
WEEK 01

In general terms, our aim in this first part of the course is to use vector space theory
to study the geometry of Euclidean space. A good knowledge of the subject matter of the
Matrix Applications course is assumed.

The dot product
Let Rn denote the vector space of n-tuples of real numbers:

Rn =
{

x1

x2
...

xn

 ∣∣∣ x1, x2, . . . , xn ∈ R
}

.

Note that we write elements of Rn as column vectors. We shall also on occasion deal with
row vectors, and we denote the space of n-component row vectors by (Rn)′:

(Rn)′ = { (x1 x2 . . . xn) | x1, x2, . . . , xn ∈ R }.

Everyone should be familiar with the idea of specifying a point in the Euclidean
plane by a pair of numbers, giving the coordinates of the point relative to a fixed Carte-
sian coordinate system. Thus points in the plane correspond in a natural way to vectors
in R2. Similarly, points in three dimensional Euclidean space correspond to vectors in R3.
Although Rn does not correspond to physical space when n > 3, it is very similar mathe-
matically to R2 and R3, and we can use geometrical intuition based on our familiarity with
physical space as a guide to help us understand Rn. In particular, we sometimes refer to
vectors in Rn as “points”, and we shall deal with geometrically-motivated concepts such
as the distance between two such points.

By Pythagoras’ Theorem, the distance from the origin to the point
(

x
y

)
is

√
x2 + y2.

(
x
y

)

y

x

√
x2+y2

Similarly, in R3 the distance from the origin to

 x
y
z

 is
√

x2 + y2 + z2. So if

v
˜

=


x1

x2
...

xn

 ∈ Rn

then it is natural to say that the distance from the origin to v
˜

is
√

x2
1 + x2

2 + · · ·x2
n.

–1–

Inner product spaces and group theory
Lectures given at the University of Sydney for the course Maths 2008 in 2000, 2001, 2002. Copyright. Robert Brian Howlett.



Definition. Let v
˜
∈ Rn as above. The length of the vector v

˜
is the scalar ‖v

˜
‖ given by

the formula ‖v
˜
‖ =

√
x2

1 + x2
2 + · · ·x2

n.

Obviously, ‖v
˜
‖ ≥ 0, and if ‖v

˜
‖ = 0 then v

˜
= 0

˜
. (Recall that the zero vector, 0

˜
, is the

vector all of whose components are zero.)

Now suppose that

v
˜

=


x1

x2
...

xn

 , w
˜

=


y1

y2
...

yn


are two vectors in Rn.

Definition. The dot product of v
˜

and w
˜

is the scalar quantity v
˜
· w
˜

given by

v
˜
· w
˜

= x1y1 + x2y2 + . . . + xnyn.

For example,
−2
3
−4
1

 ·


1
1
2
2

 = ((−2)× 1) + (3× 1) + ((−4)× 2) + (1× 2) = −5.

Note that the dot product of a vector with itself gives the square of the length of the
vector: v

˜
· v
˜

= ‖v
˜
‖2.

Properties of the dot product. Suppose that u
˜
, v
˜

and w
˜

are vectors in Rn, and that
k ∈ R (a scalar). Then the following hold true.
1) (u

˜
+ v

˜
) · w

˜
= u

˜
· w
˜

+ v
˜
· w
˜
.

2) u
˜
· (v

˜
+ w

˜
) = u

˜
· v
˜

+ u
˜
· w
˜
.

3) u
˜
· v
˜

= v
˜
· u
˜
.

4) k(u
˜
· v
˜
) = (ku

˜
) · v

˜
= u

˜
· (kv

˜
).

5) u
˜
· u
˜
≥ 0, and if u

˜
· u
˜

= 0, then u
˜

= 0
˜
.

In the computer tutorials we shall be using the computer algebra program known as
MAGMA. Here are some magma commands that you can use to get MAGMA to calculate
the dot product of two vectors.

> R := RealField();
> V := VectorSpace(R,4);
> a := V![1,2,3,4];
> b := V![1,-1,1,-1];
> R;
Real Field
> V;
Full Vector space of degree 4 over Real Field
> a, b;
(1 2 3 4)
( 1 -1 1 -1)
> InnerProduct(a,b);
-2
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Although we prefer to use column vectors, MAGMA unfortunately assumes that vectors
are row vectors. This will not be a serious problem for us, although occasionally we have
to modify formulas a little when using the computer.

