
WEEK 08

Parity of permutations

Given a permutation σ of {1, 2, . . . , n}, draw a diagram consisting of two horizontal
rows of dots labelled 1, 2, . . . , n, and n lines L1, L2, . . . , Ln, where Li connects the dot
in the upper row whose label is i with the dot in the lower row whose label is iσ. In other
words, L1 joins 1 to whatever it is that 1 “goes to” under the permutation, L2 joins 2 to
whatever 2 goes to, and so on. The lines should be drawn in such a way that two lines
do touch without crossing each other; also, you should never have more than two lines
crossing at any given point, and the lines are not allowed to cross themselves or to ever
go above the upper row of dots or below the lower row of dots. (The lines do not have to
be straight.)

We say that the permutation is even if a diagram drawn in accordance with the above
rules has an even number of line crossings, or odd if the number of crossings is odd.

Although the number of crossings can be altered by drawing the diagram differently,
the oddness or evenness of the number of crossings cannot be changed. The reason for
this is as follows. The total number of crossings in the diagram is

∑
(the number of times Li and Lj cross)

where the sum ranges over all pairs of lines Li and Lj . We may choose the notation so
that i < j. Now if iσ > jσ then upper and lower endpoints of Li are on opposite sides of
Lj , and this means that Li and Lj must cross an odd number of times, whereas if iσ < jσ

then the endpoints of Li are on the same side of Lj , and the number of crossings is even.
But whether the sum of a collection of integers is even or odd just depends on how many
of the summands are odd: the total is odd if the number of odd summands is odd; the
total is even if the number of odd summands is even. So, if we define

N (σ) = {(i, j) | i < j and iσ > jσ },

then Li and Lj cross an odd number of times if and only if (i, j) is in N (σ), and we
conclude that

σ is odd if and only if #N (σ) is odd,
σ is even if and only if #N (σ) is even.

The following lemma is the key to the theoretical importance of these diagrams.

Theorem. Let σ, τ be permutations of {1, 2, . . . , n}, and suppose that σ has a diagram
with N crossings and τ has a diagram with M crossings. Then στ has a diagram with
N + M crossings.

Proof. One can obtain a diagram for στ by merging the diagrams of σ and τ , in the
following way: simply identify the lower row of dots in the σ diagram with the upper row
of dots in the τ diagram, and then remove the middle row of dots. The diagram obtained
in this way has N + M crossings. �

To illustrate this proof, consider the permutations σ = (1, 2)(3, 4, 9, 5, 7, 8, 6) and
τ = (1, 3, 2)(4, 5)(6, 8, 7) in Sym(9). We draw a diagram for σ and a diagram for τ , with
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the lower row of the σ diagram coinciding with the upper row of the τ diagram, and then
merge the two.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

σ :

τ :

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

στ :

To compute the product στ one applies σ first and then τ . Since (for example) σ takes 5
to 7 and τ takes 7 to 6, the top part of the diagram has a line from dot 5 (top row) to
dot 7 (middle row), and lower part has a line from dot 7 (middle row) to dot 6 (bottom
row). The merged diagram thus has a line from 5 to 6, in accordance with the fact that
στ takes 5 to 6. Similarly, 3 σ−→ 4 τ−→ 5 results in 3 στ−→ 5 and a line from 3 to 5 in
the merged diagram. Indeed, the diagram shows us that στ = (2, 3, 5, 6)(4, 9). And, of
course, since the chosen diagrams for σ and τ had 13 and 5 crossings respectively, the
diagram for στ obtained by the merging process has 18 crossings.

As an immediate consequence of the lemma we deduce the key result about parity of
permutations.

Theorem. Let σ, τ be permutations of {1, 2, . . . , n}. Then στ is even if σ and τ are both
even or both odd, and odd if one is odd and the other even.

Proof. Choose a diagram for σ and a diagram for τ , and suppose that they have N and
M crossings respectively. By the lemma, στ has a diagram with N + M crossings, which
is is even if N and M are both even or both odd, and odd if one of N or M is odd and
the other even. �

Definition. If σ is a permutation we define ε(σ) =
{ 1 if σ is even,
−1 if σ is odd.

