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Vertex algebras
Let V be a vector space over C.
A series of the form
c(z) = chz*"*l € End V[[z,z7!]]

is called a field, if for any v € V there exists an integer N > 0

such that c,v =0foralln > N.

Equivalently, the series ¢(z)v contains finitely many negative

powers of z forany v € V.
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A vertex algebra is a vector space V (the space of states) with

the additional data (Y, T,1), where
1 is the vacuum vector 1 € V,
the translation T is an operator 7 : V — V and

the state-field correspondence Y is a linear map
Y:V—EndV[z,z']
such that the image of any elementa € Vis afield, Y : a — a(z),

a(z) = Za(,,)z*"”, ag) € EndV.
neZ
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These data must satisfy the following axioms:
> I(Z) = idy,

» a(z)1is a power series and a(z)1| _, = a for any q,

z=0

» T1=0,

v

[T,a(z)] = d.a(z) foreacha € V,

v

for any states a, b € V there exists a nonnegative integer N

such that (z — w)" [a(z), b(w)] = 0.
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Properties

The field a(z) is often written as a(z) = Y(a, z), and

the maps qa(,) : V — V are called the Fourier coefficients of a(z).

The span in End V of all Fourier coefficients a,, of all fields a(z)

is a Lie subalgebra of End V.

The commutator is given by

m
[Cl(m), b(k)] = Z <n> (a(”) b) (m+k—n)"

n=0
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Center of a vertex algebra
The center of a vertex algebra V is the subspace
3(V)=1{beV|au,b=0 forall aeV andall n>0}.
Equivalently, b € 3(V) if and only if [a(z),b(w)] =0foralla € V.
The equivalence is implied by the commutator formula.

Proposition. The center 3(V) of any vertex algebra V is
a unital commutative associative algebra with respect to

the product ab := "(71)17-
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Affine vertex algebras

Consider the affine Kac-Moody algebra g = g[t,r'] @ CK.
Fix x € C and introduce the vector space V,(g) as the quotient

of the universal enveloping algebra U(g):

Vi(g) = U(@)/U(@)(gl7] + C(K — ).

We view V,.(g) as a g-module. It is called

the vacuum module of level «.
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As a vector space, V,(g) will be identified with U(r—'g[t~!]).
» V.(g) is a vertex algebra.

The vacuum vector is 1. For X € g write X[r] = X¢". Then

T:1—0, [T,X[r]]=-rX[r—1].

The state-field correspondence Y is defined as follows. First,

=> X[z = X(2).

rez



For any r; > 0 we have
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— m 100 X1(2) ... 0" Xm(2) -,
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from right to left;



For any r; > 0 we have

Y(Xi[—r1 — 1] ... Xp[—1m — 1], 2)

1 r1 Fm
— m 100 X1(2) ... 0" Xm(2) -,

with the convention that the normally ordered product is read

from right to left;

 a(2)b(w) : = a(z) 1 b(w) + b(w)a(z)_,



For any r; > 0 we have

Y(Xi[—r1 — 1] ... Xp[—1m — 1], 2)

1 r1 Fm
— m 100 X1(2) ... 0" Xm(2) -,

with the convention that the normally ordered product is read

from right to left;

r<0 r=0
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The center of V,.(g)

If x # —h", then the center of V,,(g) is trivial, i.e., coincides with

the subspace of scalar multiples C1 of the vacuum vector.

From now on suppose x = —h", the critical level and let

3(g) denote the center of V ., (g).

Any element S € 3(g) is called a Segal-Sugawara vector.

By definition, g[z] S = 0.

3(g) is a commutative subalgebra of U(r~!g[t~']).
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Theorem (Feigin—Frenkel, 1992).

There exist elements Sy, ...,S, € U(r'g[t~']) such that
3(@)=C[T'S;|l=1,...,n, r>0],

where n = rank g.

Si,...,8, is a complete set of Segal-Sugawara vectors.

3(9) is called the Feigin—Frenkel center associated with g.

Detailed exposition: [E. Frenkel, 2007].
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Example. g = gly.

