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In 1970, Schadt and Helfrich discovered TN-effect for LCDs.
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» Molecular orientations:
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The first continuum theory

» Frank developed a continuum theory in 1958, building upon
Oseen’s approach from the 1920s. The theory includes the
following energy density

W (u, Vu),
» The energy is frame-indifference and rotational invariant.

» For u=(0,0,1) at the origin, we have a vector notation on
the molecular orientations, for instance,

out  ou? .
the splay type: — + — =divu.
X
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The Oseen—Frank energy

» For u € HY(Q; 5?),Q € R3, the associated energy is

E(u) :/ W (u, Vu) dx
Q
» The coordinate free form of the energy density is

Splay Twist
—— ——
W (u,Vu) = ki (div u)? +ko (u - curl u)?

Bend Surface energy

—_———
+ k3 |u x curl u|® +-(ky + ka) [tr(Vu)? — (div u)?]

out  ou?
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Lab measurements for the Frank constant

PPA (4,4'-dimethoxyazoxybenzene):

at 125 degrees Celsius has

ki =9, k=58 and k3=19 (unit: 10712 Newtons)

Generally, Frank constants are unequal, i.e., k1 # ko # ks.

Hardt—Kinderlehrer-Lin (CMP, '86) proved that a minimizer u of
the energy E(u) is smooth away from a closed set £ C Q which
has Hausdorff dimension strictly less than one (the set Z may not
be finite).
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A hydrodynamic model

» During the 60's, Ericksen and Leslie generalised the static
theory to a hydrodynamic theory.

» Let the director field, fluid velocity and pressure be
(u,v,P): [0, T] x R® = S? x R® x R
The Ericksen—Leslie system (ELS)
8tvi T VjVjVi + V;P—Av = VJ'O'E,'J'

Vvl =0
Oet’ + VIV u' = (65— u'u*)(V; Wk (u, Vu) — W(u, Vu))
J

where pj’-' = Vjui, o is the Ericksen tensor.

» Physics background for ELS: conservation laws for linear
momentum, mass and angular momentum respectively.
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The Dirichlet energy

The one-constant model (OCM): W(u, Vu) = |[Vul?.

Opv' + VIV + ViP = AV — Vi(ViukV;u¥)
VjVj =0
Oeu’ + VVju = Au’ + |VulPd'

» If v=0, OCM reduces to a constrained heat flow of harmonic
maps into spheres.

» For the harmonic map flow, Chen—Struwe (Math. Z. '89)
proved the existence and the partial regularity of global weak
solutions between manifolds using the Ginzburg—Landau
approximation.

» Such method was initially appeared in the study the phase
transition in superconductivity in the 50's.
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» The main idea is to relax the constrain
uesS? = u eR3

at the cost of a penalized energy

/]Vu]2dx = Eue)/Vual2 Adx.

» Then it leads to the Ginzburg—Landau approximation for ELS
proposed by Lin—-Liu (CPAM '95)

The Ginzburg-Landau system (OCM case)

OV + VIV + VP, = Vv — V;(V;ukV;u¥)
Vjvg =0
ul(1— |u.|? )

Oeul + vIViu. = Auf 4 =



The Lin—Liu problem

Does (u., v.) converge to functions that solve ELS as ¢ — 07

Significant research and study have been dedicated to the topic of
convergence:

» Lin-Liu (ARMA '00)

» Hong (CVPDE '10)

» Hong-Xin (Adv Math '12)

» Hong-Li-Xin (CPDE '14)

» F.-Hong-Mei (SIAM Math Anal '20)

This problem provides further motivation for the generalisation of
the ELS, which is known as the Beris-Edwards system.
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Some background for the Beris-Edwards system

The most general elastic theory for nematics,
which describes all reorientation types, is

the Landau-de Gennes theory.

Pierre-Gilles de Gennes was awarded a Nobel
prize for physics in 1991 for his work on liquid
crystals and polymers.

