1) and

(3.2).

Part (i) of Theorems 1 and 2 as well as Part (ii) in the case when condition (1.2) is

assumed were proved in [4, Theorems 1 and 2]. On the other hand, the proof of Part (ii)

is new in the case when (1.3) is assumed.

For the reader’s convenience, we present a complete proof of Theorem 1.

P r o o f o f T h e o r e m 1. Part (i). Assume that (3.1) is satisfied for some

0 < α ≤ 1. Without loss of generality, we may assume that 0 < |h| ≤ 1. We set

(3.3) n := [1/|h|],

where [·] means the integral part. By (1.1), we estimate as follows:

(3.4) |f(x + h) − f(x)| =
∣∣∣
∑

k∈Z

ckeikx(eikh − 1)
∣∣∣ ≤

≤
{ ∑

|k|≤n

+
∑

|k|>n

}
|ck||e

ikh − 1
∣∣∣ =: An + Bn,

say. Using the inequality

|eikh − 1| =
∣∣∣2 sin

kh

2

∣∣∣ ≤ min{|kh|, 2}, k ∈ Z,
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by (3.1) and (3.3), we find that

(3.5) |An| ≤ |h|
∑

|k|≤n

|kck| = |h|O(n1−α) = O(|h|α).

On the other hand, making use of (3.1), (3.3) and Part (i) in Lemma 1 (applied with

β = 1 − α and δ = 1) we have

(3.6) |Bn| ≤ 2
∑

|k|>n

|ck| = 2O(n−α) = O(|h|α).

Combining (3.4)-(3.6) yields f ∈ Lip(α). This proves the first statement in Theorem 1.

Part (ii). First, assume the fulfillment of condition (1.2). If f ∈ Lip(α) for some

0 < α ≤ 1, then there exists a constant C = C(f) such that

(3.7) |f(x)− f(0)| =
∣∣∣
∑

k∈Z

ck(eikx − 1)
∣∣∣ ≤ Cxα, x > 0.

Taking only the imaginary part of the series between the absolute value bars, we even have

∣∣∣
∑

k∈Z

ck sin kx
∣∣∣ ≤ Cxα, x > 0.

Due to uniform convergence, the series
∑

ck sin kx can be integrated term by term on any

interval (0, h). As a result, we obtain

(3.8)
∣∣∣
∑

k∈Z

′ 2ck

k
sin2 kh

2

∣∣∣ =
∣∣∣
∑

k∈Z

′

ck
1 − cos kh

k

∣∣∣ ≤ C
hα+1

α + 1
, h > 0,

where
∑′

means that the summation is taken over all k ∈ Z\{0}. Using the familiar

inequality

(3.9) sin t ≥
2

π
t for 0 ≤ t ≤

π

2

and the fact that kck ≥ 0 for all k (see (1.2)), by (3.8) we obtain

2
∑

|k|≤n

kck
h2

π2
≤ 2

∑

k∈Z

′ ck

k
sin2 kh

2
≤ C

hα+1

α + 1
,

where n is defined in (3.3). Hence it follows that

∑

|k|≤n

kck ≤
Cπ2

2(α + 1)
hα−1 = O(n1−α).
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This proves the second statement in Theorem 1 under condition (1.2).

Second, assume the fulfillment of condition (1.3) and that f ∈ Lip(α) for some 0 <

α < 1. This time, we take the real part of the series between the absolute value bars in

(3.7) (with h in place of x) and find that

(3.10)
∣∣∣
∑

k∈Z

ck(cos kh − 1)| = | − 2
∑

k∈Z

ck sin2 kh

2

∣∣∣ ≤ Chα, h > 0.

Again, let n be defined in (3.3). Making use of inequality (3.9) and the fact that ck ≥ 0

for all k, by (3.10) we obtain

2
∑

|k|≤n

ck
k2h2

π2
≤ 2

∑

k∈Z

ck sin2 kh

2
≤ Chα, h > 0.

Taking into account (3.3), hence it follows that

(3.11)
∑

|k|≤n

k2ck ≤
Cπ2

2
hα−2 = O(n2−α).

