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Recap

We looked at the contraction f(x) = kx on the domain [—1, 1],
and found that the spectrum depended on the function space:

o(K,C") = B(0,s") U {1,k K> ...}
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Contraction in analytic function space

Can we totally get rid of the essential spectrum? For our
contraction, yes we can. It is not always true.



Contraction in analytic function space

Can we totally get rid of the essential spectrum? For our
contraction, yes we can. It is not always true.
Let's go back to our original power series ansatz

B = {(x Z ajx! : Z |3jf* < oo} = [l(a))jlle

with norm

Domain of analyticity for B functir

o0 liC
D
[vlls = | laj]? < cc. y
=0 Aot

This is a really strong norm—it implies that
1)'s Taylor series at 0 converges on a ball of -1 0 i
radius 1.




Contraction in analytic function space

Ivlls = | lajl>
j=0

K Z aJxJ Z /ifajxf

Nevertheless, we have acadentally created a reasonable-looking
Hilbert space where our operator is self-adjoint (VERY RARE,
WEIRD), and diagonal in our orthonormal basis {1,x,x?,...}:
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So we can just read off our spectrum: {1, r,x?,...}



Dynamical determinants

Aside: in fact, there is a function-space independent way to obtain
these eigenvalues.

» You can take the trace of (some) infinite-dimensional

operators. If B is a Hilbert space with orthonormal basis
wo, W1, - - -, this is given by

tr K" = Z (wp, Kwp) -
beN

» Doing this for the Koopman operator, we typically find we get
something like

1

tr K" = > - .
p:f"(p)=p |det(Df (p) - l)’
Df"(p) hyperbolic

(Exercise: check this calculation for f : R/27Z (9, using a
Fourier basis to compute the trace.)

This looks like a formula that could work for any map.



Dynamical determinants

Using det(/ + A) = exptrlog(/ + A), we can compute the
Fredholm determinant of the resolvent for A\~ small:

C(AY) = det(/ — A1K) —expz( Lt AT

» ( is known as a dynamical zeta function.

» It is analytic, so we can hopefully continue it to smaller 71,

» Zeros with |[A| > pess(/C, B) should be discrete eigenvalues of
IC on B, for reasonable B.

» We call the (function space-independent) set of zeros
Ruelle—Pollicott resonances.



Dynamical determinant example

For any contraction f(x) on the interval with fixed point xp and
f'(x0) = k < 1, we have

1 1 >

tr K" = = = K"
(F7) (x0) = 1] 1—~" ,,,2::0

(Compare with our contraction in basis x".)

det(/ — K/\) = expz Z (K™ /)"

n=1 m=1

= exp i log(1 —&™/\)

m=1
oo

— TTa—-xm/x

m=1

2

which has zeroes at 1, k, k<, ...: our resonances!



Quasi-compactness recipe

How to get quasi-compactness in general?

Theorem (Lasota—Yorke, a.k.a. Doeblin—Fortet, a.k.a.
lonescu—Tulcea and Marinescu)

Given two Banach spaces Bs C By, (with different norms), if for all
veB, andneN,

» s is a compact, dense subset of B,,;

> ||A"v||5, < C|lv||s, forall n>0;

> || A" g, < Gim"||v]|s, + Gllv||B, for all n> 0.

Then p(.A; BS) <1, and pess(A; Bs) < m.

» Note if m = 0 we recover compactness!

» This doesn't tell us much about the discrete spectrum—only
that it can exist.



Intuition for quasi-compactness

» Generally, compactness implies some kind of regularising going
on (e.g. the stochastic examples).

» Intuition: quasicompact = regularising also, but there's some
infinite series that only contracts uniformly.
» Typical infinite things:
» Arbitrarily high frequencies are allowed (i.e. C" spaces)

» The system generates an infinite sequence of singularities
(Lecture 2)

K], < Gm®llvils,  + G| vlls,
——— ———
CONTRACTING PART COMPACT PART

action on high frequencies action on low frequencies
dynamical complexity nonlinearities in the system



General contractions

What if f is a general contraction (let's say C! for r > 1)? Let's
suppose |f'(x)| < k. Let's try Bs = C1,B,, = CO.
» C!is a compact, dense subset of C° (from
yesterday—bounded functions and C° have the same norm)

> |IK"lco =1
» We have
Il er = sup (w0 7Y ()] + 1Ko
= sup [(F7) ()Y (F" ()| + 1Kl co
< sup [(F") ()] 1l cr + [le]] o
X N——

<k

So p(f, Cl) =1, pess(fv Cl) = ’f/(XO)"



General contractions

What if f is a general contraction (let's say C! for r > 1)? Let's
suppose |f'(x)| < k. Let's try Bs = C1,B,, = C°.
» Clis a compact, dense subset of C° (from
yesterday—bounded functions and C° have the same norm)

> [|K[co =1
» We have
K" cr = sup (%o £7) ()| + K¢l co
= sup [(F") ()2 (£ ()] + 1Kl co

< sup [(F") ()| ¥l + 9]l co
X N——

<CIf"(x0)|"

So p(f, CY) =1, pess(f, Ct) = |f'(x0)|.