With this definition, the theorem above can be restated as follows:

ε(στ) = ε(σ)ε(τ) for all σ, τ ∈ Sym(n). (1)
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This equation says that the function ε preserves multiplication. Functions with this prop-
erty are very important in group theory, and we shall meet other examples later.

The following result is a consequence of Eq. (1).

Theorem. The set of all even permutations of {1, 2, . . . , n} is a subgroup of Sym(n).

Proof. Let A be the set of all even permutations in Sym(n). We must show that A
satisfies (SG1), (SG2) and (SG3).

Let σ and τ be arbitrary elements of A. Then ε(σ) = ε(τ) = 1, and by Eq. (1),

ε(στ) = ε(σ)ε(τ) = 1.

So ε(στ) ∈ A whenever σ, τ ∈ A. That is, (SG1) holds.
The identity permutation id ∈ Sym(n) can be represented bythe diagram in which

each dot is joined to the one below it by a vertical line. This diagram has no crossings,
and since zero is an even number it follows that ε(id) = 1. So id ∈ A; that is, (SG2)
holds.

Let σ ∈ A be arbitrary. Then ε(σ) = 1, and so

ε(σ−1) = ε(σ−1)ε(σ) = ε(σ−1σ) = ε(id) = 1.

Hence σ−1 ∈ A whenever σ ∈ A; that is, (SG3) holds. �

Although in the above proof we chose to appeal to the definition of the function ε to
prove that ε(id) = 1, it is also not hard to deduce this as a consequence of Eq. (1). In
fact, the theorem we have just proved is a special case of the following important general
theorem, which we shall prove later.

Let G and H be groups, and φ:G → H a function satisfying φ(xy) = φ(x)φ(y) for all
x, y ∈ G. Let eH be the identity element of H. Then {x ∈ G | φ(x) = eH } is a subgroup
of G.

We temporarily defer further discussion of this, and return to our investigation of
parity of permutations.

It is easy to see that a transposition (i, j) has to be odd: its diagram can be drawn so
that the number of crossings is 2|i− j| − 1. The diagram below illustrates this for (4, 9).

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

The two diagonal lines cross exactly the same vertical lines as each other, namely the
ones between i and j. There are |i− j|−1 of these, making 2|i− j|−2 crossings. And the
diagonal lines cross each other, making the total number of crossings 2|i − j| − 1, which
is odd.

Proposition. Every permutation can be written as a product of transpositions. In fact,
every permutation can be written as a product of transpositions that interchange adjacent
numbers.
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For ease of discussion, we shall call a transposition (i, j) a simple transposition if
i and j are adjacent numbers. That is, (i, j) is simple if |i − j| = 1. Clearly the sim-
ple transpositions are those associated with diagrams that have just one crossing. The
diagram below indicates why the proposition is true: the diagram associated with any
permutation can be split into layers that each correspond to simple transpositions.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

The top diagram here is associated with the permutation σ = (1, 4, 5, 3), and the
other diagram illustrates that σ = (2, 3)(4, 5)((1, 2)(2, 3)(3, 4).

We shall not give a formal proof of the proposition. However, assuming that our
given permutation diagram is drawn in such a way that the lines from the top row of
dots to the bottom row of dots descend continually, never bending back upwards, then
the highest crossing in the diagram gives the first simple transposition in the factorization
that we seek, the next highest gives the next simple transposition, and so on. In this way
each crossing is viewed as a crossing of adjacent lines, and we obtain a factorization of
the given permutation as a product of N simple transpositions, where N is the number
of crossings in the original diagram.

Of course, just as the diagram associated with a permutation is not uniquely deter-
mined, so the factorization of a permutation as a product of simple transpositions is not
unique.

The following result is trivial, but extremely useful.

Proposition. A cycle of length n can be expressed as a product of n− 1 transpositions.