Applying Part (i) in Lemma 1 (with δ = 2 and β = 2−α) gives that (3.11) is equivalent

to (3.2). Then applying Part (ii) in Lemma 1 (with δ = 1 and β = 1 − α) gives that (3.2)

is equivalent to (3.1), provided that 0 < α < 1 (because β = 1−α must be positive). This

proves the second statement in Theorem 1 under condition (1.3). ⊔⊓

P r o o f o f T h e o r e m 2. It goes along the same lines as the proof of Theorem

1, while using Lemma 2 instead of Lemma 1. We do not enter into details. ⊔⊓

4. New results on Zygmund classes

Our next theorem is a generalization of [2, Theorem 3], where it was proved for cosine

and sine series with nonnegative coefficients in the particular case α = 1. Our Theorem 3

is also an extension of the previous theorem from the case α = 1 to the cases 0 < α ≤ 2.

T h e o r e m 3. (i) If {ck} ⊂ C is such that

(4.1)
∑

|k|≤n

k2|ck| = O(n2−α) for some 0 < α ≤ 2,
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then
∑∞

k=1 |ck| < ∞ and f ∈ Zyg(α), where f is defined in (1.1).

(ii) Conversely, suppose that {ck : k ∈ Z} is a sequence of real numbers and f ∈ Zyg(α)

for some 0 < α ≤ 2. If condition (1.3) holds, then (4.1) also holds. If condition (1.2) holds,

then (4.1) holds in case 0 < α < 2.

The counterpart of Theorem 3 for the little Zygmund class zyg(α) reads as follows.

T h e o r e m 4. Let 0 < α < 2. Both statements in Theorem 3 remain valid if in

(4.1) the big ‘O’ is replaced by little ‘o’, and f ∈ Zyg(α) is replaced by f ∈ zyg(α).

R e m a r k. By Lemmas 1 and 2, it is easy to check that in case 0 < α < 2, condition

(4.1) is equivalent to (3.2); and this equivalence remains valid if the big ‘O’ is replaced by

little ‘o’ in both (4.1) and (3.2).

Part (i) of Theorems 3 and 4 as well as Part (ii) were proved in [5, Theorems 1 and 2]

in the case when condition (1.2) is assumed. The proof of Part (ii) in the case when (1.3)

is assumed is new.

In the special case when α = 1, combining Part (ii) in Theorem 4 with the Remark

made just after it yields the following characterization.

C o r o l l a r y 1. Suppose that {ck : k ∈ Z} is a sequence of real numbers satisfying

either (1.2) or (1.3), and f is defined in (1.1). Then f ∈ zyg(1) if and only if

(4.2)
∑

|k|≥n

|ck| = o(n−1).

This corollary plays a crucial role in the proof of Theorem 6 in Section 6.

P r o o f o f T h e o r e m 3. Part (i). Assume that (4.1) is satisfied for some

0 < α ≤ 2. Without loss of generality, we may assume that 0 < h ≤ 1. By (1.1), we

estimate as follows:

(4.3) |f(x + h) − 2f(x) + f(x − h)| =
∣∣∣
∑

k∈Z

ckeikx(eikh − 2 + e−ikh)
∣∣∣ ≤

≤
{ ∑

|k|≤n

+
∑

|k|>n

}
|ck||e

ikh − 2 + e−ikh| =: An + Bn,

say, where n is defined in (3.3). Using the inequality

|eikh − 2 + e−ikh| = |2 cos kh − 2| = 4 sin2 kh

2
≤ min{k2h2, 4},
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by (4.1) and (3.3), we find that

(4.4) |An| ≤ h2
∑

|k|≤n

k2|ck| = h2O(n2−α) = O(hα).

On the other hand, making use of (4.1), (3.3) and Part (ii) in Lemma 1 (applied with

β = 2 − α and δ = 2) we have

(4.5) |Bn| ≤ 4
∑

|k|>n

|ck| = O(n−α) = O(hα).

Combining (4.3) - (4.5) yields f ∈ Zyg(α). This proves the first statement in Theorem 3.

