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Trying to make sense of dynamical systems

The basic object of study in “dynamics” is a trajectory
{X¢}t=0,1,2,... in a state space D.
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Smooth ergodic theory

» Birkhoff ergodic theorem (true in many
systems): time averages over orbit = spatial
average

P> Means almost every orbit looks like every
other orbit at some point in time (“almost
all orbits are dense”).

» We want to compute so want, e.g. stability

to error, ideally with quantitative assurances.

» This suggests studying smooth ergodic
theory.
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Operators

So, we are interested in studying
» The Koopman operator
» The transfer operator (=~ Perron-Frobenius operator)

on function spaces involving differentiability.

It is mostly a separate beast to the LP(u) theory.



Stochastic vs deterministic

Broadly are going to consider three kinds of dynamical system (on
compact manifolds):

Noisy dynamics (SDEs. ..): theoretically easy, good
starting point for comparison

Deterministic contractions: already known, but
explains some of the questions in deterministic
dynamics. ..

Deterministic chaos: harder and a bit obscure,
main goal of this minicourse
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Stochastic vs deterministic

Broadly are going to consider three kinds of dynamical system (on
compact manifolds):

Noisy dynamics (SDEs. ..): theoretically easy, good
starting point for comparison

Deterministic contractions: already known, but
explains some of the questions in deterministic
dynamics. ..

Deterministic chaos: harder and a bit obscure,
main goal of this minicourse

»

L Objection! All real systems have a bit of noise in them!

Then you commit to resolving down to the scale of the T
noise! How can we believe lower-resolution numerics?



Dual notions

(Markov, time-autonomous) stochastic dynamics x; € D are
typically studied using two linear operators, acting on functions on
the state space ¥, : D — R:

» The Chapman-Kolmogorov operator: predicting the expected
future value of “observable” functions

(K¢)(x) = E[¢(xe41)|xe = X]

» The Fokker-Planck operator: evolution of probabilities into
future (= push-forward of measure density)

(o)) = [ () s = xlxe = yldy
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Dual notions

Define our transition kernel k(x,y) = %[xtﬂ = y|x¢ = x|, then

(L)) = [ ¢x) klx.y) dx
whereas

(K)(x) = E[th(xe41)[xe = X]
= [ ()aPbess = ylxe =

= /w(y) k(x,y)dy.

So, these operators are dual:

[ vmay = [ o) ) dy.



Dual notions
These actually work with deterministic maps f : D — D as well
(modulo “some” intricacies. . . )

» The Koopman operator: future value of functions
(aka “observables")

(Kep)(x) = 9 (f(x))




Dual notions

» The transfer operator, which gives you the evolution of
probabilities into the future (= push-forward of measure
density)

(£e)0) = [ “EIF) =" ¢ly) dy

_ )
= 2 | det Df (y)|
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Dual notions

These two operators are also still dual!

et dx = [(£e)0) 1) dx
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Dynamics

dynamics, n. The study of trajectories as time goes to infinity.

(You tell me if that's a good thing.)



Dynamics

dynamics, n. The study of trajectories as time goes to infinity.

(You tell me if that's a good thing.)

» We can describe dynamics over long times by X", L”, for n
large.

» These are best described by the spectrum of IC, L.

» Consequently, Koopman/transfer spectra can:

» Provide reductions for the dynamics
» Give you statistical information about the system
» Make sense of the emergent dynamical geometry. ..



Koopman spectra

What are the spectra of these (infinite-dimensional, weirdly-posed)
operators?

Generally computer approximations of the Koopman spectrum look
like:
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Koopman spectra

What are the spectra of these (infinite-dimensional, weirdly-posed)
operators?

