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0 du + [div (v ® u) + Vp|dt vAudt+dB

3
dive — 0 reT? telR

e trace class Brownian motion B on ({2, F,P)

o velocity u: Q2 x R x T% — R?

e pressure p: ) x R x T3 =R

e viscosity v > (0 — Navier-Stokes equations v > 0 and Euler equations v =0

e high Reynolds number limit v — 0 — highly turbulent regime

Statistically stationary solutions
e exact trajectories of solutions are not suitable for predictions (high sensitivity)
e statistical properties are well reproducible

e Lawlu(t+-)]=Law(u(-)] for all t € IR — as a pushforward probability measure on C'(IR; L?)
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e physical theory taking theoretical hypotheses and making predictions
e confirmed to large extent by experiments

e largely open in terms of rigorous mathematics

Key problems of interest:

1. Existence and (non)uniqueness of ergodic stationary solutions u,, to the Navier-Stokes equa-
tions

2. Relative compactness of stationary solutions u,, v > 0, and the convergence towards a
stationary solution to the Euler equations

3. Anomalous dissipation along the vanishing viscosity limit v — 0

4. Existence and (non)uniqueness of ergodic stationary solutions to the Euler equations

e up to now, results only for simplified settings

o shell models of turbulence, passive scalar models of turbulence
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e basic assumption in turbulence theory

e time averages along trajectories converge to ensemble averages wrt a probability measure

T — 00 T

lim l/OTF(u(t))dt_ /de

e the measure is invariant — stationary solutions
e for an ergodic stationary solution

lim L / F(u(t))dt = E[F(u(0))]

T — 00 T

e unique ergodicity for stoch. NSE with nondegenerate noise for a selected Markov process
o Da Prato—Debussche '03 (analysis of the Kolmogorov equation)
o Flandoli-Romito '08 (based on Markov selection)

e even mere existence of stationary solutions to stoch. Euler unknown
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vAu
0

I Ou+div (u ®@u) + Vp €T3, ¢ € [0, 00)

div u

e assume wu is smooth — test the equation by
(O, u) + (div (u @ u), u) + (Vp,u) =v(Au, u)
1
= SOlullL: + v [|Vuzz =0
e energy conservation for Euler equations
1 2
= S0uull?2=0

e vanishing viscosity limit in a class of smooth solutions would imply

lim v||Vu,||72=0
v—0 *



Energy inequality and anomalous dissipation

such solutions do not exist globally in time for general initial conditions

Leray solutions to NSE exist globally in time and satisfy the energy inequality
1 2 ' 2 1 2
= Flu®llzz +v ) IVu(s)lzz ds < 5 l[u(0)]|z2

anomalous dissipation predicted by Kolmogorov

lim VB[V |[22] = € > 0
v—0 x

energy estimates do not give the necessary compactness to construct weak solutions to Euler

we work with a different class of solutions (but not necessarily larger)
o in O(R; H?)NCY(IR; L?) for some (small) ¥ >0 uniformly in v >0
u(t) ¢ H' and energy inequality not satisfied

we use a new stochastic convex integration



Stochastic convex integration 7/12

e based on the convex integration by Buckmaster—Vicol '19
e iterative procedure, explicit construction of solutions scale by scale

e decomposition u =2z + v
dz — (A —1)zdt=dB, divz=0
0w —Av—z+div((v+2)® (v+2))+Vp=0, divo =0
e iterations satisfy the equations up to an error
O0pvg — Avg — 24 +div ((vg + 24) ® (v + 24)) + Vpg=div R, divy, =0

2g=P<(9)%
e having already found (v, 1%,)
o how to find (vg41, Rg+1)?

o so that also v, has a limit and R, — 07
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e roughly speaking, we look for a (small) perturbation w,4 1 so that
O VUg4+1= Vg + Wg+1
o Ry, is (much) smaller than R,

e then looking at 0v,41 — 0, we get a formula for 17,41
div Ry 1 =div (Ry + wg41 @ wgy1) + -+
e intermittent jets 1V introduced by Buckmaster—Vicol, geometric lemma
Wgt1= a(Rg)Wo1

e amplitude function a(R,) oscillates slowly, large oscillations in W,

e large oscillations resonate through the nonlinearity so that
[ Rg + w1 @ w1 || < || Ryl

e additionally: mollification step, compressibility and time corrector
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for the long time behavior, work with norms of the form

teR | t<s<t+1 teR

1\ /) § 1/(2r)
(supna[ sup qu@)\@@]) , (supﬂauvqu%ﬂ([t,m};m])

e uniform moment estimates locally in C(IR; H”) N CY(R; L?)

previous versions worked with stopping times — not good for stationary solutions

e iterative estimates (a sample): > 1 fixed, any m € N

1
supE[ sup HRq(S)]El] <E5q+2—>0 as q— 00
teR | t<s<t+1

supE|  sup || Ry(s)[|F% | < (6%-4m L2)(")
teR |t<s<t+1

e due to the quadratic nonlinearity the estimates are superliner — control all the moments

e use small factors to absorb the blow up



Stochastic convex integration

VA (VRWAVWYA [ ct - > 1 and a smooth e: IR — (0, 00) with a compact range be given.

There exists ¥ > 0 so that for every v > 0 there is an adapted u,, € C(R; H”) N C?(IR; L?)
a.s. solving the stoch. NS/Euler equations so that

sup(supna[ sup [l (s)||2 +supEmuVH%s([t,m];m])<oo,
v>0 \teR |t<s<t+1 tER

Eluu(t)]|72= e(t).

e solutions are probabilistically strong, analytically weak
e the bounds good enough to apply
o Krylov—Bogoliubov — existence of stationary solutions
o Krein—Milman — existence of ergodic stationary solutions

e nonuniqueness of the above by choosing different e(t) = K



Krylov—Bogoliubov, ergodicity, vanishing viscosity

instead of Markov semigroup, work with shifts on trajectories
Se(u, B)(-) = (u(t+-),B(t+-)—B(t)) t€R

o continuity on 7 = C(IR; L?) x C(IR; L?) for free! (cf. Feller property)

Krylov—Bogoliubov applied to the ergodic averages

T ~
;;F/ CIS,(u, B)dt—v=Clid, B] T o
0

~

v is a shift invariant measure on trajectories and a law of a stationary solution (@, B)

ergodicity understood as ergodicity of the dynamical system (7, (S:,t € R), L|u, B))

bounds uniform in the viscosity v > 0
o the results apply to the stochastic Euler equations

o vanishing viscosity limit in the framework of stationary solutions
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Thanks for your attention!



