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Affine Kac—-Moody algebras

Let a be a finite-dimensional Lie algebra over C,
equipped with an invariant symmetric bilinear form ().

The affine Kac—Moody algebra a is the central extension
a=a,rJ@C1
with the commutation relations
(X[r], Y[s]] = X, Y][r+s] +ré, (X, V)1,

where X[r] = Xt" forany X e aand r € Z.
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Invariants of the vacuum module

The vacuum module V(a) over a is generated by a vector |0),
alz]|0) = 0, 1/0) = |0).
The algebra of af¢]-invariants is
3(a) ={v e V(a) | a[]v = 0}.
Note V(a)=U(r'a[r"']) as a vector space.

Hence, ;(a) is asubalgebraof U(:'a[r']).
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Properties:
> The subalgebra ;(a) of U(+'a[t~']) is commutative.

» It is invariant with respect to the translation operator T

defined as the derivation T = —%.

Any element of 3(a) is called a Segal-Sugawara vector.
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Feigin—Frenkel theorem

Suppose a is a simple Lie algebra and

the form () is normalized to correspond to the critical level.

Theorem [Feigin—Frenkel 1992, Frenkel 2007].
There exist Segal-Sugawara vectors S, ..., S, € U(r 'a[t™']),

n =ranka, such that
3@ =C[Trs; | 1=1,...,n, k>0].

We call Sy, ..., S, a complete set of Segal-Sugawara vectors.
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Explicit constructions of such sets and a new proof of

the theorem for the classical types A, B, C, D:
[Chervov-Talalaev 2006, Chervov—M. 2009, M. 2013],
[Yakimova 2019].

For the exceptional Lie algebra G:

[M.—Ragoucy—Rozhkovskaya 2016, Yakimova 2019].

For quantum vertex algebras in types A, B, C, D:

[Jing—Kozié—M.—Yang 2018, Butorac—Jing—Kozi¢ 2019].
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Example: a = gl,. Defining relations for U(gl,):

E,J[I’] E]d[s] — Ekl[s] EU[I”}

= 5kjEil[r + 5| — 6, Eijlr + 5]+ ro, <5ij6k1 — nékj5i1> 1.

For a variable x introduce the n x n matrix

x+ T+ Ey[-1] Epp[—1] En[—1]

E> [—1] x-i—T—l—Ezz[—l] Ezn[—l]

En[~1] Ep[1] o XA T+ Epa|—1]
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The column-determinant of £ is a polynomial
cdetE = X"+ g+ o1 X + b

Theorem [CT 2006, CM 2009]. The coefficients ¢4, ..., ¢, form

a complete set of Segal-Sugawara vectors for gl,.
. d
A new property: The derivation A = > - acts by the rule
A pp— —(k— 1)(l’l—k—|—1)¢k_1

fork=1,... n.



For n = 2 the column-determinant cdet £ equals

(x+T+En[-1])(x+ T + Ex[-1]) — Exi[-1]Ep[-1]
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For n = 2 the column-determinant cdet £ equals

(x+T+En[-1])(x+ T + Ex[-1]) — Exi[-1]Ep[-1]

=X+ d1x+ ¢

with
¢ = Enf—1] + Ex[-1],

¢2 = Ei[—1] Ex[—1] — Ex1[—1] Ena[—1] + Ex[-2].
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Applications

» Higher Gaudin Hamiltonians, Bethe eigenvalues:
[Feigin—Frenkel-Reshetikhin 1994],
[Rybnikov 2006, Talalaev 2006, M.—Mukhin 2014].

» Explicit solution of Vinberg’s quantization problem:

[Futorny—M. 2010, M.—Yakimova 2017].

» Affine Harish-Chandra isomorphism, classical WW-algebras:

[M.—Mukhin 2014].
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Proving the Feigin—Frenkel theorem:
» Produce Segal-Sugawara vectors Sy, ..., S, explicitly.

» Show that all elements TS, with/=1,...,nand k > 0 are

algebraically independent and generate 3(a).

Use the classical limit:
grU(r ")) 2 S(r talr ')

which yields an a[r]-module structure on the symmetric algebra

S(t~alt™1]) = S(aft,r"]/alt]).
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Let X,...,X,; beabasisofaandlet P=P(X,,...,X,;) bean

a-invariant in the symmetric algebra S(a). Then each element
Py =T"P(Xi[-1],...,X4[-1]), r=>0,
is an a[7]-invariant in the symmetric algebra  S(r'a[t~1]).

