
Metric Spaces Lecture 1

Introduction
The concept of distance plays a crucial role in everyday life. We frequently need to

know how far it is from one place to another, and important decisions are influenced by
such considerations. Hence it is often necessary to have a notion of distance built into the
mathematical theories which we use to model the various things that interest us.

The Euclidean plane provides the most familiar example of distance in a mathemat-
ical context. Using a Cartesian coordinate system enables us to identify points in the
plane with elements of the set R2 = { (x, y) | x, y ∈ R } (where R is the set of all real
numbers). By Pythagoras’ Theorem the distance d(a, b) between the points a = (x0, y0)
and b = (x1, y1) in R2 is given by the formula

d(a, b) =
√

(x0 − x1)2 + (y0 − y1)2.

The function d defined by this formula is known as the Euclidean metric on R2. We can
use this Euclidean metric to define the concept of continuity for functions from R2 to R2:

A function f : R2 → R2 is continuous at the point a ∈ R2 if for every real number
ε > 0 there exists a real number δ > 0 such that the following condition holds:
for all x ∈ R2, if d(x, a) < δ then d(f(x), f(a)) < ε.

This definition will still make sense if R2 is replaced by any other set X, provided that X
has a distance function d defined on it; thus sets equipped with distance functions provide
a natural context in which to study continuity. To qualify as a distance function, d must
satisfy the following three properties:

(1) for all a, b ∈ X the distance d(a, b) is a nonnegative real number, and d(a, b) = 0 if
and only if a = b;

(2) d(a, b) = d(b, a), for all a, b ∈ X;
(3) d(a, b) + d(a, c) ≥ d(b, c), for all a, b, c ∈ X.

A distance function is alternatively known as a metric, and a metric space is a pair
(X, d) comprising a set X and a metric d defined on X.

Some background material
A set is a mathematical object made up of other mathematical objects, known as

the elements or members of the set. The notation x ∈ A says that x is an element of the
set A. If A and B are sets then A = B if and only if every element of A is an element
of B and every element of B is an element of A. In other words, a set is completely
determined by its elements. A set B is a subset of a set A if every element of B is an
element of A. We shall write B ⊆ A to indicate that B is a subset of A. We call B a
proper subset of A if B ⊆ A and B 6= A; we indicate this by writing B ⊂ A.† Sets which
have only a finite number of elements are commonly specified by enclosing a list of the
elements within a left brace ( { ) and a right brace ( } ); for example, {2, 5, 9} is the set
whose elements are the numbers 2, 5 and 9. But sets are usually specified by use of the

† This is a departure from the traditional—and most common—notation, which uses B ⊂ A

where we use B ⊆ A.
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notation “{ . . . | . . . },” which should be read as “the set of all . . . such that . . . ”. For
example, {x ∈ R | 0 < x < 4 } is the set whose members are those real numbers x which
satisfy the condition 0 < x < 4.

If A and B are sets, their intersection A ∩B and union A ∪B are defined by

A ∩B = {x | x ∈ A and x ∈ B },
A ∪B = {x | x ∈ A or x ∈ B }.

(Note that, as is usual in mathematics, this “or” is the inclusive variety: p or q is true if
p and q are both true, or if p is true and q false, or if p is false and q is true; it is false if
p and q are both false.) We also define

B \A = {x ∈ B | x /∈ A }
and

A×B = { (a, b) | a ∈ A, b ∈ B }.
The set A×B is called the Cartesian product of A and B.

There is a unique set which has no elements; it is denoted by ∅. Various sets of
numbers are commonly designated by “blackboard bold” letters, as follows:

R is the set of all real numbers,
C is the set of all complex numbers,
Q is the set of all rational numbers,
Z is the set of all integers,
N is the set of all nonnegative integers.†

For a, b ∈ R we often use the following notation:

[a, b] = {x ∈ R | a ≤ x ≤ b },
(a, b] = {x ∈ R | a < x ≤ b },
[a, b) = {x ∈ R | a ≤ x < b },
(a, b) = {x ∈ R | a < x < b }.