If v
˜
, w

˜
∈ Rn and θ is the angle between v

˜
and w

˜
, then

v
˜
· w
˜

= ‖v
˜
‖ ‖w

˜
‖ cos θ (1)

(a result that should be familiar for R2 and R3). The diagram below illustrates what is
meant by the angle “between” v

˜
and w

˜
. Note that 0 ≤ θ ≤ π.

v
˜

w
˜

θ

If v
˜

=


−2
3
−4
1

 and w
˜

=


1
1
2
2

 then v
˜
· w
˜

= −5 (see above), and we find that

cos θ =
v
˜
· w
˜‖v

˜
‖ ‖w

˜
‖

=
−5√

22 + 32 + 42 + 12
√

12 + 12 + 22 + 22
=

−5
10
√

3
≈ −.2887,

and so θ ≈ 1.864 (radians). (This is roughly 106◦ 47′.)
In R2 and R3 the formula in Eq. (1) above can be proved by an application of the

cosine rule in the triangle whose vertices are the origin and the points v
˜

and w
˜
. For larger

values of n, Eq. (1) should be regarded as the definition of the angle between v
˜

and w
˜
.

But since | cos θ| is at most 1, to define cos θ = (v
˜
· w

˜
)/(‖v

˜
‖ ‖w

˜
‖) is only legitimate if∣∣(v

˜
· w
˜
)/(‖v

˜
‖ ‖w

˜
‖)

∣∣ ≤ 1. So we need to prove this.

Theorem [The Cauchy-Schwarz Inequality]. If v
˜
, w

˜
∈ Rn then |v

˜
· w
˜
| ≤ ‖v

˜
‖ ‖w

˜
‖.

Proof. Let v
˜
, w

˜
∈ Rn be arbitrary. If v

˜
= 0

˜
then |v

˜
· w
˜
| = 0 = ‖v

˜
‖ ‖w

˜
‖; so the inequality

is satisfied. Hence we may assume that v
˜
6= 0

˜
.

Let x be any scalar. Then

0 ≤ (xv
˜

+ w
˜
) · (xv

˜
+ w

˜
)

= x2(v
˜
· v
˜
) + 2x(v

˜
· w
˜
) + (w

˜
· w
˜
)

= Ax2 + 2Bx + C

(2)

where A = v
˜
· v
˜
, B = v

˜
· w

˜
and C = w

˜
· w

˜
. Note that A = ‖v

˜
‖2 > 0 (since v

˜
6= 0

˜
).

The inequality in (2) above holds for all x, and in particular it holds when x = −B/A.
(We choose this value for x since it is the value that minimizes the quadratic expression
Ax2 + 2Bx + Cx, as can easily be shown by use of elementary calculus.) So we deduce
that

0 ≤ A
(−B

A

)2

+ 2B
(−B

A

)
+ C =

(B2

A

)
− 2

(B2

A

)
+ C = C − B2

A
,

and hence that B2/A ≤ C. Multiplying through by the positive number A, we deduce
that B2 ≤ AC. That is,

(v
˜
· w
˜
)2 ≤ (v

˜
· v
˜
)(w

˜
· w
˜
) = ‖v

˜
‖2‖w

˜
‖2.

Taking square roots gives |v
˜
· w
˜
| ≤ ‖v

˜
‖ ‖w

˜
‖, as required. �
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Transposes of matrices

If A is an n × m matrix then its transpose AT is the m × n matrix obtained by
changing rows into columns. For example,

(
1 1 3 7

−1 −2 −3 −4

)T

=


1 −1
1 −2
3 −3
7 −4

 .

More formally, the entry in row i and column j in A becomes the entry in row j and
column i in AT . Thus in the above example, the (2, 3)-entry of A is −3, and this is also
the (3, 2)-entry of AT .

