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l. Review on Mean Curvature Flow
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Mean Curvature Flow

A family of hypersurfaces {&7} in R"*! is said to satisfy the Mean Curvature
Flow if they are moving with velocity equal to the mean curvature vector:

OX=H=—Hni (MCF)

T outwardh norme

o

o Geometry: MCF is the negative gradient flow for area.

zZ

@ Analysis: MCF is a non-linear parabolic partial differential equation.

@ Physics: Models for evolution of soap films, grain boundaries cf. Mullins.




Existence and Uniqueness

By parabolic PDE theory, we have short-time existence and uniqueness:

Theorem (Hamilton (1982), Huisken (1984))

Given a compact smooth hypersurface ¥ C R™*1, there exists a unique smooth
maximal solution {¥}cjo, 1) to (MCF) with Yo = ¥ such that

n;:ax|A|2%oo ast — T < +o0.
t

Therefore, the flow will encounter singularities in finite time. This leads to

Two Fundamental Questions:
@ What kind of singularities can occur?

@ How to continue the flow through singularities?




Huisken's Monotonicity Formula

Huisken (1990) proved the celebrated monotonicity formula (for ¢t < 0)

qa q):,/
dt v, .

As a consequence, the singularities are modelled on self-similar solutions.
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Ficure 1. Cylinders, spheres, and planes are self-similar solutions
of MCF. The shape is preserved, but the scale changes with time.
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<0 where ®(x, t) = (747rt)*%e‘7.




Singularity Models in R3

There are 3 types of self-similar solutions: shrinkers, translators and expanders.
Among them, the most important ones are shrinkers, which only undergo
homothetic changes under the flow.

Other than round spheres and cylinders, Angenent (1989) constructed a
shrinking donut. Numerical evidence by Chopp (1994) and llmanen (1995)
suggests that many other examples exist. Some of these examples are constructed

recently by gluing methods cf. Nguyen (2014), Kapouleas-Kleene-Méller
(2018).

It seems out of reach to obtain a complete classification of singularity models.
Instead, one may ask the following questions:

@ What are the generic singularities? c.f. Colding-Minicozzi (2012)

@ What if we impose further geometric assumptions?




Consequences of Maximum Principle

e Avoidance Principle: Two hypersurfaces that are initially disjoint remain
disjoint. In particular, embeddedness is preserved under the flow. Moreover,
compact MCF in R"T! must become extinct in finite time.

)
&

o Let k1 < kp < -+ < K, be the principal curvatures of X;, Huisken (1984)
and Huisken-Sinestrari (2009) proved that the following conditions are
preserved under the flow:

Q convex: k1 >0
Q two-convex: k1 + k2 >0
© mean convex: H=k1+ -+ Kk, >0




Contracting hypersurfaces to a point in R™!

Under certain assumptions, only the singularity of shrinking spheres can occur.

Theorem (Huisken (1984)) J

Any compact convex hypersurface in R converges to a “round point”.

When n =1, Gage-Hamilton (1986) and Grayson (1987) showed that any
simple closed curve in R? converges to a round point. Andrews-Bryan (2011)
gave a new proof using the two-point maximum principle.

ages to unwind sh to be-
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MCF in Riemannian manifolds

Theorem (Huisken (1986))

Let (M™1 g) be a complete Riemannian manifold with positive injectivity radius
inj (M, g) > iy > 0 that satisfies the following uniform curvature bounds:

—-Ki <K<K, and |VRm|<L,

Then, any initial hypersurface ¥ satisfying

2

n
Hh,-j>nK1g,-j+ﬁLg;j

would shrink to a round point in finite time under MCF.

In particular, any compact convex hypersurface in S"*! converges to a round
point in finite time.

When n =1, Grayson (1989) showed a dichotomy that any simple closed curve
in a closed surface (M?, g) would either (i) converge to a round point in finite
time or (ii) converge to a simple closed geodesic as t — T.

10/30



Weak notions of MCF

There are several ways to continue the flow after singularities have occured.

@ MCF with surgery

Idea: stop the flow very close to the first singular time, then remove regions
of large curvature and replace by more regular ones cf. Huisken-Sinestrari
(2009), Brendle-Huisken (2016) and Haslhofer-Kleiner (2017)

Q Level set flow

Idea: represent the evolving hypersurface as the level sets of a function
v(x,t) where ¥, = {x € R"" : v(x,t) =0} cf. Evans-Spruck (1991),
Chen-Giga-Goto (1991), Colding-Minicozzi (2016-2019)

@ Brakke flow

Idea: use Geometric Measure Theory to define the flow of singular
hypersurfaces with “good” compactness properties cf. Brakke (1978),
limanen (1994), White (2000, 2002, 2015)




Grayson's dumbbell

:
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FIGURE 7. The dumbbell; steps 6 and 7 (see also [May]). T Hen ks
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Il. Mean Curvature Flow with boundary
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Mean Curvature Flows with boundary

Question J

Can we evolve hypersurfaces with boundary under MCF?