Note that, for example, (a, b) is empty if a ≥ b. (It is unfortunate that the notation (a, b)
is used both for ordered pairs (elements of A × B) and intervals of real numbers; it is
often necessary to deduce from the context which convention is being used.)

Let X and Y be sets and f :X → Y a function. For each A ⊆ X we define the image
of A under f to be the set

f(A) = { f(x) | x ∈ A },
(a subset of Y ). For each B ⊆ Y we define the preimage or inverse image of B in X to
be the set

f−1(B) = {x ∈ X | f(x) ∈ B }.
The following result is trivial.
Lemma. Let f :X → Y be a function, and let A ⊆ X and B ⊆ Y . Then f(A) ⊆ B if
and only if A ⊆ f−1(B).

There are several similar properties of images and preimages discussed on p. 3 of Dr
Choo’s notes. Please read this.

We shall recall more background material as we proceed.

† Many authors use N for the set of all positive integers. (That is, they exclude zero from N.)

We shall use Z+ for the positive integers.
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Some definitions and preliminary results
Definition. Let X be a set. A metric on X is a function d:X ×X → R such that for all
a, b, c ∈ X,
(M1) d(a, b) = d(b, a) ≥ 0,
(M2) d(a, b) = 0 if and only if a = b, and
(M3) d(a, b) + d(a, c) ≥ d(b, c).
A metric space is a pair (X, d), where X is a set and d a metric on X.

It is quite possible for a set X to have two different metrics d and d′ defined on it,
and then the metric space (X, d) is different from the metric space (X, d′). However, we
are usually only concerned with one metric at a time, and so we often (loosely) talk of
“the metric space X”, since the metric is clear from the context.
Definition. Let (X, d) be a metric space, let a ∈ X and let ε ∈ R with ε > 0. The open
ball with centre at a and radius ε is the set

Bd(a, ε) = {x ∈ X | d(x, a) < ε }.

When the metric is clear from the context, we often write B(a, ε) instead of Bd(a, ε).
Definition. Let (X, d) be a metric space and let S ⊆ X. An element a ∈ S is called an
interior point of S if there is a positive real number ε with B(a, ε) ⊆ S. The interior of
S is the set Int(S) consisting of all interior points of S, and S is said to be an open set if
S = Int(S) (that is, if all its points are interior points).
Definition. Let (X, d) and (Y, d′) be metric spaces. A function f :X → Y is said to be
continuous at the point a ∈ X if for all ε > 0 there is a δ > 0 such that for all x ∈ X, if
d(x, a) < δ then d′(f(x), f(a)) < ε. If f is continuous at all points a ∈ X then it is said
to be continuous.

As we shall soon see, it is possible to utilize the concept of “open set”, defined above,
to give a briefer characterization of continuity. First, in justification of the terminology
we have introduced, let us prove that open balls are open sets.
Lemma. Let (X, d) be a metric space and a ∈ X. For every positive real number t, the
set B(a, t) is an open subset of X.
Proof. We must show that every point b ∈ B(a, t) is an interior point of B(a, t). That
is, we must show that if b ∈ B(a, t) then there is a δ > 0 such that B(b, δ) ⊆ B(a, t).

Let b ∈ B(a, t). Then d(b, a) < t, and so δ defined by δ = t− d(b, a) is positive. Now
if x ∈ B(b, δ) is arbitrary, then d(b, x) < δ, and so

d(x, a) ≤ d(b, x) + d(b, a) < δ + d(b, a) = t (1)

by the definition of δ. Since (1) implies that x ∈ B(a, t), we have shown that every
element of B(b, δ) is an element of B(a, t), as required. �

The key point in the above proof is, of course, that for all points in B(a, t) the
distance to a is strictly less than t; points whose distance from a is exactly t are not in
B(a, t). But if b has the property that its distance from a is strictly less than t then
all points close enough to b will also have this same property. Points on the boundary
of B(a, t)—points whose distance from a is t—are not in B(a, t); all points which are in
B(a, t) are in its interior, because they are surrounded, so to speak, by other elements
of B(a, t). Open sets can be thought of as those sets for which points on the boundary are
not in the set. (We shall give a precise definition of the term “boundary point” later on.)
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