Photo from the Nobel
Foundation archive
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A problem for vector representation in S

The Landau-de Gennes model is a tensor representation.
(isomorphic to the projective plane RP2 up to a scaling)

Non-simply-connected domains (Ball '17)
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Biaxial substances for nematics

The Landau-de Gennes model works for both uniaxials and biaxials.

Madsen el al. '04.
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The Landau-de Gennes Energy

» de Gennes '71 introduced the Q-tensor order parameter in
SO — {Q € M3X3 Q’J Q_]H Qu - 0}

» For Q € W172(Q; Sp), the Landau—de Gennes energy
ELG(Q;Q):/ f£(Q,VQ) + f(Q) d.
Q

» The elastic energy density fe(Q, VQ) is given by

L 0Qj Qi | L3 0Qik 8QU Q 0Qjj 0Qj
2 Ox; Oxk 2 Ox; axk Ox; Oxy

L
- 1VQP +
2

» Landau's expansion for phase transitions

B(Q) = —gtr(Q2) — gtr(Q3) + % [tr(Qz)]z, a,b,c > 0.
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» In his most cited paper, de Gennes '71 established the first
two terms

Ly 0Q;j 9Qik
2 8X_, an .

2IVQP+

» Schiele-Trimper '83 revealed that de Gennes's representation
requires ki = k3.
L> 0Q;; OQik 0Q;; 0Qy; ks — ki
*Qk Ly = 3
2 an ox Xk 8X/ 8Xk 25Jr

2IVQP +

» Dickmann '94 derived the additional L3 term (from the
Oseen-Frank theory), which correlates with the blue phase
theory.

BOQU aQik L3 ank 8QU 7Q/kaQU aQU

2 VOt 5 G ax T2 B o ax Ok’



L 0Qj 0Qik | L3 0Qik Qi 70 0Qij 0Qj
2 8XJ 8Xk 2 aXJ an Ik aX/ 8Xk

L
71|v0\2 +




L Ly 0Q;; 0Q; L3 0Qi 0Q; 0Q;; 0Q;

71|VQ‘2+72 QJ Qk 3 Qk QJ 70/{ QJ QJ

2 2 0x; Ox 2 Ox;  Oxx Ox; Oxx

» Longa et al. '87, Ball-Majumdar '10 and Golovaty et al. '20
pointed out the L4 term is problematic.



L 0Qj 0Qik | L3 0Qik Qi 7@/(30” 0Qj
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» Longa et al. '87, Ball-Majumdar '10 and Golovaty et al. '20
pointed out the L4 term is problematic.

An example from Ball-Majumdar '10

Q) =a(h) (£ @ 2= 31) on(1) = 0,x € B(0.1)

|
n(r) = no(2 + sin(kr)), 0<r< %
2mo(2+sin(5)(1—r), i<r<i



L 0Qj 0Qik | L3 0Qik Qi 7@/(30” 0Qj

7|VQ‘ + 2 0x; Ox 2 Ox;  Oxx Ox; Oxx

» Longa et al. '87, Ball-Majumdar '10 and Golovaty et al. '20
pointed out the L4 term is problematic.

An example from Ball-Majumdar '10

The energy density can be arbitrarily large and negative.

X 1
Q) =n(lx)) (7 % - 31) 1(1) = 0.x € BO.D)
n(r) = no(2 + sin(kr)), 0<r< %
2mo(2+sin(5)(1—r), i<r<i

» Existence of minimizers cannot be guaranteed.
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For uniaxial Q-tensors
1
QeSS ={QeS: Qij = S+(U,‘Uj — §5,'j), ue 52},

we recently discovered the L4 term is a linear combination of a
fourth order and a second order term.