What about the transfer operator?

The transfer operator £ tracks probability mass pushed by the
dynamics.

For a contraction, this involves pushing mass together.

— ox)
(£p)(x)
12 — (£%p)x)
— (o)
10 — (£p)x)

Wil
o et

-1.00 -0.75 -0.50 -025  0.00 0.25 0.50 0.75 1.00
x

So we don't expect the transfer operator to be bounded in C".



Transfer operator of a contraction

But we know that £ is kind of dual to C, although it is not exactly
KC*. The difference is between functions and functionals:

(K] = x[Ky]
JEa w0 dx = [ ) 0Cw)0x) dx

So if KC is nice on B, we sort of want to define £ to act on the dual
space B*.



Dual space

The dual space of a Banach space B is, officially, the following
B ={x:B—=R:|[xlssr < oo},
with the following norm

Ixllz= = lIxllBo>r = sup |x(¥)]
]l 5=1



Dual space

The dual space of a Banach space B is, officially, the following
B ={x:B—=R:|[xlssr < oo},
with the following norm

Ixllz= = lIxllBo>r = sup |x(¥)]
]l 5=1

For the purposes of this minicourse let's identify a function
@ : D — R with the functional

v [t



Transfer operator of a contraction 8(x) obeys for all cts v
J ¥(x)é(x) dx := (0)

So, ideally, we'd say that £ acts B* — B*. But B* may not
contain functionals that can be identified with functions. ..

For example, (C1)* contains the following functionals (and hence
the following “functions” ¢)

» For any L! function ¢, ¥ — f_llgowx
» For any y € (—1,1):
> P ih(y) (i p(x) = d(x —y))

o(x)

> = Y(y) (e p(x) = —0"(x —y)) ’
> For any L function ¢, 9 — [1, —p 9’ x Cox
(i.e.

p(x) = ¢'(x) — ¢(=1)0(x + 1) + ¢(1)6(x — 1))
» For any measure p supported on [—1,1]:
> s [Pdu (e o =) o
> e [¢du (e o = ()

o(x)




Transfer operators in funny function spaces

» This is fine! Most reasonable functions we'd want to try (e.g.
C> functions) live in (C1)*.

> We may get some extra stuff in eigenfunctions. Hopefully we
can figure out how to interpret it.



Transfer operators in dual spaces

For our contraction, we'll get the same spectrum in (C")* as in C".
Just the eigenfunctions are different.

For the 1-eigenfunction, we have

(LO)(x) = /flé(mx) =

=0(x)

!
(Exercise: check this black magic is correct by integrating against
C! functions.)

This will give us an invariant measure y = 9.

o(x)




Transfer operators in dual spaces
In particular, in (C1)* we get the following picture:

So we know that for any “hyperdistribution” ¢ € (C1)* (e.g.
measure) with [ @dx =1,

1£70 = dl[(c1y- < CKT[l@ll(cry-




Transfer operators in dual spaces
In particular, in (C1)* we get the following picture:

So we know that for any “hyperdistribution” ¢ € (C1)* (e.g.
measure) with [ @dx =1,

1£70 = dl[(c1y- < CRT[l@ll(cry-
—_—————

= [ Wasserstein
distance between

flp and §




Transfer operators in funny function spaces

For the k-eigenfunction, we can differentiate:

(L8 (x) = k1 - K (kx) = KI'(x)

o(x)
o

In fact, the k" eigenfunction is the nth derivative of d(x).



Transfer operators in dual spaces

Here we're saying that the transfer operator acts on functionals
x : C" — R, and then identifying some of these functionals with
functions, and then extending the set of functions somehow. ..
How to do this in a less fluffy way?



Transfer operators in dual spaces

One quite robust way of defining these “functions” is as a
completion of a nice space of functions on which your Koopman

operator etc is just bounded (e.g. C*).