Part (ii). First, assume the fulfillment of condition (1.3). If f ∈ Zyg(α) for some

0 < α ≤ 2, then there exists a constant C = C(f) such that

|f(h) − 2f(0) + f(−h)| =
∣∣∣
∑

k∈Z

ck(2 cos kh − 2)
∣∣∣ ≤ Chα, h > 0.

Taking into account (1.3), hence it follows that

∑

k∈Z

ck(2 − 2 cos kh) = 4
∑

k∈Z

ck sin2 kh

2
≤ Chα, h > 0.

Using inequality (3.9), we obtain

4
∑

|k|≤n

ck
k2h2

π2
≤ 4

∑

k∈Z

ck sin2 kh

2
≤ Chα,

where n is defined in (3.3). Hence we conclude that

∑

|k|≤n

k2ck ≤
Cπ2

4
hα−2 = O(n2−α).

This proves the second statement in Theorem 3 under condition (1.3).

Second, assume the fulfillment of condition (1.2). If f ∈ Zyg(α) for some 0 < α < 2,

then for all x > 0 and h > 0 we have

|f(x + h) − 2f(x) + f(x − h)| =
∣∣∣
∑

k∈Z

ckeikx(2 cos kh − 2)| ≤ Chα,
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where the constant C does not depend on x and h. Taking only the imaginary part of the

series between the absolute value bars, we even have

∣∣∣
∑

k∈Z

ck sin kx(2 cos kh − 2)
∣∣∣ ≤ Chα, h > 0.

Due to uniform convergence, the series
∑

ck sin kx (2 cos kh − 2) can be integrated term

by term with respect to x on the interval (0, h). As a result, we obtain

∣∣∣
∑

k∈Z

′

ck
1 − cos kh

k
(2 cos kh − 2)

∣∣∣ ≤ C
hα+1

α + 1
, h > 0.

By condition (1.2), we may write that

2
∑

k∈Z

′

ck
(1 − cos kh)2

k
= 8

∑

k∈Z

′ ck

k
sin4 kh

2
≤ C

hα+1

α + 1
.

Using inequality (3.9), hence it follows that

8
∑

|k|≤n

′ ck

k

k4h4

π4
≤ 8

∑

k∈Z

′ ck

k
sin4 kh

2
≤ C

hα+1

α + 1
.

where n is defined in (3.3), or equivalently, we have

(4.6)
∑

|k|≤n

k3ck ≤
Cπ4

8(α + 1)
hα−3 = O(n3−α).

Applying Part (i) in Lemma 1 (with δ = 3 and β = 3−α) gives that (4.6) is equivalent

to (3.2). Then applying Part (ii) in Lemma 1 (with δ = 2 and β = 2 − α) gives that (3.2)

is equivalent to (4.1), provided that 0 < α < 2 (because β = 2−α must be positive). This

proves the second statement in Theorem 3 under condition (1.2). ⊔⊓

P r o o f o f T h e o r e m 4. It goes along the same lines as the proof of Theorem

3, while using Lemma 2 instead of Lemma 1. We do not enter into details. ⊔⊓

5. New results on the termwise differentiation of Fourier series

Our next theorem is concerned with the existence and continuity of the derivative of

the sum f in (1.1). It is a generalization of [2, Theorem 5], where it was proved for cosine

and sine series with nonnegative coefficients.
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T h e o r e m 5. If {ck} ⊂ C with condition (4.2), then the formally differentiated

Fourier series

(5.1)
d

dx

( ∑

k∈Z

ckeikx
)

= i
∑

k∈Z

kckeikx

converges at a particular point x if and only if f is differentiable at this x.

Furthermore, the derivative f ′ is continuous on T if and only if the series on the

right-hand side of (5.1) converges uniformly on T.

The proof of Theorem 5 was sketched in [4, Theorem 5]. Unfortunately, there are a

few typos in [4] which may have caused some difficulty to the reader. Therefore, we present

here a corrected detailed proof.

P r o o f o f T h e o r e m 5. Part 1. Let h 6= 0. By (1.1), we may write that

(5.2) f(x + h) − f(x) =
∑

k∈Z

ckeikx(eikh − 1) =: Ah + iBh,

say, where

Ah :=
∑

k∈Z

ckeikx(cos kh − 1) and Bh :=
∑

k∈Z

ckeikx sin kh.