Properties of the transpose operation. Let A and B be matrices.
1) If the product AB is defined (which is the case if the number of columns of A equals

the number of rows of B) then BT AT is defined, and (AB)T = BT AT .
2) If A and B have the same shape then (A + B)T = AT + BT .
3) If k is any scalar then (kA)T = k(AT ).
4) In all cases, (AT )T = A.
5) If A is square then det AT = det A.
6) If A has an inverse (which of course can only happen when A is square) then (AT )

has an inverse, and (AT )−1 = (A−1)T .
The first of these is the one that causes students most trouble. So make sure you

remember it: transposing reverses multiplication.
Definition A matrix A is said to be symmetric if AT = A; it is said to be skew-symmetric
if AT = −A.

Notice that symmetric and skew-symmetric matrices are necessarily square (since
this must hold whenever the matrix and its transpose have the same shape).

Here is an example of a symmetric matrix and an example of a skew-symmetric
matrix.  1 2 3

2 5 8
3 8 7

 ,

 0 3 −2
−3 0 −4
2 4 0


The entries on the main diagonal in a skew-symmetric matrix are always zero. Can you
see why?

Vectors can be thought of as matrices, and in particular the transpose of a column
vector is a row vector, and vice versa. Thus if v

˜
∈ Rn then we can think of v

˜
as an n× 1

matrix, and v
˜

T is therefore a 1× n matrix; in other words, v
˜

T ∈ (Rn)′.
Observe that a 1× n matrix and an n× 1 matrix can always be multiplied, giving a

1× 1 matrix—that is, a scalar—as the answer. So if v
˜
, w

˜
∈ Rn then v

˜
T w

˜
is defined. It is

easily seen that in fact v
˜

T w
˜

= v
˜
· w
˜
.


x1

x2
...

xn


T 

y1

y2
...

yn

 = (x1 x2 . . . xn)


y1

y2
...

yn

 = x1y1 + x2y2 + · · ·+ xnyn.

–4–



Let us see how to use MAGMA for some matrix calculations.

> Q := RationalField();
> M := KMatrixSpace(Q,2,4);

> A := M![1,1,1,1,2,4,6,8];
> B := Transpose(A);

> Q;
Rational Field
> M;
Full KMatrixSpace of 2 by 4 matrices over Rational Field

> A;
[1 1 1 1]
[2 4 6 8]
> B;
[1 2]
[1 4]
[1 6]
[1 8]

> M := KMatrixSpace(Q,1,4);
> a := M![1,2,3,4];
> b := M![1,-1,1,-1];
> a * Transpose(b);
> [-2]

The orthogonal projection
Definition. If v

˜
, w

˜
∈ Rn then d(v

˜
, w
˜
), the distance from the point v

˜
to the point w

˜
, is

defined by d(v
˜
, w
˜
) = ‖v

˜
− w

˜
‖.

Suppose that W is a subspace of Rn. We shall investigate the following problem:
given a vector v

˜
∈ Rn that is not in W , find the element of W that is the closest possible

approximation to v
˜

by an element of W . In other words, find the element p
˜
∈ W such

that the distance from v
˜

to p
˜

is as small as possible. Before we can solve this, however,
we need some preliminary results.

The triangle inequality says that the sum of the lengths of two sides of a triangle
always exceeds the length of the third side. (This is intuitively reasonable, since the
shortest distance between two points is given by a straight line.) So it should be true that
d(x

˜
, y
˜
) + d(y

˜
, z
˜
) ≥ d(x

˜
, z
˜
).

Recall from 1st year that addition of vectors can be performed by the so-called
Triangle Law: given v

˜
and w

˜
, let A be any point, choose B so that −−→AB = v

˜
, and choose

C so that −−→BC = w
˜
. Then −→AC = v

˜
+ w

˜
. So, in vector terminology, the statement that the

length of AB plus the length of BC is greater than or equal to the length of AC becomes
‖v
˜
‖+ ‖w

˜
‖ ≥ ‖v

˜
+ w

˜
‖. It is quite straightforward to use the properties of the dot product

to prove this form of the triangle inequality.

Proposition. For all v
˜
, w

˜
∈ Rn, we have ‖v

˜
+ w

˜
‖ ≤ ‖v

˜
‖+ ‖w

˜
‖.