» First, you define a norm || - ||.

» Then, you complete C* (etc.) with respect
to the norm. That is, you define functions as

limit points of || - [|-Cauchy sequences {1(,)}
(up to equivalence).
Y= lim Yy

1| 00
—
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X
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Transfer operators in dual spaces

This feels a bit abstract, but makes sense when we come to
approximation:

eigenfunction of B " .
. . ——> true eigen“function
Nth approximation ~N-—co

754

501

254

Yim(x)

0 - =

—254

—50

~75

-1.0 -05 0.0 0.5 1.0
X



Transfer operators in dual spaces

Nicely, it turns out that constructing Banach spaces from norms
gives consistent eignefunctions:

Proposition

Suppose By, B, are the completion of C"(D) with respect to the
norms || - |1, - [|2, and integrating against C" functions is bounded
in By, B>.

Then if f is a C"*! diffeomorphism, and I (resp. L) is bounded
on both By and B, then their discrete spectra are consistent.




Weighted operators

There are various reasons you might want to study weighted

operators:
(th)q/)(x) = h(x)K(f(x )) (default: h=1)
e(x)= > &ly (default: g = 1/|det Df|)
fy)=x

> We saw last lecture that escape rates from a set E depended
on p(1eK).

» You can get estimates on large deviations (e.g. Zhang et al.
'22 in EDMD):

T
P (;-' Z(P(Xt) > C) ~ e_TsupseR(CS—Iogp(eSea;C))
t=0

» You can compute Hausdorff dimensions of attractors. For
example, in 2D, ds = dimy(w(f) — 1 solves something like

p((|DFf |gs)~%(det DF)K) =



Weighted operators

Lasota—Yorke is just an abstract functional analysis result, so we
can apply it to weighted operators too:

Theorem (Lasota—Yorke and friends)

Given two Banach spaces Bs C By, if for all v € B,, and n € N,
» s is a compact, dense subset of B,,;
> || A"||p, < CM"||v]|g, for all n>0;
> ||A"|g, < CGim"||v| B, + CoM"||v||s,, for all n > 0.

Then p(A; Bs) < M, and pess(A; Bs) < m.

If the weight is non-negative, we in particular often have an
eigenvalue at A = p(hK) € (0, M].



Operators in chaos

> We've looked a lot at contractions (=all negative Lyapunov
exponents).

» What is the best way to study chaos (=some positive
Lyapunov exponents on a compact set)?

Obviously we want to deal with something nice, like C!. ..



Transfer operators in chaos

Let's look at the form of the transfer operator:

Lp(x) = Z mw(y)
fy)=x

Suppose that f is invertible. Then
Lo(x) = m@(f l(X))

so it's a weighted Koopman operator of the inverse of f!



Transfer operators in chaos

Positive Lyapunov exponent means that at most points, you are
expanding on average, in some directions.

Expansion is the inverse of contraction, so maybe what we know
about contractions could help us?



Transfer operators in chaos

Let's start simple, with some uniformly expanding maps:
A map f :[0,1] — [0, 1] is uniformly expanding if

» fis C! at all but a countable number of points

» When defined, |f'(x)| > v > 1.

Such a map cannot be invertible! (Try integrating |f’| over the
domain.)



Transfer operators in chaos

Nomenclature:
» The domains of Cl-ness are called “branches”, indexed by
iel
» On branch i, f : O; — N; (open sets) is a bijection, with
inverse v;.

The transfer operator of f is then:

Lp(x) = Z 7( y)‘QO (v) = ZlN (x) |f/(v ) |g0(v,( x))

f(y)=x i€l
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inverse v;.

The transfer operator of f is then:
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Transfer operators in chaos

Nomenclature:
» The domains of Cl-ness are called “branches”, indexed by
iel
» On branch i, f : O; — N; (open sets) is a bijection, with
inverse v;.
The transfer operator of f is then:
Lo(x) = Z 7 y)\‘P le\f o(vi(x))

_ >
f(y)=x i€T weighted Koop. of v;

Now by uniform expansion, we know

Vi) = 1/If (ui(x) <77 <1

SO our v; are contractions. ..



Transfer operators in chaos

Nomenclature:

» The domains of Cl-ness are called “branches”, indexed by
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» On branch i, f : O; — N; (open sets) is a bijection, with

inverse v;.
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p(vi(x))

<1
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Transfer operators in chaos

Let's restrict to full-branch maps: those where the N form the
whole interval:

Then

If the v; are C", then we have a sum of weighted contraction
operators on C', etc.



