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1. Let G be the group of all matrices of the form
(

1 0
x 1

)
, where x ∈ R, with

the operation of matrix multiplication. Let H be the group of all real numbers
under addition. Define f :G → H by

f

(
1 0
x 1

)
= x.

Show that f is an isomorphism from G to H.

Solution.

We must prove that f is one-to-one and onto, and that it is a homomorphism.

Let A, B ∈ G be such that f(A) = f(B). By the definition of G we have
A =

(
1 0

x 1

)
and B =

(
1 0

y 1

)
for some x, y ∈ R, and the definition of f gives

f(A) = x and f(B) = y. But f(A) = f(B); so x = y, and so

A =
(

1 0
x 1

)
=

(
1 0
y 1

)
= B.

So f(A) can only equal f(B) if A = B; that is, f is one-to-one.

Let t be any element of R. The matrix A defined by A =
(

1 0

t 1

)
is in G and

f(A) = t. So every element of R is in the image of f , and so f is onto.

Recall that f a homomorphism is a function that preserves the group struc-
ture. Here, since the group operation in G written as multiplication and the
group operation on H is written as addition, to say that f is a homomorphism
is to say that f(AB) = f(A) + f(B) for all A, B ∈ G. So, let A, B be arbi-
trary elements of G. Then A =

(
1 0

x 1

)
and B =

(
1 0

y 1

)
for some x, y ∈ R, and

matrix multiplication gives AB =
(

1 0

x+y 1

)
. So f(AB) = x+y = f(A)+f(B),

as required.
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2. (i) Let Cn be a cyclic group of order n. Suppose that k is a number that is
a divisor of n. Show that Cn contains an element of order k.

(ii) Find an example of a group G of order n and a divisor k of n for which
G does not contain any element of order k.

Solution.

(i) Let a be a generator of Cn. Then a has order n; that is, an = e
and aj 6= e for 0 < j < n. If k divides n, then n = mk for some
positive integer m. and so (am)k = e. Furthermore, if 0 < j < k then
0 < mj < mk = n, and so (am)j = amj 6= e. Hence the least positive
integer j such that (am)j = e is j = k, and thus am has order k.

(ii) The group G = Sym(3) has order n = 6. The number k = 6 is a divisor
of n, and G does not have any element of order 6. (Indeed, G has three
elements of order 2 (the transpositions), two of order 3 (the 3-cycles)
and one of order 1 (the identity), and these are all the elements of G
since its order is 6.)

3. If G is a group, H a subgroup of G and g an element of G, then we define
g−1Hg to be the set of all elements of G of the form g−1hg, where h is in H.

(i) Let G = Sym(4) and H = {id, (1, 2, 4), (1, 4, 2)}, and let g = (2, 3, 4).
Calculate all of the elements of g−1Hg.

(ii) Let G = Sym(4) and L = {σ ∈ G | 3σ = 3 }. Write out all 6 elements
of L. Is L a subgroup of G?

(iii) Let L be as in Part (ii) and let g = (2, 3, 4). Show that

g−1Hg = { τ ∈ G | 4τ = 4 }.

Solution.

(i) Obviously, (2, 4, 3)id(2, 3, 4) = id. Calculating (2, 4, 3)(1, 2, 4)(2, 3, 4) in-
volves finding the result of applying (2, 4, 3), followed by (1, 2, 4), followed by
(2, 3, 4), to each of the numbers 1, 2, 3, 4. We have

1
(2,4,3)−→ 1

(1,2,4)−→ 2
(2,3,4)−→ 3

2
(2,4,3)−→ 4

(1,2,4)−→ 1
(2,3,4)−→ 1

3
(2,4,3)−→ 2

(1,2,4)−→ 4
(2,3,4)−→ 2

4
(2,4,3)−→ 3

(1,2,4)−→ 3
(2,3,4)−→ 4.

