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I. Review on Mean Curvature Flow
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Mean Curvature Flow

A family of hypersurfaces {Σn
t } in Rn+1 is said to satisfy the Mean Curvature

Flow if they are moving with velocity equal to the mean curvature vector:

∂t~x = ~H = −H~n (MCF)
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Geometry: MCF is the negative gradient flow for area.

Analysis: MCF is a non-linear parabolic partial differential equation.

Physics: Models for evolution of soap films, grain boundaries cf. Mullins.
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Existence and Uniqueness

By parabolic PDE theory, we have short-time existence and uniqueness:

Theorem (Hamilton (1982), Huisken (1984))

Given a compact smooth hypersurface Σ ⊂ Rn+1, there exists a unique smooth
maximal solution {Σt}t∈[0,T ) to (MCF) with Σ0 = Σ such that

max
Σt

|A|2 →∞ as t → T < +∞.

Therefore, the flow will encounter singularities in finite time. This leads to

Two Fundamental Questions:

1 What kind of singularities can occur?

2 How to continue the flow through singularities?
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Huisken’s Monotonicity Formula

Huisken (1990) proved the celebrated monotonicity formula (for t < 0)

d

dt

∫
Σt

Φ = −
∫

Σt

∣∣∣∣Hn +
x⊥

2t

∣∣∣∣2 ≤ 0 where Φ(x , t) = (−4πt)−
n
2 e
|x|2

4t .

As a consequence, the singularities are modelled on self-similar solutions.
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Figure 1. Cylinders, spheres, and planes are self-similar solutions
of MCF. The shape is preserved, but the scale changes with time.

occur during the flow? What does the flow look like near these singularities? What
is the structure of the singular set itself? Is it possible to piece together information
about the original hypersurface from the changes that it goes through under the
flow? In what follows, we will discuss some of the known results addressing these
questions.

These are natural questions that one can for ask for many different flows, and
advances in one may lead to advances for other flows.

1.1. Curve shortening flow. The simplest case of MCF is when n = 1 and the
hypersurfaces are curves; this is called curve shortening flow . Gage and Hamilton,
[GH], showed that curve shortening flow starting from any simple closed convex
curve remains remains simple and convex up to an extinction time where it con-
verges to a point. Moreover, if the flow is rescaled to keep the enclosed area constant,

. . . .

Figure 2. The snake manages to unwind quickly enough to be-
come convex before extinction.
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Singularity Models in R3

There are 3 types of self-similar solutions: shrinkers, translators and expanders.
Among them, the most important ones are shrinkers, which only undergo
homothetic changes under the flow.

Other than round spheres and cylinders, Angenent (1989) constructed a
shrinking donut. Numerical evidence by Chopp (1994) and Ilmanen (1995)
suggests that many other examples exist. Some of these examples are constructed
recently by gluing methods cf. Nguyen (2014), Kapouleas-Kleene-Möller
(2018).

It seems out of reach to obtain a complete classification of singularity models.
Instead, one may ask the following questions:

1 What are the generic singularities? c.f. Colding-Minicozzi (2012)

2 What if we impose further geometric assumptions?
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Consequences of Maximum Principle

Avoidance Principle: Two hypersurfaces that are initially disjoint remain
disjoint. In particular, embeddedness is preserved under the flow. Moreover,
compact MCF in Rn+1 must become extinct in finite time.

300 T. H. COLDING, W. P. MINICOZZI II, AND E. K. PEDERSEN

then the resulting curves converge to a round circle at the extinction time. This is
usually summarized in the following way:

Theorem 1.1 ([GH]). Under curve shortening flow, every simple closed convex
curve in R2 remains convex and eventually becomes extinct in a “round point”.

A year later, Grayson [G] showed that any simple closed curve eventually be-
comes convex under the flow; see Figure 2. Thus, by the result of Gage and Hamil-
ton, it becomes extinct in a round point. As we will see, the picture is far more
complicated in higher dimensions.

1.2. Maximum principle. One of the fundamental tools for studying MCF is
the parabolic maximum principle. This has a number of important consequences,
including the following key facts (see also Figure 3):

(1) If two closed hypersurfaces are disjoint, then they remain disjoint under
MCF.