Generally computer approximations of the Koopman spectrum
seem to be approximating

o 5 Quasi-compact operator



Structure

A lot of numerics around dynamical systems come down to
studying the spectra of these operators numerically.
This lecture series will talk about

1. A mathematical framework that explains quasi-compact
operators

2. How different kinds of dynamics fit into the framework
3. How this translates to computation

Imo(K)
o




Meaning of the spectrum
Quasicompactness (and oq(K) with no Jordan blocks) gives:
/C""t/f = Z Ck(¢) )‘Z Yk + O(pess(lc)n)

AcEoq (IC)
Kipp=Abx

Different parts of the spectrum have various interpretations:

A =root of unity:
Als1:
metastable periodic structures

periodic components
‘/——'“tea/'
b A=1:
invariant measures

~
N
N\,
some time series properti
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\ Asl:
almost-invariant sets
barriers to mixing

’
~“ Smaller A:
finer mixing info



A = 1: ergodic components

Proposition

Suppose a function ) : D — R satisfies 1 o f = ). Then the level
sets of 1) are invariant sets.

Proof.

If x € =1(c), then ¥(f(x)) = ¥(x) = ¢, so f(x) € v~1(c).

wix)
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|A| = 1: periodicity

Proposition

Suppose a function v : D — R satisfies 1) o f = e/ for some
0 €[0,27n]. Let E; = {x € D : ¢(x) = z}.
Then f maps E, into E_ie,

Proof.
If x € E,, then ¢(f(x)) = e4(x) = ez, so f(x) € E,i,.



|A| = 1: periodicity

Proposition

Suppose a function ) : D — R satisfies 1) o f = €% for some
0 €[0,2n]. Let E, = {x € D : ¢(x) = z}.
Then f" maps E, into E_ino,.

Proof.
If x € E,, then ¢(f(x)) = e4(x) = ez, so f(x) € E.i,



A < 1: almost invariant sets

Proposition (a la Froyland and Stancevic '10)

Suppose 1 satisfies K1 = Ay and sup || < 1 for some X € (0,1).
Let
Er ={xe D:y(x)>0}.

Then for some C > 0,
/ P(ff(x) € Ex fort =1,...,n) dx > CA"?
D
That is, the Lebesgue measure of the set of points that don't leave

E., within n steps decays as O(\").
In particular n ~ 1/(1 — X), this set is of O(1) Lebesgue measure.



A < 1: almost invariant sets

Proof.

We are interested in

Pn:/P(Xt€E+ for t=0...,n—1|x; = x) dx.
D

The interior probability we can rewrite as

1 xe€ E+
1E+(X) = {O X¢ =

E (1:[ 1e, (xe)|x0 = x>
t=0

> If n=1, this is E[1(xo|x0 = x] = 1)(x).
If n=2, thisis E[1g, (x0)1e, (x1)|% = x] = 1, (x)K[1e,](x).

If n=3, this is
E[1e, (x0)1lE. (x1)1le, (x2)[x0 = x] = 1, (x)K[1e, K[1E, ]](x).

> By induction, we have (1g, )" *[1g,](x).

\{
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A < 1: almost invariant sets

Proof (continued).

Now, K is a positive operator (i.e. a> b = Ka > Kb), and 1g, > ¢,

so
(K1e)"1e](x) = (K1e.)"[¥](x)

Furthermore, 1g K = A1g, ¢ > M. T

So, inductively, 0

(Le, )" H](x) > A" 11E, (x). -,

So for some C > 0,

P, > / AN E (x)h(x)dx = CA™L
D



A < 1: almost invariant sets

> Comparable results for complex A. If
Ey = {x € D : R[e"y(x)] > 0},

you have that Ey mostly maps to Egyargx-

» Same result for transfer operator £ (again if bounded
eigenfunctions).



A < 1: garbage patch example

A

P
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Transfer operator
eigenfunctions

Koopman eigenfunctions
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Note: in a
Lebesgue-orthogonal
basis, L is the
transpose of IC

Same spectrum, different
eigenfunctions.

Transfer: attractors

Koopman: basins of attraction



Koopman and transfer operator eigenfunctions

Using EDMD | just computed that a Hénon-like map has an
eigenvalue \ & 0.92e¢77/7,

This suggests some sort of 7-periodic behaviour persisting over
timescale ~ 1/ — log 0.92 = 13.