Theorem [Rais—Tauvel 1992, Beilinson—Drinfeld 1997].
If Py,..., P, are algebraically independent generators of S(a)?,
then the elements Py (,, ..., P, () With r > 0 are algebraically

independent generators of S (r~'a[r~1])"".
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Premet’s conjecture

Suppose that g is a reductive Lie algebra of rank £ and e € g is

an arbitrary element. Set a = g¢, the centralizer of e in g.

Conjecture [A. Premet]. The invariant algebra S(a)® is a graded

polynomial algebra in ¢ variables. Counterexamples: D7, Eg.

Theorem [Panyushev—Premet-Yakimova 2007].

The conjecture holds for types A and C.

Another proof in type A: [Brown—Brundan 2009].
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Invariants in type A

Suppose that e € g = gl is a nilpotent matrix with Jordan
blocks of sizes A\,..., \,, where A\ <--- < )\, and

A+ 4 A =N,

The associated pyramid is a left-justified array of rows of unit

boxes; for the blocks 2,3,4 and N = 9 the pyramid is
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The corresponding row-tableau takes the form

O\U)r—t‘
\l-lkl\)‘
[,

89|

Let e, witha,b = 1,...,N be the standard basis of g.

Forany 1 <i,j <nand )\ —min(\;, \;) <r < A set

El(jr) = Z €ab,

row(a)=i, row(b)=j
col(b)—col(a)=r

summed over a,b € {1,...,N}.
(r)

The elements E;;” form a basis of the Lie algebra a = g°.
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Commutation relations for the Lie algebra a:
r s r+s r+s
[E§)7E/E1)} = 5kjE§l ) - 6ilEIEj )
assuming that El.(j’) =0forr> \.

Particular case of rectangular pyramid A\; = --- =\, =p.

The Lie algebra a is isomorphic to the Takiff algebra

(truncated polynomial current algebra): gl,[v]/(v* = 0),

El_(jr)»—>eijv’7 r=0,....,p—1, 1<ij<n.
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The invariant algebra S(a)® is a graded polynomial algebra in N

variables of the respective degrees of the form [PPY 2007]:

L...,1,2,....,2,...,n,...,n.

For the Takiff algebra this is due to [Rais—Tauvel 1992].

Explicit generators for an arbitrary nilpotent e € g:

[Brown—Brundan 2009].
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Segal-Sugawara vectors for centralizers

Equip the Lie algebra a with the invariant symmetric bilinear

form (, ) defined by the formulas

(B EPY = min(A\, ) — (A + -+ Ay + (n— i+ 1A,

and if \; = ); for some i # j then

<Ez(]O)’ ﬂ)> — _()\1 4+ N +(n—i—{— 1))\,’).
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Consider the vacuum module V(a) over the Kac-Moody

algebra @ and the algebra of a[7]-invariants 3(a) in V(a).

Theorem [Arakawa—Premet 2017]. There exists a complete set

of Segal-Sugawara vectors Sy, ..., Sy € 3(a) so that

5@ =C[T"S | I=1,...,N, r

WV

o, 71=-2

In the case e = 0 this is the Feigin—Frenkel theorem.

[AP 2017]: explicit formulas for the S in
the minimal nilpotentcase Ay =---=X\,_1 =1, N\, =2.
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Introduce polynomials in « with coefficients in r~'a[t~!] by

(1] 4+ BT 1) it i),
E‘(A)\ji)\i)[—l]u)‘-/‘_)"- + .. +E1‘(j)\j71)[_1] u>‘f_1 if i <j.

Consider the n x n matrix £ given by

x+)\1T—|—E11(u) E]z(bt) E]n(u)

E> (u) x+MT+ Ezg(u) - Ezn(u)

E,i(u) E(u) cor X+ MT +Eun(u)
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Expand the column-determinant as a polynomial in x,
cdet € = X"+ ¢y (u) "1 4 -+ + ¢, (u)

and write

or(u) = Z d),((a) u’.

