
Week 8 Summary

Lecture 15

Example: Given that 81 =
√
−1 in Z193, use Fermat’s method of descent to

write 193 as a sum of two squares.
We are told that 812 + 1 is divisible by 193, and calculating it we find that

812 + 1 = 34× 193.

Since 81 ≡ 13 (mod 34) it follows that 132 + 1 is a multiple of 34, and calculating
it we find that

132 + 1 = 34× 5.

So (812 + 12)(132 + 12) = 342 × 5× 193. Now use either

(a2 + b2)(c2 + d2) = (ad− bc)2 + (ac + bd)2
or

(a2 + b2)(c2 + d2) = (ad + bc)2 + (ac− bd)2

choosing whichever expression permits the cancellation of the squared factor
(which is 342 in this example). Since we have 81 ≡ 13 and 1 ≡ 1 (mod 34)
in fact it is the first of the two expressions that must be used. So we get
682 + 10542 = 342 × 5 × 193, and cancelling 342 gives 22 + 312 = 5 × 193. Now
reducing the numbers on the left hand side modulo 5 tells us that 22 + 12 must
be divisible by 5, and of course it is 5× 1. So we deduce that

(22 + 312)(22 + 12) = 52 × 1× 193,

giving (2−62)2+(4+31)2 = 52×1×193, and then cancelling 52 gives 122+72 = 193.
Our next topic is the result known as the Chinese Remainder Theorem.
*Theorem: Suppose that m1, m2, . . . , mn are pairwise coprime integers. Then
for any integers a1, a2, . . . , an there exists an integer x such that x ≡ ai (mod mi)
for each i ∈ {1, 2, . . . , n}. If x′ and x′′ are both solutions of these congruences
then x′ ≡ x′′ (mod m1m2 · · ·mn).
If one can prove this for n = 2 then the general case follows easily by induction
on n. The idea is that once the case n = 2 has been done then we know that
the two congruences x ≡ a1 (mod m1) and x ≡ a1 (mod m1) can be replaced
by a single congruence x ≡ a (mod m1m2) for some appropriate a. So we get an
equivalent system with one fewer congruence than the original system had. We can
then apply the same idea again to reduce the number of congruences once more:
since m1m2 and m3 are coprime, the n = 2 case tells us that x ≡ a (mod m1m2)
and x ≡ a3 (mod m3) are together equivalent to x ≡ a′ (mod m1m2m2) for
some a′. The proof given in Walters’ book essentially uses this idea.
There is an alternative proof that is perhaps shorter, but does not correspond so
closely to the practical procedure for solving simultaneous congruences (as illus-
trated in the example below). It goes like this. Let Mi = (m1m2 · · ·mn)/mi.
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Then Mi ∈ Z, and gcd(Mi,mi) = 1 (since gcd(mj ,mi) = 1 for all j 6= i,
by hypothesis). So there exists Ni ∈ Z with MiNi ≡ 1 (mod mi). But also
MiNi ≡ 0 (mod mj) for j 6= i, since Mi is divisible by all these mj . So
x = a1M1N1 + a2M2N2 + · · · + anMnNn satisfies x ≡ aj (mod mj) for all j,
as required. It is clear that the solution is unique modulo m1m2 · · ·mn, since
x′ ≡ x′′ (mod mi) for all i implies that x′−x′′ is divisible by all the mi, and hence
by m1m2 · · ·mn, since they are pairwise coprime.
For example, suppose we wish find a simultaneous solution of x ≡ 3 (mod 5),
x ≡ 4 (mod 7), x ≡ 6 (mod 9) and x ≡ 0 (mod 11). The general solution of
the first congruence, by itself, is x = 3 + 5k, where k ∈ Z is arbitrary. Sub-
stituting this into the second congruence gives 3 + 5k ≡ 4 (mod 7), or 5k ≡ 1
(mod 7). Since the inverse of 5 modulo 7 is 3, this is equivalent to k ≡ 3 mod 7,
or k = 3 + 7l for arbitrary l ∈ Z, and so the first two congruences are together
equivalent to x = 3 + 5(3 + 3l), or x = 18 + 35l, where l ∈ Z is arbitrary. Now
substitute this into the third congruence. We get 18+35l ≡ 6 (mod 9), or −l ≡ 6
(mod 9), or l = 3 + 9m (where m ∈ Z). So the first three congruences are to-
gether equivalent to x = 18 + 35(3 + 9m) = 123 + 315m, where m ∈ Z. And
substituting into the last congruence gives 123+315m ≡ 0 (mod 11), or 7m ≡ −2
(mod 11), or m ≡ 6 (mod 11). So the final solution of our system of congruences
is x = 123 + 315(−6 + 11n) ≡ 2013 (mod 3465).

Lecture 16

To help you with the quiz, here is a procedure for factorizing Gaussian integers. We
illustrate with the example 245+315i. Start by taking out all obvious integer fac-
tors, to get n(a+bi), with gcd(a, b) = 1. Thus 245+315i = 5(49+63i) = 5.7(7+9i).
Now work out (a + bi)(a− bi) = a2 + b2, and factorize it in Z. Thus,

(7 + 9i)(7− 9i) = 72 + 92 = 130 = 2.5.13.

