WEEK 13

Normal subgroups
Let G be a group and K a subgroup of G. If t € G then we define
tKt™ = {thkt™' | ke K}.

It is easy to show that tKt~! is also a subgroup of G. The proof is included here for
completeness, although it was not given in lectures and is therefore not examinable.
Since K is a subgroup of G the identity element e of G is contained in K (since K
satisfies SG2). So tet™! € tKt~!. But tet ! =tt~! = ¢, and so e € tKt~!. Hence tKt~!
satisfies SG2.
Let x, y be arbitrary elements of tKt~!. Then x = tht~! and y = tkt~! for some
h, k € K, and this gives

zy = (tht 1) (tkt™') = th(t ' t)kt ™ = thekt™ = t(hk)t™'.

Since K satisfies SG1 and h, k € K it follows that hk € K, and so t(hk)t~1 € tKt~ L.
Hence we have shown that xy € tKt~! whenever x, y € tKt~'. Thus tKt~! satisfies
SG1.

Let € tKt~! be arbitrary. Then x = tkt~! for some k € K, and since inverting
reverses products it follows that 7! = (¢71)71k=1~! = tk~1¢~!. Since k € K and K
satisfies SG3 it follows that k~' € K, and hence tk~'t~! € tKt~'. So we have shown
that 7! € tKt~! whenever = € tKt~!. Thus tKt ! satisfies SG3, as required.

If G is Abelian then tkt~! = ktt~! = ke = k, and so in this case tKt~! = K. But
if G is not Abelian then it is quite possible that tKt~! # K. It is also quite possible to
have tKt~! = K even when G is not Abelian.

Definition. A subgroup K of a group G is said to be a normal subgroup if tKt—! = K
for all t € G.

For example, suppose that ¢: G — H is a group homomorphism, and let K be the
kernel of ¢. That is,

K={geGlo(g)=en}
where ey is the identity element of H. We proved last week that K is a subgroup of G;

in fact, it is easy to see that this subgroup is necessarily normal.
Indeed, let ¢ be an arbitrary element of G, and suppose that x € K. Then ¢(z) = ey,

and so
p(tat™h) = p(t)p(z)p(t 1) (since ¢ is a homomorphism)
= ¢(t)eno(t™) (since z € K)
=o(t)o(t™h) (since heg = h for all h € H)
= o(tt™h) (since ¢ is a homomorphism)
= ¢(eq) (by the definition of t™1)
=€n,

since we showed last week that ¢(eg) = ex. The above calculation shows that tzt~! € K
whenever z € K, and a similar calculation shows that z € K whenever tzt~! € K.
Hence the elements of t/Kt~! are the same as the elements of K. So we have shown that
tKt—! = K for all t € G, as required.
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The result we have just proved deserves to be called a theorem:
Theorem. Kernels of homomorphisms are normal subgroups.

It is in fact true that every normal subgroup of a group G is the kernel of some
homomorphism defined on G; so we can say that normal subgroups and kernels are the
same things.

Note that tKt~! = K is equivalent to tK = Kt. Thus to say that a subgroup K is
normal is to say that the right cosets of K and the left cosets of K are the same as each
other.

It must be emphasized that the equation tK = Kt does not mean that tk = kt for
all k € K; rather, what it means is that for all k € K there exists an h € K such that
tk = ht.

Assume that K is a normal subgroup of G, and define a relation =g on G as follows:
x =g vy if and only if x = ky for some k € K.

We have shown that this is an equivalence relation. Indeed, in our discussion of cosets in
Week 8 we observed that the right cosets of K are precisely the equivalence classes for the
relation =k . Because K is normal we can equally well say that the equivalence classes
are left cosets of K.

The equivalence relation =g is important even when the subgroup K is not assumed
to be normal, but when K is normal it is especially important. The crucial fact which
makes this so is as follows.

Proposition. Let K be a normal subgroup of G and let =k be as defined above. Let
,y, 2,y €G. If v/ =g x and y =k y then 2’y =k xy.

Proof. If 2/ =g x and 3y =k y then 2’ = hx and vy = ky for some h, k € K. Now this
gives 2'y’ = (hz)(ky) = h(zk)y, and since K = Kz we know that zk = lz for some
l € K. Thus 'y’ = hlzy, with h, | € K, and since K is closed under multiplication this

shows that x'y’ =k xy, as required. O

The proposition tells us that if 2’ is in the same =g-equivalence class as x and 3’
is in the same =g-equivalence class as y then z'y’ is in the same =g-equivalence class
as xy. Thus we can define multiplication of =g-equivalence classes in a sensible way: if
A, B are =g-equivalence classes then AB is defined to be the =g-equivalence class that
contains all the products xy for x € A and y € B.

Since the =g-equivalence classes are simply the cosets of K in G, the equivalence
class that contains x is Kxz. So our rule for multiplication of equivalence classes can be
stated as follows: (Kx)(Ky) = Kxy, for all z, y € G.

For example, let G = Sym(4) and let K = {id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) }.
We know that K is a normal subgroup of G since, as we saw last week, it is the kernel
of the homomorphism ¢: Sym(4) — Sym(3) that we have investigated so carefully. The
equivalence relation =g is exactly the same as the equivalence relation we investigated
last week: if z, y € Sym(4) then x =k y if and only if ¢(z) = ¢(y). So the cosets of K in
G are the equivalence classes S1, Sa, S3, S4, S5 and Sg defined in the notes for Week 12,
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namely

S1={id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)},
S: =1{(1,2), (3,4), (1,4,2,3), (1,3,2,4)},
93 ={(2,3), (1,2,4,3), (1,3,4,2), (1,4)},
S1=1{(1,3), (1,4,3,2), (2,4), (1,2,3,4)},
Ss ={(1,2,3), (2,4,3), (1,4,2), (1,3 4)}

) 4)
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Here S; = K, and, for example, So = K(1,2). You should check that multiplying the
four elements of K by (1,2) gives the four elements of Sy. Note that it is equally true
that Sy = K(3,4) = K(1,4,2,3) = K(1,3,2,4): we can choose any element of the coset
as a representative of the coset and our formulas will remain valid.

The rule that (Kx)(Ky) = Kxy tells us, for example, that S3S53 = Sg, since if z € Sy
and y € S3 then zy € Sg. It does not matter which elements of Sy and S3 are chosen for
x and y: for example, (1,2)(2,3) = (1,3,2) € S, and (3,4)(1,4) = (1,4,3) € Se.

We conclude the course by stating the two important theorems of group theory whose
proofs are essentially incorporated in the discussion above and in the Week 12 notes.

Theorem. Let G be a group and K a normal subgroup of G. Let G/ K def {Kz|zeG},

the set of all cosets of K in G. Then there is a multiplication operation on G/K such that
(Kz)(Ky) = Kzy for allz, y € G, and G/ K is a group with respect to this multiplication.

The group G/ K defined in the statement of this theorem is called the quotient group
of G modulo the normal subgroup K.

The Fundamental Homomorphism Theorem. Suppose that ¢:G — H is a group
homomorphism. Let K be the kernel of ¢ and I the image of ¢. Then I is a subgroup of
H and K is a normal subgroup of G; furthermore, the quotient group G /K is isomorphic
to 1.
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