1"0Angle" of Koopman eigenfunction ;Aongle" of Perron-Frobenius eigenf'n

0] \‘;:\\\ 05 \ 5

> >

)
0.0 ; 0.0 3

21
¢ #

-0.5 -0.5 n
/ z

T T T T T T T T 0

-=0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0

X X



Koopman and transfer operator eigenfunctions
Using EDMD | just computed that a Hénon-like map has an
eigenvalue \ & 0.92¢ =977/,

This suggests some sort of 7-periodic behaviour persisting over
timescale ~ 1/ —log 0.92 = 13.

—— Koopman eigfn.
—— Transfer eigfn.
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A motivating conundrum

This lecture, let's try and get a theoretical grip on the spectrum of
the Koopman operator for a deterministic contraction (k < 1):

f(x) =kx, x € [-1,1]
So the Koopman operator is
(Ky)(x) = (rx)

What does its spectrum look like?
Let’s try and find some eigenfunctions.



A motivating conundrum

Let's sub in a power series 9(x) = 352 akxk:
0=K¢ -\
[e.9] [e.9]
= Z ak/@kxk - A Z akxk
k=0 k=0
Equating terms we get
(kK —Nax=0,keN

suggesting that our eigenvalues are {1, x, k2, k3,...} with the

respective eigenfunctions {1, x, x?, x3,...}



A motivating conundrum

These eigenfunctions broadly give us what we expect:

» The leading eigenfunction 1 is simple (i.e. no separate basins
of attraction®)

» The next eigenfunction has a root at x = 0, suggesting a
dynamical barrier here (in fact, it is precisely the fixed
point—woohoo)

» Some other spectrum accumulating at 0

a=1,A=K

— olx)=x'
(Kg)(x)




A motivating conundrum

These eigenfunctions broadly give us what we expect:

» The leading eigenfunction 1 is simple (i.e. no separate basins
of attraction®)

» The next eigenfunction has a root at x = 0, suggesting a
dynamical barrier here (in fact, it is precisely the fixed
point—woohoo)

» Some other spectrum accumulating at 0
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A motivating conundrum

But, by the same token, we could try K1(x > 0)x = 1(x > 0)x,
and so on...

a=1.0,A=k

| — o(x)=1(x>0)x}°
(Kg)(x)




A motivating conundrum

But, by the same token, we could try
K1(x > 0)x1/2 = \/k1(x > 0)x/2, and so on...

a=05,A=k"

— 9(x) =1(x>0)x°

1.09
(Kp)(x)
0.5+




A motivating conundrum

But, by the same token, we could try
K1(x > 0)x1/2 = \/k1(x > 0)x/2, and so on...

a=0.91, A =%

—— p(x) =1(x > O)x05

1.09

(Kp)(x)
0.5+
0.0




A motivating conundrum

But, by the same token, we could try
K1(x > 0)x1/2 = \/k1(x > 0)x/2, and so on...

a=-04,A=k"04
4
3
2
1
0

— o(x)=1(x>0)x"0%
(Kg)(x)
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A motivating conundrum

But, by the same token, we could try
K1(x > 0)x1/2 = \/k1(x > 0)x/2, and so on...

a=-0.4,A=k"04
4
3
2
1
0

— gL =1(x>0)x"%
(Kg)(x)

-4
-1.0 -05 0.0 05 10
x

In fact, for any a € C, we can set ¥(x) = x® = e~ %8 for x > 0

and get
(1C6)(x) = e losx-tosr) — o)

So, K's spectrum could cover the complex plane unless we are a
bit careful about what functions we allow.



A motivating conundrum

In fact, this comes from a bigger fact which is that Koopman
eigenfunctions/eigenvalues are multiplicative in deterministic

dynamics.
In general, if
> KCtp = M

> f is deterministic;
> % is well-defined;
then KC[?] = A\*y~.



