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We consider the Euler equations for inviscid incompressible fluids
in Rn, n = 2, 3

∂tu + (u · ∇)u = ∇p in Rn × [0,T )

∇ · u = 0

u(x , 0) = u0(x)

where the velocity field u and the pressure p are unknowns.



Stream-vorticity formulation
Let

ω = ∇× u, u = ∇× ψ

If n = 2

ωt + (u · ∇)ω = 0 in R2 × [0,T ),

ψ(x , t) =
1

2π

∫
R2

log
1

|x − y |
ω(y , t) dy

(SV )

If n = 3

ωt + (u · ∇)ω − (ω · ∇)u = 0 in R3 × [0,T ),

ψ(x , t) =
1

4π

∫
R3

1

|x − y |
ω(y , t) dy

(SV )



Classical well-posedness results

If n = 2: global existence and uniqueness for initial data ω0 ∈ L∞.
Yudovich (1963), Wolibner (1933), Di Perna-Majda (1987), Delort
(1990).
If n = 3: for initial data in the space C 1,α the Euler equations are
well-posed for short time in C 1,α. Moreover, the solution conserves
energy.
Lichtenstein (1925).
The same result holds the context of the Sobolev spaces Hs , s > 5

2 .
Ebin-Marsden, Kato-Lai, Temam.



Aim. Construct solutions with concentrated vorticity

∇× u ∼ δΓ,

Γ = {p1, . . . , pk} (in R2) or Γ = γ(s) (in R3)

via gluing methods.



I. Concentrated vorticities in 2D Euler flows

Let ωε(x , t) be a smooth solution, ε-concentrated around a finite
number of points ξ1(t), . . . , ξk(t), in the sense

ωε(x , t) ⇀ ωs(x , t) =
k∑

j=1

κjδξj (t), as ε→ 0,

then

(K ) ξ̇j =
1

2π

∑
i 6=j

(ξi − ξj)⊥

|ξi − ξj |2
, t ∈ [0,T ]

Helmholtz (1858), Kirchhoff (1876), Routh (1881), Lagally (1921),
C.C. Lin (1941).



Formal derivation of (K )

Assume ωs(x , t) =
∑k

j=1 κjδ(x − ξj(t)). Then

Ψs(x , t) =
k∑

j=1

κj
4π

log
1

|x − ξj(t)|2
, −∆Ψs = ωs

Compute, with u = ∇×Ψs = ∇⊥Ψs ,

∂tω
s+∇⊥Ψs · ∇ωs =

k∑
j=1

κj ξ̇j · ∇δξj (x)

− (
k∑

i=1

κi
2π

(x − ξi )
|x − ξi |2

)⊥ · (
k∑

j=1

κj∇δξj (x))



=
k∑

j=1

κj

[
ξ̇j −

k∑
i=1

κi
2π

(x − ξi )⊥

|x − ξi |2

]
· ∇δξj

Then ∂tω
s +∇⊥Ψs · ∇ωs ∼ 0 at x = ξj ifξ̇j −∑

i 6=j

κi
2π

(ξj − ξi )⊥

|ξj − ξi |2

 = 0 ∀t ∈ [0,T ) (K )



k-Vortex Desingularization Problem

Given a colissionless solution ξ(t) of System (K ) is there a solution
(ωε,Ψε) of (SV) with

ωε(x , t) ⇀ ωs(x , t) =
k∑

j=1

κjδ(x − ξi (t)), ε→ 0

YES: Marchioro-Pulvirenti (1983), (1993) following the trajectories
Dávila, del Pino, Musso, Wei (2020) via gluing methods



Dávila, del Pino, Musso, Wei (2020)

We find a solution in the form

Ψε = Ψ0ε + ψε, ωε = ω0ε + φε, −∆Ψ0ε = ω0ε

where ω0ε and Ψ0ε are explicit ε-regularizations of

ωs(x , t) =
k∑

j=1

κjδ(x − ξj(t))

Ψs(x , t) =
k∑

j=1

κj
4π

log
1

|x − ξj(t)|2
, −∆Ψs = ωs

and we have control on the ε-smallness of ψε and φε in stronger
norms.



We choose the regularization

Ψ0ε(x , t) =
k∑

j=1

κj
4π

log
1

|x − ξj(t)|2 + ε2︸ ︷︷ ︸
=Γ0(

x−ξj (t)

ε )−4 log ε
,

Observe that Γ0 solves the Liouville equation

∆yΓ0 + eΓ0 = 0 in R2, U0(y) = eΓ0

with
∫
R2 U0 = 1.