It is straightforward to simply write down such a factorization: it is left to the reader
to check first that

(1, 2, 3, 4, 5, 6, 7) = (1, 2)(1, 3)(1, 4)(1, 5)(1, 6)(1, 7),

and then that
(i1, i2, . . . , in) = (i1, i2)(i1, i3) · · · (i1, in)

for any cycle (i1, i2, . . . , in).
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Thus it turns out—perhaps unfortunately—that cycles of even length (such as trans-
positions) are odd, while cycles of odd length are even. This makes it easy to tell the
parity of a permutation from its expression as a product of disjoint cycles: if there are
an odd number of cycles of even length then the permutation is odd, otherwise it is even.
For example, (1, 2, 3) is even, (1, 4, 5, 2) is odd, (1, 4, 5, 7, 3)(2, 6, 8)(9, 12) is odd.

Indeed, you do not have to obtain the standard expression for a permutation as a
product of disjoint cycles to apply this rule: even if the cycles are not disjoint then the
permutation is odd if and only if it has an expression as a product of cycles such that the
number of even length cycles is odd. So, for example, (1, 2, 4, 5)(1, 2, 4)(1, 2, 4, 5)(4, 3) is
odd.

Recall that the group of all permutations of the set {1, 2, . . . , n} is known as the
symmetric group, Sym(n). The subgroup consisting of the even permutations also has a
name.

Definition. The group of all even permutations of the set {1, 2, . . . , n} is known as the
alternating group, Alt(n).

Equivalence relations

Suppose that ∼ is a relation on a set X. This just means that x ∼ y is a proposition
that makes sense for every pair of elements x, y ∈ X; in particular, either x ∼ y is true
or x ∼ y is false. For every pair of elements of the set, the relation either holds or does
not hold. We write x ∼ y if it holds, x 6∼ y if it does not.

For example, suppose that X is a collection of medals, some made of gold, some of
silver and some of bronze. Let ∼ be the relation “is made of the same metal as”. If
x, y ∈ X, then x ∼ y if x is made of the same metal as y, and x 6∼ y if x is not made of
the same metal as y. Given that every the medal in the set X is made of one of the three
metals, it is always meaningful to enquire of a pair of medals from X whether or not the
relation holds.

Of course, there are numerous mathematical examples of relations. Thus > is a
relation on R, the set of all real numbers: given x, y ∈ R, either x > y or x 6> y. We
could define a relation ≡ on the set of all positive integers as follows: x ≡ y if and only if
the final digits of x and y (in the usual base 10 representation) are the same. This would
give 21 ≡ 101, and 7 6≡ 13.

At present we are interested in the following three properties, which any given relation
may or may not possess.

Definition. Let ∼ be a relation on the set X.
(a) We say that ∼ is reflexive if x ∼ x for all x ∈ X.
(b) We say that ∼ is symmetric if for all x, y ∈ X, if x ∼ y then y ∼ x.
(c) We say that ∼ is transitive if for all x, y, z ∈ X, if x ∼ y and y ∼ z then x ∼ z.

The relation > on R is clearly transitive: if x, y and z are real numbers with x > y
and y > z then it follows that x > z. However, it is not reflexive since there exist real
numbers x that do not satisfy x > x. (Of course, there are in fact no real numbers x for
which x > x, but all we need is one example, like x = 0, to show that > is not reflexive.)
On the other hand, the “is made of the same metal as” relation is reflexive, symmetric
and transitive, and so is the “has the same final digit as” relation.
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Definition. We say that a relation ∼ on a set X is an equivalence relation if it is reflexive,
symmetric and transitive.

It should be emphasized that this is nothing more nor less than the ordinary everyday
concept of equivalence. In any context in which things may or may not be equivalent,
we would always say that everything is equivalent to itself, that equivalence of A and B
is the same as equivalence of B and A, and that two things that are both equivalent to
a third are equivalent to each other. If any of these were not true we would not have a
genuine case of equivalence.

Definition. If ∼ is an equivalence relation on a set X, and if x ∈ X, we define the
equivalence class of x to be the set E(x,∼) consisting of all elements of X that are
equivalent to x. That is, E(x,∼) = { y ∈ X | y ∼ x }.