A motivating conundrum

How do we allow/banish functions from our linear operator K7 We
set a function space as the domain of /.
Crucial properties of this function space B:
P It is a vector space.
» It has a norm || - ||, with respect to which it is complete (i.e.
it's a Banach space)
» /C maps B to itself.
> It doesn’t have to contain only functions, but should contain
all sufficiently nice functions (e.g. C2°)
Note that to do theory it isn't very helpful to have a Hilbert space,
except in some cases.



Spectrum of an infinite-dimensional operator

Define the resolvent of an operator A : B — B:
Ry(A)=(A-X)"1:B—=B

The spectrum o(.A) is the set of A € C where Ry(.A) is either not
well-defined, or unbounded. It is always closed.
The spectrum includes:
» The discrete spectrum o4(.A), i.e. isolated eigenvalues \ of A
with finite “algebraic multiplicity”.
The nice normal stuff we love from finite-dimensional
operators.
» The rest 0ess(A)—the "essential spectrum”. For Koopman
operators in discrete time it is usually a ball around 0.



Spectral radii

» Spectral radius p(A) = max |o(A)]
» Essential spectral radius pess(A) = max |oess(A)]



Spectral radii

EE Oes(A; B)
o 04(A;B)

» Spectral radius p(A; B) = max |o(A; B)|
> Essential spectral radius pess(.A; B) = max |0ess(A; B)|
Important to remember these depend on the function space B. ..



Spectral radii

» Spectral radius p(A; B) = max |o(A; B)| < ||Al|5)
> Essential spectral radius pess(.A; B) = max |0ess(A; B)|
Important to remember these depend on the function space B. ..



Compact operators
An operator A : By — By is compact if A(Bp,(0,1)) is a compact

subset of B,.
If there exist some operators Ay : By — B> such that

N—oo

H-AN - -AH31H32 > 0,

then A is compact. In most reasonable cases (e.g. Hilbert spaces,

B1 = B> has a countable Schauder basis. . .) this is iff.
» Compact operators’ only essential spectrum is at A = 0. So

Pess = 0.
> However, there can be countably discrete eigenvalues, which

then accumulate at zero.



Stochastic systems

Remember that for most nice stochastic systems (e.g. SDE maps),
the Koopman operator is a kernel operator:

(K9)(y) = El(xen)lxe = ] = [ () k(v x) .
Usually k is reasonably regular: for example,

JpIVyk(y,x)|dx < C for all x.
In this case, we find that for all y € D,

IVy(K)(y)| = /D [Vyk(y, x)lle(x)[ dx < Cigg\w(X)\-

This is a nice bound, which we can translate into functional
analysis as follows. . .



An estimate that is always true

Let's take B to be the space of bounded functions on D with the
norm:

[¥]ls = sup [1(x)]-
xeD

Then, K always maps bounded functions to bounded functions by
virtue of the following:

IK¥lls = sup [E[¢(xet1)Ixe = x]| < sup |[&(y)| = [[4]ls
xeD yeD

And you can see it has norm (so spectral radius) bounded by 1!



Stochastic systems

In our stochastic system, let's also define a “strong” space C!, of
all the continuously differentiable functions on [—1,1], with the
norm

[¥llcr = sup [V (x)[ + sup [&(x)| = [[V|[5 + [[¥]5.
xeD xeD
Then, our bound from before translates to saying

Kbl cr < Clleb|l3-

So K makes our functions smoother!



Compact embedding

Can we use this to say anything about the compactness of K in B?
Proposition

The product of a bounded operator and a compact operator (resp.
approximable by finite rank) is compact (resp. approximable by
finite rank).

Imagine I : B — B as the following chain:
BL ' 4B

If we can show that id : C! — B is compact (aka C! embeds
compactly into B, which we notate C! € B). ..
then I : B — B is compact.



Compact embedding

Let's try and construct some finite-dimensional operators that
approach id : C! — B in norm.

» That is, let’s find some finite-dimensional operators that give
uniformly good approximations of differentiable functions.