Define

ω0ε(x , t) =
k∑

j=1

κj
ε2

U0

(
x − ξj
ε

)
, U0(y) =

1

π(1 + |y |2)2
.

to have ω0ε = −∆Ψ0ε and

ω0ε ⇀

k∑
j=1

κjδ(x − ξi (t)),
1

| log ε|
|∇⊥Ψ0ε|2 ⇀

k∑
j=1

κ2
j δ(x − ξj(t)).

U0 is the Kaufmann-Scully vortex.



Theorem (Dávila, del Pino, Musso, Wei, 2020)

Let ξ(t) = (ξ1(t), . . . , ξk(t)) be a colisionless solution of System
(K). There exists a solution (ωε,Ψε) of Problem (SV) of the form

ωε(x , t) =ω0ε(x , t) + φε(x , t)

Ψε(x , t) =Ψ0ε(x , t) + ψε(x , t)

where for some 0 < σ < 1 and all (x , t) ∈ R2 × (0,T ) we have

|φε(x , t)| ≤ εσ
k∑

j=1

1

ε2
U0

(
x − ξj
ε

)
,

|ψε(x , t)|+ ε|Dxψε(x , t)| ≤ ε2.



The question whether or not T =∞ is allowed in the above
theorem is an open question, and it strongly related to the stability
of concentrated vortices.

Bedrossian-Masmoudi (2015): Couette flow.
Ionescu-Jia (2020): Stability of singular solution ω = δ0.
Bedrossian-Coti Zelati-Vicol (2020): linear stability of
ω = 1

(1+|y |2)2 .

Ao-Davila-del Pino-Musso-Wei (2020): exact traveling wave
solutions

ωε(x , t) ⇀
k∑

j=1

κjδ(x − (ξj ,1 − αt, ξj ,2)),

(ξ1, ..., ξk) roots of Adler-Moser polynomials.



II. Concentrated vorticity in 3D Euler Flows

Stream-vorticity formulation (ω = ∇× u in R3){
ωt + (u · ∇)ω − (ω · ∇)u = 0 ,

u = ∇× ψ, −∆ψ = ω.
(SV)

Assume the vorticity is concentrated in an ε-neighbourhood of a
time evolving curve (filament) Γ(t) parametrized by arclength as
γ(s, t) in R3

ω(x , t) ∼ c δΓ(t) TΓ(t)



Let us consider a Frenet frame for γ(·, t),

γss = κN, B = γs ×N, γs = T.

N normal and B binormal vectors. κ curvature.



da Rios’ formal computation (1904): γ evolves by binormal flow

γt = 2 c | log ε| (γs × γss) = 2 c | log ε|κB (B)

Equivalently, t = | log ε|−1τ ,

γτ = 2 c κB (B)

Levi-Civita (1908), Ricca (1991), Betchov (1965), Arms-Hana (1965),
Ting-Klein (1991)

Binormal flow: Hasimoto (1972), Banica-Vega (2013-2015), de la

Hoz-Kumar-Vega (2020), Gutierrez-Riva-Vega (2003)



Vortex Filament Conjecture

Given a solution to the binormal flow

γτ = 2 c κB in [0,T ]

Find a true solution of 3D Euler Flow satisfying

~ωε(·, | log ε|−1τ) ⇀ c δΓ(τ)TΓ(τ), 0 ≤ τ ≤ T

Helmholtz, Kelvin, Da Rios

Benedetto-Caglioti-Marchioro (2015), Jerrard-Seis (2017)

Jerrard-Seis, 2017: If vorticities are concentrated around tubes γ(t, s),

they evolve in weak sense by binormal flow.

This Conjecture is unknown except for some special cases.



Examples: a helix whose horizontal section rotates at a constant
angular speed and a vertically translating circle are solutions of the
bi-normal flow of curves.



Exact solutions for 3D Euler with Helical Symmetry

One known solution of the binormal flow that does not change its
form in time is the rotating-translating helix, the curve Γ(τ)
parametrized as

γ(s, τ) =

R cos
(

s−a1τ√
h2+R2

)
R sin

(
s−a1τ√
h2+R2

)
hs+b1τ√
h2+R2

 , a1 =
2ch

h2 + R2
, b1 =

2cR2

h2 + R2
.