3

QIkE)Q,-j 8QU _i Z (ZQ nf)Q,,) 25+‘VQ|2

0x; Ox,  2sy

ij,n=1 k=1
We suggest a new representation

F.-Hong (CVPDE '22)

Ly St Lg 2 L 8QU 0Qik
fe(Q,VQ) = (2 )NQ| 2 Oxj Oxx
L30Qi 0Q; 3L 0Q;; 0Q;
3 Qk QJ 74anan QJ QJ

2 8XJ 8Xk 8Xk
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In the case Ly = L3 = L4 = 0, Majumdar-Zarnescu (ARMA '10)
introduced a rescaled energy:

1 > f8(QL)
/92|VQL| +T dx,

where FB(QL) = fB(QL) — ming0 fB-

Let Q" € S, be a global minimizer of the Dirichlet energy. They
proved that Q@ — Q* in W12 up to a subsequence as L — 0.
Nguyen-Zarnescu (CVPDE '13) proved local smooth convergence
of minimizers Q; away from the singular set of Q..

Relevance in Physics: the constant L is small ~ 10711 J\ M.

The limit L — 0 is analogous to the Ginzburg—Landau functional.
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In the spirit of Majumdar-Zarnescu's work, we suggest a rescaled
Landau-de Gennes energy:

fa( QL)
L

EL(Q;Q):/QfE(QLaVQL)‘F dx.

> We rescale Q € S, to Qp € Sy at the cost of the penalty term.

> @ is uniaxial with a small biaxial perturbation.

» F.-Hong (CVPDE '22) proved that
the weak solutions Q; of the EL equation for E;(Q; Q) solve
the EL equation for uniaxial Q-tensors as L — 0 (Assuming
strong convergence on Q).

The case of Ly = L3 = L4 =0:

1
s+ AQ; — 2V Qi Vi Qy +2(s 1 Qy + §5U)|VQ|2 =0.
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The hydrodynamic flow for liquid crystals

Let (Q, v, P) be the Q-tensor parameter, velocity and pressure.

The Beris-Edwards system for uniaxial Q € S,

(@c+v-V - B)v+VP =V ([QH]+0(Q,VQ)),
V - v =0,
(@ + v V)Q +[Q Q] =H(Q, VQ).

» H(Q,VQ) is the first variation for Q € S,
» o is a distortion stress tensor
» [, ] is the Lie bracket
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A scaling analysis

» Recall the rescaled Landau-de Gennes energy

fa(Qv)
L

E(Qi) = [ fe(@.ve)+ ' e aresy
Q
» We construct a rescaled Beris-Edwards system from E;(Q; Q)
with solutions (Qr, v;)

» Does (Qp, v,) converge to functions that solve the
Beris-Edwards system for uniaxials as L — 07
(c.f. Lin-Liu's problem for ELS)

» Gartland (MMA '18): This scaling analysis is analogous to
- “London limit" in the Ginzburg-Landau theory of
superconductivity
- “large-body limit” in the Landau-Lifshitz theory of
ferromagnetism



F.-Hong-Mei (arXiv:2112.04074)

F.-Hong (CVPDE '22)

Ly S Ly 2 Lo 8QU OQik
2 3 )]VQ| * 2 0x; Oxy

L30Qx 0Q;  3Ls 0Q;; 0Qy
2 0xj Ox +254r Q@in Qi 0x; Oxx

|

» For the initial condition
(Qos o) € Hp (R?; S.) x HY(R3; R?), div v = 0,
in the limit of (Q, v;), we prove the existence of a unique

strong solution (Q, v) to the Beris-Edwards system for
uniaxials up to some maximal time T%*.
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F.-Hong (CVPDE '22)

Ly S Ly 2 Lo 8QU OQik
2 3 )]VQ| * 2 0x; Oxy

L30Qx 0Q;  3Ls 0Q;; 0Qy
2 0xj Ox +254r Q@in Qi 0x; Oxx

|

» For the initial condition
(Qos o) € Hp (R?; S.) x HY(R3; R?), div v = 0,

in the limit of (Q, v;), we prove the existence of a unique
strong solution (Q, v) to the Beris-Edwards system for
uniaxials up to some maximal time T%*.