(2) If the initial hypersurface is embedded, then it remains embedded under
MCF.

(3) If a closed hypersurface is convex, then it remains convex under MCF.
(4) Likewise, mean convexity (i.e., H ≥ 0) is preserved under MCF.

It follows from the avoidance property (1) that any closed hypersurface must
become extinct under the flow before the extinction of a large sphere containing the
initial hypersurface. For shrinking curves, Grayson proved that the singularities are
trivial. In higher dimensions, as we will see, the situation is much more complicated.

Grayson showed that his result for curves does not extend to surfaces. In partic-
ular, he showed that a dumbbell with a sufficiently long and narrow bar will develop
a pinching singularity before extinction. A later proof was given by Angenent [A],
using the shrinking donut, that we will discuss shortly, and the avoidance property
(1); see Figure 9 where Angenent’s argument is explained. Figures 4–7 show eight
snapshots in time of the evolution of a dumbbell.2

Figure 3. By the maximum principle, initially disjoint hypersur-
faces remain disjoint under the flow. To see this, argue by contra-
diction and suppose not. Look at the first time where they have
contact. At that time and point in space the inner evolves with
greater speed, hence, right before they must have crossed, contra-
dicting that it was the first time of contact.

2Figures 4–7 were created by computer simulation by U. Mayer (see [May]) and are used with
permission.

Let κ1 ≤ κ2 ≤ · · · ≤ κn be the principal curvatures of Σt , Huisken (1984)
and Huisken-Sinestrari (2009) proved that the following conditions are
preserved under the flow:

1 convex : κ1 > 0
2 two-convex : κ1 + κ2 > 0
3 mean convex : H = κ1 + · · ·+ κn > 0
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Contracting hypersurfaces to a point in Rn+1

Under certain assumptions, only the singularity of shrinking spheres can occur.

Theorem (Huisken (1984))

Any compact convex hypersurface in Rn+1 converges to a “round point”.

When n = 1, Gage-Hamilton (1986) and Grayson (1987) showed that any
simple closed curve in R2 converges to a round point. Andrews-Bryan (2011)
gave a new proof using the two-point maximum principle.
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MCF in Riemannian manifolds

Theorem (Huisken (1986))

Let (Mn+1, g) be a complete Riemannian manifold with positive injectivity radius
inj (M, g) ≥ i0 > 0 that satisfies the following uniform curvature bounds:

−K1 ≤ K ≤ K2 and |∇Rm| ≤ L,

Then, any initial hypersurface Σ0 satisfying

H hij > nK1 gij +
n2

H
L gij

would shrink to a round point in finite time under MCF.

In particular, any compact convex hypersurface in Sn+1 converges to a round
point in finite time.

When n = 1, Grayson (1989) showed a dichotomy that any simple closed curve
in a closed surface (M2, g) would either (i) converge to a round point in finite
time or (ii) converge to a simple closed geodesic as t → T .
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Weak notions of MCF

There are several ways to continue the flow after singularities have occured.

1 MCF with surgery

Idea: stop the flow very close to the first singular time, then remove regions
of large curvature and replace by more regular ones cf. Huisken-Sinestrari
(2009), Brendle-Huisken (2016) and Haslhofer-Kleiner (2017)

2 Level set flow

Idea: represent the evolving hypersurface as the level sets of a function
v(x , t) where Σt = {x ∈ Rn+1 : v(x , t) = 0} cf. Evans-Spruck (1991),
Chen-Giga-Goto (1991), Colding-Minicozzi (2016-2019)

3 Brakke flow

Idea: use Geometric Measure Theory to define the flow of singular
hypersurfaces with “good” compactness properties cf. Brakke (1978),
Ilmanen (1994), White (2000, 2002, 2015)
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Grayson’s dumbbell
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Figure 4. Grayson’s dumbbell; initial surface and step 1.

Figure 5. The dumbbell; steps 2 and 3.

Figure 6. The dumbbell; steps 4 and 5.

Figure 7. The dumbbell; steps 6 and 7 (see also [May]).