Set 7 = —0, and consider the N x N matrix 7 + E[—1] given by

T+ E[-1] =

T+E11[—1]

Eri[—1]

Eni[—1]

Epp[—1]

T+ Ezz[—l]

Ena[—1]

E\n[—1]

Eon[—1]

T+ ENN[—l]
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Theorem [Chervov—Talalaev, 2006, Chervov—M. 2009].
The coefficients ¢y, . .., ¢n of the polynomial
cdet(T + E[—l]) =N 4oV by T+ Oy
form a complete set of Segal-Sugawara vectors in V_y(gly).
Example. For N =2
cdet(r + E[—1]) = (7 + Eni[—1]) (T + Ex[—1]) — Exi[-1]Ep[—1]

=T+ 1T+ ¢
with
o1 = En[—1] + Exn[-1],

¢ = Ei1[—1] Ex[—1] — Ey[—1] Eia[—1] 4 Ex[-2].
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Matrix form of generators

Set

N
E[-1] =) e¢; ® Eg[—1] € EndC" @ U(r 'gly[r']).
ij=1

Consider the algebra

EndC" ®...® EndC" @ U(r 'gly[t'])

m

and let H™) and A(™ denote the symmetrizer and
anti-symmetrizer in

CVe...@CVN.
————

m
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Theorem. All coefficients of the polynomials in 7 = —d/dt
try, A" (T + E[-1]1) .. .(7 + E[1]n)

= ¢m07—m —i_gbmle*l + e +¢mm7

try, o H™ (7 +E[-1]1) ...(7T + E[~1],)

= meTm +1/}ml Tmil + e +wmm7
tr (7 + E[—1])" = 0o ™" + Om1 7 Y O

belong to the Feigin—Frenkel center 3(gly ).
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In fact, ¢, = ¢y form=1,...,N.

Moreover, each family

P11y NN and O11,...,0nN

is a complete set of Segal-Sugawara vectors for gly.

This follows from the MacMahon Master Theorem and the

Newton identity for the matrix = + E[—1].

Extension to types B,, C,, D, and G;:

[M. 2013], [M.—Ragoucy—Rozhkovskaya, 2016].
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Quantum vacuum modules
The double Yangian DY(gly) is a deformation of U(gly) in the

class of Hopf algebras.

The algebra DY (gly) is generated by the central element C and

elements tfj’) and t,.(j*’), wherel <ij<Nandr=1,2,....

The defining relations are written in terms of the series

() = 05+ Y 1w’
r=1

and

o0

tl']"(u) =0; — Z tl-(j_r) u L
r=1



The defining relations are
R(u—v)Ti(u) To(v) = Ta(v) Ty (u) R(u — v),
R(u—v) T} (u) T (v) = TS (v) T} (u) R(u — v),
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The defining relations are
R(u—v)Ti(u) To(v) = Ta(v) Ty (u) R(u — v),
R(u—v) T} (u) T (v) = TS (v) T} (u) R(u — v),

R(u—v+C/2)Ty(u) Ty (v) =T (v) T1 (u) R(u — v — C/2),

where the coefficients of powers of u, v belong to
End C" ® End CV @ DY(gly)

and

Tuw)=> e;@t;(u) and  TH(u) = e;@tf(u).

ij=1 ij=1
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Here R(u) is the Yang R-matrix,

Ru)=1—Pu ',

where P is the permutation operator in CV @ CV.

We also use the normalized R-matrix

where
o
g(u)zl—l_zgiu_la gie(ca
i=1

is uniquely determined by the relation

glu+N) = g(u) (1 —u?).
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i

(=n) _

degr.’ =r—1 and degt; ' = —r.

Use the bar notation for the images of the generators in the

associated graded algebra gr DY (gly).
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Consider the filtration on DY (gly) defined by deg C = 0,

(r) (=n _

degt;” =r—1 and degt; ' = —r.

Use the bar notation for the images of the generators in the

associated graded algebra grDY (gly).
Proposition. The assignments
Ejlr—1] =1,  Ejf-r—1 " and K~—C
with » > 1 define an algebra isomorphism
U(g[N) — grDY(gly).

20
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Ve(aly) = DY (gly) /DY (gly)(C ¢, 1§ [ r > 1).
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The vacuum module V,(gly) at the level ¢ € C over DY (gly) is
Ve(aly) = DY (gly) /DY (gly)(C — ¢, 1 [r > 1).

As a vector space, the vacuum module is isomorphic to the
dual Yangian Y*(gly), which is the subalgebra of DY (gly)

generated by the elements té.(,*’).

Assume the level is critical, ¢ = —N.
Let V denote the completion of V_n(gly) by the descending

filtration defined by setting the degree of tfj_’) to be r.

21
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By the proposition, gr Y* (gly) = U(r~'gly[r"!]) so that Vis a

quantization of the vacuum module at the critical level over EIN.
Introduce the subspace of invariants by
5(17) ={ve % | tj(u)v = 6;v},

so that any element of 3(V) is annihilated by all ti](-r) with » > 1.

~

Proposition. 3(V) is a commutative subalgebra of the completed

dual Yangian Y (gly).

3(V) is a quantization of the Feigin—Frenkel center 3(gly ).

22
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Construction of invariants

We will work with the tensor product algebra

EndC" ®...® EndC"V ®]7

m

and introduce the rational function in variables u, .. ., u,, by

R(ur, ... um) = [ Ravltta — ),

1<a<b<m

the product is in the lexicographical order on the pairs (a,b).