YES, provided that suitable boundary conditions are imposed. Two types of
commonly considered boundary conditions are:
@ Dirichlet: The motion of the boundary 0¥, is either fixed or prescribed cf.
White (1995, 2019)
@ Neumann: The boundary 0% ; can move freely on a given hypersurface

S C R™! and ¥, is either orthogonal to S or with prescribed contact angle
cf. Huisken (1989), Altschuler (1994), Stahl (1996)

Remark: The corresponding boundary value problems for Ricci flow is more subtle
cf. Gianniotis (2016)
9
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Free-boundary MCF

Definition
Let S C R"*! be a smooth embedded hypersurface without boundary, oriented by

the unit normal vs. A family {¥;:} of hypersurfaces with boundary is evolving by
the free-boundary Mean Curvature Flow w.r.t. the “barrier” S if

@ X; satisfies (MCF) in the interior
Q@ 0¥, C Sand X; L S along 9%; from “inside” of S




Some results on free-boundary MCF

Huisken (1989) obtained long time convergence of the flow for graphs over
compact domain in R". Various graphical settings are also considered by Wheeler
(2014, 2017) and Wheeler-Wheeler (2017).

Stahl (1996) established the short-time existence and uniqueness for compact
initial data. Buckland (2005) proved a Huisken-type monotonicity formula. In
the mean convex setting, Edelen (2016) showed the convexity estimates along
the lines of Huisken-Sinestrari (1999).

For weak solutions, the level set flow in the free boundary setting was first
introduced by Giga-Sato (1992). Edelen (2018) defined the corresponding
notion of Brakke flow. Mizuno-Tonegawa (2018) and Kagaya (2017) etc.
studied the Allen-Cahn equation counterpart. Recently, the regularity theory of
White was generalized by Edelen-Haslhofer-lvaki-Zhu (2019) to the free
boundary setting.




I1l. A new convergence result
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Convergence results for free-boundary MCF

Question J

Under what conditions would a hypersurface converge to a “round half-point”?

FIGURE 1. A convex surface with free boundary contained in a
convex barrier surface is evolving under mean curvature flow to a
shrinking hemisphere.

Theorem (Stahl (1996), Edelen (2016))

Any compact convex hypersurface in R™1 with free boundary lying on S = R" or
S" converges to a “round half-point” in finite time.

What about for other S?




A new convergence result for free-boundary MCF
In a joint work with Sven Hirsch, we generalize Stahl's convergence result to
general convex barrier surfaces in R3.

Theorem (Hirsch-L. (2000) arXiv:2001.01111)

Let S C R3 be a smooth embedded oriented surface satisfying uniform bounds on
the second fundamental form

[VAs| +|V2As| < L
and bounds on the interior/exterior ball curvatures
0<Zs<Zs < Ko
Then, any compact surface which is “sufficiently convex”, depending only on L

and K5, with free boundary lying on S will shrink to a round half-point in finite
time under free-boundary MCF.




Interior /exterior ball curvatures

In studying non-collapsing of MCF, Andrews defined the interior ball curvature of
S w.r.t. the outward normal vs at p € S by

S N 2(p— q,vs(p))
ZS(”)"pitiEs{ P—aP }

which is the curvature of the largest “interior” ball touching S at p.

Vs b
S(“ ) @
A& Vg
_ N 4.%

The exterior ball curvature Zs(p) is similarly defined with inf instead. The ball
curvatures control both the principal curvatures and the inscribed radius of S:

@ Zs >0« S is convex
o Zs(p) > maxk;(p)




Huisken's convergence theorem revisited

Theorem (Huisken (1986))

Let (M g) be a complete Riemannian manifold with positive injectivity radius

inj (M, g) > iy > 0 that satisfies the following uniform curvature bounds:
—Ki <K<K, and |VRm|<L,

Then, any initial hypersurface ¥ satisfying
2

would shrink to a round point in finite time under MCF.