Even though the singularities can be quite complicated, one can define weak
solutions of the flow through singularities. There are two main types of weak
solutions, each focusing on a different aspect of the flow. The first was Brakke’s
MCF of varifolds in [B], where the weak solutions evolve to minimize volume. The
other approach, called the level set flow, focuses on the avoidance property: a
family of sets is a weak solution if it does not violate the avoidance property with
any smooth solution. The level set flow was implemented numerically by Osher and
Sethian [OS] and constructed theoretically by Evans and Spruck [ES] and Chen,
Giga, and Goto [CGG].

Obviously, as long as the flow stays smooth, the evolving hypersurfaces are dif-
feomorphic. Thus any topological change comes from singularities. However, White
used the maximum principle to control the topology of the flow past singularities.
For example, a special case of White’s results gives:
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II. Mean Curvature Flow with boundary
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Mean Curvature Flows with boundary

Question
Can we evolve hypersurfaces with boundary under MCF?

YES, provided that suitable boundary conditions are imposed. Two types of
commonly considered boundary conditions are:

1 Dirichlet: The motion of the boundary ∂Σt is either fixed or prescribed cf.
White (1995, 2019)

2 Neumann: The boundary ∂Σt can move freely on a given hypersurface
S ⊂ Rn+1 and Σt is either orthogonal to S or with prescribed contact angle
cf. Huisken (1989), Altschuler (1994), Stahl (1996)

Remark: The corresponding boundary value problems for Ricci flow is more subtle
cf. Gianniotis (2016)
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Free-boundary MCF

Definition

Let S ⊂ Rn+1 be a smooth embedded hypersurface without boundary, oriented by
the unit normal νS . A family {Σt} of hypersurfaces with boundary is evolving by
the free-boundary Mean Curvature Flow w.r.t. the “barrier” S if

1 Σt satisfies (MCF) in the interior

2 ∂Σt ⊂ S and Σt ⊥ S along ∂Σt from “inside” of S
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Some results on free-boundary MCF

Huisken (1989) obtained long time convergence of the flow for graphs over
compact domain in Rn. Various graphical settings are also considered by Wheeler
(2014, 2017) and Wheeler-Wheeler (2017).

Stahl (1996) established the short-time existence and uniqueness for compact
initial data. Buckland (2005) proved a Huisken-type monotonicity formula. In
the mean convex setting, Edelen (2016) showed the convexity estimates along
the lines of Huisken-Sinestrari (1999).

For weak solutions, the level set flow in the free boundary setting was first
introduced by Giga-Sato (1992). Edelen (2018) defined the corresponding
notion of Brakke flow. Mizuno-Tonegawa (2018) and Kagaya (2017) etc.
studied the Allen-Cahn equation counterpart. Recently, the regularity theory of
White was generalized by Edelen-Haslhofer-Ivaki-Zhu (2019) to the free
boundary setting.
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III. A new convergence result
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Convergence results for free-boundary MCF

Question
Under what conditions would a hypersurface converge to a “round half-point”?

2 SVEN HIRSCH AND MARTIN LI

has been done by Edelen [6] and Edelen-Haslhofer-Ivaki-Zhu [8] extending the foun-
dational convexity estimates of Huisken-Sinestrari [22, 21] and regularity theory of
White [37, 38, 39]. Special cases of MCF with free boundary were also studied, for
example in the entire graphical case [34], in the Lorentzian setting [24] and in the
Lagrangian setting [9].

One celebrated classical result of Huisken [17] says that any convex hypersurfaces
in Rn+1 shrink to a round point in finite time under MCF. This result is later
generalized to the Riemannian setting in [18] provided that the initial hypersurface
is convex enough to overcome the ambient geometry. In the free boundary setting,
Stahl [32] prove that any convex hypersurface with free boundary lying on a flat
hyperplane or a round hypersphere in Rn+1 will shrink to a round point under the
MCF with free boundary. A natural question is whether Stahl’s convergence result
can be extended to more general non-umbilic barrier surfaces. In this paper we
answer this question affirmatively in dimension two (we refer the readers to Section
2 for precise definitions).