For simplicity, we'll do it on the interval [0, 1].



Compact embedding

For every 1) € C!, let's define Pyt to linearly interpolate 1) at
SNf{O,N,N,...,l}:

— w0
— L3yl

wir
win -

(Exercise: show Py is a linear operator.)
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Compact embedding

For every 1) € C!, let's define Pyt to linearly interpolate 1) at
SNf{O,N,N,...,l}:

: fi:‘:’(x) \/

2 T2 12 T2 12 T2 12 12 12 12 12
X

(Exercise: show Py is a linear operator.)



Compact embedding

For every 1) € C!, let's define Pyt to linearly interpolate 1) at
SNf{O,N,N,...,l}:

— ¥

— Iy(x) \ /

vvvvvvvvvvvvvvvvvvvvvvv
01234567 891011121314151617181920212223 ]
24242424242424242424242424242424242424242424 24

X

(Exercise: show Py is a linear operator.)



Compact embedding

Py is finite rank, and for all ¢ € C1,

1
IPnY — s < =¥

(Exercise: prove this)

19 — wx)
— T1yp(x)




Compact embedding

Py is finite rank, and for all ¢ € C1,

1
IPnY — s < =¥

(Exercise: prove this)

14 — wlx)
T3y(x)




Compact embedding

Py is finite rank, and for all ¢ € C1,

(P~ id)olls < ¥l

(Exercise: prove this)

14

==

— w(x)
— Toy(x)
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Compact embedding

So Ct e B.
» The Koopman operator K : B — B is compact!
» So it only has point spectrum!

Thus, we have proven that all stochastic systems on compact
manifolds with differentiable kernels have compact Koopman
operators!



Computing with compact operators

» In proving compactness, we came up with a nice
approximation scheme (interpolation).

» We could try and approximate our Koopman operator IC by
Kn := PnK, perhaps restricting to im Py, i.e. piecewise
linear functions.

» This approximation Ky is O(1/nN-close in norm to IC, so its
simple eigenvalues should be O(1/N) error. ..

Theorem

Suppose that \ € o4(A; B) with algebraic multiplicity L.

Suppose || Ay — Aljg — 0.

Then each Ay has L eigenvalues (counting multiplicity) A}, ... Ak,
such that for large enough N, each

D — Al < CllAn — AIYE



Computational example

Let's set xr+1 = 3.54x:(1 — x¢) + 0.08=, where = is i.i.d. noise
with the following pdf p(£) = 110 1)(£)6£(1 — &):

pdf of noise

0.5 1.0

Then the kernel defining the Koopman operator is

— 3.54x(1 —
k(x,y) = 0.08"1p (y x(1=x)

0.08 )

and we can try and compute K on imZy.




Computational example

Spectrum converges (as O(1/N), eventually).
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Computational example

Spectrum converges (as O(1/N), eventually).
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Computational example

Spectrum converges (as O(1/N), eventually).
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Computational example

Spectrum converges (as O(1/N), eventually).
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Computational example

Spectrum converges (as O(1/N), eventually).

Spectrum of Pso3K
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Computational example

Let's look at the Koopman eigenfunction for A = —0.878 (so some
set for which the period-two map is almost-invariant):
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Compactness and Koopmanism

Saddish news: for most deterministic systems, the Koopman
operator isn't expected to be compact on any reasonable Banach
spaces.

We will see why later.



Compactness and Koopmanism

Saddish news: for most deterministic systems, the Koopman
operator isn't expected to be compact on any reasonable Banach

spaces.
We will see why later.

Next best option (should be possible 97%® of the time):

A quasi-compact operator

1100% minus the probability of having a circle map, essentially.



Quasi-compactness
An operator is quasi-compact if it has this spectral picture:

14

Ima(K)
o

Reo(K)

Suppose we are only thinking about positive operators with
spectral radius = 1 (e.g. Koopman/transfer). Then

» A quasi-compact operator has pess(A) < 1.
P> A quasi-compact Koopman operator has some discrete
spectrum.