Theorem (Davila-del Pino-Musso-Wei (arXiv 2020))

Let Γ(τ) be the helix. Then there exists a smooth solution ~ωε(x , t)
to 3D Euler, defined for t ∈ (−∞,∞) that does not change form
and follows the helix, such that for all τ ,

~ωε(x , τ | log ε|−1) ⇀ cδγ(s,τ)γs(s, τ)ε→ 0.

This result extends to the situation of several helices symmetrically
arranged: ∪kj=1[R

2π j−1
k
γ(s, τ)], k ≥ 2.



Ettinger-Titi, 2009 : Solutions ω̄(x , y , z , t) of 3d-Euler with
Helicoidal symmetry and velocity orthogonal to the symmetry
lines of the Helix can be obtained by screw motion of vectors
formed from a two-variable scalar function ω(x + iy , t) in the form

ω̄(x , y , z , t) = ω(e i
z
h (x + iy), t)

[
i(x + iy)

h

]
where, for t = τ | log ε|−1,

| log ε|ωt +∇⊥ψ · ∇ω = 0, −∇ · (K∇ψ) = ω

and

K (x , y) =
1

h2 + x2 + y2

(
h2 + y2 −xy
−xy h2 + x2

)



Rotating helicoidal solutions

ω(x + iy , t) = ω(e−iαt(x + iy)), ψ(x + iy , t) = ψ(e−iαt(x + iy))

The problem becomes∇ω · ∇
(
ψ − α

2
| log ε|(x2 + y2)

)⊥
= 0

−∇ · (K∇ψ) = ω

Take ω = f (ψ − α

2
| log ε|(x2 + y2)) , for some f .

The problem reduces to the elliptic equation

−∇ · (K∇ψ) = f (ψ − α

2
| log ε|(x2 + y2)) = ω in R2



We take f (s) = ε2es and look for solutions to

S(Ψ) = ∇ · (K∇Ψ) + ε2e(Ψ−α
2
| log ε||x |2) = 0 in R2,

concentrating near a fixed point q0 = (x0, 0) with x0 > 0
(corresponds to R in the helices). By homogeneity, we can take

h = 1. For r =
√

x2
1 + x2

2 ,

L := ∇ · (K∇Ψ) =
1 + x2

2

1 + r2
∂x1x1 +

1 + x2
1

1 + r2
∂x2x2 − 2

x1x2

1 + r2
∂x1x2

+

(
∂x1(

1 + x2
2

1 + r2
)− ∂x2(

x1x2

1 + r2
)

)
∂x1

+

(
∂x2(

1 + x2
1

1 + r2
)− ∂x1(

x1x2

1 + r2
)

)
∂x2 .



Consider the change of variables

x1 = x0 + z1, x2 =
√

1 + x2
0 z2, z = εy .

The problem becomes

(1 + x2
0 )S [Ψ](z) = (∂z1z1 + ∂z2z2)Ψ + B0[Ψ]

+ ε2eΨ(1 + x2
0 )e−

α
2
| log ε|x2

0 e−
α
2
| log ε|`0(z),

where

B0 = −
(

2x0

1 + x2
0

z1 + O(|z |2)

)
∂z1z1 + O(|z |2)∂z2z2

−
(
2x0z2 + O(|z |2)

)
∂z1z2

−
(
x0(1 +

2

1 + x2
0

) + O(|z |)
)
∂z1 + O(|z |)∂z2

`0(z) = 2x0z1 + z2
1 + (1 + x2

0 )z2
2 .



For a fixed δ > 0, we define in |z | < δ

Ψ1ε(x) =
α

2
| log ε|x2

0 − log(1 + x2
0 ) + Γε(z) (1 + c1z1)

where

Γε(z) = Γ0(
z

ε
)− 4 log ε, Γ0(y) = log

8

(1 + |y |2)2
,

is the Liouville profile ∆Γε + ε2eΓε = 0 in R2. We choose c1 to
eliminate the main part of the error 4x0

1+x2
0

z1
ε2+|z|2

c1 =
1

2

x0

1 + x2
0

.



We can construct a global approximation Ψα,
Ψα(x1, x2) = Ψα(x1,−x2): in |z | < δ

(1 + x2
0 )S [Ψα](z) = (−αx0 + 4c1)| log ε| 8ε2 z1

(ε2 + |z |2)2

+
ε2

(ε2 + |z |2)2
O
(
|z | log(2 + |z

ε
|)
)
.

and in the region |z | > δ,

|(1 + x2
0 )S [Ψα](z)| ≤ C

ε2

(ε2 + |z |2)2
e−|z|

2
,

for some constant C > 0.



