

Normal subgroups

Let G be a group and K a subgroup of G. If $t \in G$ then we define

$$tKt^{-1} = \{ tkt^{-1} \mid k \in K \}.$$

It is easy to show that tKt^{-1} is also a subgroup of G. The proof is included here for completeness, although it was not given in lectures and is therefore not examinable.

Since K is a subgroup of G the identity element e of G is contained in K (since K satisfies SG2). So $tet^{-1} \in tKt^{-1}$. But $tet^{-1} = tt^{-1} = e$, and so $e \in tKt^{-1}$. Hence tKt^{-1} satisfies SG2.

Let x, y be arbitrary elements of tKt^{-1} . Then $x = tht^{-1}$ and $y = tkt^{-1}$ for some $h, k \in K$, and this gives

$$xy = (tht^{-1})(tkt^{-1}) = th(t^{-1}t)kt^{-1} = thekt^{-1} = t(hk)t^{-1}.$$

Since K satisfies SG1 and $h, k \in K$ it follows that $hk \in K$, and so $t(hk)t^{-1} \in tKt^{-1}$. Hence we have shown that $xy \in tKt^{-1}$ whenever $x, y \in tKt^{-1}$. Thus tKt^{-1} satisfies SG1.

Let $x \in tKt^{-1}$ be arbitrary. Then $x = tkt^{-1}$ for some $k \in K$, and since inverting reverses products it follows that $x^{-1} = (t^{-1})^{-1}k^{-1}t^{-1} = tk^{-1}t^{-1}$. Since $k \in K$ and K satisfies SG3 it follows that $k^{-1} \in K$, and hence $tk^{-1}t^{-1} \in tKt^{-1}$. So we have shown that $x^{-1} \in tKt^{-1}$ whenever $x \in tKt^{-1}$. Thus tKt^{-1} satisfies SG3, as required.

If G is Abelian then $tkt^{-1} = ktt^{-1} = ke = k$, and so in this case $tKt^{-1} = K$. But if G is not Abelian then it is quite possible that $tKt^{-1} \neq K$. It is also quite possible to have $tKt^{-1} = K$ even when G is not Abelian.

Definition. A subgroup K of a group G is said to be a normal subgroup if $tKt^{-1} = K$ for all $t \in G$.

For example, suppose that $\phi: G \to H$ is a group homomorphism, and let K be the kernel of ϕ . That is,

$$K = \{ g \in G \mid \phi(g) = e_H \},\$$

where e_H is the identity element of H. We proved last week that K is a subgroup of G; in fact, it is easy to see that this subgroup is necessarily normal.

Indeed, let t be an arbitrary element of G, and suppose that $x \in K$. Then $\phi(x) = e_H$, and so

$$\phi(txt^{-1}) = \phi(t)\phi(x)\phi(t^{-1}) \qquad \text{(since ϕ is a homomorphism)}$$

$$= \phi(t)e_H\phi(t^{-1}) \qquad \text{(since $x \in K$)}$$

$$= \phi(t)\phi(t^{-1}) \qquad \text{(since $he_H = h$ for all $h \in H$)}$$

$$= \phi(tt^{-1}) \qquad \text{(since ϕ is a homomorphism)}$$

$$= \phi(e_G) \qquad \text{(by the definition of t^{-1})}$$

$$= e_H,$$

since we showed last week that $\phi(e_G) = e_H$. The above calculation shows that $txt^{-1} \in K$ whenever $x \in K$, and a similar calculation shows that $x \in K$ whenever $txt^{-1} \in K$. Hence the elements of tKt^{-1} are the same as the elements of K. So we have shown that $tKt^{-1} = K$ for all $t \in G$, as required.

The result we have just proved deserves to be called a theorem:

Theorem. Kernels of homomorphisms are normal subgroups.

It is in fact true that every normal subgroup of a group G is the kernel of some homomorphism defined on G; so we can say that normal subgroups and kernels are the same things.

Note that $tKt^{-1} = K$ is equivalent to tK = Kt. Thus to say that a subgroup K is normal is to say that the right cosets of K and the left cosets of K are the same as each other.

It must be emphasized that the equation tK = Kt does not mean that tk = kt for all $k \in K$; rather, what it means is that for all $k \in K$ there exists an $h \in K$ such that tk = ht.

Assume that K is a normal subgroup of G, and define a relation \equiv_K on G as follows:

 $x \equiv_H y$ if and only if x = ky for some $k \in K$.