*)

Comparing with our main theorem:
@ we require up to second order derivative bounds on As
@ the injectivity radius bound iy is replaced by the ball curvature bound

@ we do not have a sharp preserved inequality (*)




IV. Proof of the main result
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Main difficulties and key ideas in the proof

Our proof follows the general strategy in Huisken (1984). There are, however,
several new features in our proof which do not appear in the boundaryless case:

@ possibility of boundary extrema
@ uncontrollable cross terms of second fundamental form at the boundary
@ loss of umbilicity (even if £y and S are totally umbilic)

We will deal with these new difficulties as follow:

o apply Edelen (2016)'s weight function trick to force the extrema away from
the boundary

@ introduce a new perturbation of the second fundamental form to get a
reasonable boundary normal derivative

@ establish new convexity and pinching estimates with " controlled decay”




Step 1: Finite extinction time

Claim: Hp,i, blows up in finite time

The evolution equation for H reads
(0: — A)H = |APH

By maximum principle, any positive lower bound on H is preserved under the flow
and thus H,,;, must blow up in finite time unless H,,;, occurs at a boundary point!
However, this is impossible if S is convex since the boundary derivative of H
satisfies

0

—H=~h>H>0.
877 vv —_—




Step 2: Preserving convexity

Claim: For D >>1, h; > Dgj at t =0 = h; > 2g; forall ¢t

The evolution equation for hj; reads
(8: — A) hj = —2Hhimh™; + |A[* by

By Hamilton’s tensor maximum principle, any non-negative lower bound on hj; is
preserved under the flow unless the minimum occurs at a boundary point! The
boundary normal derivatives are given by

Vihiy = 2h3,H + (b3, — 3h3,) i1 + V3 h3, (1)

Vihya = hH + (b, — 3h%,)hee — Vi 13, (2)

Here, {e1, &, v} is an O.N.B. for R? along O such that e; = vs, e; € T(9X)
and v 1 Y. Notice that:

@ The R.H.S. of (1) and (2) do not have a sign.

@ Vyhyy is not controllable by lower order terms. (Irrelevant for umbilic S!) 9
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Step 2: Preserving convexity (continued)

Idea: Introduce a perturbation term to hj; so that the cross term vanishes.
Consider an auxiliary 5-tensor P on R3, depending only on S, defined by
P(U,V,X,Y,Z) :=(As(U, X)vi(V) + As(V, X)vi(U)) gs(Y, 2)
— (gs(U, X)v5(V) + gs(V, X)r5(U)) As(Y, 2).
We define the perturbed second fundamental form A of ¥ as
AX,Y) = AX,Y) + PE(X,Y)

where PX(X,Y) := P(X,Y,v,v,v).We have along 0X:
(] /’:)11 = h11, 7722 = h22 and 7712 = O; (note that h12 = —hzsy) cf. Edelen (2016)
o Vih;j = Vihj (by our chosen extension) New!
2
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Step 2: Preserving convexity (continued)

We then establish a convexity estimate for 77,'_,'. We can exclude boundary
minimum points as follow. Suppose hy; is the boundary minimum.

Vihiy = Vihiy =2h3,H + (h3, — 3h3,)hi1 + V3 h3,
Z(hfy + hgz)hll + thgz
=H%h;1 + V3h3, >0

when hy; is sufficiently large. Similar calculation shows Vihp > 0. Thus any
minimum of hj; is in the interior. Using the estimate

(8; — A)PF| < Cs(1+|A]?)

we obtain the convexity estimate via the maximum principle for tensors.




Step 3: Preserving pinching
Claim: hj; > eHgj; is preserved under the flow for some € > 0

@ Huisken (1984) proved this for any € € (0,1/2] with ¢ = 1/2 corresponding
to the situation that X is totally umbilic (think about shrinking sphere). It is
impossible to establish this optimal pinching estimate in the free boundary
setting (even when S = S2):

T

\/ T, = Spherical
\_/ cop

@ This loss of umbilicity phenomenon is due to the (in)-compatibility of the

initial data at the boundary (the flow is only C2+®1*+2/2 there). Note that
LA hy, H
on

only holds for t > 0 unless there are higher order compatibility at t = 0.*

g
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Step 4: Stampacchia iteration

Finally, we use Stampacchia iteration to prove

. AP2—1H? . . .
Claim: | ‘/-/2720 is uniformly bounded for all time for some o > 0

@ We need again to consider the perturbed A and H.

@ Using the claim, we can establish the following: for any n > 0,

1
|A|2 - §H2 < 77H2 + C(S7777ZO)

[VH|* < nH* + C(S, 1, %o)

from which our main result follows.
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Thank you for your attention.

Credits: Picture credits to Colding - Minicozzi and Ben Andrews.