» Quasicompact operators are the sum of a compact operator
and an operator with an iterate that is a contraction.

» Why? Gess(A + C) = 0ess(A) when C is compact.



Contraction on C°

Let's go back to f(x) = kx,x € [-1,1].

Let's take B = C9, the space of bounded, continuous functions on
[—1,1] with the sup-norm. Then K : B — B since f is continuous,
and

K¢l = sup [o(f(x))] < sup o(x) =[]

xe€[-1,1] xe€[-1,1]

so p(KC; C%) < 1.

=
1

Then, eigenfunctions 1,(x) := 1(x > 0)e'o8x C’: .

are in CO for Ra < 0. E

Corresponding eigenvalues are k%, so T,

a(A; CO([—-1,1])) fills the whole (closed) unit o0 1
ball. Reo(K; C9)

Just cts. spectrum!



Contraction on C' spaces

What about some spaces that remove more of the 1,7 Let's try
C’, the space of r-times continuously differentiable functions on
[-1,1]. The following norm on C" works:

[¥llcr = [ co +1(0) + 4/ (0) + ... + % (=D(0).

We have that ¢,(;[)(x) =ala—1) - (a—r+ 1)ha—r(x), s0 1 is
in C" if either:

. : : 1 ==
» o, isin C% ie. Ra > r. So B(0,x") is < e ™
. © r \
in the spectrum. g o Q: 1’
» aisoneof 0,1,2,....r—1, ie. E N\ /
So ’,/
Yo =1,%x,x%,...,x1. So “li==¢ :
2 r—1 in th -1 0 1
1,k,Kk%, ...,k 7" are in the spectrum. Re (K C?)



Contraction on C’ spaces

Is there anything else?
Well, let’s try and do an eigendecomposition. Recalling that every
function in C" can be written as

(r-1) r— r
Y(x) = (0) + ¢/ (0)x + ... + Lgix + O(x"),
we can decompose

C=MexeoHe{ypec p0)=0frl<r}.

=V

All these subspaces are K-invariant, and ¢(K) is the union of the
spectrum of K restricted to these subspaces.
Only what happens on V we are uncertain of.



Contraction on C' spaces
Il = 190 co +45(0) +¢/(0) + . .. + 9 1(0).

{zb e " p0) =0 for I < r}
For ¢ € V we have
IKpller = 1K) Vo = sup |87 (kx) co

x€[—1,1]

=x" sup |¢(r)(Y)‘ <K Yl cr
ye[fnvnl

so o(K|y) is a subset of B(0, k").

1 T S
- . 7 Y
This means the spectrum of K on C" is e 4 \
2o @F
DN .r\ — — B
o(K,C") = B0,k U{r1, k2, .. K 1}. = AN ,
——— - 1 ‘\\_ _
essential discrete B A 0

Reo(k; C?)



Spectrum vs function space

In general, essential spectrum will vary by function space, but the
discrete eigenvalues are more canonical:

Lemma (simplified from Baladi and Tsujii, '08)

Suppose Banach space BB, is a dense subset of Banach space By,
and A is bounded on both B> and B;.

Then, the discrete spectrum of A with absolute value greater than
max{pess(A; B1), pess(A; B2)} matches in By and B, (ditto
multiplicity, eigenfunctions).

0(A; B1) a(A; B2)




Sidenote: spaces of fractional differentiability

We can continuously interpolate between C” spaces by looking,
e.g., at Holder continuity. The 5-Holder constant of a function is

given by

Hs(y) = sup M,BE(—LH

x,y€[-1,1] x —y|?
Then the C™# norm of 1 is given by
[l e = l[8ller + Hp(w).

i.e. C"P consists of functions whose the rth derivative is
B-Holder.

-
\
1
1

Im a(k, C%4)
o
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/, \\
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The essential spectral radius is
Pess(IC, C"8) = k8 with discrete eigenvalues

{1,K,...,k"}.

N~

|
-
L

-1 0 1
Rea(k; C%%)



