
Week 5 Summary

Lecture 9

Let α, β ∈ Z[i]. We shall that α divides β, which we write as α|β, if β = αγ for
some γ ∈ Z[i]. If α|β and β|α then α and β are associates; we write α ∼ β to
indicate this. It is easily seen that if α ∼ α′ and β ∼ β′ then α|β if and only if
α′|β′.
Definition: Let a, b, d ∈ Z[i]. We say that d is a greatest common divisor of a
and b if

(1) d|a and d|b;
(2) for all c ∈ Z[i], if c|a and c|b then c|d.

If d is a gcd of a and b then d′ is a gcd of a and b if and only if d′ is an associate
of d. So if a and b have a gcd then they have exactly four gcd’s. We shall write
GCD(a, b) for the set of all gcd’s of a and b.
To prove the existence of gcd’s we use the Euclidean Algorithm. Suppose that
r0, r1 ∈ Z[i], not both zero. The notation is chosen so that N(r1) ≤ N(r0).
Starting with j = 1, repeat the following steps as often as possible:

• If rj 6= 0, find aj , rj+1 ∈ Z[i] satisfying rj−1 = ajrj + rj+1 and
N(rj+1) ≤ (1/2)N(rj).

• Advance j by 1.
If N(rj) > 0 then rj 6= 0, and the process can be continued; furthermore,
N(rj) > N(rj+1) ≥ 0. In a finite number of steps the sequence N(r1), N(r2),
N(r3), . . . reaches zero, and the process stops. So for some k we have

r0 = a1r1 + r2 0 < N(r2) < N(r1)
r1 = a2r2 + r3 0 < N(r3) < N(r2)

...
rk−2 = ak−1rk−1 + rk 0 < N(rk) < N(rk−1)
rk−1 = akrk.

(Thus rk+1 = 0.) From the first of these equations it follows that c ∈ Z[i] is a
common divisor of r0 and r1 if and only if it is a common divisor of r1 and r2;
the second equation similarly shows that c is a common divisor of r1 and r2 if
and only if it is a common divisor of r2 and r3; the next equation shows that the
common divisors of r2 and r3 are the same as the common divisors of r3 and r4,
and so on. So

{ c ∈ Z[i]
∣∣ c|r0 and c|r1 } = { c ∈ Z[i]

∣∣ c|rk−1 and c|rk }.

But the last equation shows that rk|rk−1, and hence every divisor of rk is also
a divisor of rk−1. So the set of common divisors of rk−1 and rk is just the set
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of divisors of rk. We conclude that the set of common divisors of r0 and r1 is
precisely the set of divisors of rk. In particular, this shows that rk is a gcd of
r0 and r1.
As for Z, we can work backwards through the equations obtained in the Euclidean
Algorithm, or use a Magic Table, to express the last nonzero remainder, rk, in the
form pr1 + qr0 (for some p, q ∈ Z[i]). And multiplying through by an arbitrary
Gaussian integer shows that every multiple of rk can also be expressed in this
form. (This includes, in particular, every gcd of r0 and r1, since they are obtained
from rk by multiplying by units.)
It is a corollary of the existence of gcd’s that a unique factorization theorem holds
in Z[i]. Observe first that if a Gaussian integer has norm greater than 1 and is not
irreducible, then it can be expressed as a product of two Gaussian integers with
smaller norms; if either factor is not irreducible, then it in turn can be factorized
as a product of Gaussian integers whose norms are smaller again. Since the
norms are always positive integers, they cannot continue decreasing indefinitely;
so eventually a stage must be reached when all the factors are irreducible. So
it is clear that any nonzero Gaussian integer that is not a unit can be expressed
as a product of irreducibles. Using properties of gcd’s, we can prove that such
factorizations are essentially unique.
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*Proposition: Let a, b ∈ Z[i] with b irreducible. Then either b ∈ GCD(a, b), and
then b|a, or else 1 ∈ GCD(a, b).
This follows readily from the fact that any gcd of a and b, being a divisor of b,
must either be a unit or an asssociate of b (since b has no other divisors).
*Proposition: Suppose that b|a1a2 and 1 ∈ GCD(a1, b). Then b|a2.
The proof of this for Z[i] is just the same as its proof for Z.
It is an immediate corollary of the above two propositions that if b is irreducible
and divides a1a2 then either b|a1 or b|a2. And then an easy induction shows that
if b|a1a2 · · · am and b is irreducible then b|aj for some j. This enables us to prove
the unique factorization theorem.
Theorem: If a1a2 · · · am ∼ b1b2 · · · bk, where all the aj ’s and bj ’s are irreducible
Gaussian integers, then k = m, and we can renumber a1, a2, . . . , am so that
aj ∼ bj for j = 1, 2, . . . , k.
The proof goes like this. Since b1 is irreducible and divides b1b2 · · · bk, which is an
associate of a1a2 · · · am, it follows that b1|aj for some j. Since aj is also irreducible
it follows that aj and b1 are associates. After renumbering, we can assume that
j = 1; that is, a1 and b1 are associates. So