Theorem 1.1. Let S ⊂ R3 be a complete, properly embedded oriented surface
without boundary satisfying the following uniform bounds: there exist constants
K, L1, L2 ≥ 0 such that

(1.1) 0 ≤ ZS ≤ ZS ≤ K,

where ZS , ZS are the exterior and interior ball curvature respectively, and

(1.2) |∇SAS | ≤ HSL1 and |∇2
SÅS | ≤ L2.

Then there exists a constant D ≥ 0, depending only on K, L1 and L2, such that
the following holds: let Σ0 be a compact connected surface smoothly immersed in
R3 meeting S orthogonally along its free boundary ∂Σ0 ⊂ S, and suppose that on
Σ0 we have

(1.3) hij > Dgij ,

then there exists a unique solution Σt to the free-boundary mean curvature flow on
a finite time interval 0 ≤ t < T and the surfaces Σt remains convex for all time.
Furthermore, as t → T , Σt converges uniformly to half of a “round point” p ∈ S
in the sense that there is a sequence of rescalings which converge to a shrinking
hemisphere with free boundary lying on a plane.

Figure 1. A convex surface with free boundary contained in a
convex barrier surface is evolving under mean curvature flow to a
shrinking hemisphere.

Theorem (Stahl (1996), Edelen (2016))

Any compact convex hypersurface in Rn+1 with free boundary lying on S = Rn or
Sn converges to a “round half-point” in finite time.

What about for other S?
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A new convergence result for free-boundary MCF

In a joint work with Sven Hirsch, we generalize Stahl’s convergence result to
general convex barrier surfaces in R3.

Theorem (Hirsch-L. (2000) arXiv:2001.01111)

Let S ⊂ R3 be a smooth embedded oriented surface satisfying uniform bounds on
the second fundamental form

|∇AS |+ |∇2AS | ≤ L

and bounds on the interior/exterior ball curvatures

0 ≤ ZS ≤ ZS ≤ K2.

Then, any compact surface which is “sufficiently convex”, depending only on L
and K2, with free boundary lying on S will shrink to a round half-point in finite
time under free-boundary MCF.
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Interior/exterior ball curvatures
In studying non-collapsing of MCF, Andrews defined the interior ball curvature of
S w.r.t. the outward normal νS at p ∈ S by

ZS(p) := sup
p 6=q∈S

{
2〈p − q, νS(p)〉
|p − q|2

}
,

which is the curvature of the largest “interior” ball touching S at p.
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The exterior ball curvature ZS(p) is similarly defined with inf instead. The ball
curvatures control both the principal curvatures and the inscribed radius of S :

ZS ≥ 0 ⇔ S is convex

ZS(p) ≥ maxκi (p)
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Huisken’s convergence theorem revisited

Theorem (Huisken (1986))

Let (Mn+1, g) be a complete Riemannian manifold with positive injectivity radius
inj (M, g) ≥ i0 > 0 that satisfies the following uniform curvature bounds:

−K1 ≤ K ≤ K2 and |∇Rm| ≤ L,

Then, any initial hypersurface Σ0 satisfying

H hij > nK1 gij +
n2

H
L gij (*)

would shrink to a round point in finite time under MCF.

Comparing with our main theorem:

we require up to second order derivative bounds on AS

the injectivity radius bound i0 is replaced by the ball curvature bound K2

we do not have a sharp preserved inequality (*)
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IV. Proof of the main result
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Main difficulties and key ideas in the proof

Our proof follows the general strategy in Huisken (1984). There are, however,
several new features in our proof which do not appear in the boundaryless case:

1 possibility of boundary extrema

2 uncontrollable cross terms of second fundamental form at the boundary

3 loss of umbilicity (even if Σ0 and S are totally umbilic)

We will deal with these new difficulties as follow:

apply Edelen (2016)’s weight function trick to force the extrema away from
the boundary

introduce a new perturbation of the second fundamental form to get a
reasonable boundary normal derivative

establish new convexity and pinching estimates with ”controlled decay”
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Step 1: Finite extinction time

