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Review
°

Second order Sobolev's inequality for R™: form >3 and 1 < p < nzf" we have

2/p
(/ updz) " < Knp/ Vul?da (1)

for all u € WH2(R™).
[Sharp form of (1) was independently found by Aubin and Talenti in 1976.]
[Inequality (1) can be thought of as the continuity of the embedding W2(R") —

2n

LP(R™) up to p = 5.

Second order Sobolev's inequality for (S™, gs» ): on the standard sphere (S™, gsn)

2/p —9
([ repdue)” <22 [ Volduse + [ Pl (@)
S’IL n S'IL

forn>3,2<p< -2 andallve WH(S").

[Sharp form of (2) was proved by Beckner in 1993 using spherical harmonics and the
dual-spectral form of the Hardy—Littlewood—Sobolev inequality on S™.]
[Inequality (2) can also be obtained directly from (1) by making use of stereographic

projection.]

ngfg is of particularly interesting.]

[The case p =



Review
.

Critical Sobolev's inequality for (S™, gsn): With 2 < p < nzf" recall from (2)

2/p -2
( / |v|pd,ugn) < ?’T |Vol?dusn + / |v2dpgn .
n 4 Sn Sn

In the critical case p = 2% with n > 3 the critical Sobolev inequality is
n—2 3
n n 4
(/ v nﬁzdugn) < — / |Vo|2dpgn +/ lv2dpgn.
sn n(n — 2) Jsn sn
If we denote
. —2
L2 : v —Av+ %v,

then the critical Sobolev inequality can be rewritten as

. n;2 4 -
(/ ‘/U n—2 d/,LSn) S m/ 'UL,?L(’U)d/,LSn (3)

[This is because
2 n(n —2)
VL (0)dpgn = | w( = Avt = —v)dpgn =+ |
n n

[L2 is known as the conformal Laplacian on S™, which is of second order. And we

are interested in cases of higher order operators instead of second order operator L2 ]
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The conformal Laplacian of second-order on S™
n(n —2)
4
is an example of lower-order conformal transformations. The first example of
higher-order conformal transformations was found by Paneitz in 1983.

L2 =-A+

On (S™, gsn) with n > 3, this operator, denoted by P2 and called Paneitz's

operator, is as follows
pi_ (—a+t n(n4— 2))(7 AL (n+2)4(n74))

The other example of higher-order conformal transformations was found by
Graham, Jenne, Mason, and Sparling in 1992.

On (S™, gs») with n > 3, this operator of order 2m, denoted by P2™ and called
GJMS's operator, is as follows

m—1 3 .
Pf:n _ H (_ A + (n + 27)(7’;7 21 — 2))

=0

[In general, to define P2™ it is required either 3 < n is odd or 2m < n is even.]
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Recall (3), that is
> e 4
(\/n ‘U ﬁd'[LSW) " S m /Sn ’UL?L('U)d,MSn.

A natural generalization of (3) for Paneitz's operator could be

' 2/p ' .
( / \1)|Pdugn> Snp / vP; (v)dpgn (4)
" sn

forl<p< 2t ifn>5and —6=2% <p<0ifn=3.

[The 4th order Sobolev’s inequality for R™: forn > 5 and 1 < p < 2n_ we have

n—47
9/,
</n \u|pda:) /e Snp /Rn(Au)de Yu € W22(R")] (5)

[It appears that in (4) the two cases n < 4 and n > 5 could be very different.]
[In the case n = 3, as P3(1) = —15/16 < 0, the RHS of (4) is strictly negative.]

Similarly, a natural generalization of (3) for GJMS’s operator could be

‘ 2/p 2m
( / |u|pdugn) np / VP2 (v)disn (6)
Jsn Jan

ifn>2mand —22— <p<0if3<n<2m.

n—2m

2n
n—2m

forl <p<

[It appears that in (4) the two cases n < 2m and n > 2m could also be very different.]



Review
°

In 1993 (a preprint appeared in 1991), Beckner proved (6) for n > 2m >4

2/p )
(/ |1)|pdusn) Sn,p/ vP: (v)dpgn

[The method used is based on spherical harmonics.]
[The above inequality also includes (4) for all n > 5.]