–5–



Proof. Let v
˜
, w

˜
∈ Rn. Then

‖v
˜

+ w
˜
‖2 = (v

˜
+ w

˜
) · (v

˜
+ w

˜
)

= v
˜
· v
˜

+ 2v
˜
· w
˜

+ w
˜
· w
˜
,

= ‖v
˜
‖2 + 2‖v

˜
‖ ‖w

˜
‖ cos θ + ‖w

˜
‖2

≤ ‖v
˜
‖2 + 2‖v

˜
‖ ‖w

˜
‖+ ‖w

˜
‖2 (since cos θ ≤ 1)

= (‖v
˜
‖+ ‖w

˜
‖)2

.

Taking square roots gives the required result. �

If x
˜
, y
˜
, z
˜
∈ Rn are arbitrary, and if we define v

˜
= x

˜
−y

˜
and w

˜
= y

˜
−z

˜
, then we see that

v
˜
+w

˜
= x

˜
−z

˜
, and so the inequality ‖v

˜
+w

˜
‖ ≤ ‖v

˜
‖+‖w

˜
‖ becomes ‖x

˜
−z

˜
‖ ≤ ‖x

˜
−y

˜
‖+‖y

˜
−z

˜
‖.

This can be rephrased as d(x
˜
, z
˜
) ≤ d(x

˜
, y
˜
) + d(y

˜
, z
˜
), which is the other version of the

triangle inequality given above.

Here are some more MAGMA calculations.

> Length := func< u | Sqrt(InnerProduct(u,u)) >;
> Angle := func< u,v | Arccos( InnerProduct(u,v) /
> (Length(u) * Length(v)));
> Distance := func< u,v | Length(u-v) >;

> R := RealField();
> V := VectorSpace(R,4);

> a := V![1,2,3,4];
> b := V![1,-1,1,-1];

> Length(a);
5.477225575051661134569697828006
> Length(b);
2.0000000000000000000000000000
> Angle(a,b);
1.75440033707381519048405814845
> Angle(b,a);
1.75440033707381519048405814845
> Distance(a,b);
6.164414002968976450250192381425
> Distance(b,a);
6.164414002968976450250192381425

Let a
˜
1, a

˜
2, . . . , a

˜
k be a basis for the subspace W of Rn, and let A be the matrix that

has a
˜
1, a

˜
2, . . . , a

˜
k as its columns:

A = (a
˜
1 a

˜
2 · · · a

˜
k).

This is an n× k matrix whose columns are linearly independent. Note that k ≤ n, since
k = dim W and W ⊆ Rn.
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Recall that the set of all linear combinations of the columns of a matrix is called the
column space of the matrix; thus W is the column space of A. If v

˜
∈ W then there exist

scalars x1, x2, . . . , xk ∈ R such that

v
˜

= x1a
˜
1 + x1a

˜
1 + . . . + xka

˜
k = (a

˜
1 a

˜
2 · · · a

˜
k)


x1

x2
...

xk

 = Ax
˜
,

where x
˜

= (x1, x2, . . . , xk)T ∈ Rk.
It is a consequence of the fact that the columns of A are linearly independent that

the k × k matrix AT A is invertible. To prove this, we make use of the following result
from the first year linear algebra course:
a system of k linear equations in k unknowns has a unique solution if and only if the
coefficient matrix is invertible.
Thus, to prove that AT A is invertible it is sufficient to show that x

˜
= 0

˜
is the only solution

of AT Ax
˜

= 0
˜
.

So, suppose that AT Ax
˜

= 0
˜
. Then

(x
˜

T AT )(Ax
˜
) = x

˜
T (AT Ax

˜
) = x

˜
T 0
˜

= 0,

and since x
˜

T AT = (Ax
˜
)T , this gives (Ax

˜
)T (Ax

˜
) = 0. But (Ax

˜
)T (Ax

˜
) = (Ax

˜
) · (Ax

˜
), and

by the properties of the dot product we know that this can only be zero when Ax
˜

= 0
˜
. So

x1a
˜
1 + x2a

˜
2 + · · ·+ xka

˜
k = Ax

˜
= 0

˜
,

and since a
˜
1, a

˜
2, . . . , a

˜
k are linearly independent it follows that x1 = x2 = · · · = xk = 0,

as required.

Definition. We say that the vectors v
˜
, w

˜
∈ Rn are orthogonal if v

˜
· w
˜

= 0.