Theorem. The coefficients qﬁ,(f‘) withk=1,...,nand
Mkia+ M <atrk< gt +-+ M,

form a complete set of Segal-Sugawara vectors for a.
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Example. For n = 2 we have

x+MT+Ej(u)

E21 (u)

cdet

Elz(u)

x4+ T+ Exn(u)

=X+ ¢ (u)x + ¢ (u)
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Example. For n = 2 we have

MT +E E
cdet *HMT A Enw) ) ="+ ¢1(u)x + ¢2(u)

E> (u) x+MT + Ex» (u)
with
¢1(u) = Eni(u) + Ex(u),

(;52(1/!) = Ell(u)Ezg(u) — E21 (u)Elg(I/t) + )\1 TEzz(u).
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Hence, a complete set of Segal-Sugawara vectors for a is

given by

o) =B+ EG -1, a=01 01,

with b=X—1,.... A1+ X —2.

24
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Proof of the theorem

Verify that X|[r] ,E“) =0 forall >0 and X € a.

. d
Use the relations rX[r+ 1] = [A,X[r]] for A = IZE.

Lemma. Under the action of A we have
A o —(k— 1)+ + Air) 6
fora=Xj g0+ -+ —k+1

and A: ¢\ — 0 otherwise.

25
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Applications: Casimir elements for a

For any nonzero z € C consider the evaluation homomorphism

U(t'a[t™'])) = U(a), X[]—XZ, X€a, r<O.

The image of the subalgebra 3(a) is the center of U(a).

The images of the complete set of Segal-Sugawara vectors

are algebraically independent generators of the center.

26
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Introduce polynomials in u with coefficients in U(a) by

8i(n— N+ EY - A BTV uNT i iz
Sij(u) =
(A=)

Ej

W QT i<

Combine them into the n x n matrix

x+En(u)  Enw) ... Enlu)
crew | W FrEE) . &)

En (u) Em(u) ... x4+ En(u)

27



Expand the column-determinant

Cdet(x + E(M)) = X"+ (I)l(u)x"*l 4.

+ O, (u).
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Expand the column-determinant

Cdet(x + E(M)) = X"+ (I)l(u)x"*l 4.

Write )
D (u) = Z <I>,(c Jul,

+ O, (u).
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Expand the column-determinant

cdet(x + E(u)) =¥+ @1 () X" + - + Dy (u).

Write a
Dy (u) = Z <I>,(c Jue,
Corollary. The coefficients (I),(f) withk=1,...,n and

Mo+ -+ <at+ k< N1+ 4+ Ay

are free generators of the center of U(a).
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Expand the column-determinant
cdet(x + E(u)) =¥+ @1 () X" + - + Dy (u).

Write a
Dy (u) = Z <I>,(c Jue,

Corollary. The coefficients <I>,(<") withk=1,...,n and
Mo+ -+ <at+ k< N1+ 4+ Ay

are free generators of the center of U(a).

[Brown—Brundan 2009], Takiff case: [M. 1997], [Capelli 1890].
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Vinberg’s quantization problem

Given any y € a*, the Mishchenko—Fomenko subalgebra A,

of S(a) is a Poisson-commutative subalgebra.

Vinberg’s problem: construct a commutative subalgebra

A, C U(a) such that gr A, = A,.

A general solution: [Arakawa—Premet 2017]

following the approach of [Rybnikov 2006].
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image is a commutative subalgebra A, of U(a).
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For x € a* and any nonzero z € C consider the homomorphism
p: U(t_la[t_l]) — U(a),
X[—1] = Xz7' 4+ x(X), X[l — X7, r<-1.

Since 3(a) is a commutative subalgebra of U(t'a[r~']), its

image is a commutative subalgebra A, of U(a).

It does not depend on z.
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Apply the homomorphism p to the complete set ¢,(f‘) of

Segal-Sugawara vectors:
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Apply the homomorphism p to the complete set ¢,(f‘) of

Segal-Sugawara vectors:

P i 6 b 6 o)
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Apply the homomorphism p to the complete set ¢,(f‘) of

Segal-Sugawara vectors:
R ¢(“) ¢(“) —k . ¢[(<a3< N —1 + qb/(:g()
Corollary. The elements ¢>,(jgn) e Ula)withk=1,...,n

Mk + o <atk< g+ + M,

andm =0,...,k — 1 generate the subalgebra A, of U(a).
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Apply the homomorphism p to the complete set ¢,(f‘) of

Segal-Sugawara vectors:
p: ol s ¢(a> k4 ¢/(<a3< pa+ ¢/(<“(3¢)
Corollary. The elements ¢>,(jgn) cUl@) withk=1,....n,
M2+ -+ <a+k< Mg+ + A,
andm =0,...,k — 1 generate the subalgebra A, of U(a).

Moreover, if x € a* is regular, then this family is algebraically
independent and gr A, = A, .
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