We have shown that this is an equivalence relation. Indeed, in our discussion of cosets in Week 8 we observed that the right cosets of K are precisely the equivalence classes for the relation \equiv_K . Because K is normal we can equally well say that the equivalence classes are left cosets of K.

The equivalence relation \equiv_K is important even when the subgroup K is not assumed to be normal, but when K is normal it is especially important. The crucial fact which makes this so is as follows.

Proposition. Let K be a normal subgroup of G and let \equiv_K be as defined above. Let $x, y, x', y' \in G$. If $x' \equiv_K x$ and $y' \equiv_K y$ then $x'y' \equiv_K xy$.

Proof. If $x' \equiv_K x$ and $y' \equiv_K y$ then x' = hx and y' = ky for some $h, k \in K$. Now this gives x'y' = (hx)(ky) = h(xk)y, and since xK = Kx we know that xk = lx for some $l \in K$. Thus x'y' = hlxy, with $h, l \in K$, and since K is closed under multiplication this shows that $x'y' \equiv_K xy$, as required.

The proposition tells us that if x' is in the same \equiv_K -equivalence class as x and y' is in the same \equiv_K -equivalence class as y then x'y' is in the same \equiv_K -equivalence class as xy. Thus we can define multiplication of \equiv_K -equivalence classes in a sensible way: if A, B are \equiv_K -equivalence classes then AB is defined to be the \equiv_K -equivalence class that contains all the products xy for $x \in A$ and $y \in B$.

Since the \equiv_K -equivalence classes are simply the cosets of K in G, the equivalence class that contains x is Kx. So our rule for multiplication of equivalence classes can be stated as follows: (Kx)(Ky) = Kxy, for all $x, y \in G$.

For example, let $G = \operatorname{Sym}(4)$ and let $K = \{ \operatorname{id}, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) \}$. We know that K is a normal subgroup of G since, as we saw last week, it is the kernel of the homomorphism $\phi \colon \operatorname{Sym}(4) \to \operatorname{Sym}(3)$ that we have investigated so carefully. The equivalence relation \equiv_K is exactly the same as the equivalence relation we investigated last week: if $x, y \in \operatorname{Sym}(4)$ then $x \equiv_K y$ if and only if $\phi(x) = \phi(y)$. So the cosets of K in G are the equivalence classes S_1, S_2, S_3, S_4, S_5 and S_6 defined in the notes for Week 12,

namely

```
S_{1} = \{ id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) \},
S_{2} = \{ (1,2), (3,4), (1,4,2,3), (1,3,2,4) \},
S_{3} = \{ (2,3), (1,2,4,3), (1,3,4,2), (1,4) \},
S_{4} = \{ (1,3), (1,4,3,2), (2,4), (1,2,3,4) \},
S_{5} = \{ (1,2,3), (2,4,3), (1,4,2), (1,3,4) \},
S_{6} = \{ (1,3,2), (1,4,3), (2,3,4), (1,2,4) \}.
```

Here $S_1 = K$, and, for example, $S_2 = K(1,2)$. You should check that multiplying the four elements of K by (1,2) gives the four elements of S_2 . Note that it is equally true that $S_2 = K(3,4) = K(1,4,2,3) = K(1,3,2,4)$: we can choose any element of the coset as a representative of the coset and our formulas will remain valid.

The rule that (Kx)(Ky) = Kxy tells us, for example, that $S_2S_3 = S_6$, since if $x \in S_2$ and $y \in S_3$ then $xy \in S_6$. It does not matter which elements of S_2 and S_3 are chosen for x and y: for example, $(1,2)(2,3) = (1,3,2) \in S_6$, and $(3,4)(1,4) = (1,4,3) \in S_6$.

We conclude the course by stating the two important theorems of group theory whose proofs are essentially incorporated in the discussion above and in the Week 12 notes.

Theorem. Let G be a group and K a normal subgroup of G. Let $G/K \stackrel{\text{def}}{=} \{Kx \mid x \in G\}$, the set of all cosets of K in G. Then there is a multiplication operation on G/K such that (Kx)(Ky) = Kxy for all $x, y \in G$, and G/K is a group with respect to this multiplication.

The group G/K defined in the statement of this theorem is called the *quotient group* of G modulo the normal subgroup K.

The Fundamental Homomorphism Theorem. Suppose that $\phi: G \to H$ is a group homomorphism. Let K be the kernel of ϕ and I the image of ϕ . Then I is a subgroup of H and K is a normal subgroup of G; furthermore, the quotient group G/K is isomorphic to I.