23
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Let 1 be a Young diagram with m boxes and at most N rows.

For a standard p-tableau ¢ with entries in {1, ..., m} introduce
the contents ¢, = ¢c,(U) fora=1,...,msothatc, =j—iifa

occupies the box (i,j) in U.
Let ¢, € C[6,,] be the associated primitive idempotent.

The symmetric group &,, acts by permuting the tensor factors

in (CV)®™. Denote by &, the image of ¢,, under this action.

24
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where h(p) is the product of all hook lengths of the boxes of 1.
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Proposition [Fusion procedure; Jucys, 1966].
R(uy, . .. ’um)|u1:c] |u2202 e ‘um:cm = h(p) &y,
where h(y) is the product of all hook lengths of the boxes of .
In the tensor product algebra set
EyT(w+cr)... T (u+ cm).

This is a power series in u independent of &/, whose coefficients

are elements of the completed vacuum module V.

25



Theorem [Jing—Kozi¢—-M.-Yang, 2018].
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All coefficients of the series T ! (u) belong to the subspace of

~

invariants 3(V).
A key point in the proof is the identity
R(ur, ..o ytm) T (ur) oo T () = T () - Ty () R(uy - -y thy),

m m

and its consequence implied by the fusion procedure:
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Theorem [Jing—Kozi¢—M.-Yang, 2018].

All coefficients of the series T ! (u) belong to the subspace of

~

invariants 3(V).
A key point in the proof is the identity
R(uy, ... ,um)Tl"'(ul) T () = T () - Tl"'(ul)R(ul, ey U),

and its consequence implied by the fusion procedure:

EyTHu+ct). .. TH(u+cn) =T (u+cw) ... Ty (u+c1) &y
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N
E=) ¢;®E; € EndC" @ U(gly).

ij=1
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By replacing T (u) ~» u + E and then setting u = 0, we recover

the quantum immanants:
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Application: quantum immanants
Introduce the matrix

N
E=) ¢;®E; € EndC" @ U(gly).
ij=1

By replacing T (u) ~» u + E and then setting u = 0, we recover

the quantum immanants:

S# = tr17m7m SZ/{ (E] + Cl) P (Em + Cm).
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Application: quantum immanants
Introduce the matrix

N
E=) ¢;®E; € EndC" @ U(gly).
ij=1

By replacing T (u) ~» u + E and then setting u = 0, we recover

the quantum immanants:
S# = tr17m7m SZ/{ (E] + Cl) P (Em + Cm).

Theorem [Okounkov, 1996]. The quantum immanants S, form

a basis of the center of U(gly).
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We have &, = A, the anti-symmetrizer.
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Segal-Sugawara vectors from the invariants

Take the particular case of column diagram p = (1™).
We have &, = A", the anti-symmetrizer.

Hence all coefficients of the polynomial

belong to 3(17).
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Extend the filtration on the dual Yangian to the algebra

Y (gly)[[u, 8,]] by degu = 1 and degd, = —1.
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Extend the filtration on the dual Yangian to the algebra
Y (gly)[[u, 8,]] by degu = 1 and degd, = —1.

The associated graded is isomorphic to U(t~'gly[r~']) [[u, D,]].
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Extend the filtration on the dual Yangian to the algebra
Y (gly)[[u, 8,]] by degu = 1 and degd, = —1.
The associated graded is isomorphic to U(t~'gly[r~']) [[u, D,]].

The element

77777

has degree —m
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Extend the filtration on the dual Yangian to the algebra

Y (gly)[[u, D.]] by degu = 1 and deg 9, = —1.

The associated graded is isomorphic to U(t~'gly[r~']) [[u, D,]].

The element

77777

-----
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Extend the filtration on the dual Yangian to the algebra

Y (gly)[[u, D.]] by degu = 1 and deg 9, = —1.

The associated graded is isomorphic to U(t~'gly[r~']) [[u, D,]].

The element

77777

-----

where,

E(u); =Y E[-rju"".
r=1
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By taking the coefficients of «° in

try A (0 +EW) 1) ... (Ou+E@)sm),

-----
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By taking the coefficients of «° in

we recover the differential operator in 7 = —0;:
try, A (T +E[-1]1) ... (7 + E[~1]n)

= ¢m07—m+¢m17—m_1 ++¢mm
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By taking the coefficients of «° in

we recover the differential operator in 7 = —0;:

try A" (1 + E[-1]1) ...(T + E[~1],)

geeey

= ¢m07m+¢m17—m—1 ++¢mm

A similar calculation works for the row-diagram u = (m), but no

Segal-Sugawara vectors are known for arbitrary .
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