Lasota-Yorke inequality in chaos

Really L!-type spaces are the nicest thing to deal with with
transfer operators (because acting on measures), but with some
extra work we can show that for r > 0,

1Ll < Cligller—
1Lellcr < Cm™[ollcr + Cllgllcr

where

1/n
m = lim (Z HVa’H”co> = p(Lyyjprper) <777

icln

So p(L£,C") <1, and pess(L, C") < y~".



Lasota-Yorke inequality in chaos

We can look at different kinds of spaces:

[Pllwse = 19l + D> e

where D* is the (possibly non-integer) sth derivative.

In general, the integrability affects pess a bit, and differentiability
away from 0 makes pess smaller:

Theorem (a la Baladi '18)

For smooth 1D full-branch expanding maps,

pess(L; WP) < g1 p(L(pry-1-at; C*) <7 7°

space-independent

where 1/q+1/p = 1.



Different dynamics, different Banach spaces

We've seen that the Banach spaces you need to get meaningful
spectra depend on the dynamics. For Koopman operators, we've
seen

» Differentiable functions for contractions
» Hyper-distributions for uniformly expanding maps

In general, we hope such Banach spaces exist, but. ..



Transfer operators in chaos

Chaos is difficult to prove things about. Here are some cool facts:

» There are a class of chaotic systems called “uniformly
hyperbolic” aka “Anosov”. We know some to all things about
these systems. Almost no real dynamical systems are
uniformly hyperbolic.

EAan




Transfer operators in chaos

» Outside this class, our knowledge falls off very very fast!. The
key sticking point is showing that systems even have chaotic
attractors.

> For example, give me some a € [3,4]. In most cases can't
confirm if the logistic map f(x) = ax(1 — x) has a chaotic
attractor—because you have to know the whole future orbit of
x =0.

!Qutside of some non-generic examples, e.g. the point of transition to chaos



Transfer operators in chaos

» In the 1990s M. Benedicks, L. Carlson, L.S. Young proved
some 1 + e-dimensional extensions of logistic maps have
positive Lyapunov exponents.

0hl(x,y) =(1-1.7x?+y,0.01x

> 0.0 T

—0.1-— T T
-0.5 0.0 0.5
X

No-one went further than that, because it was too hard.

» If you do have positive Lyapunov exponents, you can show a
lot of mixing properties, but no explicit expression for the
Banach spaces

Nevertheless, uniformly hyperbolic systems provide a good starting
point for thinking about chaotic dynamics.



Anosov diffeomorphisms

Here is a whirlwind tour of some other types of dynamics. Let’s
start with diffeomorphisms.

Invertibility means you must have contracting directions to balance
the expansion.

0.4

0.24

-0.2 1

—0.4 4

-1.0 -0.5 0.0 0.5 1.0



Anosov diffeomorphisms

For Anosov diffeomorphisms there is a kind of local product
structure in dynamics:

Eflxn

(Actually, this is true generally if you throw out some “bad"” sets of
small measure.)



Anosov diffeomorphisms

The way we construct a Banach space for the transfer operator is
to construct a norm encoding

» Differentiability in unstable directions;

P> Roughness in stable directions.
Vice versa for Koopman.

Transfer operator eigenfunction

Koopman operator eigenfunction
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Anosov diffeomorphisms

The norms of these “anisotropic” spaces are fairly complicated
even to define. There are maybe two main types:

» “Geometric” Banach spaces (Liverani, Blank, Demers,

Gouézel. .. ), where you integrate over the rough directions:
elpsc =" sup [ V(goa)-wdv"
arsstable curve Ja
[¥llce=1
None of these are Hilbert spaces.

Koopman operator eigenfunction




Anosov diffeomorphisms

» “Sobolev” spaces (Tsujii, Baladi,...), where you differentiate
in various directions:

el

pst = "II(F tws e )l e”
» Triebel spaces:

llp.se = "l (id +A)*(id +A4) " 2]l




Non-uniformly hyperbolic maps

This kind of regularity structure persists in more realistic systems:

1"6'-\ng|e" of Koopman eigenfunction IAOngIe” of Perron-Frobenius eigenf'n

st
§'\ ™I o
] \ "§ 057 * \ 53

A 7
> % >
0.0 0.0 20
/] 357
21
/ 2

—-0.54 "‘1 -0.51 2n
/ / T

T T T T T T T T
-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0

However, most of these systems systems don’t have a product
structure everywhere. This has some effects. ..