The crucial thing about equivalence relations, in mathematics as in everyday life, is
that an equivalence relation on a set of things divides that set up into subsets consisting
of things that are all equivalent to one another. These are the equivalence classes of the
above definition. Two things are in the same class if and only if they are equivalent to
each other. Things from different classes are definitely not equivalent. The equivalence
classes do not overlap, and together they cover the whole set of things under discussion.

We can state these properties more formally, as follows.

Proposition. Let ∼ be an equivalence relation on a set X. If x and y are arbitrary
elements of X then
a) E(x,∼) = E(y,∼) if x ∼ y, and
b) E(x,∼) ∩ E(y,∼) = ∅ if x 6∼ y.

Furthermore, every element of X lies in some equivalence class.

The next step in this process is to focus attention not on the objects of X themselves,
but rather on the equivalence classes. This is really the whole point, for it simplifies the
context in which we are working, enabling us to deal with many things at a time instead
of treating every object individually.

Definition. Let ∼ be an equivalence relation on a set X. The set of all equivalence
classes of X with respect to ∼ is called the quotient of X by ∼, and it is often denoted
by X/∼.

Observe that in the situation of the definition, X/∼ is a set whose elements are sets.
This can take a little getting used to. In the medals example above, we do not know how
many elements the set X has: we were not told the total number of medals. But the
set X/∼ has three elements: the set of all gold medals, the set of all silver medals and
the set of all bronze medals. This is a little abstract. However, sets whose elements are
themselves sets are extremely commonplace in modern mathematics. Furthermore, there
is no reason to stop at this level. It is perfectly acceptable, and common, to deal with
sets whose elements are sets whose elements are sets, not to mention sets whose elements
are sets whose elements are sets whose elements are sets, and so on.

Permutation groups and their orbits

This section has not yet been dealt with in lectures. However, the topic is investigated
in Computer Tutorial 9.
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Let G be a subgroup of Sym(n). We can use G to define a relation ∼ on the set
{1, 2, . . . , n}, as follows: for all i, j ∈ {1, 2, . . . , n} we say that i ∼ j if and only if there
exists a permutation σ ∈ G such that iσ = j. It turns out that this relation is always an
equivalence relation, given that G is a group.

For example, the following set G is a subgroup of Sym(5):

G = { id, (3, 4, 5), (3, 5, 4), (1, 2), (1, 2)(3, 4, 5), (1, 2)(3, 5, 4) }.

We omit the verification that G is a subgroup of Sym(5). But it is easy to check that it
gives rise to an equivalence relation on {1, 2, 3, 4, 5}, with two equivalence classes, namely
{1, 2} and {3, 4, 5}. There are permutations in G that take 1 to 2 and permutations in
G that take 2 to 1. There are also permutations in G that take 3 to 4, that take 3 to 5,
that take 4 to 5, that take 4 to 3, and so forth. But there are none that take 1 or 2 to
3, 4 or 5, or vice versa.

More generally, let G be a subgroup of Sym(n), and define Pk to be the set of all
k-element subsets of {1, 2, . . . , n}. Define a relation ∼ on Pk as follows: if X, Y ∈ Pk,
then X ∼ Y if and only if there exists σ ∈ G such that Y = Xσ, where by definition
Xσ = {xσ | x ∈ X }. It can be shown that this is an equivalence relation; the equivalence
classes are known as orbits.

Consider, for example, the group of symmetries of a square, identified with permu-
tations of {1, 2, 3, 4} as described in an earlier lecture. Then

G = {id, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2), (1, 3), (1, 2)(3, 4), (2, 4), (1, 4)(2, 3)}.

The set P2 of all 2-element subsets of {1, 2, 3, 4} has
(
4
2

)
= 6 elements,

P2 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}},

and the equivalence relation described above splits P2 into two orbits, one with 2 elements
and one with 4 elements:

P2 = {{1, 3}, {2, 4}} ∪ {{1, 2}, {2, 3}, {3, 4}, {4, 1}}.

The idea here is that a symmetry of the square can take any pair of adjacent vertices to
any pair of adjacent vertices, and can take any pair of opposite vertices to any pair of
opposite vertices. But no symmetry can take adjacent vertices to opposite vertices, or
vice versa. There are 4 pairs of adjacent vertices, 2 pairs of opposite vertices.