» Moreover, for any T < T*, we prove that

(VQL,vi) = (VQ,v) in CP(r, T; C2(R3)) for any 7 > 0.
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» Recall the first variation in ELS:

ui(1 — |ue|?
Va Wi (ue, Vue) — Wi (ue, Vu5)+5(62|€|).
> Hong-Li-Xin '14: To obtain ||V2u||?, type estimate (uniform
in €), we multiply the equation by —Au. and have
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Ay P g
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Ideas from ELS

» Recall the first variation in ELS:
ul(1— Jucl?)
Va Wi (ue, Vue) — Wi (ue, VU5)+T.
> Hong-Li-Xin '14: To obtain ||V2u||?, type estimate (uniform

in €), we multiply the equation by —Au. and have

Y 1— 2
_ Auéu«f( 2|u5’ )dX
R3 g

2\|2
S/ C|VU5‘2( |U€| ) _1‘V(’U§| )| dX
R3 g2 4 €

LV(uP)? , | 1= [P :
<[ —-= C(n)|Vu|"d
< [ a e - cIVa o

» The first variation in BES:

1
H(QL, VQL) + ZgB(QL), ge(QL) ==

dfe(QL)
0QL

with fa(Q1) = —3tr(Q?) — £ tr(Q}) + § [( Q)]
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» The substitution technique does not apply for

/ (AQL, gg(QL)) dx.
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» A new idea for uniform in L estimates: define a set 'close to’
S
Ss :={Q € Sy: dist(Q;S:) <d}.

» For each smooth Q € Ss, the nearest point projection
m(Q) € S, has a constant number of distinct eigenvalues, so
there exists a smooth rotation Rg := R(7w(Q)) € SO(3)
(Nomizu '73) such that
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Q € Ss. Then we find

} C:?n QIZ 0
Q=R{QRg= | Qn Q 0
0 0 Qs3



ROT(Q)Rg =

O O W
o
b
o
Il
QO
+

(3) 25+
3

» Nguyen-Zarnescu '13: m(Q) commutes with Q for any
Q € Ss. Then we find

5 C:?n QIZ 0
Q=R{QRg= | Qn Q 0
0 0 Qs

» F.-Hong-Mei: The Hessian of the bulk density fg satisfies

AP < 8éij@k/fB(Q+)§,j§k/, for some \ > 0.
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» Similarly, we prove the high-order estimate of the kind
VQL € L2(0, T; H*(R?)).

» A local L3 criteria

3
wp/ IVQ|? +
t,x0 BRO (Xo)

dx < 3.
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Assume that (Qp,1,, vi,T,) satisfies
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» Assume that (Qp, 7,, vi,T,) satisfies

QL7 — 7(QL 7o) 121 g
1QuT 3 (ss) + e, 7o s oy + ———— 2 < M

» The Gagliardo—Nirenberg interpolation:

QL — m(QL) | oo (3)
1 3 B
<Cl|QL - 7"'(C‘PL)|’22(R3)”V2(QL - F(QL))H22(R3) < 2

and

3/2
1
SUP/ IVQL|* dx < Csup / [V Q0| dx
t.50 J B, (x0) txo \ R0 /By, (x0)

3/2 3
vCawp (R [ vQuex) <2
t,xo0 Bry (%0) 2

for sufficiently small L and some uniform constants T, Ry in L.
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We show the existence of a unique strong solution to the
Beris-Edwards system up to some T.

For T < T* (maximal time), we use the extension technique
from Hong-Li-Xin '14 (using the local L3 criteria).

Prove inductively on an estimate of the form
VQ e L(r, Ty; HFMY(R3)), Vr >0,k >2.

Prove the convergence up to a uniform short time Ty, and
extend the result to maximal time T*.
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