Claim: Hmin blows up in finite time

The evolution equation for H reads

(∂t −∆)H = |A|2H

By maximum principle, any positive lower bound on H is preserved under the flow
and thus Hmin must blow up in finite time unless Hmin occurs at a boundary point!
However, this is impossible if S is convex since the boundary derivative of H
satisfies

∂

∂η
H = hSννH ≥ 0.
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Step 2: Preserving convexity

Claim: For D >> 1, hij ≥ Dgij at t = 0 ⇒ hij ≥ D
3 gij for all t

The evolution equation for hij reads

(∂t −∆) hij = −2Hhimh
m
j + |A|2hij

By Hamilton’s tensor maximum principle, any non-negative lower bound on hij is
preserved under the flow unless the minimum occurs at a boundary point! The
boundary normal derivatives are given by

∇1h11 = 2hS22H + (hSνν − 3hS22)h11 +∇S
νh

S
22 (1)

∇1h22 = hS22H + (hSνν − 3hS22)h22 −∇S
νh

S
22 (2)

Here, {e1, e2, ν} is an O.N.B. for R3 along ∂Σ such that e1 = νS , e2 ∈ T (∂Σ)
and ν ⊥ Σ. Notice that:

The R.H.S. of (1) and (2) do not have a sign.

∇1h12 is not controllable by lower order terms. (Irrelevant for umbilic S!)
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Step 2: Preserving convexity (continued)

Idea: Introduce a perturbation term to hij so that the cross term vanishes.

Consider an auxiliary 5-tensor P on R3, depending only on S , defined by

P(U,V ,X ,Y ,Z ) :=(AS(U,X )ν[S(V ) + AS(V ,X )ν[S(U)) gS(Y ,Z )

− (gS(U,X )ν[S(V ) + gS(V ,X )ν[S(U)) AS(Y ,Z ).

We define the perturbed second fundamental form Ã of Σ as

Ã(X ,Y ) := A(X ,Y ) + PΣ(X ,Y )

where PΣ(X ,Y ) := P(X ,Y , ν, ν, ν).We have along ∂Σ:

h̃11 = h11, h̃22 = h22 and h̃12 = 0; (note that h12 = −hS2ν) cf. Edelen (2016)

∇1h̃ij = ∇1hij (by our chosen extension) New!
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Step 2: Preserving convexity (continued)

We then establish a convexity estimate for h̃ij . We can exclude boundary

minimum points as follow. Suppose h̃11 is the boundary minimum.

∇1h̃11 = ∇1h11 =2hS22H + (hSνν − 3hS22)h11 +∇S
νh

S
22

≥(hSνν + hS22)h11 +∇S
νh

S
22

=HSh11 +∇S
νh

S
22 > 0

when h11 is sufficiently large. Similar calculation shows ∇1h̃22 > 0. Thus any
minimum of h̃ij is in the interior. Using the estimate

|(∂t −∆)PΣ| ≤ CS(1 + |A|2)

we obtain the convexity estimate via the maximum principle for tensors.
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Step 3: Preserving pinching

Claim: hij ≥ εHgij is preserved under the flow for some ε > 0

Huisken (1984) proved this for any ε ∈ (0, 1/2] with ε = 1/2 corresponding
to the situation that Σ is totally umbilic (think about shrinking sphere). It is
impossible to establish this optimal pinching estimate in the free boundary
setting (even when S = S2):

It
i e
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This loss of umbilicity phenomenon is due to the (in)-compatibility of the
initial data at the boundary (the flow is only C 2+α,1+α/2 there). Note that

∂

∂η
H = hSννH

only holds for t > 0 unless there are higher order compatibility at t = 0.
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Step 4: Stampacchia iteration

Finally, we use Stampacchia iteration to prove

Claim:
|A|2− 1

2 H
2

H2−σ is uniformly bounded for all time for some σ > 0

We need again to consider the perturbed Ã and H̃.

Using the claim, we can establish the following: for any η > 0,

|A|2 − 1

2
H2 ≤ ηH2 + C (S , η,Σ0)

|∇H|2 ≤ ηH4 + C (S , η,Σ0)

from which our main result follows.

29 / 30



Thank you for your attention.

Credits: Picture credits to Colding - Minicozzi and Ben Andrews.
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