Let n be defined in (3.3), then we estimate as follows:

|Ah| ≤
∑

k∈Z

|ck|2 sin2 kh

2
≤

∑

|k|≤n

|ck|
k2h2

2
+ 2

∑

|k|>n

|ck|.

Making use of (4.2) and Lemma 2 gives

(5.3) |Ah| =
h2

2
o(n) + o(n−1) = o(h) as h → 0,

where the o(h)-term is independent of x.

Next, we estimate Bh in the following way:

(5.4) Bh = −
∑

|k|≤n

ckeikx(kh − sin kh) +
∑

|k|≤n

khckeikx +
∑

|k|>n

ckeikx sin kh =:

=: B
(1)
h + B

(2)
h + B

(3)
h ,
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say. Using the familiar inequality

0 ≤ t − sin t ≤
t3

6
for 0 ≤ t ≤

π

2
,

from (3.3), (4.2) and Lemma 2 it follows that

(5.5) |B
(1)
h | ≤

|h|3

6

∑

|k|≤n

|k3ck| =
|h|3

6
o(n2) = o(h) as h → 0,

where the o(h)-term is independent of x. Furthermore, again by (3.3) and (4.2), we find

that

(5.6) |B
(3)
h | ≤

∑

|k|>n

|ck| = o(n−1) = o(h) as h → 0,

where the o(h)-term is independent of x.

Combining (5.2)-(5.6) yields

(5.7)
f(x + h) − f(x)

h
= i

∑

|k|≤[1/|h|]

kckeikx + o(1) as h → 0,

where the little o(1)-term is independent of x. Now, it follows from (5.7) that if f is

differentiable at x, then the symmetric partial sums of the series
∑

kckeikx converge and

f ′(x) = i lim
h→0

∑

|k|≤[1/|h|]

kckeikx.

Conversely, if the symmetric partial sums of the series
∑

kckeikx converge, then by (5.7)

we have

lim
h→0

f(x + h) − f(x)

h
= i

∑

k∈Z

kckeikx,

that is, f is differentiable at x.

Part 2. (i) Assume f ′ exists and is continuous on T. Then f ′ is uniformly continuous

on T. By virtue of the mean-value theorem, the convergence

(5.8) lim
h→0

f(x + h) − f(x)

h
= f ′(x)

is also uniform in x ∈ T. Since the little o(1)-term in (5.7) is independent of x, it follows

from (5.7) and (5.8) that the symmetric partial sums of the series
∑

kckeikx converge

uniformly in x ∈ T.
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(ii) The converse statement is trivial. ⊔⊓

Next, we reformulate Theorem 5 in terms of integration of the trigonometric series

(5.9)
∑

k∈Z

ckeikx,

where {ck} ⊂ C, but this time we do not assume that
∑

k∈Z |ck| < ∞. Without loss of

generality, we may and do assume that c0 = 0 in the rest of this paper. If we formally

integrate the series in (5.9), we get

(5.10) −i
∑

k∈Z

′

k−1ckeikx.

Now, the reformulation of Theorem 5 reads as follows.

C o r o l l a r y 2. If {ck} ⊂ C is such that
∑′

k∈Z |k
−1ck| < ∞ and

(5.11)
∑

|k|≥n

|k−1ck| = o(n−1),

then the trigonometric series (5.9) converges at a particular point x if and only if the sum

of the formally integrated series (5.10) is differentiable at this x.

Furthermore, if (5.9) is the Fourier series of an integrable function f , then series (5.9)

converges a.e. In particular, if f is continuous on T, then series (5.9) converges uniformly

on T.