Inner-outer gluing

We look for Ψ of the form

Ψ(x) = Ψα(x) + ϕ(x).

We choose ϕ of the form

ϕ(x) = ηδ(x)φi
(z
ε

)
+ φo(x),

and ηδ(x) = η
(
|z|
δ

)
. Recall that z1 = x1 − x0, z2 = x2√

1+x2
0

The equation becomes

S [Ψα + ϕ] = LΨα [ϕ] + NΨα [ϕ] + Eα = 0

with Eα = S [Ψα].



Thus Ψ is a solution if the pair (φi , φo) satisfies the system of
equations

Lx [φi ] + ε2f ′(Ψα−
α

2
| log ε||x |2)ϕ+Eα +NΨα(ϕ) = 0, |z | < 2δ,

and

Lx [φo ] + (1− ηδ)
[
ε2f ′(Ψα −

α

2
| log ε||x |2)φo + NΨα(ϕ) + Eα

]
+ Lx [ηδ]φ

i + Kij(x)∂xiηδ∂xjφ
i = 0 in R2,

The first problem expressed in y = z
ε

∆yφ
i + f ′(Γ0)φi + B[φi ] +N (ϕ) + Eα + (f ′(Γ0) + b0)φo = 0

in B 2δ
ε

, with B[φ] = ∂yi (b
0
ij(εy)∂jφ) + b0(y)φ.



We solve this equation, coupled with the outer problem in such a
way that φi has the size of the error Eα with two powers less of
decay in y , say

(1 + |y |)|Dyφ
i (y)|+ |φi (y)| ≤ Cε| log ε|

1 + |y |1−a
,

provided Eα satisfies an orthogonality condition∫
Eα∂y1Γ0(y) dy ∼ 0.

This condition gives

α ∼ 2

1 + x2
0

This choice of α is precisely the number that makes the ”rotating
helix” a solution of the binormal flow.



Outer Linear Problem:

L[ψo ] + g(x) = 0 in R2,

for a bounded function g . We prove that if
‖g‖ν := supx∈R2(1 + |x |)ν |g(x)| < +∞ , where ν > 2, then

|ψo(x)| ≤ C‖g‖ν(1 + |x |2),

We write L in polar coordinates

L[ψ] =
1

1 + r2

(
1

r2
+ 1

)
∂2
θψ +

1

r
∂r

(
r

1 + r2
∂rψ

)
.

To solve Equation L(Ψ) = g we decompose g and ψ into Fourier
modes as

g(x) =
∞∑

j=−∞
gj(r)e jiθ, ψ(x) =

∞∑
j=−∞

ψj(r)e jiθ, x = re iθ.



Vortex rings
Another known solution of the binormal flow that does not change
its form in time is the vortex rings.

X (s, τ) =

R cos s
R

R sin s
R

2
R τ

 , 0 < s ≤ 2πR, τ ≥ 0



Helmholtz 1858 paper on Vortex Ring

Helmoltz (1858): Here in a circular vortex-filament of very small
section in an infinitely extended fluid. the center of gravity of the
section has, from the commencement, an approximately and very
great velocity parallel to the axis of the vortex-ring, and this is
directed towards the side to which the fluid flows through the ring

Fraenkel (1970-1972): exact travelling ring solution



Axisymmetric Euler equations:

u(r , z , t) = ur (r , z , t)er + uθ(r , z , t)eθ + uz(r , z , t)ez

er =
1

r
(x , y , 0)T , eθ =

1

r
(−y , x , 0)T , ez = (0, 0, 1)T

the 3D Euler becomes
| log ε|uθt + uruθr + uzuθz = −1

r u
ruθ

| log ε|ωθt + urωθr + uzωθz = 2
r u

θuθz + 1
r u

rωθ

−[∆− 1
r2 ]ψθ = ωθ

where ωθ ans ψθ are the θ-component of the vorticity and the
stream function.



