
Week 3 Summary

Lecture 5

The rule for finding the continued fraction expansion of a number is this. Find
the integer part of the number, then subtract off this integer part and invert what
is left. Repeat these steps. The sequence of integer parts that you get is the
sequence of partial quotients of the continued fraction for the number you started
with.
This works nicely for the continued fraction of

√
d, whenever d is a positive integer

that is not a square. It turns out that in this case the continued fraction has a
repeating block of partial quotients. In fact

√
d = [a1, a2, a3, . . . , ak, 2a1, a2, a3, . . . , ak, 2a1, a2, a3, . . .]

for some positive integers ai. Note that you do not need to use a calculator and
get an approximation to the decimal expansion of

√
d in order to find the ai. You

can do it exactly. For example, since 4 <
√

19 < 5, the integer part of
√

19 is 4.
Now

1√
19− 4

=
√

19 + 4
19− 42

= 2 +
√

19− 2
3

,

where again we used 4 <
√

19 < 5 to see that 2 is the integer part of
√

19+4
3 .

Subtracting 2 and inverting gives

3√
19− 2

=
3(
√

19 + 2)
19− 22

=
√

19 + 2
5

= 1 +
√

19− 3
5

,

and so on. We find
√

19 = [4, 2, 1, 3, 1, 2, 8], where the overlined part repeats.
Let a1, a2, a3, . . . be any infinite sequence of positive integers, and consider the
corresponding Magic Table:

a1 a2 a3 a4 · · ·
0 1 p1 p2 p3 p4 · · ·
1 0 q1 q2 q3 q4 · · · .

It is clear that the qi’s form a strictly increasing sequence of positive integers. If
ai = 1 for all i we find that qi = Fi, the i-th Fibonacci number, and pi = Fi+1. It
is easy to prove by induction on i that for any sequence a1, a2, a3, . . ., the numbers
qi in the Magic Table satisfy qi ≥ Fi for all i. The numbers get big quite quickly.
We have shown that piqi+2 − qipi+2 = (−1)iai+2. Dividing through by qiqi+2 we
see that

pi

qi
− pi+1

qi+1
=

(−1)iai+2

qiqi+2

which is positive if i is even, negative if i is odd. Thus we have the following
proposition.
*Proposition: The odd-numbered convergents (p1

q1
, p3

q3
, p5

q3
, . . . ) form an increas-

ing sequence, while the even-numbered ones (p2
q2

, p4
q4

, p6
q6

, . . . ) form a decreasing
sequence.
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Lecture 6

Continue the notation from Lecture 5. Recall that we have shown that

piqi+1 − qipi+1 = (−1)i.

Note as a consequence of this that pi and qi are coprime: if there were any
d > 1 that were a factor of both pi and qi then it would also be a factor of
piqi+1 − qipi+1 = (−1)i—which is clearly impossible. So the rational number pi

qi

is in its lowest terms.
Note that pi

qi
− pi+1

qi+1
= (−1)i

qiqi+1
, which is positive if i > 0, negative if i < 0. So each

odd numbered convergent is less than the adjacent even-numbered convergents.
*Proposition: If i is odd and j is even then pi

qi
<

pj

qj
.

To prove this one considers separately the cases i < j and i > j. In the former
case we have pi

qi
< pi+2

qi+2
< · · · < pj−1

qj−1
(since the odd-numbered convergents form an

increasing sequence) and pj−1
qj−1

<
pj

qj
(odd-numbered convergent less than adjacent

even-numbered convergent). In the case i > j we have pj

qj
>

pj+2
qj+2

< · · · < pi−1
qi−1

(since the even-numbered convergents form a decreasing sequence) and pi−1
qi−1

> pi

qi

(even-numbered convergent greater than adjacent odd-numbered convergent).
It follows from this that the sequence of odd-numbered convergents, as well as be-
ing increasing, is bounded above (by every even-numbered convergent. So the odd-
numbered convergents approach some limit α−. Similarly, the sequence of even-
numbered convergents is decreasing and bounded below (by each odd-numbered
convergent). So this sequence also approaches some limit, α+ (say). Now

α+ − α− = lim
k→∞

p2k

q2k
− lim

k→∞

p2k+1

q2k+1
= lim

k→∞
(
p2k

q2k
− p2k+1

q2k+1
) = lim

k→∞

1
q2kq2k+1

= 0.

So α+ = α−. The even and odd numbered convergents approach the same limit α.
For every k, the limit α lies between pk

qk
and pk+1

qk+1
. So

|pk

qk
− α| < |pk

qk
− pk+1

qk+1
| = 1

qkqk+1
<

1
q2
k

.

We conclude that if p
q , in its lowest terms, is one of the convergents of the continued

fraction expansion of α, then |pq − α| < 1
q2 . If α is irrational, this gives infinitely

many rational numbers p
q such that |pq − α| < 1

q2 . But if is α is rational, its
continued fraction terminates, and, indeed, we can prove the following proposition.
*Proposition If α is rational there are only finitely many rational numbers p

q

such that |pq − α| < 1
q2 .

The general proof of this follows the same lines as the examples in Exercise 3
of Tutorial 2. Writing α = a

b , where a, b ∈ Z and b > 0, it can be seen that
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|pq − α| < 1
q2 is equivalent to |pb − qa| < b

q (assuming q > 0—which involves no
loss of generality). In the case q ≥ b the only solution of this is pb− qa = 0, which
gives p

q = a
b = α. For each q < b there are only finitely many solutions: they are

given by values of p such that qa − b
q < pb < qa + b

q , and there are only a finite
number of multiples of b between qa− b

q and qa + b
q .

We now leave continued fractions for a while, and study certain Diophantine
equations. (That is, equations where the unknowns are integers.)
First, let us consider the equation xa+yb = c, where a, b and c are given integers,
and x and y are the unknowns.
If the gcd of a and b is not a divisor of c there are no solutions (since every
common divisor of a and b is a divisor of xa + yb for all integers x and y). So
let d = gcd(a, b), and suppose that c = dk for some integer k. The Euclidean
Agorithm can be used to find integers p and q such that pa + qb = d, and now
multiplying through by k we see that x0 = pk and y0 = qk gives one solution of
xa + yb = dk. If M is any common multiple of a and b then x = x0 + M

a and
y = y0 − M

b is also a solution, since these formulas give

xa + yb = (x0 +
M

a
)a + (y0 −

M

b
)b = x0a + M + y0b−M = x0a + y0b = c.

It is also true that every solution x, y has this form. For suppose that xa+yb = c.
Then xa + yb = x0a + y0b, and so xa− x0a = y0b− yb = M (say). This number
M is a multiple of a (since M = (x − x0)a) and of b (since M = (y0 − y)b);
furthermore, rearranging the equtions gives x = x0 + M

a and y = y0 − M
b .

(The material dealt with this week corresponds quite closely to pages 88–94 and
30–32 of Walters’ book.)
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