R e m a r k. We point out that condition (5.11) does not imply the absolute conver-

gence of the series
∑

k∈Z ck, as the following example shows. Let

ck :=
1

k log k
for k = 2, 3, . . . ;

and ck = 0 otherwise. Clearly, for n = 2, 3, . . . we have

∑

|k|>n

|k−1ck| ≤
1

log(n + 1)

∞∑

k=n+1

1

k2
≤

1

n log(n + 1)
= o(n−1)

and
∑

k∈Z

|ck| =

∞∑

k=2

1

k log k
= ∞.
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P r o o f o f C o r o l l a r y 2. Since
∑′

|k−1ck| < ∞, the series in (5.10) is

absolutely convergent, denote its sum by F (x). Applying Theorem 5 for F in place of f

yields the fulfillment of each assertion in Corollary 2. ⊔⊓

6. A new proof of a theorem of Paley

The next theorem gives sufficient conditions for the uniform convergence of the Fourier

series of a continuous function.

T h e o r e m 6. If f is a continuous function on T and its Fourier coefficients

{ck : k ∈ Z} satisfy one of the following conditions:

(6.1) ck ≥ 0 for all k ∈ Z,

or

(6.2) kck ≥ 0 for all k ∈ Z,

then the Fourier series of f converges uniformly on T.

Theorem 6 involving only condition (6.1) is due to Paley [7], who formulated it in

terms of cosine and sine series with nonnegative coefficients, and proved it in a different

way (see also [1, Ch.4, §2]). Theorem 6 involving condition (6.2) seems to be new, and it

may be considered to be a variant of Paley’s theorem.

P r o o f o f T h e o r e m 6. Without loss of generality, we may assume that c0 = 0.

Set

F (x) :=

∫ x

−π

f(t)dt, x ∈ T.

Since

F (−π) = 0 and F (π) = 2πc0 = 0,

F is periodic with period 2π, and its Fourier series is of the form

(6.3) F (x) ∼
1

2π

∫ π

−π

F (t)dt − i
∑

k∈Z

′

k−1ckeikx, x ∈ T.
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Let h > 0, then we have

1

h
[F (x + h) − 2F (x) + F (x − h)] =

1

h

{∫ x+h

−π

−2

∫ x

−π

+

∫ x−h

−π

}
f(t)dt =

=
1

h

∫ x+h

x

f(t)dt −
1

h

∫ x

x−h

f(t)dt =

=
1

h

∫ x+h

x

[f(t) − f(x)]dt −
1

h

∫ x

x−h

[f(t)− f(x)]dt → 0 as h → 0

uniformly in x ∈ T, due to the uniform continuity of f . This whows that, F belongs to

zyg(1).

Let us consider the Fourier coefficients in (6.3) (except the constant term). In the

case of (6.1) we see that

k(k−1ck) = ck ≥ 0 for all k,

while in the case of (6.2) we see that

k−1ck ≥ 0 for all k.

By virtue of Corollary 1, in either case we conclude the fulfillment of (4.2).

Since F ′(x) = f(x) exists at each x and, by assumption, f is continuous on T, due

to condition (4.2), we may apply Theorem 5 to conclude the convergence of the termwise

differentiated Fourier series of F (see (6.3)):

d

dx

( 1

2π

∫ π

−π

F (t)dt − i
∑

k∈Z

′

k−1ckeikx
)

=
∑

k∈Z

′

ckeikx. ⊔⊓

R e m a r k. Corollary 2 may be considered as a localized version of Paley’s theorem

and its variant forulated in Theorem 6.

We recall that the series

(6.4)
∑

k∈Z

(−isignk)ckeikx

is called the conjugate series of the trigonometric series in (5.9). It is well known (see, e.g.,

[8, Ch. 7, §§1-2]) that if a function f ∈ L1(T), then its conjugate function f̃ defined by

f̃(x) := lim
h→0+

−
1

π

∫ π

h

f(x + t) − f(x − t)

2tan1
2
t

dt, x ∈ T,
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exists almost everywhere. Furthermore, if f̃ ∈ L1(T), then the conjugate series in (6.4) is

the Fourier series of the conjugate function f̃ .

After these preliminaries, the following corollary of Theorem 6 is obvious.

C o r o l l a r y 3. Suppose that (5.9) is the Fourier series of a function f ∈ L1(T) and

that its Fourier coefficients ck satisfy one of the conditions (6.1) and (6.2). If the conjugate

function f̃ is continuous on T, then the conjugate series to (5.9) converges uniformly on

T.
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