Thus (2, 4, 3)(1, 2, 4)(2, 3, 4) = (1, 3, 2). Products of the form g−1xg can also
be calculated using the method described in Question 2 of Computer Tuto-
rial 6 and Question 1 of Assignment 2: g−1xg can be found by writing x as a
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product of cycles and replacing each number i that appears there by ig (the
number that i “goes to” under g). Thus g−1(1, 4, 2)g = (1g, 4g, 2g) (for any g),
and when g = (2, 3, 4) this is (1, 2, 3). So g−1Hg = {id, (1, 3, 2), (1, 2, 3)}.
(ii) We must list all the permutations of {1, 2, 3, 4} that take 3 to 3, and
thus take 1, 2 and 4 to 1, 2 and 4 in some order. Answer: id, (1, 2), (1, 4),
(2, 4), (1, 2, 4) and (1, 4, 2).
(iii) You could just calculate all six products (2, 4, 3)h(2, 3, 4), where h runs
through the six permutations listed in the answer to Part (ii). Three have al-
ready been calculated in Part (i); the others are (2, 4, 3)(1, 2)(2, 3, 4) = (1, 4),
(2, 4, 3)(1, 4)(2, 3, 4) = (1, 3) and (2, 4, 3)(2, 4)(2, 3, 4) = (4, 3). So you do in-
deed get the six permutations of {1, 2, 3, 4} that take 4 to 4. One can also
apply the principle that is the basis of the CompTut6/Assgt2 method for the
calculation of g−1hg, namely, if h takes i to j then g−1hg takes ig to jg. So if h
takes 3 to 3 then (2, 3, 4)−1x(2, 3, 4) takes 3(2,3,4) to 3(2,3,4). Since 3(2,3,4) = 4,
this shows that if h is in the stabilizer of 3 then (2, 3, 4)−1h(2, 3, 4) is in the
stabilizer of 4.
More directly, given that h takes 3 to 3, applying (2, 3, 4)−1 followed by h
followed by (2, 3, 4) we find that

4
(2,4,3)−→ 3 h−→ 3

(2,3,4)−→ 4,

and so (2, 3, 4)−1h(2, 3, 4) takes 4 to 4, as required.

4. Let G be any group, H any subgroup of G and g any element of G.
Show that g−1Hg is a subgroup of G. (Hint: you must use the fact that H
satisfies (SG1), (SG2) and (SG3) to show that g−1Hg also does.)

Solution.

Sice H is a subgroup of G we know that H satisfies (SG1): for all h and k, if
h, k ∈ H then hk in H. We use this to show that g−1Hg satisfies (SG1): for
all x and y, if x, y ∈ g−1Hg then xy in g−1Hg.
Let x, y ∈ g−1Hg. Then x = g−1hg for some h ∈ H and y = g−1kg for some
k ∈ H. So

xy = (g−1hg)(g−1kg) = g−1h(gg−1)kg = g−1(hek)g = g−1(hk)g

(where e is the identity element of G). But h, k ∈ H; so by (SG1) for H it
follows that hk ∈ H. Hence g−1(hk)g ∈ g−1Hg; that is, xy ∈ g−1Hg. But
x, y were arbitrary elements of g−1Hg. So we have shown that xy ∈ g−1Hg
for all x, y ∈ g−1Hg, as required.
Since H is a subgroup it satisfies (SG2); that is, e ∈ H. So g−1eg ∈ g−1Hg.
But g−1eg = g−1g = e; so e ∈ g−1Hg. Thus g−1Hg satisfies (SG2).
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Since H is a subgroup it satisfies (SG3): for all h, if h ∈ H then h−1 ∈ H.
Now suppose that x is an arbitrary element of g−1Hg. Then x = g−1hg for
some h ∈ H. Since taking inverses reverses the order of factors in a product—
that is, (ab)−1 = b−1a−1—it follows that x−1 = g−1h−1(g−1)−1 = g−1h−1g.
But since h ∈ H it follows from (SG3) for H that h−1 ∈ H, and hence
g−1h−1g ∈ g−1Hg. So we have shown that for all x, if x ∈ g−1Hg then
x−1 ∈ g−1Hg. That is, g−1Hg satisfies (SG3).
Since g−1Hg satisfies (SG1), (SG2) and (SG3) it is a subgroup of G.

5. Let H be a subgroup of G, and let g be an element of G. Prove that the map
f :H → g−1Hg defined by f(h) = g−1hg is a homomorphism. Prove also that
f is one-to-one and onto.

Solution.

Let h1, h2 be arbitrary elements of H. Then

f(h1)f(h2) = (g−1h1g)(g−1h2g) = g−1h1h2g = f(h1h2),

and so f is a homomorphism.
By definition, g−1Hg is the set of all elements of the form g−1hg for some
h ∈ H. Since g−1hg = f(h) this says that every element of g−1Hg has the
formf(h) for some h ∈ H. So f is onto.
Suppose that h1, h2 ∈ H satisfy f(h1) = f(h2). Then g−1h1g = g−1h2g, and
it follows that

h1 = g(g−1h1g)g−1 = g(g−1h2g)g−1 = h2.

Thus f is one-to-one.