Here is a MAGMA session dealing with this example.

> S:=Sym(4);
> a:=S!(1,2,3,4);
> b:=S!(1,3);
> G:=sub<S | a,b>;
> Set(G);
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{
(1, 3)(2, 4),
Id(G),
(1, 2, 3, 4),
(1, 4, 3, 2),
(2, 4),
(1, 3),
(1, 4)(2, 3),
(1, 2)(3, 4)

}
> X:={1,2};
> C1:={ X^g : g in G};
> C1;
{

{ 1, 4 },
{ 2, 3 },
{ 1, 2 },
{ 3, 4 }

}
> Y:={1,3};
> C2:={ Y^g : g in G};
> C2;
{

{ 1, 3 },
{ 2, 4 }

}
> for A in C1 do
for> for B in C1 do
for|for> exists{g : g in G | A^g eq B};
for|for> end for;
for> end for;
true
true
. . . 13 similar lines omitted . . .
true
> for A in C2 do
for> for B in C2 do
for|for> exists{g : g in G | A^g eq B};
for|for> end for;
for> end for;
true
true
true
true

One advantage of using MAGMA is that it is able to do much larger examples than the
above without any difficulty. The disadvantage is that rushing too quickly to computer
calculations can deprive one of important theoretical insights. It is quite possible to
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understand very large examples without any calculation whatever, just by theoretical
considerations. The moral is that computer calculations should always be accompanied
by human thought processes.

Here is another MAGMA example, this time with a group of order 110.

> S:=Sym(11);
> a:=S!(1,2,3,4,5,6,7,8,9,10,11);
> b:=S!(2,3,5,9,6,11,10,8,4,7);
> G:=sub<S | a,b>;
> #G;
110
> X1:={1,2};
> C1:={X1^g : g in G};
> #C1;
55
> (11*10)/(2*1);
55
> Y1:={1,2,3};
> D1:={Y1^g : g in G};
> #D1;
55
> Y2:={1,2,4};
> D2:={Y2^g : g in G};
> #D2;
110
> C2 meet C3;
{}
> (11*10*9)/(3*2*1);
165
> Z1:={1,2,3,4};
> E1:={Z1^g : g in G};
> #E1;
55
> Z2:={1,2,3,5};
> E2:={Z2^g : g in G};
> #E2;
110
> Z3:={1,2,3,6};
> E3:={Z3^g : g in G};
> #E3;
110
> #(E3 meet E2);
0
> Z4:={1,3,4,6};
> E4:={Z4^g : g in G};
> #E4;
55
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> E4 eq E1;
false
> #(E1 join E2 join E3 join E4);
330
> (11*10*9*8)/(4*3*2*1);
330

For each k, let Pk be the set of k-element subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. The
group G in the above example has just one orbit on P2, which has

(
11
2

)
= 55 elements. On

P3, with
(
11
3

)
= 165 elements, there are two orbits, one with 55 elements and the other

with 110. On P4, with
(
11
4

)
= 330 elements, there are 4 orbits, two with 55 elements and

two with 110 elements.

Cosets as equivalence classes

Let G be a group and H a subgroup of G. Recall that this means that H satisfies
(SG1): xy ∈ H whenever x, y ∈ H,
(SG2): e ∈ H (where e is the identity element of G),
(SG3): x−1 ∈ H whenever x ∈ H.