None of the prime factors p will be congruent to 3 modulo 4, since by Question 2
of Assignment 2, if p | a2 + b2 and p ≡ 3 (mod 4) then p|a and p|b, whereas in our
case gcd(a, b) = 1. So each of the prime factors can be written as a sum of two
squares: p = c2 + d2 = (c+ di)(c− di). Here both c+ di and c− di are irreducible
Gaussian integers, since they have prime norm. In our example we obtain

(7 + 9i)(7− 9i) = 2.5.13 = (1 + i)(i− i)(2 + i)(2− i)(3 + 2i)(3− 2i). (∗)

Up to associates, each irreducible factor of 7 + 9i must appear amongst the
irreducibles on the right hand side, and if c + di is a factor of a + bi then
c − di is a factor of a − bi. So one of each conjugate pair on the right hand
will divide a + bi, and we can find which it is by performing a division.† Now

† In fact 1 + i and 1− i are associates; so they both divide 7 + 9i. This does not happen

when N(c + di) > 2.
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(7 + 9i)/(2 + i) = (7 + 9i)(2− i)/5 = (23 + 11i)/5 /∈ Z[i]. So it must be 2− i that
divides 7 + 9i, and in fact we find that (7 + 9i)/(2 − i) = (1 + 5i). Now divide
1 + 5i by one of the remaining factors on the right hand side of (∗), and continue
on until a factorization of 7 + 9i into irreducibles is found. The upshot is that

245 + 315i = 5.7(2 + i)(3 + 2i)(1 + i).

There is one remaining twist: the integer prime factors that we found at the first
step are not irreducible in Z[i] unless they are congruent to 3 modulo 4. In this
example, 5 should be factorized as (2 + i)(2− i); so the final answer is

245 + 315i = 7(2 + i)2(2− i)(3 + 2i)(1 + i).

Returning to our discussion of simultaneous congruences, we investigate the case
when the moduli are not pairwise coprime. For example, suppose we wish to solve
x ≡ 41 (mod 45) and x ≡ 32 (mod 75). The idea is to replace each congruence
by a system of congruences where the moduli are the prime power divisors of the
original modulus. Thus x ≡ 41 (mod 45) is equivalent to x ≡ 1 (mod 5) and
x ≡ 5 (mod 9). Similarly, x ≡ 32 (mod 75) is equivalent to x ≡ 2 (mod 3) and
x ≡ 7 (mod 25). Now the idea is that two congruences modulo powers of the same
prime are either inconsistent or can be reduced to a single congruence (modulo
the higher of the two powers). Thus x ≡ 2 (mod 3) is a consequence of x ≡ 5
(mod 9), and is therefore redundant. However, x ≡ 1 (mod 5) is incompatible
with x ≡ 7 (mod 25). It follows that this system of congruences has no solution.
By way of contrast, consider now the system x ≡ 41 (mod 45) and x ≡ 56
(mod 75). These give x ≡ 1 (mod 5), x ≡ 5 (mod 9), x ≡ 6 (mod 25) and
x ≡ 2 (mod 3). In this case both congruences modulo the lower powers of the two
primes are redundant, and so the original system is equivalent to x ≡ 5 (mod 9)
and x ≡ 6 (mod 25). By the procedure described in Lecture 15 we easily discover
that the solution is x ≡ 131 (mod 225).
To understand the Chinese Remainder Theorem better, it is helpful to use a con-
cept from general algebra: that of a homomorphism. If n is a fixed positive integer,
then every integer may be considered as an integer modulo n. What this really
means is that there is a function f : Z → Zn; this function is usually called “re-
duction modulo n”. The crucial thing about this function is that the arithemetic
operations of addition and multiplication can be performed before or after reduc-
tion modulo n, and the final answer is unaltered. That is, f(a + b) = f(a) + f(b)
and f(ab) = f(a)f(b) for all a, b ∈ Z.‡ For example, let n = 5 and suppose that
a = 14 and b = 8. Then f(ab) = f(112) = 2 ∈ Z5, and f(a)f(b) = 4× 3 = 12 = 2
(in Z5).
Whenever m and n are integers such that n|m then there is a reduction mod n
homomorphism Zm → Zn. For example, there is a function f : Z15 → Z5 given by

‡ A homomorphism is, by definition, a function satisfying these two equations.
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reduction modulo 5. Its values on the various elements of Z15 are given by the
following table.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
f(k) 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

This only works because a ≡ b (mod 15) implies a ≡ b (mod 5). There is no
reduction mod 5 map from Z16 to Z5 since, for example, 1 and 17 are the same
modulo 16 but different modulo 5. So reduction mod 5 is not well-defined for
elements of Z16.
Inspection of the example above shows that for each element of Z5 there are
three elements of Z15 which yield the given element of Z5 on reduction mod 5.
For example, 2, 7 and 12 are the three distinct elements of Z15 which give 2
on reduction mod 5. Now if x is any integer then reducing x mod 15 and then
applying the reduction mod 5 map Z15 → Z5 will yield the same result as directly
reducing x modulo 5. Thus if x ≡ 2 modulo 5 then there are exactly three
possibilities modulo 15, namely, x ≡ 2, 7 or 12 (mod 15). Similarly, as pointed
out in one of the examples above, x ≡ 1 (mod 5) and x ≡ 7 (mod 25) are not
compatible: the 5 elements of Z25 that reduce to 1 (mod 5) are 1, 6, 11, 16 and 21.
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