Introducing new variables

U =
uθ

r
, W =

ωθ

r
, Ψ =

ψθ

r
,

| log ε|Ut + urUr + uzUz = 2UΨz

| log ε|Wt + urWr + uzWz = (U2)z
−[∂2

r + 3
r ∂r + ∂2

z ]Ψ = W (r , z) ∈ (0,∞)× R,

where
ur = −rΨz , u

z = 2Ψ + rΨr



Axisymmetric with no-swirl

Take U = 0 so we have the following system

| log ε|rWt +∇⊥x (r2Ψ) · ∇xW = 0, −∆5Ψ = W ,

∆5 := ∂2
rr + 3

r ∂r + ∂2
zz x = (r , z)

Fraenkel (1970-1972), Helmholtz (1858)
Exact traveling ring solutions

W (r , z , t) = W (r , z − αt)

solve

∇⊥
[
r2(ψ − α

2
| log ε|)

]
· ∇W = 0, −∆5ψ = W



Take W = f (r2(ψ − α
2 | log ε|)), then

∇⊥
[
r2(ψ − α

2
| log ε|)

]
· ∇W

= ∇⊥
[
r2(ψ − α

2
| log ε|)

]
· ∇
[
r2(ψ − α

2
| log ε|)

]
︸ ︷︷ ︸

=0

f ′(
[
r2(ψ − α

2
| log ε|)

]
) = 0

The problem reduces to

−∆5ψ = f (r2(ψ − α

2
| log ε|)) = W

For a vortex-ring solution we want rW ∼ 8πδP0 . Take P0 = (r0, 0)



For x = (r , z), the Green’s function

−∆5G (x ,P0) = 8πδP0 , G (x ,P0)→ 0 |x | → ∞

can be expanded as

G (x ,P0) = log
1

|x − P0|4
(
1− 3

2r0
(r − r0) + H(x ;P0)

)
+ K (x ;P0).

where

∆5

(
log

1

|x − P0|4
H(x)

)
= −30

(r − r0)2

rr0|x − P0|2
+

9

2rr0
log

1

|x − P0|4
,

and
∆5K (x) = 0.



Fraenkel’s solution (Ψε,Wε): in |x − P0| < δ

r0Ψε(x) ∼ log
1

(ε2 + |x − P0|2)2︸ ︷︷ ︸
=Γ0(

x−P0
ε

)−4 log ε

(
1− 3

2r0
(r − r0) + H(x)

)
+ K (x).

Taking f (s) = ε2−αr0e
s
r0

r0Wε(x) ∼ 1

ε2
U0(

x − P0

ε
) U0(y) =

1

(1 + |y |2)2



Then, in the expanded variables x = P0 + εy

Eε := ε2
[
∆5Ψε + f (r2(Ψε −

α

2
| log ε|))

]

= εy1U0[
3

2
+

1

2r0
(Γ0(y)− 4(2− αr0) log ε)] + O(ε2(1 + |y |)−3)

To reduce the error, we write

Ψ = Ψε + ψ(y), y =
x − P0

ε

and we linearize

ε2
[
∆5Ψ + f (r2(Ψ− α

2
| log ε|))

]
= ∆yψ + U0(y)ψ + Eε + l .o.t



Consider the problem

∆yψ + U0(y)ψ + Eε = 0 in R2. (∗)

The functions

Z0(y) = 2
1− |y |2

1 + |y |2
, Z1(y) =

y1

1 + |y |2
, Z2(y) =

y2

1 + |y |2

solve ∆yψ + U0(y)ψ = 0.

You can solve (∗) for ψ in a space of decaying function provided∫
R2

Eε(y)Zj(y) dy = 0 ∀ j = 0, 1, 2.



Recall

Eε = εy1U0[
3

2
+

1

2r0
(Γ0(y)− 4(2− αr0) log ε)] + O(

ε2

(1 + |y |)3
)

Then
∫
R2 Eε(y)Zj(y) dy = 0 automatically j = 0, 2.

The orthogonality condition for j = 1 gives

α =
2

r0
+

βε
| log ε|

, βε = O(1) as ε→ 0



Single traveling vortex ring solutions

I Existence of a single vortex-ring solution via constrained variational

method:Arnold (1964), Fraenkel-Berger (1974), Benjaman (1976),

Friedman-Turkington (1981),Burton (1983), Ambrosetti-Struwe

(1989), Benedetto-Caglioti-Marchioro (2000)

I The speed and the radius of the vortex ring

α ∼ 1

r0



Nearly Parallel Vortex-Rings

Helmholtz 1858: We can now see generally how two ring-formed
vortex-filaments having the same axis would mutually affect each
other, since each, in addition to its proper motion, has that of its
elements of fluid as produced by the other. If they have the same
direction of rotation, they travel in the same direction; the
foremost widens and travels more slowly, the pursuer shrinks and
travels faster till finally, if their velocities are not too different, it
overtakes the first and penetrates it. Then the same game goes on
in the opposite order, so that the rings pass through each other
alternately.