Define a relation ≡ on G as follows: if x, y ∈ G then x ≡ y if and only if x = hy for
some h ∈ H.
The relation ≡ is reflexive.
Proof. Let x ∈ G. Then x = ex, since e is the identity. It follows that x = hx for some
h ∈ H, since e ∈ H by (SG2). Hence x ≡ x. Since this holds for all x ∈ G, we have shown
that ≡ is reflexive. �

The relation ≡ is symmetric.
Proof. Let x, y ∈ G, and suppose that x ∼ y. Then x = hy for some h ∈ H. So
h−1x = h−1hy = ey = y. And h−1 ∈ H, since h ∈ H (by (SG3)). So y = h′x for some
h′ ∈ H, namely h′ = h−1. Thus y ∼ x. So we have shown that y ∼ x whenever x ∼ y, as
required. �

The relation ≡ is transitive.
Proof. Let x, y, z ∈ G, and suppose that x ∼ y and y ∼ z. Then x = hy for some
h ∈ H, and y = h′z for some h′ ∈ H. So x = h(h′z) = (hh′)z. And hh′ ∈ H, by (SG1),
since h ∈ H and h′ ∈ H. So x = h′′z for some h′′ ∈ H, namely h′′ = hh′. Thus x ∼ z. So
we have shown that x ∼ z whenever x ∼ y and y ∼ z, as required. �

It should be observed that we needed exactly one of the three subgroup properties
(SG1), (SG2) and (SG3) in each of the above three proofs.

Since ≡ is reflexive, symmetric and transitive, it is an equivalence relation on G,
and hence it partitions G into equivalence classes. If g ∈ G then the equivalence class
containing g is the set

{x ∈ G | x ≡ g } = {x ∈ G | x = hg for some h ∈ H } = {hg | h ∈ H } = Hg,

the right coset of H containing g. So the equivalence classes for ≡ are exactly the right
cosets of H in G. We conclude that every element of G lies in exactly one right coset of
the subgroup H. So we can state the following result.
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Proposition. If H is a subgroup of G, then G is the disjoint union of the right cosets
of H in G.

As a corollary of this we obtain the following important result.

Lagrange’s Theorem. Let G be a finite group and H a subgroup of G. Then #H is a
divisor of #G.

Proof. Let #G = n and #H = m. Suppose that the number of distinct right cosets
of H in G is k. Then G is the disjoint union of k sets of size m, since (as we proved
in a previous lecture) all the cosets Hg have the same number of elements as H. Hence
n = km, and, in particular, m is a divisor of n. �

For example, if #G = 100 then G could have subgroups of any of the orders 1, 2, 4,
5, 10, 20, 25, 50 and 100, but it cannot have subgroups of any other orders. Note that
there is no guarantee that there will be a subgroup of G whose order is a given divisor
of #G; all that is guaranteed is that a number that is not a divisor of #G is not the order
of any subgroup.

Definition. The number of distinct right cosets of H in G is called the index in G of the
subgroup H. It is denoted by [G : H].

The above proof tells us that if G is a finite group and H a subgroup of G then
[G : H] = #G/#H.

It turns out that the right cosets of subgroups of G are the only nonempty subsets
of G with the property that they are disjoint from all their right translates.

Proposition. Suppose that S is a nonempty subset of a group G, and suppose that no two
distinct right translates of S have any elements in common. Then there exists a subgroup
H of G and an element g ∈ G such that S = Hg.

Proof. Choose some fixed element g ∈ S—we can do this since S 6= ∅—and define
H = Sg−1. Note that e = gg−1 ∈ Sg−1 = H.

Recall that in an earlier lecture we made the definition

Stab(W ) = {x ∈ G | Wx = W },

whenever W is a subset of G, and we showed that Stab(W ) is always a subgroup of G.
We shall use this to prove that the set H above is a subgroup of G, by showing that
H = Stab(H).

We show first that if x is any element of H then Hx = H. Since e ∈ H we have that
ex ∈ Hx; that is, x ∈ Hx. By assumption we know that x ∈ H. So the sets Hx = Sg−1x
and H = Sg−1 have the element x in common. Since our assumption is that distinct right
translates of S have no common elements, we conclude that these right translates cannot
be distinct. That is, Hx = H, as claimed.

The converse of the above statement is also true: if Hx = H then x ∈ H. Indeed,
this is trivial, since x = ex ∈ Hx gives x ∈ H, when Hx = H.

We conclude from the above that H coincides with the set of all x in G such that
Hx = H. That is, H = Stab(H), as claimed. Now since H = Sg−1, it follows that
Hg = Sg−1g = Se = S, so that S is a right coset of the subgroup H, as required. �
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