In 2004 (a preprint appeared in 2003), Yang and Zhu proved (4) in the critical
case in the remaining case n = 3

-3
(/SS |b|*6du§n) < /S3 vP3(v)dpugs (M)

If n = 3, then 2% = —6. The method used is based on symmetrization.
n—4 Yy

In 2007 (a preprint appeared in 2003), Zhu proved (8) in the critical case for odd
n € {3,..,2m}

</ \1)|_27§Z" dy,gn)

[In fact, the RHS of (8) is bounded from below if either n = 2m — 1 or n = 2m — 3.

_2m-n

Sn,p / UP?Lm(Y})d‘u,gn (8)

The method used is variational.]
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In 2018, F. Hang and P. Yang (arXiv:1802.09692) proposed the following
alternative approach to prove (7). For small ¢ > 0, consider

3
inf ([ Jol % )/ P} dpis: 9
vt ([t i) [ o)+ edldus 0)
It can be proved that there is a smooth minimizer v, > 0 to (9). In addition, v,
solves
Pj(ve) +eve = —v " on S

If any smooth, positive solution to the above PDE is constant, then for any

¢ € W22(S?)
3
([ 101 0dmsn)" [ 6[PY®) +0)des > [PY(1) + €] 87

Letting € \, O gives the desired inequality with a sharp constant
7§|SS|4/3
16

[Recall that P4 = (—A + %)(—A _ %) = A2 4+ %A— %}
[Hang and Yang proposed this approach, but in their paper, they used a way around.]
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For small € > 0, recall if u. is a minimizer to (9), namely

3
oot ([0l )" [ o[Pe) + coldes,
then up to a constant multiple u. solves
Pi(v) +ev=—v"" on§S> (10)
Hang and Yang raised the following:

Let £ > 0 be a small number. If v is a positive, smooth function solution to (10),
then v must be a constant function.

[In their work, Hang and Yang worked on minimizers. Being a minimizer, there is an
extra freedom, namely one assumes

[, 1ol Cduen =1,

which is not available for any solution to the PDE. Hence, the conjecture is about to

ask for a larger class of optimizers without any constraint.]

This conjecture was recently confirmed by Shihong Zhang (arXiv:2104.03060).



Main result
.

Inspired by Hang and Yang's conjecture and the work of Zhang, we aim to study
Liouville type result for
P (v) = Q™ (ev4+v~*) onS" (11)

—~—

Pom(1)
under

3<n<2m, nisodd, a>0, e€]0,1)
Here recall P2™ is GJMS's operator of order 2m on S™ with
P2 = (=A)" +lot+ Q)"

[@2™ does not have a sign, for example Qg < 0 but Qg > 0. Fortunately, Q2™ # 0.]
[Now the condition ¢ € [0, 1) can be easily seen by integrating both sides of (11) to

get
(1 _5)/ vdpigsn :/ v %dpggn
S’H. S‘VL

after canceling both sides by Q2™.]

Our aim is to show that for suitable small e € (0,1) and 0 < o < % any

smooth, positive solution to (11) must be constant.

However, we need to modify Zhang's approach.



Main result
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Our main result reads as follows:

Theorem (the negative case, namely n < 2m)

Let assume n > 3 be odd and m > n/2. Then there exists ¢, € (0,1) such that
under one of the following conditions

Q cithere € (0,e,) and
0<a§w
2m —n
Q ore=0 and
2m+n
0<a<—"—
2m —n

any positive, smooth solution v to
P?Lm(v) _ Qi’m,(&_v 4 U—a) on Sn

must be constant, hence is equal to (1 — &)~ 1/(a+1).

Next, let us briefly sketch our approach. It consists of three main steps as follows:
(1) to derive some integral equation for u on R™, (2) to prove that u must be
radially symmetric, and (3) to prove that v must be constant.



Methodogy
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Zhang used the following approach to tackle the conjecture:
Pi(v)=—(sv+v7") onS3
l via the stereographic projection
2 4
A2 — _{ —7:| H R3
U 5(71+\x|2) U+ u n
u(z) = i/ |z — 9| [E(L)Zlu(y) + u(y)*q dy in R?
R3 1+ [zf?
via the Kelvin transform
At = [e( 2 e )] R {0)
14+ |z|?
via the method of moving planes

*

u* is radially symmetric and increasing

v is radially symmetric w.r.t. any critical point
via Kazdan—Warner type identity

v is constant



Methodogy
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We modify Zhang's approach to tackle the higher dimensional problem as follows:

P?Lm(v) — Q%m(g,v + U—(y) on §”

via the stereographic projection

2 om 2 n+27n+a n—2m _ 1 .
(AN, 2m | ( \ o 1 [ V"2 2 ol R
= n |-\1+‘.’L'|2} wT\]_—f—|[I;|2/ (o7 J T
: _ om 2 n+‘27n+a n—2m .
u(z) =C xf’Q’””[”i U+ (—s) ° 2w %dyin R"
(x)=C | le=yl °(1+|x|2) (1+|x\2) 4
. Celvi ‘
2 om 2 n+27n+an—2m, B .
(ANmLr . o2m] V2o g Vet sv—al Lopn
\ ] Xn L\1+|$|2} T\1+|l"2} \ ] J
via the method of moving planes

u is radially symmetric and increasing

l K \A . .

v IS constant
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®0

There are at least three difficulties that we are going to describe.
The first difficulity is how to transfer
P2m(v) = Q?™(ev +v~%) on S™
n—2m _
l u:(ﬁ) > (vorm 1)
u(@)=C [ o=y L)y iR
Rn
for some F .. Roughly speaking, there are at least two routes achieving this.

© to exploit the sign of (—A)u, the sub/super poly-harmonicity
@ to exploit the sign of [5, u(—A)%p, the weakly sub/super poly-harmonicity.
Zhang essentially follows the first route by making use of techniques from
potential analysis, which makes the analysis quite involved.
[In the published version, this part consists of nearly 10 pages.]

We offer a completely new approach by exploiting the relation of stereographic
projections centered at different points.



Technical difficulties

Now let see why a compactness result is required. This is the second difficulty.
Now we forget v on S™ but focus on w on R™. The aim is to prove u (blue curve
in the figure below) is symmetric w.r.t. z; = 0. As
2 n—2m
wz) = (————=) 2 (wor Nz as |x 00
@)= (5pr) * Lom ) sl S+

SN————" —v(north pole)
/400

So for large A > 1 and large x1 > A, one should have

u(xy, o, .oy Tp) > (2N — 21, T2, ., Ty) Vo > A

|
|
: w(2\ — 1,22, ..., Tn)
P

1

A=0

Then we lower A N\, 0 so long as u(z1, z3,...) > u(2A — 1, x2, ...) remains valid.
The key step is to show A = 0. (Then we let A 7 0... to get symmetry.)
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Denote * = (2\ — 21,9, ..., ¥,,) with [2*| < |z| in {z; > A > 0}. Recall

u(x) — U(l’)\) =C I:‘x)\ — y|27”_” _ |ZU _ y|27n—71,j| [Fs(y)\) o FE(y):I dy
{z1>X}
>0
with ) ,
2m n+27n+am _
FE = 2 2 o

To lower A\, 0 one needs u(z) > u(x*). And to gain u(x) > u(z?), one wishes
F.(y*) = F.(y) >0 ¥y >\ >0.
As F.(z) has two power terms with opposite sign: while in {z1 > A > 0}

2 n +22 m L n= 2m 2 n +22 m L on= 2m

c 2y, A\ —« > ¢ 2y —(x,
(1+|y>‘|2) ") (1—|—|y\2) (v)
which is good, the first term is not that good because one cannot claim

() ) = o )" uly).
L+ [yA? I e
This requires some control of u independent of ¢, leading to a compactness
result. We make use of this compactness result as follows

u(y) < uly)™ <u(y) ™™ <uly?).




Technical difficulties
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Let us discuss the third difficulty. To obtain the symmetry of solutions, one often
use either the MMP or the method of moving spheres (MMS). But either

_AYm,, _ )2m L 2m L niim g gn=2m _a}
(FA)"u=Qn {5(1+|x|2) (1+\JJ|2)
or
— L 12m—n L 2m L nt2m o no2m _a}
w@) =€ | e —yPr () e () we|dy

contains the weight of 1+ |x|2, which seems to be difficult to handle using MMS.
[When using the MMS, the center is arbitrary.]

In practice, the MMP can be effectively applied to differential /integral equations
with positive exponents. Our case is quite different. Fortunately, we are still
successful with the MMP because we have good control on the growth of u,
namely v € C*°(R") and
1 2m—n
% <u(z) <O+ |z[*™™) Vr e R",

thanks to
2 n—2m

m) 2 (’UOﬂ'_l) in Rn

u=(
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An application of the Liouville type result is the following Sobolev inequality,
which motivates Hang and Yang to work on this higher-order PDE.