b1a2a3 · · · am ∼ a1a2a3 · · · am ∼ b1b2b3 · · · bk

and, cancelling, it follows that a2a3 · · · am ∼ b2b3 · · · bk. We can now repeat the
argument to get a2 ∼ b2, cancel these factors away, then deduce that a3 ∼ b3, and
so on until no factors are left.
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The theorem says that, up to associates and reordering factors, factorization into
irreducibles is unique in Z[i].
*Proposition: Let p ∈ Z be a prime. If p = a2 + b2 for some integers a and b,
then a + bi and a− bi are irreducible in Z[i], and p is not irreducible in Z[i] (since
p = (a + bi)(a − bi)). If p cannot be written as a sum of two squares then p is
irreducible as an element of Z[i].
The first part of this follows from the fact, proved earlier, that a Gaussian integer
whose norm is prime must be irreducible. For the second part, suppose that p
cannot be expressed as the sum of two squares, and suppose p = (a + bi)(c + di)
in Z[i]. Taking norms gives p2 = (a2 +b2)(c2 +d2). Since p is prime the only ways
p2 can be factorized in Z

+ are as the product of p2 and 1 or as the product of p
and p. But a2 + b2 = p = c2 + d2 is impossible here because of our assumption
about p. So we must have either a2 + b2 = 1 or c2 + d2 = 1; that is, one of the
factors a + bi or c + di must be a unit. Thus p is irreducible.
Since 02 ≡ 22 ≡ 0 (mod 4) and 12 ≡ 32 ≡ 1 (mod 4), it follows that if a and b are
any integers then a2 +b2 is congruent modulo 4 to either 0, 1 or 2. It is impossible
to have a2 + b2 ≡ 3 (mod 4). So primes that are congruent to 3 modulo 4 cannot
be expressed as the sum of two squares, and hence they are irreducible in Z[i]. It
turns out that primes congruent to 1 modulo 4 can be expressed as sums of two
squares, but we are not ready to prove this yet.
We can apply our knowledge of unique factorization in Z[i] to the study of
Pythagorean triples. These are solutions of the Diophantine equation x2+y2 = z2.
Notice that if (x, y, z) is a Pythagorean triple then so is (dx, dy, dz) for any inte-
ger d. Similarly, if (x, y, z) is a Pythagorean triple such that some integer d is a
factor of all of x, y and z, then (x/d, y/d, z/d) is also a Pythagorean triple. So
to classify all Pythagorean triples, it will be sufficient to classify those that have
no common factor bigger than 1. Now it is fairly easy to see that in any such
Pythagorean triple, one of x or y must be odd and the other even. For if they were
both even then z2 = x2+y2 would also be even, forcing z to be even, contradicting
the assumption that x, y and z have no common factor; on the other hand, if x
and y were both odd then x2 and y2 would both be congruent to 1 modulo 4,
giving z2 ≡ x2 + y2 ≡ 2 (mod 4), which is impossible.
In view of this we define a basic Pythagorean triple to be a triple (x, y, z) of
positive integers, with no common factor, such that x is odd and y is even, and
x2 +y2 = z2. We shall show that for every basic Pythagorean triple (x, y, z) there
exist positive integers a and b such that x = a2 − b2, y = 2ab and z = a2 + b2. (It
is trivial to check that these formulas always yield a Pythagorean triple, for any
integer values of a and b.)
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