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Tutorial 4
In this tutorial Cla, b] denotes the inner product space of all continuous functions

from [a, b] to R, with inner product given by (f,g) f f(z
1. Define f, g € C[-1,1] by f(z) =z, g(z) = z°. Work out || f|, [lg]| and (f,g).

Solution.

1Al =/ a2 de = \[325]" = /25,
gl = /S a8 dz = \ /2], = /2T,

(f.9) = [' zadde = La®]. =2/5.

2. Show that 1 and z are orthogonal in C[—1,1].

Solution.
We must show that (f,g) = 0, where f and g are defined by f(z ) =1 and
g(z) = z (for all z € [-1,1]). We have (f,g) = filzdx = lzZ] =0, as
required.

3. For which values of k and m are the polynomial functions z* and 2™ orthog-
onal in C[-1,1]7

Solution.

Let k and m be arbitrary nonnegative integers. Then

! 1
k+m+1
(.Tk7xm) — /_1.Z'k+m dxr = i+m+1 B — k+m+1(1k+m+1 ( 1)k+m+1)’

which is 0 if and only if £+ m + 1 is even.

4. Prove the following properties of the inner product on C[—1,1].

(i) (f,9) = (g, f) forall f, g €C[-1,1].
(i) (f+g,h) = (f,h)+(g,h) for all f, g, h € C[-1,1].
(#i) (kf,g) =k(f,g) for all k£ € R and all f,gEC[f ,1].

Solution.

Let f, g and h be arbitrary elements of C[—1,1], and k an arbitrary real
number. Then

2

(i) (f.9)=[) f@)g(a)de = ['| g(x)f(z)dzx = (9, f);

1

(i) (F+oh) = [ (@) + gla)h(o) do

:/_1f(w)h(:c) dx+/ g9(@))h(z) dx
=(f

s h) + (g, h);

(iii) (kf.g) = / kf(@)g(x) da

—k/f dx

=k(f.9).
Hence the stated properties hold for all f, g, h € C[—1,1] and k € R.

5. Consider the inner product space C[1,2].
(i) Apply the Gram-Schmidt process to the set {1,z,2%} to produce an
orthogonal set.

(#4) Using the results of Part (i), find the parabola that best approximates
Inz over [1,2]. (That is, project Inz onto the subspace spanned by

{1,z,22%}.)
Solution.
(i) Define fo, f1, f2 € C[1,2] by folz) = 1 fl( ) = and fa(x) = 22 (for

all z € C[1,2]). Since f 2Fdr = T;’ we find that (fo, fo) = 1,

(fo. f1) =3/2, (f1, f1) = (fo, f2) = 7/3, and (f1, f2) = 15/4. Applying
the Gram-Schmidt process to the basis {fo, f1, fo} vields {go, 91,92},

where
9o = Jo:
= G
o= fom (f2,90)  (f2.91)

0 1
(90790) (glagl)

This immediately gives g = f1 — % fo, and we then find that

(angl) = (f27f1) — %(fZ,fO) — % _ % _ %
(91,91) = (91, fi = 590) = (91, f1)
=(fi,f1) = 2(fo 1) =3 - 2= L.

Hence

92 = f2— 5 fo— 1/12(f1—%f0)
=fo—Ifo—3(fi—3f0)=rfo—3f1r+%f.



3

Thus go(z) =1, g1(z) =z — 3 and ga(z) = 2? — 3z + L.

(#4) The projection is p = ((h; Z?)))g + (((1;11 ?]11))9 + (éf;ﬁf)) g2. Using integration

by parts, or by consulting a list of standard integrals, we find that

n+1 1
/ac"lna:dac:x (lnx—7>,
n+1 n+1

and so for each n =1, 2 or 3,

2
(In, fr) :/ z" Inzdx
1

_ 2n+1 _ 2n+1 2n+1_1
- (1 2 - TH) - Tﬂ(lnl n+1) n+1 In2— (n+1)2

since In1 = (). Thus
(In, go) = (In, fo) =2In2 -1
(In,g1) = (In, f1) — 3(In, fo)
=(2ln2-3)-3(2In2-1)
3
4

=—In2+
(In, g2) = (In, f2) — 3(In, f1) + 22 (In, fo)
=@Em2-I)-302m2-3)+L2m2-1)
=ln2- 2.
We found in Part (i) above that (go,go) = 1 and (g1,91) = 75, and we

also have that
(f2590) (f2,91)
go —
(90, 90) (91,91)

(92,92) = (92, fa — g1)

= (g2, f2)
=(fo—3f+ L/ f2)
= (f2, f2) = 3(f1, f2) + 2(fo, f2)
_ 31

45 91 _ 1

5 4 18 — 180"
So we obtain p = (2In2 — 1)gg + 12(—=In2 + 2)g; + 180(In2 — 22)g,.
(This gives p(z) = (1801n2—125)2% + (384 — 552 In 2)x—|—(4101n2 %i)
According to magma, the distance from In to p is about 0.0020333.)
Inx

Inx

4

6. Compute the 3rd degree Legendre polynomial. (That is, apply Gram-Schmidt

to {1,x, 22, 23}, working in C[-1,1].)

Solution.

Let {90, 91,92, 93} be the basis given by Gram-Schmidt. Then gy = 1, and
since (1,z) = filzda: =0 we find that g; = z. Next, (22,1) = 2, (1,1) = 2
and (22,z) = 0, giving go = > — 1. And (23,90) = (23,92) = 0, so that

3
_ 3 _ (=) 3 2/5 3_3
93—17 (%x)m—l‘ 2/317—17 5I

7. In C[0,2x], show that {1,sinx,cosz} is an orthogonal set. Find the lengths

in C[0, 27] of each of 1, sinx, cosz.

Solution.
2m o
(1,sin) = / sinzdr = fcosx} =0;
0 0
27 o
(1,cos8) = / cosxd:v:sina:} =0;
0 0
2m 1 2m 1 o
(sin, cos) = / sinx coszdr = f/ sin 2z dx = —— cos 2;10} =0.
0 2 Jo 4 0

This proves orthogonality. Clearly (1,1) = fo% 1dz = 27, and

2m

2m 27
1
(cos, cos) = / cos’ v dx = 5/ (14 cos2z)dr =% + Lsin 2:1:}
0 0

N o

s

2m 2m
1
(sin, sin) = / sin? z dx = 5/ (1 —cos2z)dr =% — Lsin }
0 0
Thus || cos || = 4/(cos, cos) = /7 and || sin || = /7, while ||1]| = v/2.

8. In C[0,2n7], find the projection of the function z onto the subspace spanned
by {1,sinz, cosx}.

Solution.
The projection p is given by p(x) = ETB 1+ (Snb;ﬁz) sinz + (EO;CSZ) cosz. Now
(z,sin) = sinz — x cos z] éw = —27 and (=, cos) = zsinz — cos x} = 0, while

(z,1) = 22, So we conclude that p(z) = 7 — 2sinz.
9. Let V be an inner product space, and v € V. Prove that (0,v) = (v,0) = 0.

Solution.
One of the inner product axioms says that (kz,y) = k(z,y), for all vectors
z, y and all scalars k. Apply this with z = 0 (the zero vector), k = 0 (the zero
scalar) and y = v. Since 00 = 0 holds in any vector space—indeed, Ou = 0
for all u—we deduce that (0,v) = (00,v) = 0(0,v) = 0, as required.