speed ∼ 1

radius



Leap-frogging

Aim: mathematically justify the leap-frogging dynamics for 3D

axisymmetric Euler flow without swirls.

| log ε|rWt +∇⊥(r2ψ) · ∇W = 0, −∆5ψ = W



Formal Derivation of Leap-Frogging

Take two ”Fraenkel solutions”

W 0
ε (x , t) =

2∑
j=1

1

ε2
j rj

U0(
x − Pj

εj
), x = (r , z)

Ψ0
ε(x , t) =

2∑
j=1

1

rj
log

1

(ε2
j + |x − Pj |2)2

[
1− 3

2rj
(r − rj) + H(x ,Pj)

]

+
G (x ;Pj)

rj

where
Pj = Pj(t) = (rj(t), zj(t)), εj = εj(t)



One has
∆5Ψ0

ε −W 0
ε ∼ 0.

Consider now

S [W , ψ] := | log ε|rWt +∇⊥(r2ψ) · ∇W

We choose
ε2
j (t)rj(t) = ε2 ∀ j = 1, 2.



At x = P1 + ε1y , we have

ε4
1S [W 0

ε , ψ
0
ε ] = εj

[
−| log ε|∂tP1 + Θ1(P1,P2)

]
·∇U0(y)

+O(
ε2| log ε|
1 + |y |4

)

where

Θ1(P) = −4
(P1 − P2)⊥

|P1 − P2|2
+ 2

P1 · e1

r2
1

| log ε|
(

0
1

)
+ Rj(P)

with
|Rj(P)|(t) = O(1), as ε→ 0.



We obtain

∂tP1 − 2
P1 · e1

r2
1

(
0
1

)
+

4

| log ε|
(P1 − P2)⊥

|P1 − P2|2
+ O(

1

| log ε|
) = 0

∂tP2 − 2
P2 · e1

r2
2

(
0
1

)
+

4

| log ε|
(P2 − P1)⊥

|P1 − P2|2
+ O(

1

| log ε|
) = 0

Fraenkel’s (1972) single-ring traveling:

∂tP1 − 2
P1 · e1

r2
1

(
0
1

)
= 0 =⇒

∂tr1 = 0

∂tz1 = 2P1·e1

r2
1

r1 = r0, z1 = z0 +
2t

r0



Let

Pi =

(
r0 +

r(bi (t))√
| log ε|

, z0 +
t

r0
+

z(bi (t))√
| log ε|

)

We obtain that bi (t) = (r(bi (t)), z(bi (t))) satisfies the following
LeapFrogging dynamics

(LeapFrog)

 ḃi (t) =
∑

j 6=i
(bi−bj )⊥
‖bi−bj‖2 − r(bi )

r2
0

(
0
1

)
bi (0) = b0

i



Theorem [Dávila, del Pino, Musso, Wei, 2021] Let
P(t) = (P1(t), . . . ,PN(t)) be a collision-less solution of System
(LeapFrog)

Pi =

(
r0 +

r(bi (t))√
| log ε|

, z0 +
t

r0
+

z(bi (t))√
| log ε|

)
in (0,T )

Then there exists a solution ωε of 3D axi-symmetric Euler flow
(without swirl) of the form

Wε(x , t) ∼
N∑
j=1

1

rjε2
j

U0

(
(r , z)− Pj

εj

)

Ψε(x , t) ∼
N∑
j=1

1

rj
log

1

(ε2
j + |x − Pj |2)2

[1− 3

2rj
(r − rj)]



Ingredients in the construction:

• Improvement of the approximation in powers of ε using elliptic
and transport equations.

• Setting up the problem as a coupled system of inner problems
near the singularities and and an outer problem more regular (the
inner-outer gluing scheme)

• A priori estimates to solve by a continuation (degree) argument.



Remarks
1. Klein-Majda-Damodaran (1995) formally derived the LeapFrogging
dynamics.

2. Jerrard-Smets (2018): gave the first mathematical justification of
leapfrogging in three-dimensional Gross-Pitaeskii equation

iut −∆u =
1

ε2
(1− |u|2)u in R3

u : R3 × R→ R2

3. The gluing approach we developed will be useful for the Vortex
Filament Conjecture.

Related results: Gallay-Smets (2018) (spectrum analysis for the vortex

line filament)



Thanks for your attention