Assuming that v
˜

and w
˜

are both nonzero, they are orthogonal if and only if the angle
between them is π/2.

Pythagoras’ Theorem. If v
˜

and w
˜

are orthogonal then ‖v
˜

+ w
˜
‖2 = ‖v

˜
‖2 + ‖w

˜
‖2.

This follows by a short calculation with dot products:

‖v
˜

+ w
˜
‖2 = (v

˜
+ w

˜
) · (v

˜
+ w

˜
)

= v
˜
· v
˜

+ 2v
˜
· w
˜

+ w
˜
· w
˜

= ‖v
˜
‖2 + ‖w

˜
‖2 (since v

˜
· w
˜

= 0).

We are now ready to tackle the problem we mentioned above: finding the element of
the subspace W that is the closest to a given v

˜
∈ Rn. Our next result is the key to this.

Theorem. Suppose that p
˜
∈ W is such that v

˜
− p

˜
is orthogonal to all elements of W .

Then d(v
˜
, p
˜
) ≤ d(v

˜
, w
˜
) for all w

˜
∈ W , with equality holding if and only if w

˜
= p

˜
.

Proof. Let w
˜
∈ W . Then p

˜
− w

˜
∈ W also, since p

˜
∈ W and W is closed under addition

and scalar multiplication. So v
˜
− p

˜
is orthogonal to p

˜
− w

˜
. Thus

‖v
˜
− w

˜
‖2 = ‖(v

˜
− p

˜
) + (p

˜
− w

˜
)‖2

= ‖(v
˜
− p

˜
)‖2 + ‖(p

˜
− w

˜
)‖2 (by Pythagoras’ Theorem)

≥ ‖(p
˜
− w

˜
)‖2.
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Moreover, if w
˜
6= p

˜
then ‖p

˜
− w

˜
‖ > 0, and so the inequality is strict, as required. �

The above proof shows that if there exists an element p
˜
∈ W satisfying the condition

that v
˜
− p

˜
is orthogonal to all elements of W , then it is unique. However, we still have

the problem of showing that such an element does actually exist. We do this now by
determining a formula for p

˜
.

Since p
˜

is to be in W it must have the form Ax
˜

for some x
˜
∈ Rk, and so the condition

to be satisfied is that (v
˜
− Ax

˜
) and Ay

˜
should be orthogonal for all y

˜
∈ Rk. In other

words, we require that (Ay
˜
) · (v

˜
− Ax

˜
) = 0, or, equivalently, (Ay

˜
)T (v

˜
− Ax

˜
) = 0, for all

y
˜
∈ Rk. Now since

(Ay
˜
)T (v

˜
−Ax

˜
) = yT AT (v

˜
−Ax

˜
),

the desired condition will certainly be satisfied if AT (v
˜
−Ax

˜
) = 0

˜
. So we want the vector

x
˜

to satisfy AT v
˜

= AT Ax
˜
. But we have shown above that the matrix AT A is invertible;

so x
˜

= (AT A)−1(AT v
˜
) is a solution of this this system of equations. So the vector p

˜
is

given by p
˜

= Ax
˜

= A(AT A)−1(AT v
˜
).

The following theorem summarizes what we have proved.

Theorem. Let W be a subspace of Rn, and let v
˜

be an arbitrary element of Rn. If A is
a matrix whose columns form a basis for W then the vector p

˜
given by

p
˜

= A(AT A)−1AT v
˜

is the unique element of W such that d(v
˜
, p
˜
) ≤ d(v

˜
, w
˜
) for all w

˜
∈ W .

The vector p
˜

constructed above is called the orthogonal projection of v
˜

onto the
subspace W . Note that it is uniquely determined by v

˜
and W ; so if we replace A by any

other matrix whose columns form a basis of W then we will get the same answer.