A subcritical /critical Sobolev inequality for GJMS'’s operator on S™

Let n be an odd number and m = . Then, for any ¢ € H™(S™) with ¢ > 0
and any a € (0,1) U (1,2n + 1), we have the following sharp Sobolev inequality

I'(n/2 atl
[ P @ > LRI ([ ) T (120

Moreover, equality occurs if ¢ is constant.

2
a—1

N

[ =1 is the limiting case, the inequality becomes
I(n/2+m) 2
P2 ()dpgen > ——t— ' 2 |S"| ex (—/ log dt(,,n), 13
. PP (P)dpgsn > T(n/2 _m)l | exp & s & Pdigs (13)

which can be obtained from (12)q as a N\ 1.]
[It turns out that

(12)2n+1 — (12)p with 8 € (1,2n+1) — (13) — (12)a with a € (0,1),

where the notation A — B means we can obtain B from A.]
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The method developed here works equally well for the case of positive exponents,
namely we can prove the following.

Theorem (the positive case, namely n > 2m)

Let assume n > 3 be odd and m < n/2. Then, under one of the following
conditions

2
Q cithere € (0,1) and1<04§n+7m
n—2m
2
Q or5:Oand1<Oz<n+7m
n—2m

any positive, smooth solution v to
P2™(v) = Q™ (ev +v*) onS"

must be constant, hence is equal to (1 —&)'/(@=1),

[Recall the equation P2™(v) = Q2™ (ev + v~%) in the negative case with m > n/2,
0<a<(n+2m)/(2m—n),and 0 <e < ex < 1]
[No compactness is required, hence the above result holds for any 0 < € < 1, not

necessarily small like 0 < &€ < e« < 1 in the negative case.]
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We recall our equation
2 2 nt2m 4 n=2m
—A)"y = Q™ [5 —— D 2
e S EarE)

In the special case ¢ = 0 and with ¢ = "+2m + o= 2m > 0 we are led to

)2m

u+ ( u‘“} in R™.

Ay = 2m

( ) n (1 4 |.’L‘ 2
Let us focus on the case n > 2m, in particular Q2™ > 0. After normalization,
the above equation is similar to the higher-order Hardy-Hénon equation in R”,
namely

5 in R (14)

2 )aw

(—A)"u = |z|7u? in R™.

(Sobolev-type critical exponent is %) As o > 0 and

(22) ~ lel ™,
1+ |z|?
in this scenario the exponent is ‘supercritical’ because
n+2m-—2c n+2m-—4o
n—2m n—2m
This coincides with the fact that (14) always admits a radial solution. But we
should not expect these two types of equations sharing similar properties.
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The equation (14), namely

2 o nt2m-—20
7A mu = _— n—2m in Rn
( ) (1 + \m|2) ’
is also very similar to Matukuma'’s equation in R3, namely
1 .
—Au=———u" inR?
1+ |x|?
with p > 1. It is known that this equation admits at least one radial solution for
any p > 1 (Sobolev's critical exponent is % =6). If weset m =1, n =3, and
a = —3, then after normalization our equation (14) becomes
1 .
—Au=——u® inR3
1+ |zf?

So without requiring the exact asymptotic behavior at infinity, it is expected that
our equation (14) admits other solutions rather than the radial one. We can also
investigate solutions to
2 o .
(—A)mu = (W) ’Up n Rn
with
n+2m —4o

n>2m, p>1 or p2>
n—2m
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For Matukuma's equation in R™, namely

-Au=——u inR"
1+ |z?
it is known (after Y. Li, W.M. Ni, E.S. Noussair, C.A. Swanson, E. Yanagida, S.
Yotsutani, etc.) that if
3+2
3-2
then all positive solution must be radially symmetric with respect to the origin.
Hence we can ask if such a symmetry result still holds for higher-order cases, at

least in the special case

n=3 1<p<b=

2 n+2m—20

(—A)mu = (W)UUW in RTL

with n > 2m >4 and o > 0.
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For Matukuma's equation in R™, namely

-Au=——u inR"
1+ |z?
it is known (after Y. Li, W.M. Ni, E.S. Noussair, C.A. Swanson, E. Yanagida, S.
Yotsutani, etc.) that if
3+2
3-2
then all positive solution must be radially symmetric with respect to the origin.
Hence we can ask if such a symmetry result still holds for higher-order cases, at

least in the special case

n=3 1<p<b=

2 n+2m—20

(—A)mu = (W)Uu n—2m in RTL

with n > 2m >4 and o > 0.

Thank you for your attention...