Here is a simple example with n = 4 and k = 2. Let W be the subspace of R4

spanned by (1, 0, 0, 1)T and (1, 1, 0, 2)T . These vectors are obviously linearly independent,
and hence form a basis for W . We shall calculate the projection onto W of the vector
v
˜

= (0, 1, 0, 0)T .
As a first step we must find AT A and its inverse, where A is a matrix whose columns

form a basis of W . Choosing the given basis, we obtain

AT A =
(

1 0 0 1
1 1 0 2

) 
1 1
0 1
0 0
1 2

 =
(

2 3
3 6

)
,

and this gives

(AT A)−1 =
1
3

(
6 −3
−3 2

)
=

(
2 −1
−1 2/3

)
.
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So p
˜

is given by

p
˜

=


1 1
0 1
0 0
1 2

 (
2 −1
−1 2/3

) (
1 0 0 1
1 1 0 2

) 
0
1
0
0



=


1 1
0 1
0 0
1 2

 (
2 −1
−1 2/3

) (
0
1

)

=


1 1
0 1
0 0
1 2

 (
−1
2/3

)
=


−1/3
2/3
0

1/3

 .

We leave it to the reader to check that choosing another basis of W , such as b
˜
1 = a

˜
1 + a

˜
2

and b
˜
2 = a

˜
1 − a

˜
2, gives the same answer for p

˜
.

Some more MAGMA

Using MAGMA we need to transpose the whole formula for p
˜
, remembering that trans-

posing reverses multiplication. To be specific, p
˜

T = x
˜

T AT , where x
˜

T = (
˜
vT A)(AT A)−1.

Here is how it can be done in MAGMA.

> Projection := func< W,v | x*B
> where x is Solution(B*A,v*A)
> where A is Transpose(B)
> where B is BasisMatrix(W)>;

> R := RealField();
> V := VectorSpace(R,4);

> a := V![1,2,3,4];
> b := V![1,-1,1,-1];
> c := V![6,7,8,9];

> W := sub< V | a,b >;
> Projection(W,a);
(1 2 3 4)
> Projection(W,c);
(104/29 133/29 262/29 291/29)
> Projection(sub< V | a,b >,a);
(1 2 3 4)
> Projection(sub< V | a,b >,c);
(104/29 133/29 262/29 291/29)

(Note that the command
W := sub< V | a,b >;

defines W to be the subspace of V spanned by a and b.)

–9–



Projection: summary

To find the projection of the vector v
˜

onto a subspace W of Rn, proceed as follows:

1) Find a basis of W , and write down the matrix A that has these vectors as its columns.
This will be an n × k matrix, where, k is the number of vectors in the basis of W .
That is, k = dim W .

2) Compute AT A. This will be a k × k matrix.
3) Compute AT v

˜
. This will be a k-component column.

4) Solve the equations AT Ax
˜

= AT v
˜
. Note that the coefficient matrix (on the left-hand

side) is the k × k matrix you found in Step 2 and the right-hand side is the k-
component column you found in Step 3. So you have to solve a system of k equations
in k unknowns.

5) The answer is p
˜

= Ax
˜
, where x

˜
is the solution you found in Step 4. Note that p

˜
, the

projection of v
˜

onto W , is an n-component column.

Example

Let v
˜

=


1
0
0
1

, and W the subspace of R4 with basis


1
1
1
1

,


2
−1
−1
0

,


0
1
0
−1

.

1) A =


1 2 0
1 −1 1
1 −1 0
1 0 −1

.

2)

 1 1 1 1
2 −1 −1 0
0 1 0 −1




1 2 0
1 −1 1
1 −1 0
1 0 −1

 =

 4 0 0
0 6 −1
0 −1 2

.

3)

 1 1 1 1
2 −1 −1 0
0 1 0 −1




1
0
0
1

 =

 2
−2
−1

.

4)  4 0 0 2
0 6 −1 −2
0 −1 2 −1

 R1:=(1/4)R1
R2:=(1/6)R2−−−−−−−→

 1 0 0 1/2
0 1 −1/6 −1/3
0 −1 2 −1


R3:=R3+R2−−−−−−−→

 1 0 0 1/2
0 1 −1/6 −1/3
0 0 5/6 −4/3

 .

Now by back substitution we find that

x3 = − 4
3/ 5

6 = − 8
5 , x2 = − 1

3 + 1
6x3 = − 1

3 −
4
15 = − 3

5 , x1 = 1
2 .

where x1, x2 and x3 are the components of x
˜
.

5)


1 2 0
1 −1 1
1 −1 0
1 0 −1


 1/2
−3/5
−8/5

 =


−7/10
−1/2
11/10
21/10

 is the projection.
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